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Abstract

We report on the design of an environment that aims to set Computer Algebra

Systems (CAS) in the framework of Knowledge Representation Systems.

The �rst task was to design a general hybrid knowledge representation system

capable of handling mathematical knowledge. This task has been completed and a

system called MANTRA is available for this purpose.

The second task is to de�ne the concept of Mathematical Knowledge. This study

is based upon the concept of Abstract Computational Structures. The inference

procedure which enables the system to ensure that a mathematical operation on a

given domain is valid is also taken into account.

1 Introduction

A computer algebra system performs computations on a given mathematical domain
through operators that have well de�ned sets of properties. It is possible to formalize
a concept of Mathematical Knowledge based upon the three entities: domain, operator,
properties, as an abstract computational structure according to the model introduced by

Bauer [Ba-Wo].

The properties of the operators are either known or acquired during a computation using
methods coming from machine learning.

To represent and implement such a concept, we have designed a hybrid knowledge repre-
sentation system,MANTRA [Bit89b, Bit90, Ca et al. 91c], with four innovative features:

a uni�ed semantics based upon a four-valued logic, communication among the imple-

mented knowledge formalisms (logic, frames, semantic nets), decidability of the inference
algorithms, a three level's architecture (one of these levels is a production rules system

that enables to conceive expert systems). We do not use one of the well known sys-
tems which incorporate several methods for knowledge representation, such as the expert

system shell KEE [KEE] for instance, because they lack both a representational theory



USER

Speci�cation Component

Kn. Acquisition Component

Type Inference Component

Problem Solving Component

Tutoring Component

'
&

$
%MANTRA

'
&

$
%Math. Knowledge Base

'
&
$
%Alg. Algorithms

-� -�

?

6

-�

Figure 1: The structure of the environment

which explains which knowledge is to be represented by which formalisms and a common

semantics. MANTRA possesses assertional, terminological, semantic network representa-

tion capabilities as well as production systems. It is a general purpose shell for knowledge

representation systems and its use is not restricted to symbolic computation.

The environment for our project (Figure 1) is built uponMANTRA [Ca-Tj91a]. The spec-
i�cation component is used to specify and to represent arbitrary abstract computational
structures and their domains. This component aids the user in building an Abstract Com-
putational Structure (ACS), also based on other known \lower" ACS, taking into account
the consistency of the set of properties of the operators.

The learning component acts as an automatic knowledge acquisition tool in order to get a
complete set of properties. This is performed by investigating the results of computations

which are regarded as positive training instances. The method used is very reminiscent
of explanation-based generalization [Ca-Tj90b, Ca-Tj91b].

The paper is organized as follows: In section 2 we describe MANTRA. In section 3 we
give an outline of the formal de�nition of abstract computational structures and their
representation. Section 4 deals with the method adopted to complete a set of properties.
In section 5 we present some concluding comments and in particular we compare our
approach with works that may look similar at �rst sight. This paper is merely an overview.

But, more technical and complete descriptions are presented in the referenced papers.

2 MANTRA

The MANTRA system [Ca et al. 91c] is a hybrid system for knowledge representation

with the following characteristics: All modules are semantically consistent and all the
algorithms involved are decidable. The decidability requirement has been met with the

adoption of a four-valued semantics based on the works of Patel-Schneider [PS], Frisch

[Fr] and Thomason et al. [Th et al.]. This semantics is used throughout the system and
ensures that it is semantically consistent.



The language can be thought of as an abstract data type (this is explained in [Ca et al. 91c])

allowing the creation and manipulation of knowledge bases. The knowledge bases consist

of a set of knowledge base partitions, each associated to an independent formalism. The

division of the language into several formalisms has two advantages: The computability

problems associated to each formalism can be solved independently and the integration

of new formalisms to the system is facilitated.

Each formalism is characterized by a set of de�nitions and a set of questions. The de�ni-

tions allow the storage of knowledge into the knowledge bases and the questions allow the

interrogation of these knowledge bases. De�nitions are used to store knowledge only into

the partition associated to the formalism, but questions can be directed to this partition

or to a combination of two or more partitions of the knowledge base. The language is

based on a new architecture, �gure 2, consisting of three levels: The epistemological level,

the logical level and the heuristic level.
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Figure 2: The architecture of MANTRA

The �rst level consists of three modules: an assertional module (the Logic module of
�gure 2), based on a decidable �rst-order logic language [PS], a frame module, based on
the terminological box of Krypton [Br et al.], and a semantic network module, providing

inheritance with exceptions [Et]. These modules o�er several original features with respect
to previously existing systems as described in [Bit90]. The primitives of the modules of

this �rst level de�ne the epistemological primitives of the language. These primitives are
not complete expressions of the language but are used as parameters for the Ask and Tell

primitives of the logical level.

The primitives of the assertional module correspond to the usual operators of the �rst-

order logic languages, but the meaning of these operators is based on a four-valued se-
mantics.

The primitives of the frame module allow for the de�nition of a terminology consisting of
the purely intentional description of categories of objects. These categories are described

by restricting the values of the properties of the objects forming them.



The primitives of the semantic net module manipulate the notions of objects, classes

of objects and hierarchies. The notions of classes and hierarchies can be considered as

explicit versions of the concepts and relations described in the frame module.

The second level introduces the notion of knowledge base. The language can be thought

of as an abstract data type [Bit90] whose access functions are the primitives of this level.

These primitives use the primitives of the �rst level as parameters. Two types of primitives

are provided, Tell and Ask, these primitives are used, respectively, to store facts and to

interrogate knowledge bases. The Ask primitives are de�ned in such a way that new facts

can be inferred from evidence provided by the knowledge acquired only by one or by a

combination of two of the �rst level modules.

Finally, the third level consists of primitives allowing the de�nition of rule bases [Lu-Ho].

These rules are formed by a conditional part consisting of queries to the knowledge bases

de�ned in the logical level and an action part consisting of de�nitions. They can be

manipulated and are used by the rule interpreter to automatically manipulate knowledge

bases. The behaviour of the interpreter can be determined by choosing conict resolution

or control strategies in the recognize-act cycle. Every rule base consists of rules which

can either represent epistemological knowledge, such as introducing domain knowledge in
the knowledge bases, or they can specify strategies for the utilization of the logical level
primitives.

This brief overview of MANTRA covers only those features which are used in the sequel.

3 Mathematical Domains of Computation

A mathematical domain of computation consists of a set of well-de�ned objects and of a
set of operators over the objects which possess each a certain set of properties. We regard
the abstraction of a domain, i.e. without considering its particular implementation, as a
unit of an abstract computational structure (ACS). Thus, a domain can be thought of as
a model of an ACS under consideration [Ba-Wo, Gu].

Various kinds of algebraic structures such as semigroups, monoids, groups, rings or �elds
to quote only a few, have to be considered. We regard these algebraic structures as units

of abstract computational structures since we do not take into account their implemen-
tation at this stage. The goal of introducing abstract computational structures is to

group mathematical domains of computation in which the same operators with the same

properties are de�ned.

We de�ne an ACS as a pair: ACS = h�, Pi provided that � and P possess the following

meanings:

� � is a signature that consists of

{ A carrier S that could include other primitive carriers

{ A set of operator symbols whose arguments belong to the carrier



� P is a set of rules (equations) determining the properties of the operations de�ned

in the signature �. A property is denoted by a triple p = hX;L;Ri, where X is the

set of variables occurring in the left-hand side (L) and right-hand side (R)

At this stage on must make two remarks. The �rst one is that the above de�nition could

be interpreted as representing an equational theory in an associated term algebra. But,

this is not the framework we are using. The second remark is that the complete formal

de�nition of ACS's is too long to be given here. It can be found in [Ca-Tj91b].

Based on other known ACS we can construct a new ACS by integrating all operators and

properties possessed by the known ACS and by adding additional operators and proper-

ties into the new one. This implies that each ACS inherits all operators and properties

possessed by the ACS upon which it is based.

In order to represent such ACS by means of the knowledge representation formalisms

provided by MANTRA we divide the construction of an ACS into the following parts:

(i) ACS descriptor, (ii) ACS operators, (iii) ACS initial properties and (iv) ACS learned

properties (see the example in �gure 3).

MANTRA provides a capability which allows us to build knowledge bases modularly. We
can represent an ACS as a knowledge base that we call a knowledge base module. These
modules, embodying the ACS and their models under consideration, are joined together

into a semantic network preserving the relations among the ACS by means of the de�ned
hierarchies. In the semantic network each node corresponds to a module and the links
specify which entities are inherited by which modules within a particular hierarchy.

An ACS descriptor is represented by a concept, using the Tell primitive provided by the
knowledge base management at the logical level, possessing the following relations: (i)
ACS-id, a unique identi�er representing the name of the ACS, (ii) ACS-mode, a symbol

representing S, (iii) parameters, a list of other (known) ACS representing S and (iv)
based-on, a list of other (known) ACS on which the ACS is based [Ca et al. 90a].

Similarly, each operator of an ACS is represented by means of a concept possessing the
following relations: (i) operator-id, a symbol representing the name of an operator, (ii)
domain, a list of other known ACS, which are elements of S , constituting the domain

sorts of the operator, (iii) range, the range sort of the operator.

According to the de�nition of T�, the set of terms in a �-domain, we can determine the
language of terms by means of a context-free grammar1. We omit the technical details
to construct such a context-free grammar. Using the grammar of an ACS we are able

to build the parse tree of a term which plays a fundamental role in acquiring additional

properties in order to complete the set of properties in an ACS.

Properties are speci�ed into two parts: Initial properties and learned properties. The

representation of both parts is the same. The initial properties are the basic properties
to be possessed by the operators. The learned properties remain to be acquired in order

to complete the set of properties, in the sense that

1A context-free grammar is a Quadruple: CFG = hN; T;�; Si where N is a set of nonterminal symbols,

T is a set of terminal symbols, � is a set of context-free productions and S is the start symbol



1. It possesses the �nite termination property, i.e. the iteration of the reduction process

always terminates at an irreducible term after �nitely many steps.

2. It possesses the unique property, i.e. di�erent reduction beginning at the same term

always terminates at the same irreducible term.

In the next section we deal with a method for completing a set of properties.

A property p = hX;L;Ri is represented by means of a logic formula, using the assertional

module at the logical level, where each variable in X is bounded by a universal quanti�er;

L and R are treated as left-hand side and right-hand side respectively.

In order to construct a domain with respect to a particular ACS we have to implement each

relevant function through an operator symbol speci�ed in the ACS. A domain consists of

three parts: (i) domain descriptor, (ii) function descriptors and (ii) the implementation of

each function. The implementation of functions is supported by an embedded Lisp pro-

gramming environment and relies on the classical algebraic algorithms. The correctness

of the function implementations with respect to the corresponding properties is veri�ed

by using a computational induction based on �xed point theory and structured induction.

4 Completing a set of properties

Figure 3 shows the ACS for the concept of group, assuming that it does not inherit other
domains. To complete the set of properties, which are expressed as equations, one can not
rely on the Knuth-Bendix algorithm [Kn-Be] which is both ine�cient and not practical
for our purposes. Our approach can be sketched as follows.

Let us suppose that we have an ACS for group as de�ned above and we assume that
the learned properties have been acquired. Let t0 = f(f(inv(f(y,f(inv(y),x))),x),f(ne,x))
and tnf = x, t0; tnf 2 T�(X), be terms with respect to �. Since t0 and tnf belong to
the same congruence class, the interpretations of both terms yield the same result, i.e.
tnf =R t0. Therefore, it is conceivable to reduce a term to its canonical normal form

before interpreting it. This reduction process is accomplished syntactically. In order to
achieve tnf from t0 the following reduction chain is processed.

t0 �!
p8 t1 �!

p1 t2 �!
p0 t3 �!

p0 tnf

The underlying idea for the reduction of a term is that the problem of the validity of
an equation in an ACS can be solved by the study of a congruence equation modulo a

relation in the domain (=R), a syntactic problem. In order to determine whether or not
an equation is valid in the given ACS, i.e., whether or not two terms belong to the same

congruence class we have to construct a \complete" set of properties.

Therefore, Completion means according to [Ba et al.] acquiring su�ciently many proper-

ties such that, in particular, any application of a property in a proof within the equational
theory can be transformed into a reduction proof. Hence, a property can be eliminated



ACS group � mode g ;

based-on fg ;

function

f : (g,g) �! g

inv : (g) �! g

ne : () �! g ;

initial properties

p0: 8 x 2 g : f(ne,x) = x

p1: 8 x 2 g : f(inv(x),x) = ne

p2: 8 x,y,z 2 g : f (f(x,y),z) = f(x,f(y,z)) ;

learned properties

p3: inv(ne) = ne

p4: 8 x 2 g : f(x,ne) = x

p5: 8 x 2 g : inv(inv(x)) = x

p6: 8 x 2 g : f(x,inv(x)) = ne

p7: 8 x,y 2 g : f(inv(x),f(x,y)) = y

p8: 8 x,y 2 g : f(x,f(inv(x),y)) = y

p9: 8 x,y 2 g : inv(f(x,y)) = f(inv(y),inv(x));

end-of-ACS;

Figure 3: Example

during completion if there is already a reduction proof for it, or, more generally, if there

is a \simpler" proof of the same property which we know will become a reduction proof
eventually.

We just keep the properties de�ned by the user as they are, i.e., at the beginning we

do not try to make the set of properties complete. Instead, the interpretations of terms
should be used as positive training instances from which new properties could be acquired
incrementally. The new acquired properties constitute the learned properties part as

mentioned above. This can be achieved by introducing the following basic steps: (i)

Before t 2 T� is interpreted, it should be reduced using the existing properties. In this
step, we should use heuristics to support or to accelerate the reduction process. (ii)

Interpret t. (iii) Try to �nd a relation between the result and the term which has been
interpreted by using the method of goal regression [Wa]. This involves traversing their

parse trees in the top-down manner and replacing constants by variables consistently.

(iv) The result of the generalization process, if it can be found, is an equation of the
form \generalized term = generalized result" . According to the notion of completion, as

mentioned above, the generalized equation remains to be proved in order to acquire new



properties. (v) Integrate the new acquired properties into the learned properties part.

If we restrict the properties to the following forms: (i) a left hand side of a property can

be reduced by no property but itself and (ii) a right hand side of a property can not be

reduced by a property then we are capable of determining a method which can be applied

to state and to solve the problems in steps 3 and 4.

The problem occurring in step 3 can be stated as follows: given: A term L and a term

R, the result of the interpretation of L (L;R 2 T�), determine: L0 = R0 L0; R0 2 T�(X),

the generalization of the equation L = R.

An algorithmic method based upon a depth-�rst tree traversal has been designed to

determine the generalization of L = R [Ca-Tj90b].

The problem occurring in step 4 can be stated as follows : given: An equation L0 = R0

as hypothesis, determine: The proof of the given equation.

According to the notion of completion, as mentioned above, an equation can be eliminated

if there is already a rewrite proof for it. Our problem in this step leads to acquiring

properties, which can be used to prove the given equation.

5 Conclusion

We have depicted the possibility of using AI-methods to represent mathematical domains.
Many problems have been omitted here. For instance, we can use the environment to free

a user from explicitly entering the types of expressions. A solution is to use a type
inference mechanism [Tj]. Generally, this problem is undecidable, as the word problem of
a Chomsky-0 language can be reduced to this problem. The proposed solution is mainly
supported by the SNet module to embody subtype relations among the domains and by
the production system to represent type inference rules, such as coercion rules, resolve
rules and force rules. Type inference is done by forward chaining, as MANTRA currently

only supports forward chaining. We omit the technical details on how to realize this
component. The idea behind completing a set of properties is that a semantic problem can
be solved by the study of a set of equations modulo a relation, a syntactic problem. The
currently existing completion methods have practical limitations due to the non-existence
of a complete set of properties in many cases. We propose an approach to acquire the

properties that can be used to prove a given equation. The major steps in acquiring such
properties are the generalization and the proof of positive training instances [Ca-Tj90b].

The proposed method is very reminiscent of the method of explanation-based learning

[Mi et al.].

To de�ne mathematical knowledge within our environment enables to study in a consistent

way di�erent problems. Some are directly linked to Computer Algebra such as the design

of the problem solving component or the design of a compiler suited to our approach [Tj].
This latter study relies upon the type system under development. A longer term goal is

to design a computer algebra system tailored for this environment. Such a task has been
undertaken but with a low priority. A trivial possibility is to embed an existing sytem

into the �rst level of MANTRA. This has been achieved.



The learning capablities of our environment also permit to incorporate capabilities which

are usually not connected with Computer Algebra such as the design of a theorem prover

based upon learning methods. This task is just starting but with a high priority since

this seems to be a new concept for the design of theorem provers.

Such an environment looks to be well suited to many applications in many �elds from

designing a system solving di�erential equations to designing a system for management

decisions because of the integration of frames and semantic nets in a consistent environ-

ment.

We are not aware of works with similar diverse goals. Nuprl or Ontic are only considering

mathematical problems on a restricted set of domains. Only the TASSO [Mi] project

looks to have some similarities but, according to our understanding, in a restricted scope.

The part covered in this paper has some analogy with Axiom, although we start from

a di�erent point of view, in the sense that categories in Axiom are partly what we call

ACS's but they do not take into consideration the properties of operators.
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