
In: Proceedings of the 5th European Software Engineering Conference ESEC’95(Sit-
ges, Spain, September 25-28), 1995

The Treatment of Non-Functional Requirements in MIKE

Dieter Landes and Rudi Studer
Institut für Angewandte Informatik und Formale Beschreibungsverfahren

Universität Karlsruhe, D-76128 Karlsruhe, Germany
e-mail: { landes | studer }@aifb.uni-karlsruhe.de

Non-functional requirements significantly affect and determine the quality of soft-
ware systems. In this paper it is shown how non-functional requirements are mod-
elled in MIKE, an approach to the development of knowledge-based systems. A
semi-formal hypermedia-based model is used to describe the results of the elicitation
and interpretation of non-functional requirements and their relationships. Non-func-
tional requirements are the driving force behind the decisions taken in the design
phase of MIKE. The impact of non-functional requirements on design decisions and
interdependencies between design decisions are explicitly recorded in an additional
model in MIKE, thus resulting in a rich documentation of the rationale of design de-
cisions and also providing an important contribution to the traceability of these re-
quirements.

1 Introduction
In recent years, the influence of non-functional requirements (NFRs) on the quality of
software systems has increasingly been acknowledged (cf., e.g., [24]). However, the
elicitation, specification, and implementation of NFRs, such as, e.g., efficient use of re-
sources, maintainability, understandability etc., are still less understood than the corre-
sponding issues in the context of functional requirements. In particular in the area of
knowledge-based systems (KBS), the focus of interest in the research community still
lies almost exclusively on aspects related to the functionality of the system. MIKE
(Model-based Incremental Knowledge Engineering) [2] is a framework for the devel-
opment of knowledge-based systems which, among other things, tries to overcome this
shortcoming by including the treatment of non-functional requirements into its devel-
opment cycle. Although MIKE focuses on KBS development, its treatment of non-
functional requirements bears the promise to be also applicable in the development of
non-knowledge-based software systems since the relevant categories of NFRs and the
types of design decisions taken on their behalf are quite similar for both types of system.

MIKE distinguishes several phases in the development cycle. The results of these phas-
es are explicitly described in various models. During knowledge acquisition, the main
interest lies on the elicitation and specification of the knowledge required to solve a giv-
en task. This expertise does not only comprise knowledge about the application domain,
but also knowledge about how the problem in question can be solved. Therefore, the
specification of a KBS must, in contrast to specifications in conventional software en-
gineering, not only addresswhat functionality the system must provide, but also has to
pay attention tohow the required functionality can be exhibited, i.e. which steps must
be performed in order to solve the given problem. Aspects concerning therealization
of the required functionality, however, are still at a different level and considered in the
design phase. In MIKE, the functional specification of the KBS consists of three inter-
linked views of the application (similar to the object, functional, and dynamic perspec-
tives taken in OMT [27]) and is expressed formally using the specification language

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

KARL (cf., e.g., [8]). Due to KARL’s executability, the specification can be used as an
operational prototype, which is refined during knowledge acquisition until it meets the
stakeholders’ expectations wrt. functional requirements ([1], [3]).

Thus, the design phase is strongly determined by non-functional requirements since de-
sign decisions are triggered by deficiencies that the prototype (i.e. the operational spec-
ification) exhibits wrt. non-functional requirements. Putting it another way, NFRs
constitute the justifications of design decisions and constrain the way in which the re-
quired functionality may be realized [16].

Due to their difference in nature, functional and non-functional requirements usually
cannot be specified at the same time: “in order to be able to formulate non-functional
requirements, the functionality of a system has to be known” ([22], p. 21). However, the
techniques for the elicitation and interpretation of functional requirements can also be
used in the context of non-functional requirements. NFRs are elicited from future users,
project sponsors, domain experts, or other stakeholders and described semiformally in
a hypermedia-based fashion in a specific part of the so-calledStructure Model [20],
namely the NFR context [15]. The NFR context describes which NFRs the system must
fulfil, but also accounts for relationships between NFRs such as, e.g., conflicts. Other
sections of the Structure Model focus on the expertise of domain experts concerning rel-
evant concepts of the application domain (concept context) and important activities per-
formed by the expert (activity context). These parts of the Structure Model serve as an
intermediate stage on the way to a formal specification of the desired functionality. The
NFR context of the Structure Model and its connection to other (parts of) models is de-
scribed in section 2.

The impact of NFRs on decisions taken in the design phase is explicitly described in an
additional model, the so-calledProcess Model [15], which is presented in section 3. The
effects of design decisions are recorded in the so-calledProduct Model [15] which con-
stitutes a refinement of the original functional specification. We use DesignKARL [14]
as a common formalism for describing both of these models.

The Process Model improves the transparency of the design process by providing an ac-
count of the design rationale and contributes to the traceability of NFRs by linking them
to the portions of the system design in which they become manifest. The combination
of NFR context and Process Model matches the claim that “rationale of different de-
grees of formality [needs] to be linked to design artifacts of different sorts, as it is trig-
gered by construction activity” ([29], p. 629).

In section 4, aspects concerning the evaluation of NFRs are highlighted while section 5
relates the approach taken in MIKE to similar work.

2 The NFR Context
Functional requirements are collected in the knowledge acquisition phase mainly by
conducting interviews with domain experts. Similar techniques can be employed to
elicit non-functional requirements; basically future users and project sponsors are asked
which features they expect of the future system in addition to the desired functionality.
This elicitation process results in a collection of interview transcripts which are stored

as protocols in the so-calledElicitation Model1. Yet, it may not be obvious from these

transcripts what the NFRs really are. Consequently, the requirements engineer has to in-
terpret these transcripts to identify relevant pieces of information and formulate NFRs
as instances of generic requirement categories such as those used as quality factors in
[12] and [13].

The result of this interpretation process is described in the NFR context of the Structure
Model. Information in the Structure Model is generally expressed in terms of nodes and
directed links of different types. Specific subsets of node and link types constitute con-
texts.

The basic idea behind the NFR context is to provide the vocabulary to express NFRs in
a structured way without forcing the requirements engineer already at this stage to be
too detailed and too much concerned with the question of how these NFRs can be op-
erationalized.

2.1 Internal Node and Link Types of the NFR Context

In particular, the NFR context encompasses the node typesrequirement, requirement
category, evaluation criterion, conflict, andargument. Each node is associated with a
textual description constituting its information content. Nodes of typerequirement cat-
egory model generic categories of NFRs (e.g., efficiency) or subcategories (e.g., effi-
ciency wrt. storage needs or efficiency wrt. response time). Nodes of typerequirement
denote application-specific instances of such categories.

In a later stage of the development process, the extent to which the system meets the
posed requirements has to be evaluated. To that end, it is necessary to identify criteria
from the documents in the Elicitation Model that can be used to determine whether a
particular requirement has been met. Such criteria are described by nodes of typeeval-
uation criterion in the NFR context.

Only in very rare cases, the requirements posed by the different parties involved will be
consistent. Rather, some of the requirements may be in conflict. The interpretation of
the protocols of the Elicitation Model also aims at detecting and solving conflicts as ear-
ly as possible. In the NFR context, conflicts are modelled by nodes of typeconflict. In
order to solve identified conflicts, arguments in favour of some of the requirements in-
volved have to be collected. Their description is accomplished by means of nodes of
typeargument.

In addition to those node types, the NFR context contains links of the typesassociation,
conflict solution, correlation, is-a, andinstance-of. Links of typeassociation can be
used in various situations. For instance, the association between requirements and cri-
teria for their evaluation is established by that type of link. Furthermore, in case of a
conflict, association links point to the requirements causing the conflict by connecting
theconflict node with the nodes denoting the requirements that cause the conflict. In ad-
dition, theargument nodes which are relevant for the solution of the conflict are also
targets ofassociation links originating at theconflict node in question.

The result of a conflict’s resolution is again expressed by means of nodes of typere-

1. In [20], the Elicitation Model is calledprotocol context.

quirement. Theserequirement nodes are connected with the respectiveconflict node us-
ing links of typeconflict solution. The resolution of a conflict goes along with a
deactivation mechanism: the requirements that constitute the solution of the conflict su-
persede those which originally caused the conflict. That is,requirement nodes which
are the target of aconflict solution link are activated while therequirement nodes which
are target ofassociation links are deactivated in case that all the links involved originate
at the sameconflict node.

A mutual influence between two requirements or two requirement categories is ex-
pressed usingpos-correlation andneg-correlation links. Pos-correlation andneg-cor-
relation links express the fact that activities for the benefit of one of the requirements
involved have a positive or, respectively, negative impact on particular other require-
ments.

Is-a links connect two nodes of typerequirement category in order to express that one
of them denotes a subcategory of the other. Similarly, aninstance-of link indicates that
a particular requirement is an instance of a requirement category.

2.2 Inter-Context Connection and Inter-Model Connection

In addition to the link types discussed so far, two additional link types are used to con-
nect the NFR context to the Elicitation Model or to the activity and concept contexts of
the Structure Model.

Links of typeelicitation connect nodes of the NFR context to those documents in the
Elicitation Model that triggered the creation of the respective nodes. Thus, elicitation
links contribute to the traceability of requirements since they explicate on what basis
particular requirements are formulated.

Concepts that are relevant for the considered application and activities that must be per-
formed to solve the given task are described in the concept context or, respectively, the
activity context of the Structure Model [20]. NFRs can be connected to the concepts and
activities they affect by linkingrequirement nodes withconcept nodes oractivity nodes
throughreference links.

Example 1. In a task such as the configuration of elevator systems from elementary parts
[23], the project sponsors usually demand that the KBS to be developed should be able
to solve the problem faster than a human expert. This statement is recorded in the Elic-
itation Model (cf. Fig. 1). Its interpretation reveals that it expresses a requirement con-
cerning the runtime behaviour of the problem-solving process. Consequently, a
requirement node in the NFR context is created and connected to the corresponding text
fragment in the Elicitation Model by means of anelicitation link. Additionally, the re-
quirement is recorded as an instance of the requirement categoryruntime efficiency by
means of aninstance-of link connecting the respective nodes.

Since the requirement affects the activities that must be performed for solving the prob-
lem rather than the data involved, areference link connects therequirement node with
the activity nodeProposeAndRevise in the activity context. The nodeProposeAnd-
Revise denotes the employed problem-solving strategy.

Furthermore, the statement in the Elicitation Model also mentions a criterion to evaluate

the system’s runtime behaviour, namely the effort required by a human expert (which
is estimated to be about 30 hours on average). Consequently, a node of typeevaluation
criterion is created in the NFR context which is connected to the corresponding text
fragment in the Elicitation Model via anelicitation link. Furthermore, the previously
discussed requirement is linked to the criterion by means of anassociation link between
the respective nodes.

Fig. 1 summarizes the resulting nodes and links of the NFR context.
❏

2.3 The NFR Context vs. the IBIS Model

In some sense, the modelling primitives used in the NFR context are related to those of
the IBIS method for policy decision making [26]. In IBIS, the argumentative process of
solving a complex problem is expressed primarily by means of issues, positions re-
sponding to particular issues, and arguments supporting or objecting to specific posi-
tions. IBIS issues play roughly the same role as NFRs in the NFR context. Yet, IBIS
neglects the origins of issues as well as mutual influences between issues which are ex-
plicitly modelled by means ofconflict nodes,correlation links, orreference links in the
NFR context. Since the NFR context focuses on the identification of NFRs, but does not
pay attention to how NFRs can be operationalized, analogons to IBIS positions and ar-
guments need to be provided in the Process Model only. Thus, in MIKE, the identifica-
tion of relevant issues (i.e. NFRs) and their interdependencies is still cleanly separated
from their actual treatment by, e.g., formulating positions and arguments.

...
A valid configuration
of an elevator system
must be found by the
KBS in less time than
when the task is done by
a human expert.
...

Runtime
< 30 h

ProposeAndRevise

Elicitation Model

R

E

RC

Runtime
efficiency

... at least as fast
as manually ...

elicitation

association

instance-of

reference

Key

RC R ERequirement Category Requirement Evaluation Criterion

Fig. 1 Schematic depiction of nodes and links in a NFR context

Structure Model:

Structure Model:

NFR Context

Activity Context

elicitation

3 The Process Model
In the design phase, the focus of interest shifts from the identification of non-functional
requirements to their operationalization by means of suitable design decisions. Usually,
the efficiency of the prototypical solution that results from the knowledge acquisition
phase has to be improved by appropriate algorithms and data structures and the solution
might have to be integrated in a fixed hardware or software environment. The develop-
ment steps taken during the design phase and their underlying rationale are recorded in
the Process Model. The required primitives for modelling development steps, their ra-
tionale, and their effects are provided by the design language DesignKARL [14].

3.1 Goals and Their Relationships

The non-functional requirements modelled in the NFR context form the basis for the de-
sign process. NFRs are viewed as goals to be achieved by means of suitable design de-
cisions. Thus, we take a goal-oriented viewpoint on KBS design as, e.g., [7] do on
requirements engineering and [19] do on information systems design.

Goal Decomposition. The refinement of the functional specification, e.g. by using par-
ticular data structures, is motivated by NFRs and is effected by elementary design de-
cisions (see below). Yet, top-level requirements formulated in the NFR context tend to
be fairly coarse: a top level goal might, e.g., express that “the system should be efficient
enough to respond to a query within less than 10 seconds”. It is not immediately evident
how such a requirement can be met or which portions of the system it affects in the first
place. Therefore, goals are gradually decomposed into subgoals until they can be satis-
fied by performing a collection of elementary design decisions. Two aspects may be
used for achieving a decomposition. On the one hand, a requirement (i.e. a goal) may
be reduced to a collection of more basic requirements. For instance, the global aim for
efficiency may be narrowed down to efficiency wrt. processing time or efficiency wrt.
storage needs. On the other hand, the scope of the requirement, i.e. the portion of the
design product it refers to, may be made more specific: the aim for efficiency of the
complete system may, e.g., be reduced to efficiency of a crucial subtask (or several cru-
cial subtasks). As decomposition continues, goals become more constructive, i.e. they
provide a high level outline of how to reach a goal rather than just claim that a require-
ment must be met. Usually, goals can be decomposed in several ways, i.e. there are al-
ternative ways to reach a goal. Therefore, decomposition of goals generally results in
an AND/OR graph.

Characterization of Goals. The top level goals in the Process Model are exactly those
NFRs that are described by activerequirement nodes in the NFR context of the Struc-
ture Model. DesignKARL describesGOALs in an object-like fashion, i.e. characterizes
them by means of particular attributes. Attributes include, e.g., ancestors and successors
in the decomposition hierarchy, dependencies on and correlations with other goals, the
importance of the goal, its status (ACTIVE, INACTIVE, ACHIEVED, etc.), references
to the evaluation criterion used and the portion of the design product affected by the
goal, and a textual description of the goal.

Conflicts. During the decomposition of goals, conflicts between goals may arise which

must be resolved. Similar as in the NFR context, claims that substantiate goals involved
in a conflict are modelled asARGUMENTs. CONFLICTs andARGUMENTs are again
DesignKARL primitives that are associated with suitable attributes.

Example 2. In the elevator configuration task already mentioned in the previous exam-
ple, the requirement for acceptable runtime behaviour (i.e. the goalRtEffTotal) may be
decomposed by exploiting the hierarchical decomposition of the overall task into sub-
tasks: the goal can be met if the two fundamental steps of the problem-solving strategy
employed exhibit acceptable runtime behaviour (cf. Fig. 2a). This means that the exten-
sion of a partial configuration with new constituents (Propose) should be realized effi-
ciently, but this should also hold for the correction of partial configurations (Revise) that
violate some given constraints on legal configurations. Thus, decomposition results in
two goals,RtEffPropose andRtEffRevise. Both goals can be further decomposed:RtEff-
Propose can be reduced to the goalRtEffPropParallel which expresses the fact that in
each extension step as many constituents as possible should be added to the partial con-
figuration before checking the constraints (cf. Fig. 2b). Conversely,RtEffRevise can be
met if the subgoalRtEffRevSequential can be achieved, i.e. constraints should be
checked after each extension of the partial configuration by a single constituent since
corrections are easier to handle in that case (cf. Fig. 2b).

Obviously, these two goals are antagonistic: the former aims at few large extensions of
partial configurations, while the latter gives priority to many small extensions. This
conflict is recorded in the Process Model by means of theCONFLICT depicted in Fig.
3a. Since the constraints are fairly weak in the considered context, only few corrections
will be required during the configuration process even if an extension step adds several
new constituents. Therefore, the conflict is resolved in favour of the goalRtEffPropPa-
rallel, i.e. the goalRtEffRevSequential is dropped completely. The solution of the con-
flict also implies a deactivation of the goals causing the conflict (i.e.RtEffPropParallel
andRtEffRevSequential) and the subsequent activation of the goals constituting the so-
lution of the conflict (i.e.RtEffPropParallel). The reasons for this particular outcome
are captured as anARGUMENT in the Process Model (cf. Fig. 3b).

❏

Relationships Between Goals. Since goals may be decomposed in various ways, the de-
signer has to select a subset of the available alternatives that seems to be most appropri-
ate in the given situation. The motivation for preferring one alternative over another can
be expressed byPREFERENCEs in a similar way asARGUMENTs explain the reasons
for resolving a conflict.PREFERENCEs indicate, e.g., according to which criteria an
alternative is preferred over another or explicate on which previous decisions the cur-
rent decision depends.

In some cases, the selection of an alternative may be due to the fact that some potential
alternatives are excluded because they are incompatible with previous design activities
or, conversely, implied by earlier activities. These circumstances can be expressed as
IMPLICATIONs or EXCLUSIONs between subgoals in the Process Model.

Often, design decisions are taken tentatively and have to be withdrawn at a later stage
of the design process after additional information has been gained. This circumstance
can be expressed as aREVISIONwhich points to the elements of the Process Model that

are now superseded. Revised elements are still retained in the Process Model since they
document which design alternatives have already been explored unsuccessfully and
thus prevent the designers from wasting resources for exploring them again. However,
the status of these elements is changed toINACTIVE as a consequence of the revision.

3.2 Elementary Design Decisions

The decomposition of a goal continues until subgoals are reached that can be achieved
by means of elementary design decisions. Elementary design decisions effect a modifi-
cation of a portion of the Product Model [15], i.e. the “refinement” of the functional
specification. Thus, elementary design decisions also establish the link between func-
tional requirements (embedded in the Product Model) and non-functional requirements
(captured in the Process Model). Four basic types of elementary design decisions are
distinguished in MIKE and provided as language primitives of DesignKARL ([16],
[14]): REFINEMENT, which refines parts of the model by introducing algorithms and

GOAL RtEffTotal
INSTANCE OF RuntimeEfficiency;
DECOMPOSED TO RtEffPropose, RtEffRevise;
DECOMPOSITION TYPE OR;
REFERENCE COMPOSED INFERENCE ACTION ProposeAndRevise;
EVALUATION RtManuell;
STATUS ACTIVE;
DESCRIPTION “The system should find a legal configuration in less time than a

human expert.”;
IMPORTANCE HIGH;

END;

GOAL RtEffPropParallel
DECOMPOSITION OF RtEffPropose;
NEGATIVE CORRELATION HIGH RtEffRevSequential;
REFERENCE COMPOSED INFERENCE ACTION Propose;
STATUS POTENTIAL;
DESCRIPTION “Extend a configuration with as many constituents as possible in

each extension step before checking constraints.”;
IMPORTANCE HIGH;

END;

GOAL RtEffRevSequential
DECOMPOSITION OF RtEffRevise;
NEGATIVE CORRELATION HIGH RtEffPropParallel;
REFERENCE COMPOSED INFERENCE ACTION Revise;
STATUS POTENTIAL;
DESCRIPTION “Reduce the effort for correcting inconsistent configurations by

removing inconsistencies as soon as possible.”;
IMPORTANCE HIGH;

END;

Fig. 2 Parts of a Process Model: a. top level goals, b. subgoals

a.

b.

data structures,STRUCTURE, which basically indicates the application of structuring
primitives [17] to decompose the overall model to smaller, largely self-contained por-
tions, INTRODUCTION, which refers to portions of the model which appear without
being a refinement of previously existing parts of the model, andELIMINATION, which
indicates that portions of the model are no longer needed and, thus, removed.

During the design process, the Product Model passes through a series of states which
are determined by the versions of its constituents. The transition between two adjacent
states is caused by (a collection of) elementary design decisions. The description of el-
ementary design decisions in the Process Model indicates which portions of a state of
the Product Model are replaced by new versions in the following state. Furthermore,
REFINEMENTs additionally specify by means of logical formulae how the two ver-
sions of affected constituents relate to each other in detail.

Elementary design decisions may also be undone as a consequence of revisions.

4 Evaluation of Non-Functional Requirements
The choices between alternative ways to reach a goal are crucial steps in the design
process which should rest on as firm a basis as possible. Ideally, the selection of a de-
sign alternative is based on a reliable quantitative estimate of what can be achieved with
each of the available alternatives. To that end, quantitative measures for the involved
non-functional requirements are necessary. In the context of evaluating, e.g., time effi-

CONFLICT PropParallelVsSequential
CAUSED BY RtEffPropParallel, RtEffRevSequential;
RESOLVED BY RtEffPropParallel;
ARGUMENTS ArgPropParallel;
STATUS ACTIVE;
DESCRIPTION “Extension by as many constituents as possible before checking

constraints implies increased effort for corrections due to the larger number of
constituents involved in the propagation of changes.
Sequential determination of constituents immediately followed by checking the
constraints ensures low effort for the propagation of changes, at the expense of
unnecessarily many checks of the constraints.”;

END;

ARGUMENT ArgPropParallel
SUPPORTS RtEffPropParallel;
OPPOSES RtEffRevSequential;
STATUS ACTIVE;
DESCRIPTION “The effort for the propagation of changes grows with the strictness

of the constraints as this implies a higher frequency of corrections and propaga-
tions. The strictness of the constraints is relatively low in the current setting;
thus the effort for propagation does not have to be spent too many times even if
all possible constituents are added in an extension step before the constraints
are checked.” ;

END;

Fig. 3 Parts of a Process Model: a. conflict between goals, b. argument for solving the
conflict

a.

b.

ciency, estimates of the algorithmic complexity of the algorithms employed or execu-
tion time estimates (cf., e.g., [28], [30]) may give an indication which alternative to
choose. Maintainability can be linked, e.g., to complexity: [4] show in a case study how
complexity may be used to predict, e.g., the effort required for maintaining a software
system. The complexity of a modular software design is determined by the interconnec-
tivity of modules and the internal complexity of individual modules, i.e. the average
number of “decisions” in the modules. Individual measures might then be combined us-
ing a scheme similar to the one presented in [11].

Alternatively, a tentative decision for one of the alternatives may be substantiated by
running the current description of the design product as a hybrid prototype. The proto-
type then combines parts of the executable functional specification with parts which
have already been mapped to the target language, in particular those portions of the de-
sign product which are affected by the design decision to be evaluated.

Based on the top-level requirement categories proposed in [12] and [13], the categories
summarized in Table 1 are particularly interesting for KBS development using MIKE.
Understandability and, to some extent, robustness seem to be fairly specific for knowl-
edge-based applications, while categories like, e.g., security or accuracy, which are im-
portant for non-knowledge-based systems (cf., e.g., [5]), are usually less important for
KBS development.

Table 1 Important categories of non-functional requirements

Requirement category Characterization

Efficiency How well does the system use its resources?

Reliability To what extent does the system fulfil its mission without fail-
ures within a specified time period?

Maintainability / Expanda-
bility / Flexibility

How easily can software failures be located and fixed or com-
ponents or knowledge be added or modified?

Understandability How easy is it to understand how the system arrives at a solu-
tion?

Robustness How well does the system perform its mission under adverse
conditions, e.g. inoperability of parts of the system, incorrect
or incomplete case descriptions, missing knowledge etc.?

Portability How easily can the system be ported to a different target
environment?

Reusability How easily can the system or its parts be used for other appli-
cations?

Requirements due to the
target environment or tar-
get architecture

Which constraints must be taken into account due to the tar-
get environment or architecture?

The question whether analytical evaluation of design decisions or evaluation by proto-
typing should be preferred in a particular context depends on the nature of the involved
requirement categories: some requirement categories are amenable to quantitative
measurement while others can be evaluated more easily by means of prototyping.
Among the categories in Table 1, maintainability / expandability / flexibility and port-
ability are more suitable for “analytical” evaluation, while understandability, reliability
and environmental requirements are more amenable to “operational” evaluation using
a prototype. Both approaches are possible to evaluate efficiency aspects. Clearly, the
decision whether the selection of a design alternative should be based on the evaluation
of a prototype or on a quantitative evaluation also depends on factors, such as, e.g., the
availability of useful measures, the required effort for the computation of measures vs.
the required effort for constructing a prototype, etc. If neither type of evaluation can be
used, the selection of a design alternative has to be based on qualitative considerations
similar as proposed in, e.g., [19].

5 Discussion
In contrast to most other approaches to KBS development (with the notable exception
of recent work by [32] and [31]), MIKE explicitly integrates the treatment of non-func-
tional requirements and the capture of rationale for design decisions. The interpretation
of transcripts of interviews with future users, project sponsors etc. that contain indica-
tions of such requirements is described in the NFR context of the Structure Model. The
operationalization of non-functional requirements, i.e. their decomposition into design
decisions that cause an extension or modification of the system design, is recorded in
the Process Model.

This approach conveys several benefits. First of all, the design process itself is made
more transparent since the record of design decisions and their rationale helps the de-
signers to avoid repeating erroneous design decisions as well as inadvertently undoing
earlier design decisions simply because the reasons have got lost why they initially had
been made. Furthermore, the explicit connection between requirements and affected
portions of the design product on the one hand and between requirements and the pro-
tocols from which they were derived on the other hand ensures traceability of require-
ments. Similarly, this also holds for functional requirements since elementary design
decisions link two versions of the design product such that parts of the final design can
be traced back to corresponding sections of the functional specification and even further
back to parts of the Structure Model concerned with the functional aspects of the KBS.
The explicit description of design decisions and their connection to requirements is also
indispensable if not only parts of the specification, but also corresponding designs are
to be re-used since it is then much easier to determine which design decisions are still
valid in a different context and which others must be treated differently.

The ideas concerning the treatment of non-functional requirements in MIKE are con-
siderably influenced by similar work in the context of information systems design, spe-
cifically the DAIDA project ([5], [19], [6]). The major difference between this work and
the approach taken in MIKE lies in the fact that different types of requirements are con-
sidered most relevant in the two domains (e.g., accuracy and security are of minor im-
portance in MIKE) and that MIKE also accounts for the elicitation and interpretation of

NFRs. Furthermore, MIKE also describes elementary design decisions while the de-
composition of goals in, e.g., [5], stops at a higher level of granularity. In contrast to
MIKE, [5] does not pay attention to the need to revise design decisions, e.g., as a con-
sequence of changing requirements.

The model adopted in MIKE for describing the rationale of design decisions is based on
earlier work by [25] and [18] which promote an issue-based style, basically consisting
of setting up questions and providing potential answers. In MIKE, a more result-orient-
ed stance is taken and design decisions are linked to requirements more directly. No at-
tempt is made to capture the discourse leading to the preference of one possible solution
over others in order to avoid putting too much additional overhead for documentation
on the designer. Again, there is no equivalent to elementary design decisions in [25] and
[18], nor do these authors address the elicitation and interpretation of requirements in
their models.

As a case study, the treatment of non-functional requirements as outlined in the paper
has been applied to the configuration of elevator systems [23] mentioned in the exam-
ples. However, neither the use of design metrics nor the use of a hybrid prototype for
the evaluation of design decisions has been explored in depth in this case study yet.

Currently, work is in progress to implement tools supporting the construction of the
NFR context and the Process Model [33]. These tools will be integrated in the MeMoKit
tool ([21], [20]) which already supports the treatment of the functional aspects in the
development of a KBS with MIKE.

6 References
[1] J. Angele:Operationalisierung des Modells der Expertise (Operationalization of the Model

of Expertise). Dissertation, Infix, St. Augustin / Germany, 1993 (in German).
[2] J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer: Model-Based and Incremental

Knowledge Engineering: The MIKE Approach. InKnowledge Oriented Software Design,
J. Cuena, ed. IFIP Transactions A-27, Elsevier, Amsterdam, 1993, 139-168.

[3] J. Angele, D. Fensel, and R. Studer: The model of expertise in KARL. InProceedings of the
2nd World Congress on Expert Systems (Lisbon/Estoril, Portugal, January 10-14), 1994.

[4] D.N. Card and R.L. Glass:Measuring Software Design Quality. Prentice-Hall, Englewood
Cliffs, 1990.

[5] L. Chung: Representation and utilization of non-functional requirements for information
system design. InAdvanced Information Systems Engineering, R. Andersen et al., eds.
LNCS 498, Springer, Berlin, 1991, 5-30.

[6] L. Chung, P. Katalagarianos, M. Marakakis, M. Mertikas, J. Mylopoulos, and Y. Vassiliou:
Mapping information systems requirements to designs. InDatabase Applications Engineer-
ing with DAIDA, M. Jarke, ed. Research Reports ESPRIT Project 892 DAIDA Vol. 1,
Springer, Berlin, 1993, 243-280.

[7] A. Dardenne, A. van Lamsweerde, and S. Fickas: Goal-directed requirements acquisition.
In Science of Computer Programming 20, 1993, 3-50.

[8] D. Fensel:The Knowledge Acquisition and Representation Language KARL. Kluwer, Bos-
ton, 1995.

[9] B.R. Gaines and M. Musen, eds.:Proceedings of the 8th Knowledge Acquisition for Knowl-
edge-Based Systems Workshop KAW’94 (Banff, Canada, January 30 - February 4). SRDG
Publications, University of Calgary, 1994.

[10] B.R.Gaines and M. Musen, eds.:Proceedings of the 9th Knowledge Acquisition for Knowl-
edge-Based Sytems Workshop KAW’95 (Banff, Canada, February 26 - March 3). SRDG
Publications, University of Calgary, 1995.

[11] G. Guida and G. Mauri: Evaluating performance and quality of knowledge-based systems:
foundation and methodology. InIEEE Transactions on Knowledge and Data Engineering
5(2), 1993, 204-224.

[12] IEEE Computer Society: IEEE Standard for a Software Quality Metrics Methodology.
IEEE Std 1061-1992, Institute of Electrical and Electronics Engineers, New York, 1993.

[13] S.E. Keller, L.G. Kahn, and R.B. Panara: Specifying software quality requirements with
metrics. InSystem and Software Requirements Engineering, R.H. Thayer and M. Dorfman,
eds. IEEE Computer Society Press, Los Alamitos, 1990, 145-163.

[14] D. Landes: DesignKARL - A language for the design of knowledge-based systems. InPro-
ceedings of the 6th International Conference on Software Engineering and Knowledge En-
gineering SEKE’94 (Jurmala, Latvia, June 20-23), 1994, 78-85.

[15] D. Landes:Die Entwurfsphase in MIKE - Methode und Beschreibungssprache (The Design
Phase in MIKE - Method and Description Language). Dissertation, Infix, St. Augustin /
Germany, 1995 (in German).

[16] D. Landes and R. Studer: The design process in MIKE. In [9], 33/1-33/20.
[17] D. Landes and R. Studer: Mechanisms for structuring knowledge-based systems. InData-

base and Expert Systems Applications, D. Karagiannis, ed. LNCS 856, Springer, Berlin,
1994, 488-497.

[18] J. Lee: Extending the Potts and Bruns model for recording design rationale. InProceedings
of the 13th International Conference on Software Engineering (Austin, Texas, May 13-17),
1991, 114-125.

[19] J. Mylopoulos, L. Chung, and B. Nixon: Representing and using non-functional require-
ments: a process-oriented approach. InIEEE Transactions on Software Engineering 18(6),
1992, 483-497.

[20] S. Neubert: Model construction in MIKE (Model-based and Incremental Knowledge Engi-
neering). InKnowledge Acquisition for Knowledge-Based Systems, N. Aussenac et al., eds.
LNAI 723, Springer, Berlin, 1993, 200-219.

[21] S. Neubert and F. Maurer: A tool for model-based knowledge engineering. InProceedings
of the 13th International Conference on Artificial Intelligence Tools, Techniques, Methods
and Applications Avignon’93 (Avignon, France, May 24-28), 1993, 427-436.

[22] H.A. Partsch:Specification and Transformation of Programs. Springer, Berlin, 1990.
[23] K. Poeck, D. Fensel, D. Landes, and J. Angele: Combining KARL and configurable role

limiting methods for configuring elevator systems. In [9], 41/1-41/32.
[24] K. Pohl, G. Starke, and P. Peters, eds.: Proceedings of the 1st International Workshop on

Requirements Engineering: Foundation of Software Quality - REFSQ’94. Augustinus Ver-
lag, Aachen / Germany, 1994.

[25] C. Potts and G. Bruns: Recording the reasons for design decisions. InProceedings of the
10th International Conference on Software Engineering (Singapore, April 11-15), 1988,
418-427.

[26] H. Rittel and M. Webber: Dilemmas in a general theory of planning. InPolicy Sciences 4,
1973, 155-169.

[27] J. Rumbaugh et al.:Object-Oriented Modelling and Design. Prentice-Hall, Englewood
Cliffs, 1991.

[28] A. Shaw: Reasoning about time in higher level language software. InIEEE Transactions on
Software Engineering 15(7), 1989, 875-889.

[29] S. Buckingham Shum and N. Hammond: Argumentation-based design rationale. InInter-
national Journal of Human-Computer Studies 40(4), 1994, 653-676.

[30] C.U. Smith and L.G. Williams: Software performance engineering: a case study including
performance comparison with design alternatives. InIEEE Transactions on Software Engi-
neering 19(7), 1993, 720-741.

[31] A. Stutt and E. Motta: Recording the design decisions of knowledge engineers to facilitate
re-use of design models. In [10], 33/1-33/19.

[32] J. Vanwelkenhuysen: Embedding non-functional requirements analyses in conceptual
knowledge systems designs. In [10], 45/1-45/15.

[33] F. Zimmer: Werkzeugunterstützung zur Modellierung nicht-funktionaler Anforderungen in
MIKE (Tool Support for Modelling Non-Functional Requirements in MIKE). Master’s
Thesis, University of Karlsruhe (in German, in preparation).

