
A Second Look at Overloading

In Proc� FPCA��� Conf� on Functional Programming Languages and Computer Architecture

Martin Odersky� Philip Wadlery Martin Wehr�

Abstract

We study a minimal extension of the Hindley�Milner sys�
tem that supports overloading and polymorphic records� We
show that the type system is sound with respect to a stan�
dard untyped compositional semantics� We also show that
every typable term in this system has a principal type and
give an algorithm to reconstruct that type�

� Introduction

Arithmetic� equality� showing a value as a string� three op�
erations guaranteed to give a language designer nightmares�
Usually they are dealt with by some form of overloading�
but which form is best�

Even if we limit our attention to languages based on the
highly successful Hindley�Milner type system� we 	nd many
di
ering treatments of overloading� The same language may
treat di
erent operators di
erently� di
erent languages may
treat the same operator di
erently� and the same language
may treat the same operator di
erently over time� For in�
stance� in Miranda arithmetic is de	ned only on a single
numeric type� equality is a polymorphic function de	ned at
all types� including abstract types where it breaks the ab�
straction barrier� and the show function may be de	ned by
the user for new types� In the 	rst version of SML equality
was simply overloaded at all monomorphic types� while the
second version introduced special equality type variables�

Type classes were introduced into Haskell in order to pro�
vide a uniform framework for overloading �WB��� It must
have been an idea whose time had come� as it was indepen�
dently described by Kaes �Kae���� Since then type class�
es have attracted considerable attention� with many re	ne�
ments and variants being described �NS�� NP�� HHPW��
Aug�� PJ�� Jon�b� CHO�� Jon��� They have also at�
tracted some criticism �App���

In our view� one of the most serious criticisms of type
classes is that a program cannot be assigned a meaning in�
dependent of its types� A consequence of this is that two of

�Institut f�ur Programmstrukturen� Universit�at Karlsruhe� �����
Karlsruhe� Germany	 e
mail�odersky�wehr�iraukade

yDepartment of Computing Science� University of Glasgow� Glas

gow G�� �QQ� Scotland	 e
mail� wadler�dcsglaacuk

the most celebrated properties of the Hindley�Milner type
system are not satis	ed in the presence of type classes� there
is no semantic soundness result� and the principal types re�
sult holds only in a weak form�

The semantic soundness result shows a correspondence
between the typed static semantics of program and its un�
typed dynamic semantics� It is summarised by Milner�s
catchphrase �well typed programs cannot go wrong�� One
cannot even formulate such a result for type classes� as no
untyped dynamic semantics exists�

The principal type result shows that every typable pro�
gram has a single most general type� This is also true for
type classes� However� much of the utility of this result
arises from another property of the Hindley�Milner system�
every typeable program remains typeable if all type decla�
rations are removed from it� so type declarations are never
required� This fails for type classes� some programs are
inherently ambiguous� and require type declarations for dis�
ambiguation� Put another way� under Hindley�Milner� a
program is untypeable only if it may have no meaning� un�
der type classes� a program may be untypeable because it
has too many meanings�

The absence of these properties is not merely the lack
of a technical nicety� they arise because the meaning of
a program cannot be understood separately from its type�
This reduces the range of ways of understanding programs
available to a programmer� and reduces the range of ways
of implementing programs available to a compiler�

Restricting type classes By a simple restriction to type
classes� we may ensure that a program possesses a meaning
that can be determined independently of its type�

Recall that a type class limits a type variable� say a� to
range over only those types on which an overloaded opera�
tor is de	ned� the overloaded operator may have any type
involving a� Here are some examples� representing in sim�
pli	ed form parts of the Haskell standard prelude�

class �Num a� where
��� �� a �� a �� a
��� �� a �� a �� a
neg �� a �� a
fromInteger �� Integer �� a

class �Eq a� where
�		� �� �Eq a� 	� a �� a �� Bool

class �Text a� where
show �� a �� String
showList ��
a� �� String
read �� String �� a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For instance� the 	rst of these states that type a belongs to
class Num only when there are operators ���� ���� neg� and
fromInteger of the speci	ed types de	ned for a�

The restriction is as follows� for a type class over a type
variable a� each overloaded operator must have a type of
the form a �� t� where t may itself involve a� In the above�
���� ���� neg� �		�� and show satisfy this restriction� while
fromInteger� showList� and read do not�

Remarkably� this simple restriction enables one to con�
struct an untyped dynamic semantics� and ensures that no
ambiguity can arise� hence type soundness and the strong
form of principal types do hold� The resulting system is still
powerful enough to handle the overloading of arithmetic�
equality� and showing a value as a string� but not powerful
enough to handle the overloading of numerical constants or
reading a string as a value� The latter are perhaps less es�
sential than the former� neither Miranda nor SML support
overloading of the latter sort� and Kaes considered only this
restricted form of overloading in his original paper �Kae����

As an example of the value of this restriction� consider
the phrase
� 		
�� In Haskell� this phrase as it stands is
ambiguous� and hence meaningless� one must disambiguate
by specifying the type of the list elements� This is be�
cause the meaning of the program is given by the translation
eqList eqElt
�
�� where eqList is equality on lists� and
eqElt is equality over on the list elements�

In our restricted system� we are guaranteed that the
phrase
� 		
� has a meaning independent of types� and
that all valid translations yield this meaning� The imple�
mentor has a choice� overloading may be implemented by
run�time branching� corresponding to the untyped dynam�
ic semantics of Section �� or by compile�time translation�
corresponding to the typed static semantics of Section ��
In the latter case� a valid translation of the program is
eqList undef
�
�� where undef is the function that is
everywhere unde	ned� this is because coherence guarantees
that if the program doesn�t force a translation� then any
translation will do� For unrestricted Haskell the compiler
writer must choose a translation� because there is no dy�
namic semantics� and must choose eqElt rather that undef�
because there is no suitable coherence result�

Thus� our restriction of type classes ensures additional
useful properties that hold� These additional properties in
turn make it possible for us to consider a generalisation of
type classes�

Generalising type classes Type classes constrain type vari�
ables to range over types at which certain overloaded op�
erators are de	ned� This appears to be closely related
to bounded polymorphism� which constrains type variables
to range over types that are subtypes of a given type
�CW��� BTCGS��� Indeed� one can use type classes to
mimic bounded polymorphism for the usual subtyping re�
lation on records �Pet��� But� annoyingly� this mimicry
works only for monomorphic records� type classes are not
quite powerful enough to handle polymorphic records�

For instance� one would expect the operations xcoord
and ycoord to apply to any record type that contains those
	elds� for instance it should apply both to a type Point
containing just those two 	elds� and to a type CPoint that
contains both those 	elds plus a colour� Here is how one can
mimic such records in Haskell �

class �Pointed a� where
xcoord �� a �� Float
ycoord �� a �� Float

data Point 	 MkPoint Float Float
data CPoint 	 MkCPoint Float Float Colour

instance Pointed Point where
xcoord �MkPoint x y� 	 x
ycoord �MkPoint x y� 	 y

instance Pointed CPoint where
xcoord �MkCPoint x y c� 	 x
ycoord �MkCPoint x y c� 	 y

distance �� �Pointed a� 	� a �� Float
distance p 	 sqrt �sqr �xcoord p� � sqr �ycoord p��

Function distance computes the distance of a point from
the origin� The type signature is optional� as it may be
inferred given only the class declaration and the function
body�

Note� alas� that this mimicry depends on each 	eld of the
record having a monomorphic type that can appear in the
class declaration� The polymorphic equivalent of the above
would be to have operations first and second that return
the corresponding components of either a pair or a triple�
where these may have any type rather than being restricted
to Float� But there is no way to do this in Haskell�

The source of this problem is class declarations� For
xcoord� the instances

xcoord �� Point �� Float
xcoord �� CPoint �� Float

can arise as instantiations of the class declaration

xcoord �� a �� Float �

But for first the instances

first �� �ab� �� a
first �� �abc� �� a

have no corresponding class declaration�
We solve this problem by getting rid of class declarations�

Instead of declaring that a group of operators belong to a
class and specifying a type declaration� we only specify that
an operator is overloaded and give no type declaration�

Here is the previous example in our new notation�

over xcoord
over ycoord

data Point 	 MkPoint Float Float
data CPoint 	 MkCPoint Float Float Colour

inst xcoord �� Point �� Float
xcoord �MkPoint x y� 	 x

inst ycoord �� Point �� Float
ycoord �MkPoint x y� 	 y

inst xcoord �� CPoint �� Float
xcoord �MkCPoint x y c� 	 x

inst ycoord �� CPoint �� Float
ycoord �MkCPoint x y c� 	 y

distance �� �xcoordycoord��a��Float� 	� a �� Float
distance p 	 sqrt �sqr �xcoord p� � sqr �ycoord p��

�

Again� the type declaration for distance may be inferred
from its body �ignoring� for simplicity� the overloading of
sqrt� sqr� and ���

Furthermore� it is now possible to overload first and
second on polymorphic pairs and triples�

over first
over second
over third

inst first �� �ab� �� a
first �xy� 	 x

inst second �� �ab� �� b
second �xy� 	 x

inst first �� �abc� �� a
first �xyz� 	 x

inst second �� �abc� �� b
second �xyz� 	 y

inst third �� �abc� �� c
third �xyz� 	 c

demo �� �first��a��bsecond��a��c� 	� a �� �cb�
demo r 	 �second r first r�

Function demo takes a pair or triple and returns its second
and 	rst components� in that order� Again� its type can be
inferred�

In short� eliminating class declarations makes type class�
es powerful enough to model bounded polymorphism�

Eliminating class declarations means one need no longer
decide in advance which operations belong together in a
class� In many situations� this will be a positive advan�
tage� For instance� if we�re dealing with pairs we only want
first and second grouped together� but if we�re dealing
with triples we�ll want third as well� As a further example�
consider the di�culties that the Haskell designers had decid�
ing how to group numeric operators into classes� This design
is still argued� should � and � be in a �ring� class� The prob�
lem is exacerbated because there is no mechanism in Haskell
whereby a user may break a given class into smaller classes�

On the other hand� eliminating class declarations means
that inferred types become more verbose� the type of every
overloaded operator must be mentioned� Records provide
some relief here� since they allow us to group related op�
erations together� using a common overloaded identi	er for
them all� This is explained in more detail in Section ��

Contributions of this work We combine the above restric�
tions and generalisations of type classes to de	ne System O�
a type system for overloading with the following properties�

� System O possesses an untyped dynamic semantics�
and satis	es a corresponding type soundness theorem�

� System O has a strong principal types property� It
is never necessary to add type declarations to disam�
biguate a program�

� As with type classes� there is a standard dictionary
transform which takes well�typed programs in System
O into equivalent well�typed programs in the Hind�
ley�Milner system�

� System O is powerful enough to model a limited form
of F�bounded polymorphism over records� including
polymorphic records�

We believe that this makes System O an interesting alter�
native to type classes�

Related work� Overloading in polymorphic programming
languages has 	rst been studied by Kaes �Kae��� and Wadler
and Blott �WB��� Similar concepts can be found in earlier
work in symbolic algebra �JT���� This paper is very much
in the tradition of Kaes in that overloading is restricted to
functions� It can be seen as a simpli	cation of his system
that gets rid of all syntactic declarations of predicates or
type classes� We extend the scope of his work by a proof of
type soundness and the relationship to record typing�

Much of the later work on overloading is driven by the de�
sign and implementation of Haskell�s type classes� e�g� Nip�
kow et al� �NS�� NP�� on type reconstruction� Augustsson
�Aug�� and Peterson and Jones �PJ�� on implementations�
and Hall� Hammond� Peyton Jones and Wadler �HHPW��
on the formal de	nition of type classes in Haskell� We have
already compared our system to that of Haskell�

Other generalisations of Haskell type classes have been
proposed� Wadler and Blott� and Jones� consider type class�
es with multiple type variables �WB�� Jon�b�� Chen� Hu�
dak and Odersky�s parametric type classes �CHO�� also
have multiple type variables� but a functional dependence is
imposed between a primary class variable and dependent pa�
rameters� Parametric type classes can model container class�
es and records� Constructor classes generalize type classes
to type constructors �Jon��� Constructor classes are very
good at modeling containers with operations that mediate
between similar containers with di
erent element types� We
consider it an important problem to determine whether our
type system can be generalized to type constructors�

All systems discussed so far implement an open world
approach� where even empty classes� which do not have any
instances at all� are considered legal� This approach works
well in a system with separate compilation� where the type
checker does not have complete knowledge of instance dec�
larations� By contrast� the closed world approach of e�g�
�Rou�� Smi�� Kae�� rules out empty type schemes� Dug�
gan and Ophel �DO�� support both approaches by distin�
guishing between open and closed kinds� Volpano �Vol��
has argued that many previously known open world sys�
tems are unsound� Volpano�s negative results arise because
he works with an untyped dynamic semantics for programs
with type classes� We have argued here that this is not per�
missible for Haskell�like programs� Also� by proving type
soundness with respect to the untyped dynamic semantics
of System O� we show that Volpano�s critique does not apply
to open world systems in general�

An alternative treatment of overloading regards it as a
special case of dynamic typing� using a typecase construct to
discriminate between overloaded variants �DRW�� HM���
A semantics along these lines was studied by Thatte �Tha���
Thatte�s semantics maps programs to an explicitly typed
polymorphic language similar to XML �MH���� Type classes
denote sets of recursive types in this language� By contrast�
our semantics maps to an untyped language where types and
type schemes denote ideals�

Outline The rest of this paper is organized as follows� Sec�
tion � presents syntax and typing rules of System O� Sec�
tion � develops a compositional semantics and proves a type
soundness theorem� Section � discusses the dictionary pass�
ing transform� Section � presents an encoding of a polymor�
phic record calculus� Section � discusses type reconstruction
and the principal type property� Section � concludes�

�

Unique variables u � U
Overloaded variables o � O
Constructors k � K �

S
fKD j D � Dg

Variables x � u j o j k
Terms e � x j �u�e j e e� j let u � e in e�

Programs p � e j inst o � �T � e in p

Type variables � � A
Datatype constructors D � D
Type constructors T � T � D � f�g
Types � � � j � � � � j D �� ��� �n where n � arity�D�
Type schemes � � � j ����� � �
Constraints on � �� � o� � �� ��� � � � � on � �� �n �n � �� with o�� � � � � on distinct�
Typotheses � � x� � ��� � � � � xn � �n �n � ��

Figure �� Abstract syntax of System O�

�TAUT� � � x � � �x � � � ��
� � x� � �� � � � � � xn � �n

� � x� � ��� � � � � xn � �n
�SET�

��I�
�� �� � e � � �� �� tv����

� � e � ����� � �

� � e � ����� � � � � ��	����

� � e � ��	���
��E�

��I�
�� u � � � e � � �

� � �u�e � � � � �
� � e � � � � � � � e� � � �

� � e e� � �
��E�

�LET�
� � e � � �� u � � � e� � �

� � let u � e in e� � �

�o � �T � � � � T �� T ��

� � e � �T �� o � �T � p � ��

� � inst o � �T � e in p � ��
�INST�

Figure �� Typing rules for System O�

� Type System

We base our discussion on a simple functional language with
overloaded identi	ers� Figure � gives the syntax of terms
and types� We split the variable alphabet into subalphabets
U for unique variables� ranged over by u� O for overloaded
variables� ranged over by o� and K for data constructors�
ranged over by k� The letter x ranges over both unique and
overloaded variables as well as constructors� We assume that
every non�overloaded variable u is bound at most once in a
program�

The syntax of terms is identical to the language Exp
in �Mil���� A program consists of a sequence of instance
declarations and a term� An instance declaration �inst o �
�T � e in p� overloads the meaning of the identi	er o with
the function given by e on all arguments that are constructed
from the type constructor T �

A type � is a type variable� a function type� or a
datatype� Datatypes are constructed from datatype con�
structors D� For simplicity� we assume that all value con�
structors and selectors of a datatype D �� ��� �n are pre�
de	ned� with bindings in some 	xed initial typothesis ���
With user�de	ned type declarations� we would simply col�
lect in �� all selectors and constructors actually declared in
a given program� Let KD be the set of all value constructors
that yield a value in D��� ����� �n for some types ��� ����� �n�

We assume that there exists a bottom datatype 		 � D with
K�� �
� Note that this type is present in Miranda� where
it is written ��� but is absent in Haskell� where �� has a value
constructor� also written ��� We let T range over datatype
constructors as well as the function type constructor ����
writing ��� � � � as a synonym for � � � ��

A type scheme � consists of a type � and quanti	ers
for some of the type variables in � � Unlike with Hind�
ley�Milner polymorphism� a quanti	ed variable � comes
with a constraint ��� which is a �possibly empty� set of
bindings o � �� � � An overloaded variable o can appear at
most once in a constraint� Constraints restrict the instance
types of a type scheme by requiring that overloaded identi�
	ers are de	ned at given types� The Hindley�Milner type
scheme ���� is regarded as syntactic sugar for ������ ��

Figure � de	nes the typing rules of System O� The type
system is identical to the original Hindley�Milner system�
as presented in in �DM���� except for two modi	cations�

� In rule ��I�� the constraint �� on the introduced
bound variable � is traded between typothesis and
type scheme� Rule ��E� has as a premise an instan�
tiation of the eliminated constraint� Constraints are
derived using rule �SET�� Note that this makes rules
��I� and ��E� symmetric to rules ��I� and ��E��

� There is an additional rule �INST� for instance dec�

�

larations� The rule is similar to �LET�� except that
the overloaded variable o has an explicit type scheme
�T and it is required that the type constructor T is
di
erent in each instantiation of a variable o�

We let �T range over closed type schemes that have T as
outermost argument type constructor�

�T � T �� ��� �n � � �tv��� � f��� � � � � �ng�
j ����� � ��T �tv���� � tv���T ���

The explicit declaration of �T in rule �INST� is necessary
to ensure that principal types always exist� Without it� one
might declare an instance declaration such as

inst o � �x�x in p

where the type constructor on which o is overloaded cannot
be determined uniquely�

The syntactic restrictions on type schemes �T enforce
three properties� First� overloaded instances must work uni�
formly for all arguments of a given type constructor� Second
the argument type must determine the result type uniquely�
Finally� all constraints must apply to component types of
the argument� The restrictions are necessary to ensure ter�
mination of the type reconstruction algorithm� An example
is given in Section ��

The syntactic restrictions on type schemes �T also ex�
plain why the overloaded variables of a constraint �� must
be pairwise di
erent� A monomorphic argument to an over�
loaded function completely determines the instance type of
that function� Hence� for any argument type � and over�
loaded variable o� there can be only one instance type of
o on arguments of type � � By embodying this rule in the
form of type variable constraints we enforce it at the earliest
possible time�

Example ��� The following program fragment gives in�
stance declarations for the equality function �		�� We
adapt our notation to Haskell�s conventions� writing �� in�
stead of � in a typing� writing �o��a��t��	�t� instead of
����o � a � ��� � ��� and writing inst o �� s� o 	 e
instead of inst o � � � e�

inst ���� �� Int �� Int �� Bool
���� � primEqInt

listEq �� �������a��a��Bool� �� �a	���a	��Bool
listEq �	 �	 � True
listEq �x�xs� �y�ys� � x �� y

 listEq xs ys

inst ���� �� ������� a��a��Bool� �� �a	���a	��Bool
���� � listEq

Note that using �		� directly in the second instance dec�
laration would not work� since instance declarations are not
recursive� An extension of System O to recursive instance
declaration would be worthwhile but is omitted here for sim�
plicity�

Example ��� The following example demonstrates an
object�oriented style of programming� and shows where we
are more expressive than Haskell�s type classes� We write
instances of a polymorphic class Set� with a member test
and operations to compute the union� intersection� and dif�
ference of two sets� In Haskell� only sets of a 	xed element
type could be expressed� The example uses the record ex�
tension of Section �� look there for an explanation of record
syntax�

type Set a sa
� �union� inters� diff �� sa �� sa�

member �� a �� Bool �

inst set �� �������a��a��Bool� �� �a	 �� Set a �a	
set xs �

�union � �ys �� xs �� ys�
inters � �ys �� �y � y �� ys � y �elem� xs	�

diff � �ys �� xs �� ys�
member � �y �� y �elem� xs�

inst set �� ����������� a��a��Bool�
�� Tree a �� Set a �Tree a�

set � ���

m Here are some functions that work with sets�

union �� �set� sa �� Set a sa� �� sa �� sa �� sa
union xs ys � �union �set xs� ys

diff �� �set� sa �� Set a sa� �� sa �� sa �� sa
diff xs ys � �diff �set xs� ys

simdiff �� �set� sa �� Set a sa� �� sa �� sa �� sa

simdiff xs ys � union �diff xs ys� �diff ys xs�

� Semantics

We now give a compositional semantics of System O and
show that typings are sound with respect it� The semantics
speci	es lazy evaluation of functions� except for overloaded
functions� which are strict in their 	rst argument� Alter�
natively� we could have assumed strict evaluation uniformly
for all functions� with little change in our de	nitions and no
change in our results�

The meaning of a term is a value in the CPO V� where
V is the least solution of the equation

V � W� � V � V �
X
k�K

�k V� ��� Varity�k����

Here� ��� and
P

denote coalesced sums� and V � V
is the continuous function space� The value W denotes a
type error � it is often pronounced wrong!� We will show
that the meaning of a well�typed program is always di
erent
from wrong!�

The meaning function ����� on terms is given in Figure �� It
takes as arguments a term and an environment
 and yields
an element of V�The environment
 maps unique variables
to arbitrary elements of V� and it maps overloaded variables
to strict functions�

 � U � V � O � �V � V��

The notation
�x �� v� stands for extension of the environ�
ment
 by the binding of x to v�

Note that our semantics is more lazy! in detecting
wrong terms than Milner�s semantics �Mil���� Milner�s se�
mantics always maps a function application fW to W
whereas in our semantics fW � W only if f is strict� Our
semantics correspond better to the dynamic type checking
which would in practice be performed when an argument is
evaluated� We anticipate no change in our results if Milner�s
stricter error checking is adopted�

We now give a meaning to types� We start with types
that do not contain type variables� also called monotypes�
We use � to range over monotypes� Following �Mil��� and

�Injection and projection functions for sums will generally be left
implicit to avoid clutter

�

��x��
 �
�x�

���u�e��
 � �v���e��
�u �� v�

��k M� ��� Mn��
 � k ���M���
� ��� ���Mn��
��
where n � arity�k�

��ee���
 � if ��e��
 � V � V then ���e��
� ���e���
�
elseW

��let u � e in e���
 � ��e���
�u �� ��e��
�

��inst o � �T � e in p��
 �
if ��e��
 � V � V then

��p��
�o �� extend�T� ��e��
�
�o���
elseW

where

extend����� f� g� �
�v�if v � V � V then f�v� else g�v�

extend�D�f� g� �
�v�if �k � KD�v � k V � � �V� �z �

arity�k�

then f�v� else g�v��

Figure �� Semantics of terms�

�MPS���� we let monotypes denote ideals� For our purposes�
an ideal I is a set of values in V which does not contain
W� is downward�closed and is limit�closed� That is� y � I
whenever y � x and x � I� and

F
X � I whenever x � I for

all elements x of the directed set X�
The meaning function ����� takes a monotype � to an ideal�

It is de	ned as follows�

��D �� ��� �m�� �
f	g �

S
fk ������� � � � ���

�
n��

j �� � k � ���� � � ����n � D�� ��� �mg
���� � ���� �

ff � V � V j v � ������� f v � ������g�

Proposition ��� Let � be a monotype� Then ����� is an
ideal�

Proof� A straightforward induction on the structure of �� �

When trying to extend the meaning function to type
schemes we encounter the di�culty that instances of a con�
strained type scheme ����� � � depend on the overloaded
instances in the environment� This is accounted for by in�
dexing the meaning function for type schemes with an envi�
ronment�

De�nition� A monotype � is a semantic instance of a type
scheme � in an environment
� written
 j� � � �� i
 this
can be derived from the two rules below�

�a�
 j� � � ��

�b�
 j� � � ������ � ��

if there is a monotype �� such that
 j� � � ���	���
and
�o� � �����	��� ��� for all o � � � ���

De�nition� The meaning ������ of a closed type scheme � is
given by

������ �
�
f����� j
 j� � � �g�

De�nition�
 j� e� � ��� � � � � en � �n i
 ��ei��
 � ���i��
� for
i � �� � � � � n�

The meaning of type schemes is compatible with the
meaning of types�

Proposition ��� Let � be a monotype� and let
 be an
environment� Then ������ � ������

Proof� Direct from the de	nitions of ������ and �� �

We now show that type schemes denote ideals� The proof
needs two facts about the bottom type 		�

Lemma ��� Let
 be an environment�
�a�
 j� o � 		� �� for any variable o� monotype ��
�b� Let � � ������ � � � � ���n���n � � be a type scheme�
Then
 j� �			��� � � � � 			�n�� � ��

Proof� �a� Assume v � ��		��� Since 		 does not have any
constructors� ��		�� � f	g� hence v � 	� Since
�o� is a
strict function�
�o�v � 	� which is an element of every
monotype�
�b� Follows from the de	nition of � and �a�� �

Proposition ��� Let � be a type scheme and let
 be an
environment� Then ������ is an ideal�

Proof� The closure properties are shown by straightforward
inductions on the structure of �� It remains to be shown
that W �� ������ By Lemma ����b� there is a monotype �
such that
 j� � � �� Hence� ������ � ������ But ����� is an
ideal and therefore does not contain W� �

Proposition ��� expresses an important property of our se�
mantics� every type scheme is an ideal� even if it contains
a type variable constraint o � � � � � where o does not
have any explicitly declared instances at all� Consequently�
there is no need to rule out such a type scheme statical�
ly� This corresponds to Haskell�s open world! approach to
type�checking� as opposed to the closed world! approach of
e�g� �Smi��� Interestingly� the only thing that distinguishes
those two approaches in the semantics of type schemes is
the absence or presence of the bottom type 		�

We now show that System O is sound� i�e� that syntac�
tic type judgements � � p � � are re"ected by semantic type
judgements � j� p � ��

De�nition� Let e be a term� let � be a closed typothesis�
and let � be a closed type scheme� Then � j� e � � i
� for
all environments
�
 j� � implies
 j� e � ��

As a 	rst step� we prove a soundness theorem for terms� This
needs an auxiliary lemma� whose proof is straightforward�

Lemma ��� If
 j� e � � and
 j� � � � then
 j� e � ��

Theorem ��	 �Type Soundness for Terms� Let � � e � � be
a valid typing judgement and let S be a substitution such
that S� and S� are closed� Then S� j� e � S��

Proof� Assume � � e � � and
 j� S�� We do an induction
on the derivation of � � e � �� We only show cases ��I��
��E�� whose corresponding inference rules di
er from the
Hindley�Milner system� The proofs of the other rules are
similar to the treatment in �Mil����

Case ��I�� Then the last step in the derivation is

�� �� � e � �� � �� tv���

� � e � ����� � ��

�

�TAUT� � � u � � � u �u � � � �� � � k � � � u �k � � � �� � � o � � � uo�� �o � � � ��

��I�
�� o� � ��� � � � � on � �n � e � � � e� � �� tv���

� � e � ����o� � ��� � � � � on � �n�� �
� �uo� ��� � � � � �uon ��n �e

�

� � e � ����o� � ��� � � � � on � �n�� � � e�

� � oi � ��	���i � e�i �i � �� � � � � n�
� � e � ��	���

� e� e�� � � � e�n

��E�

��I�
�� u � � � e � � � � e�

� � �u�e � � � �
� �u�e�

� � e� � �
� � � � e�� � � e� � � � � e��

� � e� e� � �
� e��e

�
�

��E�

�LET�
� � e� � � � e�� �� u � � � e� � � � e��

� � let u � e� in e� � �
� let u � e�� in e�� � �

o � �T � � � � T �� T �

� � e � �T � e� �� o � �T � p � �� � p�

� � inst o � �T � e in p � ��

� let uo��T � e� in p�

�INST�

Figure �� The dictionary passing transform

for some �� ��� �
� with � � ����� � ��� We have to show

that e � ������ for all � such that
 j� � � ���S�� � S���
Pick an arbitrary such �� By de	nition of ���� there exists
a �� such that
 j� ���	���S��� and
 j� � � ���	���S����
Let S� � ���	�� S� Then
 j� S��� and
 j� � � S����
Since � �� tv����
 j� S�� and therefore
 j� S���� ���� Then
by the induction hypothesis�
 j� e � S���� It follows with
Lemma ��� that
 j� e � ��

Case ��E�� Then the last step in the derivation is

� � e � ����� � �� � � ��	����

� � e � ��	����

for some �� ��� ��� � with � � ��	����� We have to show
that e � ������ for all � such that
 j� � � �S�	��S��� Pick
an arbitrary such �� By the induction hypothesis�
 j� e �
���S�� � S�� and
 j� �S�	���S���� It follows with the
de	nition of � that
 j� � � ���S�� � S��� Then by
Lemma ����
 j� e � �� �

We now extend the type soundness theorem to whole pro�
grams that can contain instance declarations�

Theorem ��
 �Type Soundness for Programs�
Let � � p � � be a valid closed typing judgement� Then
� j� p � ��

Proof� By induction on the structure of p� If p is a term� the
result follows from Theorem ���� Otherwise p is an instance
declaration at top�level� Then the last step in the derivation
of � � p � � is

o � �T � � � � T �� T �

� � e � �T �� o � �T � p � �

� � inst o � �T � e in p� � �

for some type scheme �T � We have to show that
 j� inst o �
�T � e in p� � �� By Theorem ����
 j� e � �T � which implies
that ��e��� is a function� Therefore� ��p��
 � ��p���
�o �� f �
where f � extend�T� ��e��
�
�o���

Our next step is to show that f � ���T ���� Let � be
such that
 j� � � �T � Then � � T��� � � � � �n � ���
for some monotypes ��� � � � � �n� �

�� Now assume that v �

��T��� � � � � �n��� If v � 	 then f v � 	 � ������� Otherwise� by
the de	nition of extend� f v � ��e��
 v� and ��e��
 v � ������� In
both cases f v � ������� Since v � ��T��� � � � � �n�� was arbitrary�
we have f � ������ Since � was arbitrary� this implies f �

���T ���
It follows that
�o �� f � j� o � �T � Furthermore� since

 j� �� and � contains by the premise of rule �INST� no
binding o � �T � we have that
�o �� f � j� �� Taken together�

�o �� f � j� �� o � �T � By the induction hypothesis�
�o ��
f � j� p� � �� which implies the proposition� �

A corollary of this theorem supports the slogan that well
typed programs do not go wrong!�

Corollary ��� Let � � p � � be a valid closed typing judge�
ment and let
 be an environment� If
 j� � then ��p��
 ��W�

Proof� Immediate from Theorem ��� and Proposition ���� �

� Translation

This section studies the dictionary passing! transform from
System O to the Hindley�Milner system� Its central idea is
to convert a term of type ����� � � to a function that takes
as arguments implementations of the overloaded variables in
��� These arguments are also called dictionaries!�

The target language of the translation is the Hind�
ley�Milner system� which is obtained from System O by
eliminating overloaded variables o� instance declarations�
and constraints �� in type schemes� The translation of terms
is given in Figure �� It is formulated as a function of type
derivations� where we augment type judgements with an ad�
ditional component e� that de	nes the translation of a term
or program p� e�g� � � p � � � p�� To ensure the coherence of
the translation� we assume that the overloaded identi	ers oi
in a type variable constraint fo� � �� ��� � � � � on � �� �ng
are always ordered lexicographically�

Types and type schemes are translated as follows�

�� � �
������ ��� � �����

����o � �� �� �� � ��� � ������ ��� ���� � ���

The last clause violates our type syntax in that a type
scheme can be generated as the result part of an arrow�

�

This is compensated by de	ning

� � ����
def
� ���� � ��

Bindings and typotheses are translated as follows�

�u � ��� � u � ��

�o � ��� � uo�� � ���
o� � ��� � � � � on � �n � �o� � ���

�� � � � � �on � �n�
��

This translates an overloaded variable o to a new unique
variable uo�� � whose identity depends on both the name o
and its type scheme� ��

Each derivation rule � � p � � in System O corresponds
to a derivation of translated typotheses� terms and type
schemes in the Hindley�Milner system� One therefore has�

Proposition ��� If � � p � � � p� is valid then �� � p� � ��

is valid in the Hindley�Milner system

We believe that the translation preserves semantics in
the following sense�

Conjecture Let p be a program� � be a monotype� and let

 be an environment� Let � be a typothesis which does not
contain overloaded variables� If � � p � � � p� and
 j� �
then ��p��
 � ��p���
�

Although the above claim seems clearly correct� its formal
proof is not trivial� Note that coherence of the translation
would follow immediately from the above conjecture� Co�
herence� again� is a property that appears obvious but is
notoriously tricky to demonstrate �Blo�� Jon�a�� so it is
perhaps not surprising that the above conjecture shares this
property�

� Relationship with Record Typing

In this section we study an extension of our type system
with a simple polymorphic record calculus similar to Ohori�s
�Oho��� Figure � details the extended calculus� We add to
System O

� record types fl� � ��� � � � � ln � �ng�

� record expressions fl� � e�� ���� ln � eng� and

� selector functions #l�

It would be easy to add record updates� as in the work
of Ohori� but more di�cult to handle record extension� as
in the work of Wand �Wan��� or R$emy �Rem��� Jones
�Jon�a� has shown how to embed R$emy�s system of exten�
sible records by extending uni	cation to an AC theory for
records and using �multi�parameter� type classes for stating
the absence of 	elds in a record� Both updates and exten�
sions are however omitted here for simplicity�

Leaving open for the moment the type of selector func�
tions� the system presented so far corresponds roughly to
the way records are de	ned in Standard ML� Selectors are
treated in Standard ML as overloaded functions� As with
all overloaded functions� the type of the argument of a se�
lector has to be known statically� if it isn�t� an overloading
resolution error results�

Our record extension also treats selectors as overloaded
functions but uses the overloading concept of System O� The
most general type scheme of a selector #l is

������� � fl � g�� �� �

This says that #l can be applied to records that have a 	eld
l � � � in which case it will yield a value of type � � The
type scheme uses a subtype constraint � � �� Subtype con�
straints are validated using the subtyping rules in Figure ��
In all other respects� they behave just like overloading con�
straints o � �� � �

Example ��� The following program is typable in System
O �where the typing of max is added for convenience��

let max � ������ � � � bool��
����� � fkey � g�� �� �� �

� �x��y�if #key x � #key y then y else x
in

max fkey � ��data � ag fkey � �� data � bg

In Standard ML� the same program would not be typable
since neither the argument type of the selector #key nor the
argument type of the overloaded function ��� are statically
known�

Note that the bound variable in a subtype constraint can
also appear in the constraining record type� as in

����� � fl � �� boolg�� ���

Hence� we have a limited form of F�bounded polymorphism
�CCH��� % limited since our calculus lacks the subsump�
tion and contravariance rules often associated with bounded
polymorphism �CW���� It remains to be seen how suitable
our system is for modeling object�oriented programming�
Some recent developments in object�oriented programming
languages seem to go in the same direction� by restricting
subtyping to abstract classes �SOM���

We now show that the record extension adds nothing
essentially new to our language� We do this by presenting
an encoding from System O with records to plain System O�
The source of the encoding is a program with records� where
we assume that the labels l�� � � � � ln of all record expressions
fl� � e�� ���� ln � eng in the source program are sorted lex�
icographically �if they are not� just rearrange 	elds�� The
details of the encoding are as follows�

�� Every record�	eld label l in a program is represented by
an overloaded variable� which is also called l�

�� For every record expression fl� � e�� ���� ln � eng in
a program� we add a fresh n�ary datatype Rl� ���ln with a
constructor of the same name and selectors as given by the
declaration

data Rl����ln �� ����n � Rl����ln �� ����n�

�� For every datatype Rl����ln created in Step � and every
label li �i � �� ����n�� we add an instance declaration

inst li � �������n�Rl����ln �� ����n � �i
� ��Rl� ���ln x� ��� xn��xi

�where the pattern notation in the formal parameter is used
for convenience��

�� A record expression fl� � e�� ���� ln � eng now translates
to Rl����ln e� ��� en�

�� A selector function #l translates to l�

�� A record type fl� � ��� ���� ln � �ng is translated to
Rl����ln �� ��� �n�

�

Additional Syntax

Field labels l � L
Terms e � � � � j #l j fl� � e�� � � � � ln � eng �n � ��
Record types � � fl� � ��� � � � � ln � �ng �n � �� with l�� � � � � ln distinct�
Types � � � � � j �
Constraints on � �� � � � � j � � �
Typotheses � � � � � j � � �

Subtyping Rules

�Taut� �� � � � � � � � � � fl� � ��� � � � � ln � �n� ln�� � �n��� � � � � ln�k � �n�kg �Rec�
� fl� � ��� � � � � ln � �ng

Additional Typing Rules

�f gI�
� � e� � �� � � � � � en � �n

� � fl� � e�� � � � � ln � eng � fl� � ��� � � � � ln � �ng
� � #l � ���� � fl � g��� �f gE�

Figure �� Extension with record types�

�� A subtype constraint � � fl� � ��� ���� ln � �ng becomes an
overloading constraint l� � �� ��� � � � � ln � �� �n�

Let ey� �y� or �y be the result of applying this translation
to a term e� a type scheme �� or a typothesis �� Then one
has�

Proposition ��� � � e � � i
 �y � ey � �y�

Proposition ��� enables us to extend the type soundness and
principal type properties of System O to its record extension
without having to validate them again� It also points to an
implementation scheme for records� given an implementa�
tion scheme for overloaded identi	ers�

Example ��� The program of Example ��� translates to

inst data � ����Rdata�key � � �
� �Rdata�key x y� x in

inst key � ����Rdata�key � �
� �Rdata�key x y� y in

let max � ������ � � � bool��
����key � �� �� �� �� �

� �x��y�if key x � key y then y else x
in

max �Rdata�key � a� �Rdata�key � b�

Records can help to contain the number of overloaded iden�
ti	ers in type signatures� The idea is to put related oper�
ations in a record which is constructed with a single over�
loaded identi	er� The next example expresses shows how to
model a simpli	ed Num class in this way� In the Haskell�like
syntax we use parentheses ����� instead of braces ����� for
records�

type Num a 	 �plus �� a �� a �� a
minus�� a �� a �� a
neg �� a �� a�

over num
inst num �� Int �� Num Int

num 	 ���

��� ��� �� �num �� a �� Num a� 	� a �� a �� a
neg �� �num �� a �� Num a� 	� a �� a

��� x y 	 �plus �num x� x y
��� x y 	 �minus �num x� x y
neg x 	 �neg �num x� x

Note the similarity to dictionary passing� One shortcoming
of this scheme with respect to Haskell�s class declarations
concerns subclassing� For instance� we could not pass a
variable of type �num �� a �� Num a� 	� a to a function
of type

�num �� a �� �plus �� a �� a �� Bool
minus �� a �� a �� Bool�� 	� a �� b

Even without introducing full subtyping on records it may
be helpful to supplement our system with some way for deal�
ing with this common case� Further experience will be re�
quired to determine this�

� Type Reconstruction

Figures � and � present type reconstruction and uni	cation
algorithm for System O� Compared to Milner�s algorithm W
�Mil��� there are two extensions�

� The case of binding a type variable in the uni	cation
algorithm is extended� To bind a type variable � to
a type � the constraints of �� have to be satis	ed�
The function mkinst ensures that type � statis	es the
constraints ���

� The function tp is extended with a branch for instance
declarations inst o � �T � e in p� In this case it must be
checked that the inferred type ��T for the overloading
term e is less general then the given type �T �

We now state soundness and completeness results for the
algorithms unify and tp� The proofs of these results are
along the lines of �Che��� they are omitted here�

We use the following abbreviations�

�� � fo � �� � j o � �� � � �g
�A � ���A ��

where A is a set of type variables�

De�nition� A con�guration is a pair of a typothesis � and
a substitution S such that� for all � � dom�S�� �� �
�

unify � ��� ��� ��� S� � ��� S�
unify ���� ��� ��� S� � case �S��� S��� of

������
��� S�

������ ��� �� where � �� tv����
foldr mkinst ��n��� ��	�� S� ��

�T ��� T � ���
foldr unify ��� S� �zip ���� � ���

mkinst � �o � �� ��� ��� S�� ��� S�
mkinst �o � �� �� ��� S� � case S� of

 �
if �o � � � � � �
then unify ��� � �� ��� S�
else �� � fo � � �	���g�S�

T � �
case fnewinst ��T ��� S� j o � �T � �g of

f������� S��g � unify ��� �� ��� ���� S��

Figure �� Algorithm for constrained uni	cation

De�nition� The following de	nes a preorder � on substitu�
tions and con	gurations and a preorder �� on type schemes�
If X � Y we say that Y is more general than X�

� S� � S i
 there is a substitution R such that S� � RS�

� ���� S�� � ��� S� i
 S� � S� S��� � S��dom�S�� and
�� � � n �dom�S���

� �� �� � i
� for all u �� dom���� � � u � � implies
� � u � ���

De�nition� A constrained uni�cation problem is a pair of
tuples ���� ������ S� where ��� �� are types and ��� S� is a
con	guration�

A con	guration ���� S�� is called a unifying con�guration
for ���� ������ S� i
 ���� S�� � ��� S� and S��� � S����

The unifying con	guration ���� S�� is most general i

����� S��� � ���� S��� for every other unifying con	guration
����� S����

De�nition� A typing problem is a triple �p��� S� where
��� S� is a con	guration and p is a term or program with
fv�p� � dom����

A typing solution of a typing problem �p��� S� is a triple
������ S�� where ���� S�� � ��� S� and S��� � p � S���

The typing solution ������ S�� is most general i
 for every
other typing solution ��������� S��� it holds ����� S��� � ���� S��
and S����� �S����� S

����

Theorem 	�� Let ���� ������ S� be a constrained uni	ca�
tion problem
�a� If unify���� ������ S� � ���� S�� then ���� S�� is a most
general unifying con	guration for ���� ������ S��
�b� If unify���� ������ S� fails then there exists no unifying
con	guration for ���� ������ S��

Theorem 	�� Let �p��� S� be a typing problem�
�a� If tp �p��� S� � ������ S�� then ������ S�� is a most gen�
eral solution of �p��� S��
�b� If tp �p��� S� fails� then �p��� S� has no solution�

As a corollary of Theorem ���� we get that every typable
program has a principal type� which is found by tp�

Corollary 	�� �Principal Types� Let �p��� id� be a typing
problem such that tv��� �
�
�a� Assume gen �tp �p��� id�� � ������� S� and let � �
S��� Then

� � p � � and
� � p � ��� � ��� �� �� for all type schemes ����

�b� If tp �p��� id� fails then there is no type scheme � such
that � � p � ��

The termination of unify and mkinst critically depends on
the form of overloaded type schemes �T �

�T � T �� ��� �n � � �tv��� � f��� � � � � �ng�
j ����� � ��T �tv���� � tv���T ���

We show with an example why �T needs to be parametric
in the arguments of T � Consider the following program�
where k � KT �

p � let ���x y � y in

inst o � ���o � �� �� T �T�� � �
� �k�k x��ox

in �x��y��f� o x � o y � f �k y� � fx

Then computation of tp�p�
� id� leads to a call tp�f x��� S�
with x � �� y � � f � T � � � �� This leads in turn to a call
unify���T���� S� where the following assumptions hold�

� �T � ���o � �� �� T �T�� � �

� � � fo � �� �� o � � �o � �T g�

� S is a substitution with �� �� dom�S��

Unfolding unify gives mkinst�o � � � ���� n ��� S
�� where

S� � �T	�� S� which leads in turn to the following two
calls�

�� newinst��T �� n ��� S�� � �T �T�� � ����� S��
where �� � fo � � � o � � � �� o � �T g and � is a
fresh type variable� and

�� unify��� �� T �T�� � ������ S���

Since S�� � T� unfolding of ��� results in an at�
tempt to unify T and T �T���� which leads to the call
unify�� T������ S��� This is equivalent to the original call
unify���T���� S� modulo renaming of �� to ��� Hence�
unify would loop in this situation�

The need for the other restrictions on �T are shown by
similar constructions� It remains to be seen whether a more
general system is feasible that lifts these restrictions� e�g� by
extending uni	cation to regular trees �Kae���

	 Conclusion

We have shown that a rather modest extension to the Hind�
ley�Milner system is enough to support both overloading
and polymorphic records with a limited form of F�bounded
polymorphism� The resulting system stays 	rmly in the tra�
dition of ML typing� with type soundness and principal type
properties completely analogous to the Hindley�Milner sys�
tem�

��

newinst � ����� S�� ����� S�
newinst ������ � ���� S�

� let a new type variable
in newinst

��	����� � �	����� S�
newinst ����� S�

� ����� S�

skolemize � ����� S�� ����� S�
skolemize ������ � ���� S�

� let T a new ��ary type constructor
in skolemize

��T	����� � �T	����� S�
skolemize ����� S�

� ����� S�

gen � ����� S�� ����� S�
gen ����� S� � if ���� � tv�S�� n tv�S��n����

then gen ������ � ���n��� S�
else ����� S�

tp � �p��� S� � ����� S�

tp �u��� S� � if u � � � �
then newinst ����� S�

tp �o��� S� � newinst ������o � �� �� �� ��� S�

tp ��u�e��� S�
� let � a new type variable

������ S�� � tp �e�� � fu � �g� S�
in ��� ����� S��

tp �e e���� S�
� let ������� S�� � tp �e��� S�

������� S�� � tp �e����� S��
� a new type variable
���� S�� � unify ���� �� � �� ���� S��

in ������ S��

tp �let u � e in e���� S�
� let ������ S�� � gen �tp �e��� S��

in tp �e���� � fu � �g� S��

tp �inst o � �T � e in p��� S�
� let ���T ���� S�� � gen �tp �e��� S��

������� S�� � skolemize ��T ���� S��
������� S�� � newinst ���T ���� S��

in if �o ��T � � �� T �� T � �
unify���� ������� S�� de	ned then

tp �p��� � fo � �T g� S��

Figure �� Type reconstruction algorithm for System O

The encoding of a polymorphic record calculus in Sys�
tem O indicates that there might be some deeper relation�
ships between F�bounded polymorphism and overloading�
This is also suggested by the similarities between the dic�
tionary transform for type classes and the Penn translation
for bounded polymorphism �BTCGS��� A study of these
relationships remains a topic for future work�

Acknowledgments We are grateful to Kung Chen and John
Maraist for valuable comments on previous drafts of this
paper� The section on records was motivated in part by
a discussion led by Simon Peyton Jones� Mark Jones and
others on the Haskell mailing list� Many other discussions
with numerous participants have also contributed to this
work�

References

�App�� Andrew W� Appel� A critique of standard
ML� Journal of Functional Programming� �����
���

�Aug�� Lennart Augustsson� Implementing Haskell
overloading� In Proc� ACM Conf� on Functional
Programming Languages and Computer Archi�
tecture� pages ������ June ���

�Blo�� Stephen Blott� An Approach to Overloading
with Polymorphism� PhD thesis� Department
of Computer Science� University of Glasgow�
Sept ���

�BTCGS�� Val Breazu�Tannen� Thierry Coquand� Carl A�
Gunter� and Andre Scedrov� Inheritance as im�
plicit coercion� Information and Computation�
���������� ���

�CCH��� Peter Canning� William Cook� Walter Hill�
Walter Oltho
� and John C� Mitchell� F�
bounded polymorphism for object�oriented pro�
gramming� In Functional Programming Lan�
guages and Computer Architecture� pages ����
���� September ���

�Che�� Kung Chen� A Parametric Extension of
Haskell�s Type Classes� PhD thesis� Yale Uni�
versity� New Haven� Connecticut� December
��� YALEU�DCS�RR������

�CHO�� Kung Chen� Paul Hudak� and Martin Odersky�
Parametric type classes� In Proc� ACM Conf�
on Lisp and Functional Programming� pages
�������� June ���

�CW��� Luca Cardelli and Peter Wegner� On under�
standing types� data abstraction� and polymor�
phism� Computing Surveys� �������������� De�
cember ����

�DM��� Luis Damas and Robin Milner� Principal type
schemes for functional programs� In Proc� 	th
ACM Symposium on Principles of Program�
ming Languages� January ����

�DO�� Dominic Duggan and John Ophel� Kinded
parametric overloading� Technical Report CS�
����� University of Waterloo� September ���

��

�DRW�� Catherine Dubois� Francois Rouaix� and Pierre
Weis� Extensional polymorphism� In Proc�

nd ACM Symposium on Principles of Pro�
gramming Languages� pages ������� January
���

�HHPW�� Cordelia Hall� Kevin Hammond� Simon Pey�
ton Jones� and Philip Wadler� Type classes in
Haskell� In Proc� �th European Symposium on
Programming� pages �������� ��� Springer
LNCS ����

�HM�� Robert Harper and Greg Morrisett� Compil�
ing polymorphism using intensional type anal�
ysis� In Proc�

nd ACM Symposium on Prin�
ciples of Programming Languages� pages ����
���� January ���

�Jon�a� Mark P� Jones� Quali�ed Types� Theory and
Practice� D�phil� thesis� Oxford University�
September ���

�Jon�b� Mark P� Jones� A theory of quali	ed types� In
Proc� �th European Symposium on Program�
ming� pages �������� February ��� Springer
LNCS ����

�Jon�� Mark P� Jones� A system of constructor class�
es� Overloading and implicit higher�order poly�
morphism� In Proc� ACM Conf� on Functional
Programming Languages and Computer Archi�
tecture� pages ������ June ���

�JT��� R�D� Jenks and B�M� Trager� A language for
computational algebra� In Proc� ACM Sympo�
sium on Symbolic and Algebraic Manipulation�
pages ����� ����

�Kae��� Stefan Kaes� Parametric overloading� In Proc�

nd European Symposium on Programming�
Springer�Verlag� ���� Springer LNCS ����

�Kae�� Stefan Kaes� Type inference in the presence
of overloading� subtyping� and recursive types�
In Proc� ACM Conf� on Lisp and Functional
Programming� pages ������� June ���

�MH��� John C� Mitchell and Robert Harper� The
essence of ML� In Conference Record of the
Fifteenth Annual ACM Symposium on Princi�
ples of Programming Languages� pages ������
ACM� ACM Press� January ����

�Mil��� Robin Milner� A theory of type polymorphism
in programming� Journal of Computer and Sys�
tem Sciences� ����������� Dec ����

�MPS��� D� MacQueen� G� Plotkin� and R� Sethi� An
ideal model for recursive polymorphic types� In�
formation and Control� ��������� ����

�NP�� Tobias Nipkow and Christian Prehofer� Type
checking type classes� In Proc�
th ACM
Symposium on Principles of Programming Lan�
guages� pages ������� ���

�NS�� Tobias Nipkow and Gregor Snelting� Type
classes and overloading resolution via order�
sorted uni	cation� In Proc� ACM Conf� on
Functional Programming Languages and Com�
puter Architecture� pages ����� August ���
Springer LNCS ����

�Oho�� Atsushi Ohori� A compilation method for ML�
style polymorphic record calculi� In Proc� �	th
ACM Symposium on Principles of Program�
ming Languages� pages �������� January ���

�Pet�� John Peterson� Structures in Yale Haskell� draft
paper� ���

�PJ�� John Peterson and Mark Jones� Implement�
ing type classes� In Proc� ACM Conf� on Pro�
gramming Language Design and Implementa�
tion� pages �������� June ��� SIGPLAN No�
tices ������

�Rem�� D� Remy� Typechecking records and variants in
a natural extension of ML� In Proc� ��th ACM
Symposium on Principles of Programming Lan�
guages� pages ������ ACM� January ���

�Rou�� Fran&cois Rouaix� Safe run�time overloading� In
Proc� ��th ACM Symposium on Principles of
Programming Languages� pages �������� Jan�
uary ���

�Smi�� Geo
rey S� Smith� Polymorphic type infer�
ence for languages with overloading and sub�
typing� PhD thesis� Cornell University� Ithaca�
NY� August ���

�SOM�� Clemens Szyperski� Stephen Omohundro� and
Stephan Murer� Engineering a programming
language� The type and class system of Sather�
In Programming Languages and System Archi�
tectures� pages �������� Springer Verlag� Lec�
ture Notes in Computer Science ���� November
���

�Tha�� Satish R� Thatte� Semantics of type classes re�
visited� In Proc� Conference on Lisp and Func�
tional Programming� pages ������� ���

�Vol�� Dennis Volpano� A critique of type systems for
global overloading� Computer Science Techni�
cal Report NPSCS������� Naval Postgraduate
School� October ���

�Wan��� Mitchell Wand� Complete type inference for
simple objects� In Proc�IEEE Symposium on
Logic in Computer Science� pages ������ June
����

�WB�� Philip Wadler and Stephen Blott� How to make
ad�hoc polymorphism less ad�hoc� In Proc� ��th
ACM Symposium on Principles of Program�
ming Languages� pages ������ January ���

��

