
 

1

 

The Specification Language KARL and Its Declarative 
Semantics

 

Dieter Fensel, Jürgen Angele, and Rudi Studer

 

Institut AIFB, University of Karlsruhe
76128 Karlsruhe, Germany

 phone: 49-721-6084754, fax: 49-721-693717
e-mail: fensel@aifb.uni-karlsruhe.de

 

Abstract

 

. The 

 

Knowledge Acquisition and Representation Language (KARL)

 

 combines a
description of a knowledge-based system (kbs) at the conceptual level (a so-called 

 

model of
expertise

 

) with a description at a formal and executable level. It is a specification language which
allows the precise and unique description of a kbs independently from implementational details. In
the paper, KARL is mainly discussed as a formal language. That is, the paper introduces a 

 

formal
semantics

 

 for KARL. Because KARL allows the representation of static and dynamic (i.e.,
procedural) knowledge, its semantics must integrate both types of knowledge. First, an object-
oriented logic L-KARL was developed which can be used to specify static knowledge. Second,
dynamic logic was used to develop P-KARL for specifying knowledge about dynamics. Third, both
languages had to be combined to represent a complete model of expertise. As a result, the integrated
description of static and dynamic knowledge based on a well-defined declarative framework
becomes possible.
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Introduction

 

The development of the language KARL is part of the 

 

MIKE-approach

 

 (

 

Model-based and Incremental
Knowledge Engineering

 

) [AFL+93], which aims at a development method for knowledge-based systems (kbs)
covering all steps from initial knowledge acquisition to design and implementation. In the past, most expert
systems or kbs were developed according to the rapid prototyping approach. The acquired knowledge was
immediately implemented and the running prototype was used to guide the knowledge acquisition process. The
distinction of symbol level and knowledge level [New82] created the conceptual framework for different process
models for the development of kbs. A knowledge level description of the 

 

task

 

 solved by the system and the

 

knowledge

 

, which is required to solve the task, is constructed during a modelling activity. This knowledge level
description is built independently of design and implementation of a system. The separation of analysis and
design/implementation resembles a lesson learnt in software engineering in the late sixties in reaction to the so-
called software crisis.
Meanwhile, informal and semiformal description techniques like the KADS 

 

model of expertise

 

 [SWB93] have
been developed for specifying the knowledge independent from its implementation. These techniques fulfil the
same purpose for kbs-development as dataflow diagrams, entity-relationship diagrams, state-transition diagrams,
etc. in software engineering and information system development.
Informal techniques enable the specification of a system at a conceptual level in an easy and understandable
manner. Otherwise, it is well-known from software engineering that software specifications using these
description techniques have some well-known shortcomings. Informal or semiformal specifications using natural
language suffer from ambiguity and impreciseness and can neither be evaluated by automatic procedures nor by
formal proofs. Therefore, the 

 

formal knowledge specification languages

 

 DESIRE [LPT93], FORKADS [Wet90],
K

 

BS

 

SF [JoS92], (ML)
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 [HaB92], MODEL-K [KaV93], MoMo [VoV93], OMOS [Lin93], QIL [ARS92], and
KARL have been developed to improve the result of the specification phase by supplementing informal
descriptions.
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 A formal description reduces the vagueness and ambiguity of natural-language descriptions by
defining a precise and detailed semantics. Such a formalized description allows formal proofs of properties of the
specified knowledge. Furthermore, some of these languages provide an automatic mapping on an (inefficient)
operational description to permit prototyping as a means for knowledge evaluation. The main concerns of the

 

Knowledge Acquisition and Representation Language (KARL)

 

 which is one of these languages are:
• to provide appropriate modelling primitives (allowing knowledge specifications at the so-called 

 

knowledge
level

 

): KARL distinguishes several types of knowledge and defines different language primitives for them.
Most of these primitives have a 

 

graphic

 

 representation to support the usefulness of KARL specifications as a
medium of communication.

• to provide

 

 formality

 

: KARL has a declarative (i.e., model-theoretic, semantics). This semantics must allow the
representation of static and dynamic (i.e., procedural) knowledge.

• to provide

 

 executability

 

: KARL´s declarative semantics has been operationalized and a debugger has been
implemented.

In the paper, we will focus on the declarative semantics of KARL which is its backbone. This semantics defines
precisely the meaning of every expression. In addition, it serves as base line for developing formal proof
procedures and an operationalization which allows (inefficient) prototyping. The contents of the paper are
organized as follows. First, the language KARL is sketched in section one. Then the semantics of the sublanguages
L-KARL and P-KARL and finally the semantics of the complete language KARL are given in sections two, three,
and four. Because of the limited space, the semantics of L-KARL is sketched only briefly. A complete definition
of the semantics and of the language can be found in [Fen93]. We do not only describe the semantics but also give
the main reasons for our choices. The declarative semantics of KARL has been developed with an eye to its
operationalization. Section five discusses how the mechanizability influenced design decisions of the declarative
semantics. Section six sketches the tool environment of KARL and gives some of its applications. Section seven
compares KARL to some other specification languages.

 

1 The Language KARL

 

In the following, we first introduce the conceptual model which underlies a KARL specification. Then, the two
sublanguages of KARL are sketched. The sublanguage Logical-KARL (L-KARL) integrates frames and logic to
specify static knowledge. The sublanguage Procedural-KARL (P-KARL) is used to specify the control flow of a
problem-solving process.

 

1.  A description of most of these languages and their comparison can be found in [FeH94].
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1.1 The Model of Expertise

 

The conceptual model underlying KARL is derived from the KADS 

 

model of expertise

 

 [SWB93]. As KADS is the
most prominent methodological approach to expert system development—at least in Europe—we tried to keep the
KARL model as close as possible to the KADS model of expertise. Otherwise, this model is defined informally
only and refinement and modifications are natural results of every formalization process. For the sake of self
containment we sketch briefly the KADS model of expertise before we introduce how this model was realised and
modified by the KARL model of expertise.

 

The KADS Model of Expertise

 

A very important part of the KADS methodology [SWB93] is the 

 

model of expertise

 

 which describes the different
kinds of knowledge required to solve the given tasks. The model of expertise distinguishes different types of
knowledge, defines primitives to express them, and organizes them into several layers. Precisely it distinguishes
static knowledge and three types of control knowledge.
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 The goal of a model of expertise is to provide a model of
the problem solving behaviour independently of a certain implementation.

 

Domain layer:

 

 It represents knowledge about the application domain of the system. An important property of the
domain layer is that the knowledge should be represented as independently as possible from the way it will be used.
It has two main purposes. First, it should define a conceptualization of the domain. Secondly, it should define a
declarative theory of the domain providing all the domain knowledge required to solve the given task.

 

Inference layer:

 

 This second layer defines the first type of control knowledge. It specifies the inferences that
constitute a problem-solving method and specifies how to 

 

use

 

 the knowledge from the domain layer in these
inferences. This is done in two ways: the inference layer specifies
• the

 

 inference steps

 

 that can be made using the domain knowledge, and
• the 

 

knowledge roles,

 

 which

 

 

 

model the premises and conclusions of the inferences.
The inference steps are assumed to be elementary in the sense that they are completely described by their names,
an input/output specification and a reference to the domain knowledge that they use. The inference layer specifies
the inference steps and knowledge roles as well as the data-dependencies between these steps and roles. These
dependencies are specified in a network of inference actions and knowledge roles known as an 

 

inference structure

 

.
The inference layer 

 

restricts

 

 the use of the domain layer knowledge and 

 

abstracts

 

 from it. It restricts all possible
inferences to the set of inferences which are defined by it. This is done to improve the efficiency of the problem-
solving process. The inference layer abstracts from the domain layer by using task-specific names for inferences
and roles. The domain-independent formulation of the inference layer should support its reuse, i.e. its application
for similar tasks in different application domains.
A 

 

domain view

 

 must specify the relationship between the generic terms used at the inference layer and the domain-
specific knowledge specified at the domain layer. Mainly, roles have to be connected with domain classes and
inference actions have to be connected with knowledge required for such an inference.

 

Task layer:

 

 A task represents a fixed strategy for achieving problem solving goals. The purpose of the task layer
is to specify 

 

control

 

 over the execution of the basic inference steps specified at the inference layer. This is done by
imposing an ordering on these steps in terms of execution sequences, iterations, conditional statements etc. The
description of a task consists of three components: The goal which is fulfilled by the task; the control terms which
correspond to knowledge roles of the inference layer and which are used to specify conditions for the control flow;
and the task structure which hierarchically refines a given task to subtasks and elementary steps, i.e. inference
actions.

 

The Refined Model of Expertise of KARL

 

Originally, KADS proposed KL-ONE as language for the domain layer. KL-ONE defines a very restricted set of
language primitives which enables strong characterisations of decidability and efficiency of reasoning with it. Yet,
for a specification language a broad syntactical variety of modelling primitives seems necessary to make the step
from an informal to a formal description as smooth as possible. Therefore, KARL integrates concepts of object-
oriented databases and logic for the domain layer, the inference layer, and their connections. KARL provides the
sublanguage 

 

Logical-KARL (L-KARL)

 

 for this purpose. L-KARL is derived from Frame-logic (F-logic) [KLW93].
Terminological knowledge can be described by a taxonomy of classes. For each class, attributes can be defined and
are inherited according to the taxonomy. Further knowledge can be described with logical formulae. A domain
layer is structured and hierarchically ordered by the is-a hierarchy between classes and a module hierarchy.
Besides its use at the domain layer, L-KARL is used to specify the logical relationship defined by an inference

 

2.  Because there is still significant disagreement about the third type of control knowledge (i.e., the 

 

strategic
layer

 

) we have neither regarded it for the KARL model nor will we further discuss it in this paper.
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action at the inference layer. Extending KADS, L-KARL can be used to define a terminological structure of a
knowledge role. In KADS, such roles are flat containers, whereas in KARL they can be used to define a 

 

problem-
solving-method-specific terminology

 

 independently from the domain-specific terminology. The need for such a
terminology is one of the most significant results of the role-limiting method approach ([Mar88], [Pup93]). A
second improvement compared to KADS at the inference layer is the introduction of 

 

hierarchical refinement

 

similar to levelled dataflow diagrams [You89]. Therefore, in KARL large specifications are manageable.
Furthermore, L-KARL is used to specify the 

 

domain view. 

 

Modified Horn logic can be used to define a view from
the problem-solving method on the domain knowledge. Such a 

 

view

 

 could be used to provide domain knowledge
for an inference action at the inference layer. Complementary, a 

 

terminator

 

 could be used to write results of a
problem-solving process at the inference layer back to the domain layer and therefore to re-express such a result in
domain specific terms.

 

Procedural knowledge:

 

 The sublanguage 

 

Procedural-KARL (P-KARL)

 

 is used to specify the control flow of a
problem-solving method at the task layer. Sequence, branch, loop, and procedure call are the means to specify
control flow and the hierarchical task structure. Conditions can be specified via logical statements about the
contents of knowledge roles. The goal of a task is described informally only.

 

The Sisyphus Example

 

We apply the so-called Sisyphus-I example to illustrate the different language primitives of KARL. Sisyphus is a
project that aims at comparing different approaches to aspects of knowledge engineering [Lin92]. An assignment
problem was posed, in which employees are assigned to office places with several requirements to be met. An
example for the graphical representation of the domain layer of the model of expertise is given in Figure 1. The
domain terminology and the domain knowledge required for the problem-solving method is defined at the domain
layer. It consists of three classes. A class of employees which should be placed and a set of working places for
them. A third class defines the subset of all employees which are bosses. Employees are described by their names,
whether they smoke, and by the set of other employees with whom they can share a room. The places are described
by their room numbers. The attribute 

 

placement

 

 should represent the solution, that is, for each employee his place.
The inference layer as shown in Figure 2 contains the elementary inference steps and knowledge roles of the
problem-solving method. Components (employees) and Slots (places) are combined by the inference action

 

Create

 

. 

 

Prune

 

 eliminates illegal states by using the domain knowledge delivered by the view 

 

correct

 

. 

 

Check

 

searches for valid solutions which are saved via the terminator 

 

solution

 

. The control flow between these inferences
is defined at the task layer (see Figure 3). It consists of a loop which determines when a solution has been found.
This simple control flow does not regard the case that no solution exists but the example should be kept as simple
as possible.

 

1.2 Logical-KARL (L-KARL)

 

L-KARL is a customization of Frame-logic (F-logic) [KLW93]. F-logic and L-KARL enrich the modelling
primitives of first-order logic by syntactic modifications but preserve the model-theoretical semantics of it. In this
way, ideas of semantical and object-oriented data models are integrated into a logical framework enabling the
declarative description of terminological as well as assertional knowledge.
L-KARL distinguishes classes, elements, and values. 

 

Classes

 

 refer to sets of real-world objects with common
features. Classes and elements can be described by attributes values. Attribute and class definitions together with

name

employees 
placement

places

Fig. 1    The domain layer of the Sisyphus example.

fit_together

bosses

STRING

INTEGER

room no.

Legenda: class

single-valued attribute

attribute

set-valued attribute
is-a relationship

BOOLEAN

smoker

rangedomain
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an is-a hierarchy and multiple attribute inheritance can be applied to describe 

 

terminological knowledge

 

. These
attributes have defined domain and range and can be applied to describe elements of classes or to the classes itself.

 

Elements

 

 refer to real-world objects whereas 

 

values

 

 are only used to describe such objects. 

 

Intensional 

 

and

 

 factual
knowledge

 

 is described by logical relationships between classes, objects, and their values. In the following, we will
discuss the different modelling primitives.
Elements are denoted by 

 

element-id-terms

 

, consisting of variables, functions, or element-constants, similar to
terms in first-order logic. By means of functions it is possible to generate new object identifiers in logical
expressions. This way to generate new objects is based on O- and F-Logic (cf. [KLW90, KiW93]). Classes are
denoted by

 

 

 

class-id-terms

 

, which consist of variables or class constants. The class constants are the class names of
the class definitions. A 

 

value-id term

 

 denotes a value, i.e. a number, a boolean value, or a string.
A 

 

class definition

 

 which corresponds to a frame describes class attributes which refer to the class as such and
attributes for the objects which are elements of the class. The attributes are described by their name, their domain,
and their range. Classes are arranged in an is-a hierarchy with multiple attribute inheritance. Attributes can be
single-valued or set-valued. As already mentioned, attributes can be used to describe elements as well as classes.
They have defined domain types and range types. In the general case, the range is defined by a set of classes. A
correct attribute value must be an element or a subclass of all classes used in its range definition. The specification
of attributes via class definitions therefore defines the following well-typing conditions: 
• First, there must be a functional dependency between an object and the values of its attributes. 
• Second, an attribute can only be applied to a class or element for which it is defined by an according class

definition. 
• Third, the values of attributes must fulfil the range restriction of the corresponding class definition.
These well-typing conditions are integrated into the model-theoretical semantics of L-KARL [Fen93]. That is, a

Check Solution

Components SlotsCreate

Prune

Fig. 2.    The inference layer of the Sisyphus example.

Legenda: inference view dataflow
action

terminatorstore

correct Old
States

New States

Copy

Create

Prune

Check

∅ solution(Solution)

yes

no

Fig. 3.    The task layer of the Sisyphus example.

Legenda: activity branch controlflow

Old States := 
New States
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minimal Herbrand model is only regarded as valid semantics when it fulfils these restrictions (see section two).
The literals of logical expressions in L-KARL are 

 

is-element-of literals

 

 which describe that objects are elements
of classes; 

 

is-a literals

 

 which describe sub- and super set relationships between the classes; 

 

equality literals 

 

which
describe equality of objects, classes, and values; and finally 

 

data literals

 

 which define attribute values for objects
and classes. Logical formulae are built from these literals using logical connectors 

 

∧

 

, 

 

∨

 

, 

 

¬

 

, 

 

←

 

 and variable
quantification. The logical language to describe relationships between classes, objects, and values is Horn logic
with equality and function symbols extended by stratified negation (cf. [Prz88], [Ull88]).

 

Def. 1  (Positive Literal in L-KARL)
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A positive literal in L-KARL is either:
• an 

 

is-element-of literal

 

 

 

c 

 

∈

 

 

 

c 

 

where 

 

e

 

 is an element-id-term, 

 

c

 

 is a class-id-term. An element-term
describes that an object 

 

e

 

 is an element of class 

 

c

 

.
• an 

 

is-a literal

 

 

 

c

 

 

 

≤

 

 

 

c´

 

 where 

 

c

 

 and 

 

c´

 

 are class-id-terms. An is-a-term expresses that a class 

 

c

 

 is a
subclass of class 

 

c´

 

.
• a 

 

data

 

 

 

literal

 

 

 

o

 

[..., 

 

a

 

:

 

T

 

,..., 

 

s

 

::{

 

S

 

1

 

,...,

 

S

 

n

 

},...] where 

 

o

 

 is either an element-id-term or a class-id-term, 

 

T

 

,

 

S

 

i

 

 are again data-literal. 

 

a

 

 is an attribute name of a single-valued attribute, 

 

s

 

 of a set-valued
attribute. A data-literal defines attribute values for the element or class 

 

o

 

. 
• an 

 

equality

 

 

 

literal

 

 

 

o

 

 = 

 

o´

 

 where 

 

o

 

 and 

 

o´

 

 are id-terms. This means that 

 

o

 

 and 

 

o´

 

 denote the same
element, class, or value.

In addition, 

 

P-literals

 

 

 

p

 

(

 

a

 

1

 

:

 

T

 

1

 

,..., 

 

a

 

n

 

:

 

T

 

n

 

) allow to express relationships between data literals 

 

T

 

i

 

 

 

in a similar way as
in predicate logic. In extension, the arguments of a predicate are named and typed.
Figure 1 specifies the terminological knowledge of the domain layer of our running example in the graphical
notation. In addition, intensional and factual knowledge have to be defined. Some employees together with their
names and some places have to be given. 

 

. 

 

Attributes can be marked as input or output attributes. Input attributes

refer to case-specific input of the user, describing his specific problem. Output attributes store the results of a
problem-solving process. For the reason of space limitation, we will not discuss this distinction further on (see
[Fen93] for more details). In our example there are no values given for the attribute 

 

placement

 

 because this attribute
will contain the solution of the problem-solving process. The attribute 

 

fit_together

 

 is defined by means of logical
clauses. The rows in the pictured tables correspond to ground clauses like:

 

fvh

 

 [

 

name

 

 : 

 

“Frank van Harmelen“

 

,

 

 smoker

 

: NO] 

 

∧

 

 

 

fvh

 

 

 

∈

 

 

 

employees

 

which can be short-cut by a combined is-element-of term and data term

 

fvh

 

 [

 

name

 

 :

 

 “Frank van Harmelen“

 

,

 

 smoker

 

: NO] 

 

∈

 

 

 

employees

 

Two employees fit together if nobody of them is a boss and if both smoke or none of both smokes:

It is easy to see that the elements 

 

jtr

 

 and 

 

sun

 

 do not fit to any other element whereas 

 

fvh

 

, 

 

mab

 

, and 

 

dla

 

 fit altogether.
L-KARL is also used to specify the logical inferences at the inference layer and their connection with the domain

 

3.  In honour to F-logic we call these literals also 

 

F-literals

 

.

 

class: employees

 

Element-id

 

name fit_together placement smoker

 

fvh Frank van Harmelen NO

mab Manfred Aben NO

dla Dieter Landes NO

sun Susanne Neubert YES

jtr Jan Treur NO

 

class: boss

 

Element-id

 

name fit_together placement smoker

 

jtr Jan Treur NO

∀ X ∀ Y ∀ Z1 ∀ Z2 (X[fit_together :: {Y}] ← 
X[smoker : Z1]  ∈  employees ∧  
Y[smoker : Z2] ∈  employees ∧  
¬ (X  ∈  bosses) ∧  ¬ (Y  ∈  bosses)  ∧
Z1 = Z2).
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layer. We will partly show this. In fact, we give the definition of the inference action 

 

Prune,

 

 its input store 

 

Old
States

 

, its output store 

 

New States

 

, and its view 

 

correct

 

 in Figure 4. One remark should be made. The stores 

 

New
States

 

 and 

 

Old States

 

 seem to be redundant because they specify both the same terminology. Both specify that a
state (new respectively old) consist of a set of assignments and each assignment is a pair of a component and a slot.
Otherwise, the distinction between two different stores is the way how the implicit non-monotonicity of the
inference action 

 

Prune

 

 is represented. 

 

Prune

 

 should delete states which describe incorrect assignments. As deletion
of elements cannot be expressed immediately in a declarative manner, the inference action Prune describes that old
states which are not wrong are also regarded as new states. The old states become then overwritten by the new
states via an assignment expressed at the task layer (cf. Figure 3). The non-monotonic parts of a specification are
shown at this layer.
The inference action is very easily to specify as it is shown in Figure 4. Every old state which is not a wrong state
is a new state. That is, such a state is investigated further on during the problem-solving process until all
components have been assigned to a slot. In order to decide whether a state is correct or wrong domain knowledge
is required by the inference action. The required domain knowledge is delivered by the view 

 

correct

 

. It specifies
when a state is a wrong state. A state 

 

Z

 

 having two assignments 

 

A

 

1

 

 and 

 

A

 

2

 

 where different employees are assigned
to the same room is a wrong state if the assigned employees do not fit together. The set-valued attribute 

 

fit_together

 

was defined at the domain layer.

 

1.3 Procedural-KARL (P-KARL)

 

Experiences in XCON (cf. [SBJ87], [BaS89]) showed that great problems arise if control flow is specified
implicitly only. A production rule formalism was used to specify a large expert system for designing computer
configurations. Very soon it became clear that the domain experts have a significant amount of control knowledge
concerning the appropriate order of sub activities and that this knowledge is required to solve a task efficiently.
Therefore, this knowledge was implicitly encoded into the rule formalism. Similar experiences have been made

Fig. 4.    The inference action Prune and its context.

Legenda:

STORE New States
new_states

component

class

components slots

slot

STORE Old States

old_states

component 

components slots

slot 

VIEW correct

wrong_states

∀ A1 ∀ A2 ∀ R1 ∀ R2 ∀ X1 ∀ X2 ∀ Y1 ∀ Y2 ∀ Z (Z ∈  wrong_states ← 
Z[consists_of :: {A1[component : X1, slot : Y1]}]  ∈  old_states ∧  (1)
Z[consists_of :: {A2[component : X2, slot : Y2]}] ∈  old_states ∧  (2)
Y1[room_no : R1] ∧  Y2[room_no : R2] ∧  R1 = R2 ∧  ¬ (X1 = X2) ∧ (3)
¬X1[fit_together :: {X2}]). (4)

∀ X (X ∈  new_states ← X ∈  old_states ∧ ¬ (X ∈  wrong_states)).
INFERENCE ACTION Prune

consists_of

assignments

consists_of

assignments

classset-valued 
attribute

single-valued 
attribute
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with PROLOG where the order of clauses and literals and primitives like the cut are used to implicitly specify
control flow. This need for specification of control flow leads to the development of the sublanguage P-KARL.
The control flow is specified similar to procedural programming languages.
A P-KARL program consists of elementary programs which are assignments. Composed programs are built up
from elementary ones by defining the control flow between these assignments. For this purpose, logical
expressions can be used for defining conditions for branches and loops.
For the 

 

elementary programs

 

, a number of function symbols 

 

F = {f

 

1

 

, f

 

2

 

,..., f

 

r

 

}

 

 and a number of variables 

 

{X

 

1

 

,..., X

 

n

 

}

 

are available. The function symbols correspond to names of inference actions. The variables address their stores
and terminators.

 

4

 

 The actual parameters of a function are the input stores of the corresponding inference action and
the results of the function are mapped to its output stores. As primitive programs three

 

 

 

types of 

 

assignments 

 

exist:
• (1) (

 

X

 

k

 

1

 

,..., X

 

kh

 

) :=

 

 f

 

i

 

(

 

X

 

j

 

1

 

,..., X

 

jl

 

) 

 

f

 

i

 

 corresponds to an inference action and the 

 

X

 

ks

 

 denote its output stores and terminators and the 

 

X

 

js

 

 its input
stores;

• (2) 

 

X

 

k

 

 := 

 

X

 

j

 

X

 

k

 

 and 

 

X

 

i

 

 denote stores;
• (3) 

 

b

 

j

 

 := 

 

b

 

i

 

b

 

j

 

 and 

 

b

 

i

 

 are logical variables.

 

Formulae

 

 are defined as follows:

 

 

 

•

 

true

 

 and 

 

false

 

 are formulae; 
•

 

b

 

 is a formula if 

 

b

 

 is a logical variable;
•

 

∅

 

c

 

(

 

X

 

), where 

 

X

 

 is a store or terminator name and 

 

c

 

 is a class name, is a formula
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; 
• and if 

 

φ

 

, 

 

γ

 

 are formulae then 

 

¬φ

 

, 

 

φ

 

 

 

∨ γ, φ ∧

 

 

 

γ

 

 are formulae.
• These are all formulae.
Formulae like 

 

∅

 

c

 

(

 

X

 

) can be used to check the content of a store during the problem-solving process. In addition
boolean variables can be defined for storing truth values which can then be used in other formulae.
A 

 

composed program

 

 is defined as 
•

 

sequence

 

: 

 

p;q

 

, 
•

 

while loop

 

: 

 

WHILE 

 

ψ

 

 DO p ENDDO

 

, 
•

 

repeat-until loop

 

: 

 

REPEAT p UNTIL 

 

ψ

 

, or 
•

 

alternative

 

: 

 

IF 

 

ψ

 

 THEN p ELSE q ENDIF

 

 
of programs 

 

p, q 

 

and formulae 

 

ψ

 

.
In our Sisyphus example, we have 

F = {

 

Check

 

, 

 

Create

 

, 

 

Prune

 

} 
X = {

 

New States

 

, 

 

Old States

 

, 

 

Solutions

 

}
The control flow consists of a loop of creating states, pruning them, and checking whether a solution has been
found (see Figure 3). The linear notation is given in Figure 4.
The syntax of P-KARL is just sugar on top of dynamic logic (cf. [Har84], [Koz90]) which defines the gist of the
language. In section three we will show how dynamic logic is used to define a declarative semantics for P-KARL.
We chose dynamic logic because it is a well-known means to declaratively describe procedural programs.

 

4.  Views are used to read domain knowledge and have no dynamic interpretation. Therefore, they do not appear
at the task layer.
5.  The formula

 

 ∅

 

c

 

(

 

X

 

) is evaluated true for a state if the store or terminator 

 

X

 

 does not contain an element of the
class 

 

c

 

.

Fig. 5.    The task layer of the Sisyphus example defined by using the linear notation of P-KARL.

WHILE ∅ solution(Solution)
DO

Old States := Create (Old States);
New States := Prune (Old States);
Old States := New States;
Check (New States);

ENDDO
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2 The Declarative Semantics of Logical-KARL (L-KARL)

 

Because L-KARL is a syntactical variant of first-order predicate logic its semantics can be defined by modifying
and extending the model-theoretical semantics of predicate logic. At first, an interpretation for a set of L-KARL
formulae has to be defined. Objects, classes, and values are interpreted by individuals of a given 

 

universe

 

.
Associating classes and also sets (sets can appear as attribute values) with individuals allows to reason about
classes and sets without destroying the first-order semantics of the language (cf. [KLW93]). For example, the
following Horn clause collects all subclasses of class 

 

c

 

 as value of the set-valued attribute 

 

subclass

 

:

 

∀

 

X

 

 (

 

c

 

[

 

subclass

 

 :: {

 

X

 

}] 

 

←

 

 

 

X

 

 

 

≤

 

 

 

c

 

).
The attributes and their domain and range restrictions are interpreted by 

 

functions

 

 on the universe. Specific
conditions postulated for these functions realize multiple-attribute inheritance. The is-a and is-element-of
hierarchy are captured by a 

 

partial ordering 

 

defined on the universe.
As L-KARL is a syntactical extension of first-order logic it is necessary to define its semantics in a more complex
manner.

 

Def. 2  An interpretation of an L-KARL language

 

An interpretation 

 

I

 

 for a L-KARL language is a tuple <

 

U

 

E

 

, 

 

U

 

∑

 

, 

 

U

 

V

 

, 

 

≤

 

U

 

, 

 

I

 

U

 

, 

 

I

 

E

 

→

 

, 

 

I

 

∑→

 

, 

 

I

 

E

 

→→

 

, 

 

I

 

∑→→

 

, 

 

I

 

E

 

⇒

 

,

 

I

 

∑⇒

 

, 

 

I

 

E

 

⇒⇒

 

, 

 

I

 

∑⇒⇒

 

, 

 

I

 

∏

 

, 

 

I

 

A

 

∏

 

> with:
•

 

U

 

E

 

 is a subset of the domain to interpret element denotations, 

 

U

 

∑

 

 is a subset of the domain to
interpret class denotations, and 

 

U

 

V

 

 

 

is a subset of the domain to interpret values. The sets must be
disjunct and their union 

 

U

 

 defines the 

 

domain

 

.
•

 

≤

 

U

 

 is a partial ordering on 

 

U

 

 used to interpret is-a and is-element-of literals.
•

 

I

 

U

 

 interprets every element denotation, class denotation, and value by an element of the domain.
•

 

I

 

E

 

→

 

 interprets each single-valued attribute 

 

a

 

 defined for elements as a partial function

 

I

 

E

 

→

 

(

 

a

 

): 

 

U

 

E

 

 

 

→

 

 

 

U.

 

•

 

I

 

E

 

→→

 

 interprets each set-valued attribute 

 

s

 

 defined for elements as a partial function 

 

I

 

E

 

→→

 

(

 

s

 

): 

 

U

 

E

 

 

 

→

 

 

 

℘

 

(

 

U

 

).

 

I

 

∑→

 

 and 

 

I

 

∑→→

 

 do the same for attributes defined for classes.
•

 

I

 

E

 

⇒

 

, (and respective

 

ly I

 

∑⇒

 

, 

 

I

 

E

 

⇒⇒

 

, 

 

I

 

∑⇒⇒

 

) interprets each single-valued attribute 

 

a

 

 defined for
elements as a 

 

partial anti-monotonic function

 

 having the 

 

upwardly-closed subsets

 

 of 

 

℘

 

(

 

U

 

∑

 

) as its
range.

•

 

I

 

∏

 

 interprets each 

 

k

 

-ary predicate symbol by a 

 

k

 

-ary relation over the domain and 

 

I

 

A

 

∏

 

 interprets
each 

 

k

 

-ary predicate symbol by its argument types.

 

I

 

E

 

→

 

,

 

 I

 

E

 

→→

 

, I

 

∑→

 

, and 

 

I

 

∑→→

 

 interpret each attribute using a partial 

 

function

 

 to capture the functional dependencies
between objects and their attribute values. They interpret each attribute using a 

 

partial

 

 function as an attribute need
not be defined for all elements or classes. The partiality of the function is used to interpret the 

 

domain restrictions

 

of the attributes. The 

 

range restriction

 

 are handled by 

 

I

 

E

 

⇒

 

, 

 

I

 

∑⇒

 

, 

 

I

 

E

 

⇒⇒

 

, and 

 

I

 

∑⇒⇒

 

 as proposed by [KLW93]. A
partial function 

 

f

 

 on 

 

U

 

 is 

 

anti-monotonic

 

 if the facts that 

 

v

 

 

 

≤

 

U

 

 

 

u

 

 and f(u) are defined imply that
(1) f(v) is defined and
(2) f(u) ⊆  f(v).

(1) ensures attribute inheritance. That is, if a class is a subclass of a class or if an element is an element of a class
it inherits its attributes. (2) ensures that the range restriction for an inherited attribute can be stronger for a subclass,
that is, its definition contains more classes of which an attribute value has to be an element or a subclass. This can
occur if a class has several super classes defining the same attribute. The subclass inherits all range restrictions of
its super classes. Therefore, the concept of an anti-monotonic function captures multiple-attribute inheritance in a
declarative manner. Upwardly-closed sets are used as an interpretation for range restrictions because it should be
ensured that if c is used as a range restriction and c ≤U c´ then c´ must also hold true as a range restriction, because
c is a subclass of c´.
Such an interpretation I defines a model for a set of formulae if every formula is true according to the interpretation.
Elementary formulae are is-element-of literals, is-a literals, equality literals, and data literals. Therefore, it must
be defined when an interpretation satisfies such a literal. Composed formulae which are built up from these
elementary formulae by logical connectives and quantifiers have the usual interpretation. For example, a ground
data literal

fvh[name : “Frank van Harmelen”, fit_together :: {mab, dla[name : “Dieter Landes“]}]
is satisfied by an interpretation I iff:
• The functions which interpret the attributes name and fit_together are defined for fvh. That is, the domain

restrictions for the attributes are not violated.
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• The value of the function which interprets the attribute 

 

name

 

 is equal to 

 

“Frank van Harmelen”

 

. That is, the
functionality of an attribute is not violated and 

 

“Frank van Harmelen”

 

 does not violate the range restriction of
it.

• The value of the function which interprets the attribute 

 

fit_together

 

 is a super set of the set 

 

{mab, dla}

 

. It is not
required, that a data literal contains all elements of a set-valued attribute.

• As the data literal recursively contains a second data literal 

 

dla[name : “Dieter Landes“]

 

, it is required that
this data literal is fulfilled by 

 

I

 

, too.
An interpretation which fulfils a set of clauses is called a 

 

model

 

 of this set of clauses. Instead of all models, only a
specific type of models is taken into account for L-KARL. In fact, only 

 

Herbrand models

 

 are admitted. This does
not cause a significant restriction because every set of formulae can be transformed into a logical equivalent set of
clauses and for every set of clauses 

 

S

 

 holds:

 

S

 

 has a model iff 

 

S

 

 has a Herbrand model [Llo87].
A Herbrand model 

 

H

 

 is a set of ground positive literals. These literals are regarded to be true according to the given
Herbrand model 

 

H

 

. A negative literal is true if the corresponding positive literal is not an element of 

 

H

 

. Similar to
predicate logic with equality, it is required that such a Herbrand model is 

 

closed with regard to logical entailment.

 

That is, if a ground positive literal 

 

φ

 

 is entailed by 

 

H

 

 then it must hold: 

 

φ

 

 

 

∈

 

 

 

H

 

. A 

 

congruence relation

 

 on the
Herbrand universe must be defined where each congruence class contains all syntactical different but semantical
equivalent terms (see [SpA91] for more details).
In the case of Horn clauses, every set of clauses has a definite minimal Herbrand model. This 

 

minimal 

 

or 

 

least
Herbrand model

 

 is taken as semantics for a set of L-KARL Horn clauses 

 

S

 

. It is exactly the set of positive ground
literals entailed by 

 

S

 

. Negative literals are derived applying the 

 

closed-world assumption

 

. That is, every negated
ground positive literal 

 

¬φ

 

 

 

is regarded as being true iff 

 

φ

 

 

 

∉

 

 

 

H

 

. Therefore, the set of negative literals which are
entailed from a set of Horn clauses according to the minimal Herbrand model is larger than the set of negative
literals which are entailed from all models. Because Horn clauses are too restrictive, L-KARL allows also negative
literals as premises of implications. In this case, the minimal Herbrand model is no longer unique. That is, several
minimal models can exist. Therefore, only a stratified set of clauses is allowed and 

 

stratification

 

 is applied to select
one unique model from the set of all minimal Herbrand models. This model is called the 

 

perfect Herbrand model

 

(cf. [Prz88], [Ull88]). Regarding only one model (i.e., the perfect Herbrand model) instead of all possible models
makes the operationalization of KARL significantly easier.

 

3 The Declarative Semantics of Procedural-KARL (P-KARL)

 

One design goal of KARL was to give it a declarative character. That is, to define a model-theoretical semantics
for it. For defining a declarative semantics for the procedural part we use 

 

dynamic logic

 

 (cf. [Har84], [Koz90])
which is a means for defining a model-theoretical semantics for procedural programs. The basic ingredients of
dynamic logic are:
•

 

States

 

 and 

 

variables

 

: a state of a program is characterized by the values which are assigned to all its variables.
•

 

Programs

 

: a program is a binary relation between states.
•

 

Formulae

 

: A formula is true for some states and false for the others. That is, it is interpreted by a subset of all
possible states for which it is regarded as true.

According to the expressive power of these formulae, different types of dynamic logic, e.g., propositional and first-
order dynamic logic, can be distinguished. P-KARL restricts first-order dynamic logic to 

 

deterministic while
programs

 

 [Koz90]: First, P-KARL allows only formulae without quantifiers (i.e., the alphabet of P-KARL does
not contain quantifiers). This ensures that P-KARL programs are 

 

regular

 

 [Koz90]. Second, KARL allows only
deterministic programs. That is, a program corresponds to a partial function between input states and output states.
On the one hand, both language design decisions support the operationalization of KARL. On the other hand, it
restricts the expressibility of the language. Till now, these restrictions have not caused problems but it is clear that
the design of our language immediately biased our point of view on how to model a problem.
An 

 

interpretation (D, F

 

A

 

 = {f

 

1
A

 

,..., f

 

r
A

 

}, P

 

A

 

 = {P

 

1
A

 

,..., P

 

s
A

 

})

 

 of a dynamic logic language using the multiple world
semantics consists of three sets. First, a 

 

domain 

 

or 

 

universe D

 

 has to be defined. This domain defines the values
that are assigned to the variables. Second, a set of functions 

 

F

 

A

 

 is required which serve as interpretations for the
function symbols used in elementary programs. Third, a set of relations 

 

P

 

A

 

 has to be provided which serve to
interpret the predicate symbols used in the formulae. In the next section is shown, how a L-KARL language is used
to define such an interpretation.

 

4 The Declarative Semantics of KARL

 

In the following, the local semantics of an elementary inference action as well as its use to define a global semantics
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of a complete KARL specification is given.

 

4.1 The Semantics of an Inference Action

 

The declarative semantics of an elementary inference action is the perfect Herbrand model of the clauses and facts
which describe it. In the case that it has an input store, its semantics implicitly relies on the dynamic state of the
reasoning process as the facts of the input store must be contained by this perfect Herbrand model. 

 

Def. 3  Semantics of an elementary inference action

 

The semantics of an elementary inference action is defined as the 

 

perfect Herbrand model

 

 of the union of 
• the set of clauses and facts which define the inference action; 
• all clauses and facts which define the views of it, 
• all clauses and facts which define the terminators of it; and 
• the 

 

current

 

 contents (i.e., sets of ground facts) of the input stores of it. 
• In addition, if the inference action has at least one view or terminator then the clauses and facts

defined at the domain layer are added.

 

6

 

For example, the semantics of the inference action 

 

Prune

 

 is the perfect Herbrand model of the current contents of
the store 

 

Old

 

 

 

States

 

, the clauses and facts used to define the domain layer, the view 

 

correct

 

, and the inference
action. If such a model does not exist or if it is not well-typed, the inference action is not defined for the given input.
Having defined the semantics of an inference action it remains to define 

 

how such an inference action changes the
contents of its output stores

 

.

 

7

 

 For this purpose a subset of the perfect Herbrand model 

 

H

 

 is used. Every store is
described by a set of class definitions which are used to define these subsets. So, a store can be used to select just
this information out of the entire Herbrand model of an inference action which should be processed further on. In
the case that an inference action uses a view its perfect Herbrand model is a super set of the complete domain layer.
Therefore, it would not make sense to store this complete model in a store. Also in the case, that an inference action
has several output stores, the class definitions of the stores can be used to choose different parts of the perfect model
as their new contents.
For this selection, only those is-element-of literals, equality literals, and data literals are selected which fit to the
class definitions of the store. For example, an 

 

is-element-of literal e 

 

∈

 

 c

 

 in 

 

H

 

 is only chosen if the store contains a
class definition for 

 

c

 

. Similar, a data literal 

 

e[...]

 

 in 

 

H

 

 is only chosen if an is-element-of literal

 

 e

 

 ε

 

 c´

 

 exists as
element of 

 

H

 

 with 

 

c´

 

 is contained in the store. Figure 6 illustrates this. The input store contains a class definition
for 

 

c

 

1

 

 and the output store for

 

 c

 

2

 

. For the sake of simplicity no attributes are defined. The input store contains one
fact indicating that 

 

a

 

 is an element of 

 

c

 

1

 

. The inference action is described by one clause which infers every 

 

X

 

 as
an element of the class 

 

c

 

2

 

 if it is an element of 

 

c

 

1

 

. Therefore, the perfect Herbrand model of the inference action
contains the two is-element-of literals 

 

a

 

 ε

 

 c

 

1

 

 and 

 

a

 

 ε

 

 c

 

2

 

 but only the second literal is chosen as new content of the
output store.
Formally, the set of all is-element-of literals, equality literals, and data literals of the model of the elementary
inference action are employed as the new contents of an output store 

 

which are terms over the class definitions

 

 of
the store. 

 

6.  KARL provides 

 

modularisation

 

 for the domain layer which is not discussed in the paper.
7.  We do not discuss the case how a terminator is used to modify the domain layer because there is no technical
difference.

output store := inference action (input store);

input store inference action output store

Perfect Herband model H

a ∈  c1.

CLASS c1
END

CLASS c2
END

∀ X (X ∈  c2 ← X ∈  c1). a ∈  c1.a ∈  c2.

Fig. 6.    An example for the semantics of an inference action. 
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Def. 4  Terms over a set of class definitions

 

Let 

 

H

 

 denote the perfect Herbrand model of a set of rules and definitions of an L-KARL alphabet. 

 

CD

 

denotes a set of class definitions using the same L-KARL alphabet. 

 

CD

 

(

 

H

 

) denotes the 

 

set of all terms from
H over CD

 

.
• An is-element-of term 

 

e

 

 

 

∈

 

 

 

c

 

 of 

 

H

 

 is a term over the class definitions 

 

CD

 

, if and only if CD contains
a class definition for 

 

c

 

.
• A data term 

 

e

 

[

 

a

 

1

 

 :

 

 

 

T

 

1

 

,..., 

 

a

 

r

 

 :

 

 

 

T

 

r

 

, 

 

s

 

1

 

 

 

::

 

 { ,..., },..., 

 

s

 

t

 

 

 

::

 

 { ,..., }] of 

 

H

 

, 

 

e

 

 is an element-id-
term, is a term over the class definitions 

 

CD

 

 if and only if 

 

CD

 

 contains a class definitions for a class

 

c

 

 which defines all attributes 

 

a

 

1

 

,..., 

 

a

 

r

 

, 

 

s

 

1

 

,..., 

 

s

 

t

 

 for 

 

c

 

. In addition, 

 

H

 

 must contain the element-of
literal 

 

e

 

 

 

∈

 

 

 

c

 

.
• A data term 

 

c

 

[

 

a

 

1

 

 :

 

 

 

T

 

1

 

,..., 

 

a

 

r

 

 :

 

 

 

T

 

r

 

, 

 

s

 

1

 

 

 

::

 

 { ,..., },..., 

 

s

 

t

 

 

 

::

 

 { ,..., }] of 

 

H

 

, 

 

c

 

 is a class-id-
term, is a term over the class definitions 

 

CD

 

, if and only if 

 

CD

 

 contains a class definition for a class

 

c´

 

 which defines all attributes 

 

a

 

1

 

,..., 

 

a

 

r

 

, 

 

s

 

1

 

,..., 

 

s

 

t

 

 for 

 

c

 

´. In addition, 

 

H 

 

or

 

 CD

 

 must contain the is-a
literal 

 

c

 

 

 

≤

 

 

 

c´

 

.
• Every equality term 

 

o

 

 

 

=

 

 

 

o´

 

 of 

 

H

 

 is a term over the class definitions 

 

CD

 

.

 

4.2 The Semantics of an Entire KARL Specification

 

As already mentioned an interpretation (

 

D

 

,

 

 F

 

A

 

 

 

= {

 

f

 

1

 

A

 

,...,

 

 f

 

r
A

 

}, 

 

P

 

A

 

 

 

= {

 

∅

 

c

 

, 

 

∅

 

c´

 

,...}
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) of a P-KARL program requires
three ingredients: A universe 

 

D

 

 must be defined which provides the values for the variable assignments. A set 

 

F

 

A

 

of functions must be given to interpret the function symbols used in elementary programs and a set 

 

P

 

A

 

 of relations
must be provided to interpret the predicate symbols used in the formulae.

 

Def. 5  Universe of the P-KARL language

 

The 

 

universe D

 

 is defined as the 

 

power set of the Herbrand base

 

 of the union of the L-KARL languages
used at the domain layer, inference layer, and for the domain view.

The Herbrand base contains all ground positive literals which can be expressed by these languages. Therefore,
every perfect Herbrand model of an inference action is a subset of the Herbrand base and an element of its power
set. A variable assignment to a P-KARL program assigns a set of ground literals to a variable. Such a variable and
its assignment correspond to a store and its contents which is a subset of the current perfect Herbrand model of an
inference action. Every variable of a P-KARL program corresponds to a store defined at the inference layer. The
current contents of the stores are defined by the current values of the variables of the P-KARL program according
to the given variable assignment. A 

 

state

 

 is therefore characterized by the current contents of the stores.
Every inference action defines a mapping between the current contents of its input and output stores. These
mappings are used to interpret the 

 

function symbols

 

 in elementary P-KARL programs. 

 

Def. 6  Interpretation of the function symbols of a P-KARL program

 

The function which is defined by an inference action 

 

ia

 

 is used to interpret the function symbol 

 

ia

 

 of P-
KARL.

The three function symbols 

 

Check

 

, 

 

Create

 

, and 

 

Prune

 

 at the task layer in Figure 5 are interpreted by the three
functions which are defined by the model-theoretic semantics of the inference actions 

 

Check

 

, 

 

Create

 

, and 

 

Prune

 

.
Finally, the relations for interpreting the 

 

predicate symbols

 

 have to be defined. The formula 

 

∅

 

c

 

(

 

X

 

)

 

 

 

should be false
for all states (i.e., variable assignments) for which the store 

 

X

 

 contains an is-element-of literal 

 

e

 

 ∈

 

 c

 

, where 

 

e is an
arbitrary object denotation.

Def. 7  Interpretation of the predicate symbols of a P-KARL program
The unary predicate symbol ∅ c is interpreted by the set of all elements of the universe D (which are sets)
which do not contain an is-element-of literal e ∈  c, with e is an arbitrary object denotation.

Therefore, by defining a universe, functions, and relations the perfect Herbrand model semantics of L-KARL is
used to define an interpretation for a P-KARL program.

5 The Operational Semantics and Its Influence on the Declarative Semantics
A declarative semantics of a language A defines the meaning of an expression in A by expressions of a second
(mathematical) language B. These definitions need not to be constructive. For example, the minimal Herbrand
model of a set of Horn clauses is defined as the intersection of all Herbrand models of this clause set which are
infinitely many if function symbols are allowed. The purpose of the declarative semantics is to define a precise
and detailed meaning of the language expressions. Because KARL should also support prototyping, an
operational semantics based on its declarative semantics has been defined. The operational semantics of KARL

 

8.  

 

c, c’

 

, etc. are the class names which occur in the class definitions of the stores.

S11 S1m1
St1 Stmt

S11 S1m1
St1 Stmt
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allows the derivation of output facts based on a given set of input facts which supports the 

 

validation

 

 of a
specification. The operational semantics for an inference action described by L-KARL is defined by a fixpoint
operator [Llo87] which also has to consider the equalities which are defined by the equality-literals. The
semantics of a P-KARL program is realized by a sequence operator which changes a state according to the
specified control flow. For more details concerning the operational semantics and its implementation see
[Ang93]. A significant restriction of the operational semantics is that it requires 

 

finite

 

 perfect Herbrand models.
Otherwise the fixpoint operator does not terminate.
The declarative semantics of KARL has been developed with an eye on its operationalization. P-KARL programs
are 

 

regular

 

 and 

 

deterministic

 

. In addition, 

 

recursion

 

 is not available (i.e., the number of variables remain
unchanged during execution). These restrictions significantly reduce the effort for operationalization. In the non-
deterministic case all states must be regarded in parallel or the interpreter must choose a state and the
operationalization would be incomplete. In the case of L-KARL, the language is restricted to a stratified set of
clauses and only one specific model, the perfect Herbrand model, is regarded to define the truth value of
formulae. The restriction on one specific model significantly reduces the effort for operationalization. Normally,
three different sets of ground positive literals in regard to a given set of formula 

 

S

 

 exist. Literals which are
entailed by 

 

S

 

, literals which are entailed by 

 

S

 

 when they are negated, and literals which are neither a positive nor a
negative consequence of 

 

S

 

. In our case, the third set disappears and the truth value of a negated ground literal can
be determined by checking whether the according positive literal is an element of the perfect Herbrand model.
Work done in logic programming and deductive databases motivated our choice.
Whereas the restriction of P-KARL has not caused any problem in around twenty applications it was the
restriction of L-KARL to Horn logic which often required artificial solutions. For example, when one wants to get
the maximal element of a set it requires to introduce an artificial predicate (e.g., 

 

not_max

 

) and double negation:

 

6 Tools Support and Applications

 

The tool set of MIKE provides support for three different types of activities: First, the 

 

hypermedia tool MeMoKit

 

(Mediating Model Construction Kit, see [NeM93], [Neu93]) supports the semiformal specification of a
knowledge-based system and bridges the gap to a formal specification. Starting with knowledge protocols
achieved during knowledge elicitation sessions a semiformal description of the expertise can be built up. The
main difference of this semiformal model of expertise to the KARL specification is that the atomar entities of the
specification are defined by natural language. Therefore, the formal specification is achieved by supplementing
these natural language descriptions with formal definitions. For this purpose, MeMoKit can be used as a graphical
editor for KARL which additionally provides natural language descriptions and knowledge protocols as important
documentations means to improve the understandability of the formal specification.
Second, an 

 

interpreter 

 

including debugging facilities for KARL is integrated in this graphical environment. A
specification can be executed in this graphical environment, breakpoints can be defined, and the current contents
of the stores can be inspected. The gist of the matter of this interpreter is an efficient bottom-up evaluation of L-
KARL [Ang93]. Evaluation of specifications by testing always showed to be very helpful in validating them. 
Third, work is in progress to support 

 

design activities

 

 (see [Lan94] and [LaS94]). This includes additional editors
for constructing the design model, e.g., by refining parts of the model of expertise, as well as tools that allow to
link design decisions to the requirements that motivate them. The operationalization of the design model is
supported by mapping parts of the design model to code of a specific software target environment (C++), which
also establishes the basis for evaluating the design model by running it as a hybrid prototype which consists of
parts that are still executed using the KARL interpreter while others are already operational in the C++ target
environment.
The development of different models of expertise for various expert system applications provided valuable
feedback for developing the version of KARL which is described in this paper. Among others the following
applications have been tackled: In [AFL+92a] and [AFL92c] two solutions for the Sisyphus-1 problem are
described providing a complete model of expertise specification. For comparing different approaches for formally
specifying the functionality of expert systems a simple scheduling task has been posed in [TrW93]. Here, a set of
activities have to be scheduled to a set of time periods taking some restrictions into account. In [LFA93] a KARL
solution for this problem is described resulting among others in the formalization of the problem solving method
propose and exchange. In [KFG92] an approach for solving the problem of selecting appropriate scheduling
algorithms from a library in a given project management context is discussed. As a third problem for comparing
different knowledge level modelling approaches and languages an elevator configuration task has been posed
[Yos92]. In [PFL+94] a KARL solution is described. This specification resulted in the formalization of the

∀ X (X ∈  max ← X ∈  set ∧  ¬ (X ∈  not_max).
∀ X ∀ Y (X ∈  not_max ← X ∈  set ∧  Y ∈  set ∧  X < Y).
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problem solving method propose and revise. The detailed specification of such a complex tasks gave us various
insights in the advantages and disadvantages of some of the design decisions which we have made when
developing KARL. In [Ang92] a complete specification of the problem solving method cover and differentiate
has been provided based on the informal description which is given in [Mar88]. This problem solving method can
be used to solve problems in which a solution has to be identified from a given set of solutions, like e.g. in
diagnosis tasks. The Board-game method is a refinement of chronological backtracking for problems, in which a
fixed set of pieces can be moved between locations in order to reach a goal state [EST+92]. Using the informal
description given in [EST+92] as well as the available CLIPS code the board-game method has been formally
specified [FEM+93]. This case study is a typical example how KARL can be used for re-engineering already
implemented problem solving methods.

 

7 Comparison

 

In the following, we compare briefly KARL with specification languages from knowledge engineering ((ML)

 

2

 

and DESIRE), information system development (Telos and TROLL), and software engineering (VDM and Z). A
comparison of KARL with most existing knowledge specification languages can be found in [FeH94] and
[AFL92b] contains a comparison of KARL with INCOME, a language for specifying information systems.
The main difference between KARL and (ML)

 

2

 

 [HaB92] grounds in the fact that (ML)

 

2

 

 is a language which aims
only at formalizing models of expertise of kbs and not at operationalization. It uses full first-order logic to specify
static knowledge and regards all possible interpretations to determine the truth value of formulae. A possible
operationalization of (ML)

 

2

 

 would require theorem-proving techniques. This operationalization would not be
complete and less efficient than an operationalization of Horn logic as used by KARL. Otherwise as already
mentioned, the restriction to Horn logic as done by KARL often requires unnatural specifications and hinder the
transition from an informal to a formal specification. A further difference lies in the fact that KARL uses an
object-oriented customization of first-order logic to express domain and inference knowledge whereas (ML)

 

2

 

provides pure predicate logic for this purpose. Therefore, epistemological different types of knowledge like
concepts, attributes, domain and range restrictions are uniformly represented by predicates in (ML)

 

2

 

. Both
languages use dynamic logic for specifying procedural knowledge. Otherwise, there is a significant difference in
how both languages use dynamic logic. In KARL, an inference action is represented by a function. In (ML)

 

2

 

,
every inference actions is represented by a predicate and the logical description of them is integrated into dynamic
logic by clauses having this predicate as a literal. As a consequence, (ML)

 

2

 

 requires 

 

quantified

 

 dynamic logic
because the logical description of inferences require quantifiers whereas for P-KARL a less expressive variant of
dynamic logic is sufficient because every formula contains free variables only (cf. [Koz90]). 

 

DESIRE

 

 [LPT93] is
a further knowledge specification languages but differs significantly from KARL in the conceptual model they
apply as DESIRE does not rely on the KADS model of expertise. The main difference is that DESIRE uses meta-
level architecture for dynamic control based on 

 

temporal logic

 

. Therefore, the control flow is not procedurally
described but a set of meta-level formulae can constrain possible control flows. Semantically, DESIRE represents
its partial reasoning by a temporal logic with a fixed discrete set of time points where the control flow is
represented as a trace of different points in time. DESIRE provides no means to reason about composition of
actions like sequences or loops.

 

Telos

 

 [MBJ+93] which has envolved from RML (Requirements Modeling Language, see [GMB94]) is a language
to support the development of information systems. It views the specification as an object-oriented knowledge
base supplemented by constraints and rules. An intervall-oriented temporal formalism is provided to express
temporary features of these objects and their relationships. Telos provides the operations RETRIEVE and ASK
for querying this knowledge base. Besides some technical details, L-KARL and the analogous part of Telos are
very close in spirit. As in KARL attributes and classes are treated as first-order citizens but KARL provides a
more explicit notion of complex objects. The main difference between both languages concerns the representation
of dynamics. KARL has no explicit means to represent temporal knowledge and Telos includes no representation
of procedural knowledge as the system is viewed as a static knowledge base and not as a program.

 

TROLL

 

 [Jun93] is a language for formally specifying information systems and is used during requirements
specification or conceptual modelling—a phase in the development of information systems which directly
corresponds to knowledge acquisition. In TROLL an information system is modelled as a community of
interacting objects where each object covers structural as well as behavioural aspects. A basic characteristic of
TROLL is the use of temporal logic for specifying e.g. the admissible state sequences of objects. In [Jun93] the
formal semantics of TROLL is given using the so-called Object Specification Logic [SSC92]. However, a
complete operationalization of TROLL is currently not available. Again a major difference between KARL and
TROLL is the fact that the latter aim primarily at the specification of objects and their behaviour. The behaviour is
characterized by rather simple operations which change the state of the corresponding objects and may cause the
state change of other objects. However, the specification of complex application functions, which are described in
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KARL on the task and inference layer, is not addressed in these languages. On the other hand, it should be clear
that e.g. notions like dynamic integrity constraints as offered by TROLL could be used to enhance the
specification of the domain layer of a KARL model of expertise. The main difference between KARL and
TROLL is again the representation of dynamics. Whereas the later constrains possible control flows by use of
temporal logic, KARL uses dynamic logic to explicitly define the control flow in a procedural manner. As already
mentioned in section 1.3, this design decision in KARL was taken as experiences in large expert system projects
have shown that great problems arise if the control flow is implicitly specified.
VDM and Z are formal specification languages developed by the software engineering community. Both
languages can report several applications in the development of large software products. 

 

VDM

 

 [Jon90] describes a
system by a data model together with a set of operations which express the required behavior of a system. Each
operation is defined as a relation between input and output values of various defined types. Pre-conditions, post-
conditions, and invariants are means to specify these data models and operations. VDM provides a number of
proof obligations which can be used to show the mathematical self-consistency of a specification. 

 

Z

 

 is based on
typed set theory. Static and dynamic aspects of a system are uniformly described by so-called schemes. Large
specifications can be built up by combining several of these schemes. A schema describes a data type or an
operation by means of pre-conditions, post-conditions, and invariants. For this purpose, sets, relations, and
functions can be defined using a predicate logic like language. Its mathematical semantics is defined in [Spi88]
and [Spi92] defines a standard for Z. Comparing KARL with VDM and Z, three main differences arise:
• Neither VDM nor Z aim on prototyping by executable specifications. Our experience with KARL showed the

usefulness of executing specifications in two dimensions. First, it helps to understand what is specified. That
is, it helps to detect “programming errors” in a specification. Second, it helps to check whether the
specification meets the desired functionality, that is, whether the semantics of the formal specification meets
the informally defined requirements.

• VDM and Z define a rigorous syntactic and (several years later) semantical framework to mathematically
describe systems but have been developed without an eye on semiformal specification techniques. Therefore,
there is neither a smooth transition from semiformal to formal specifications nor is there any conceptual model
like the model of expertise which underlies a specification. In fact, a system is specified as a partial function
which is correct but a very low level of describing a system.

• Recently, Z and VDM [BFL+94] provide proof theories which allows to formally prove properties of
specifications. This work remains still to be done for KARL.

Several semiformal specification techniques have been developed in software engineering. In [FAL93] it is
described how KARL can be used to formalize and operationalize software specifications using structured
analysis techniques like data flow diagrams [You89]. This shows that the application of KARL is not restricted to
the development of KBS, instead application systems being developed with a classical software engineering
technique like structured analysis can be formally specified in KARL as well. Otherwise, there are no means to
specify real-time problems in KARL.

 

Conclusion

 

The paper presented the knowledge specification language KARL and its declarative semantics. Meanwhile
KARL has been successfully applied in around twenty academic case studies for specifying knowledge-based
systems (kbs). Its semantics enables the precise and detailed specification of a kbs without referring to
implementational details which are not of interest during the knowledge acquisition process. Therefore, it defines
an intermediate level between informal and semiformal specification at the one hand and the efficient
implementation of a kbs at the other hand. The KARL model of expertise contains the description of domain
knowledge, inference knowledge, and task knowledge (i.e., procedural control knowledge) and allow a smooth
transition from semiformal to formal specifications. 
KARL integrates two different types of logic: The sublanguage L-KARL, which is based on object-oriented
logics, combines frames and logic to define terminological as well as assertional knowledge. The sublanguage P-
KARL, which is a variant of dynamic logic, is used to express knowledge about the control flow of a problem-
solving method in a procedural manner. The validation of KARL specifications is enabled by the definition of an
operational semantics which coincides with the declarative semantics and by the implementation of a KARL
debugger. The development of a 

 

proof theory

 

 for KARL by defining a set of complete and correct derivation rules
is an important topic for future research.
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