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1 Motivations

Over the last few years, the use of the Internet has been growing at a tremendous rate and
access to different data- and knowledge sources provides a host of information from external
and internal sources. This has led to at least three kinds of explosions:

o the number of users accessing the Internet has grown dramatically,

e the number of sources of data and software on the Internet has experienced a similar
growth, and

e this had led to an equally impressive growth in the heterogeneity of databases, data
formats, data structures and knowledge sources within which the above-mentioned users
store their data/knowledge.

These are problems that must be taken into account when designing an intelligent decision
support system. Indeed, they also partly or fully exist for local area networks (LAN). In our
work, we have primarily studied a host of theoretical and practical issues arising out of the
third point listed above [S93, LNS95, Sch95].

Wiederhold has proposed a layered mediator architecture [Wie92, Wie93] to provide end-
user applications with information obtained through selection, abstraction, fusion, caching,
extrapolation and pruning of data [Wie93]. The data is obtained from different independently
developed data- and knowledge sources. In this ongoing project ! we have developed tech-
niques not only to facilitate the integration of different databases (object-oriented, relational
and deductive), but also of arbitrary pieces of information, such as spreadsheets or even on-
line information. The underlying theory of this project can be found in [S93, LNS95, Sch95].
In this paper, we show how techniques from artificial intelligence may provide the necessary
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tools for building intelligent systems. In particular, the maintenance of inter-operable systems
has been an expensive task which can be drastically reduced by employing some techniques
from artificial intelligence, namely declarative programming.

In the long run we expect the emergence of standards for accessing remote data and
in particular some widely accepted common data exchange formats such as GIF or ASCII
proposed by large industrial consortium. Although, some of these standards for accessing
relational and object-oriented databases such as Microsoft’s ODBC or ODMG [Cat94] may
provide a uniform application programming interface (API), the actual integration at the
application software level still depends on the application programmer. Incorporating any new
knowledge source requires still some procedural coding. However, the actual integration at the
application software level can be drastically simplified by declarative programming techniques.
Furthermore, queries spanning several data- and knowledge sources are not expressible with
current database query languages. It is precisely the purpose of our ongoing project, to
facilitate the integration of software by means of declarative programming as well as to
provide a declarative query-language spanning multiple knowledge-sources.

The extension of classical logic programming to constraint logic programming (CLP)
[JL87] has been a major theoretical and practical breakthrough. The most attractive aspect
of the CLP scheme lies in the integration of the advantages of both declarative and impera-
tive programming. On the one hand, CLP is a logical language, possessing similar declarative
characterization as classical logic programming, thus enabling the rapid development of ap-
plications. On the other hand, CLP pushes many sub-deductions — especially those with well
understood algorithmic solutions — into constraint domains. These can then be implemented
efficiently using imperative languages.

The purpose of this paper is to twofold. Firstly, we will show how various conflicts which
may arise in a mediated system can be handled by means of annotated constraint logic.
Secondly, we will briefly discuss some security related issues in a mediator architecture and
possible solutions which can be implemented within our system.

2 Preliminaries

In this section, we will sketch the basic theory behind a mediator knowledge base originally
proposed in [LNS95, LMSS95, Sub94].

A domain, D, is an abstraction of databases and software packages and consists of three
components: (1) a set, ¥ whose elements may be thought of as the data-objects that are
being manipulated by the package in question, (2) a set F of functions on ¥. These functions
take objects in ¥ as input, and return, as output, objects from their range (which needs to
be specified). The functions in F may be thought of as the predefined functions that have
been implemented in the software package being considered, (3) a set of relations on the
data-objects in X. Intuitively, these relations may be thought of as the predefined relations
in the domain D.

A domain call in our framework is a syntactic expression of the form

domainname :: (domainfunction)((argl,...,argn))



where domainfunction is the name of a function, and (argi,...,argn) are the arguments it
takes. Intuitively, a domain call may be read as follows: in the domain called domainname,

execute the function domainfunction defined therein on the arguments (argi,...,argn).
The result of executing this domain call is coerced into a set of entities that have the same
type as the output type of the function domainfunction on the arguments (argi,...,argn).

A domain-call atom (DCA-atom) is of the form in(X, domainfunction)({argl,...,argn))

where in is a constraint that is satisfied just in case the entity X is in the set returned by the
domain call in the second argument of in(X,Y). In other words, in is the polymorphic set
membership predicate.

Furthermore, in contrast to [LNS95, Sub94] we introduce modes for constraint predicates
and functions to ensure a correct instantiation of variables in the domain call atoms [CGH93]:

‘Mode‘ before ‘ after ‘

+ ground ground
- arbitrary | ground

? arbitrary | arbitrary

“4+" means that the argument must be ground before testing the constraint predicates/invoking
constraint functions, “—” means that the argument must be ground after calling the exter-
nal function, and “?” means that the variable instantiation is arbitrary. For example with

Student(+,+,—) and Supervisor(—,+)

Student(Phone) < Oracle :: Student(Name, [d, Phone),
DBase :: Supervisor(SId, SName),
SName = ‘JohnSmith', SId = 1d||
Likes_Soccer(Name)

defines a predicate Student in the mediator which accesses two relational databases. A dif-
ferent mode for Supervisor would be Supervisor(—, —) which would result in the same set of
instances for Student. However, an important difference is that when testing a constraint con-
taining the relation Supervisor for satisfiability, the entire relation Supervisor from the un-
derlying Oracle database is materialized. Afterwards the constraint SName = ‘JohnSmith’
is being evaluated. Clearly, this would lead to a less efficient solution in contrast to querying
the underlying database with the following SQL query:

select SId,SName
from Supervisor
where SName=‘John Smith’.

The introduction of modes is therefore very useful in fine tuning the access to the underlying
knowledge sources.

The underlying knowledge sources are modeled in object-oriented manner: For instance,
a constraint domain D = Relational_Database, F' = select, R = {Student, Supervisor} may
have subclasses Oracle, D Base and Paradoz. In our actual system there is a much more ram-
ified taxonomy of knowledge sources, e.g. Object-oriented databases, Relational Databases,
Relational Databases with trigger mechanisms, Spreadsheets and so on. As indicated, for



certain kinds of knowledge sources, the access mechanisms are similar or even reusable to a
certain degree. For instance, most relational databases may be accessed via ODBC, an Fxcel
Spreadsheet is accessible via OLE2. Another reason for polymorphism in the mediator is to
simplify the formulation of queries.

The salient features of the language proposed in [LNS95, KS92, KE92] are the so-called
annotations p;’s which are constants, variables and terms over a complete lattice 7. Infor-
mally, annotations could be understood as the degree of belief in a proposition, e.g. p: [0.5]
means that the belief in the truth of A is at least 0.5 € [0, 1]. In [KS92] many different lattices
have been proposed for reasoning with temporal, uncertain and inconsistent information.

Definition 2.1 (Annotated constrained clause) If A : p is an annotated atom and B :
[y ..., By are constant or variable annotated atoms, then

Atpe— By Ao AN By s g

is an annotated clause. A : p is called the head of this clause, whereas By : py,..., By @ pg
is called the body. All variables (object or annotation) are implicitly universally quantified.
Any set of annotated clauses is also a GAP (Generalized Annotated Logic Programming).

A mediator is a set of rules of the form
A:p — Dy Ao AN DyllAy sy ooy Ayt i

where A : p, Ay @ gy, ..., A, ¢ py, are atoms, and Dy, ..., D,, are DCA-atoms. Our mediator
architecture allows not only to form queries by means of the above described languages, but
also to implement some algorithmic solutions where different knowledge sources are being
accessed. Furthermore, another very important feature of our mediator architecture is the
ability to formulate integrity constraints spanning different independently developed knowl-
edge sources. For instance, a clause may prohibit loans granted by some individuals without
reconsulting some supervisor. This is, for instance, an important issue in a banking environ-
ment.

We work through the examples of [SK93] where possible conflicts in a heterogeneous
environment have been classified.

3 Resolving conflicts

In [SK93] schematic and data conflicts have been classified and enumerated. In this section,
we will work through this classification and show how it is possible to resolve the different
conflicts within our framework.

3.1 Semantic Similarities between Objects

A relation Professor(ld,Salary) in the domain Oracle and Secretary(ld, Salary) in the
domain Paradox may be generalized in the context of the university administration office:

Staff(Id, Name): [{m},t] < Oracle:: Professor(Id, Name)
Staff(Id, Name): [{m},t] < Paradox :: Secretary(ld, Name)
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Furthermore, the annotations of predicate symbols allow to express semantic proximity
[SK93] be means of fuzzy values. For instance, the clauses

Student(Id, Name) : [0.8,t] ¢« Oracle :: Studenty(Id, Name, Grade)
Student(Id, Name) : [0.6,t] < Paradox :: Student,(Id, Name, Address)

may express the semantic proximity between two objects from an Oracle and a Paradox
Database. A more detailed description of semantic proximity and uncertainty modeling can

be found in [SK93].

3.2 Domain Incompatibility

1. Synonyms: In two different knowledge sources the identity between the attribute /d and
S1d occurring in two unrelated relations

Student(Id, Name, Address)
Teacher(SI1d, Name, Address)

in an Oracle and a DBase database may be established by the following clauses:

Student_Id(Id) : [{m},t] « Oracle :: Student(Id, Name)
Student_Id(Id) : [{m},t]  Oracle:: Teacher(Name, SId), Name = ‘JohnSmith'

with Oracle :: Student(—,?) and Oracle :: Teacher(+,—). It should be noted that
the problem of homonyms does not occur in our approach since we assume all objects
semantically unrelated. Also, this assumes that the result of the functions Select returns
the object which is representable in the data model of the mediator.

2. Data Representation Conflicts: Suppose that in the above example in the Oracle database
student Id is only defined as a 9 digit integer which is directly representable in the data
model of the mediator. The DBase select, where Teacher is defined as String, requires
some data conversion by means of a system function C'onvert_Str_to_Int:

Student(Id): [{m},t] < Oracle:: (System :: Convert_Str_to_Int(Id), Name)

Similar functions may need to be provided for data scaling and data precision conflicts.

3. Default Value Conflicts: In two different knowledge sources there can be different default
values for some related objects. Suppose that in one database the default value of
driver’s age is 18, while in another database the driver’s age is 21. Although, it is
not possible to map these different default values, we distinguish between the different
knowledge sources by tagging the corresponding predicates in the mediator.

Legal Driver(Name) : [{1},t] < Oracley :: Driver(Age, Name), Age > 21
Legal Driver(Name) : [{2},t] < Oracley :: Driver(Age, Name), Age > 18



3.3

In the above clauses, 1 and 2 are ids from the lattice (P({Ag1,...,Agn}),C) of the
underlying knowledge sources [Sub94].

Entity Definition Incompatibility Problem

. Database Identifier Conflict: Suppose that there are two different keys of two relations,

such as Student,(Id,Course, Grade) and Studenty(Name, Course, Grade), where Id
and Name are keys. If there is a mapping convert; from both keys to an abstract key,
we may express the semantic proximity as

Student(Course, Grade) : [t] < Oracle :: Student,(System :: convert,(ab_key),
Course, Grade)
Student(Course,Grade) : [t] < Oracle :: Studenty(System :: converty(abkey),
Course,Grade)
with modes convert,(+), Student,(+,—, —).

Naming Conflict: In two different databases two entities Employee and Workers may
denote the same set of entities. Although, this situation is different from the case
of attribute naming conflicts, the same mechanism may ne used to map objects from
Employee and Workers to the same predicate.

Union Compatibility Conflicts: Suppose that there is a DBase relational database con-
taining the relation Student(Id, Name,Grade) and furthermore an Oracle database
containing the same relation Student(l/d, Name, Addess) denoting the same entities.
Then, the following clauses may map them into a mediator predicate.

Student(Id, Name): [t] < DBase :: Student(Id, Name, Address)
Student(Id, Name): [t] < Oracle :: Student(Id, Name, Grade)

with modes D Base :: Student(—, —,?) and also Oracle :: Student(—,—,7).

Schema Isomorphism Conflicts: In this conflict, semantically similar entities have a dif-
ferent numbers of attributes.

Instructor(No, Phone) : [t] «
Oracle :: Instructor(SS, HomePhone, O f f Phone), Phone = HomePhone

Instructor(No, Phone) : [t] «
Oracle :: Instructor(SS, HomePhone,Of f Phone), Phone = O f f Phone

with the mode Instructor(—,—,—) and — = +.
Missing Data Item Conflict: Suppose that there are two relations and

Student(SS, Name, Type) and Grad_Student(SS, Name)
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3.4

. The following clause maps Grad_Student to Students:

Student(SS, Name, Type): [t] « Oracle :: Student(SS, Name, T'ype)
Student(SS, Name, Type): [t] « DBase:: Grad_Student(SS, Name),
Type = ‘Grad’

with mode DBase :: Grad_Student(—,—) and DBase :: Grad_Student(—,—,—) and

in particular — = +.

Data Value Incompatibility Problem

This class of conflicts arises due to different data values for the same attribute/object in
a database. For instance a tuple Salary(JohnSmith,100k) in one database in contrast to
Salary(JohnSmith,200k) in a different database. Resolving those kinds of conflicts is based

upon the generalized annotated logic framework where different kinds of conflict solution

strategies may be expressed.

Known Inconsistency On this case the inconsistency is known and some kind of priority
ordering may be specified in the mediator. For instance, the reliability of a particular
knowledge source may provide such an ordering.

Salary(Name, Sal): [{1},t] < Oracle :: Salary(Name, Sal)

Salary(Name, Sal) : [{2},t] < DBase:: Salary(Name, Sal)

Salary(Name, Sal) : [{m},t] < Sal # Sal2||Salary(Name, Sal) : [{1},t],
Salary(Name, Sal2) : [{2}, ]

with modes Oracle :: Salary(—,—) and — # — and — = —.

Temporary Inconsistency In this case one of the databases may have obsolete information.

Salary(Name, Sal) : [t,{Mo,Tue}] <« Oracle:: Salary(Name, Sal)
Salary(Name, Sal) : [t,{Fri,Sat}] < DBase:: Salary(Name, Sal)

Since annotated logic is able to mimic different kinds of temporal reasoning, much more
sophisticated ways of resolving temporary inconsistency are expressible in our mediator
architecture. For more details on temporal logic programming with annotated logic,

the reader may refer to [KS92, LNS95].

Acceptable Inconsistency In certain cases one would like to tolerate certain degrees of
inconsistency:

Salary(Name, Sal) : [{m},t] « Abs(Sal — Sal2) < 10|
Salary(Name, Sal) : [{1}, 1],
Salary(Name, Sal2) : [{2},t]



3.5 Abstraction Level Incompatibility Problem

Consider the following example, where in three different databases the relations are defined
as follows:

DB1 DB2

‘ Date ‘ Company ‘ Price ‘ ‘ Date ‘ BMW ‘ Daimler ‘
27-09-95 | BMW 10.30 27-09-95 | 10.30 | 8.30
26-09-95 | Daimler | 89.32 26-09-95 | 78.40 | 89.32
DB3

‘ Date ‘ BMW ‘ ‘ Date ‘ Daimler ‘
| 27-09-95 | 10.30 || 27-09-95 [ 89.32 |

There are several kinds of conflicts which may be resolved as follows:

Stock(Date, Price, Company) : [t] « DBI1 :: Stock(Date, Company, Price)
Stock(Date, Price, Company) : [t] + DB2:: Stock(Date, BMW, Daimler),
Price = BMW,
Company = ‘BMW'
Stock(Date, Price, Company) : [t] + DB2:: Stock(Date, BMW, Daimler),
Price = Daimler, Company = ‘Daimler’
Stock(Date, Price, Company) : [t] + DB3 :: Stock(Date, BMW),
Price = BMW, Company = ‘BMW’
Stock(Date, Price, Company) : [t] < DB3 :: Stock(Date, Daimler),

Price = Daimler, Company = ‘ Daimler’

Alternatively, instead of coding these transformations into the logic, one may write some
C-Code function which takes as input a relation from the constraint domain and outputs the
relation transformed into the common data model of the mediator.

4 Security in a Mediator Architecture

Security in a mediator architecture is quite similar to security within federated databases.
See for instance [Per93, CJS95] for relevant references. Security basically comprises two main
features: confidentiality and integrity.

e Confidentiality is enforced in two steps. In the initial step, the identification of accessing
users and the authentification of their credentials through an audit is performed. The
second step consists in verifying that the identified users have been granted permission
to access the underlying software packages.
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Figure 1: Security in a mediator architecture

o Integrity requires to monitor any change in the knowledge bases and to monitor their
consistency.

In most commercial database discretionary access control (DAC) and mandantory access
control (MAC) are implemented. While the first basically filters all the data a user is not
authorized to access by means of views, MAC deals with flow of information. In [Per93] a
common security model which is able to mimic DAC as well as MAC based local security
policies has been proposed (see also figure 1).

So far we have described and illustrated that our approach enforces the semantical consis-
tency of knowledge bases and thus, most probably, enables to investigate this problem. We
are now concerned only with the confidentiality aspect of security. Our starting ideas are
twofold. Firstly, confidential access to knowledge bases is no different from confidentiality in
a network of computers. Secondly, it is not sufficient to enforce confidentiality at access time.
Indeed, confidentiality must be preserved at the level of any transaction in the mediator. To
illustrate such a need consider two examples. In the first one, an intruder managed to break
through the authentification and authorization controls. He can then navigate freely within
the system without being further controlled. In a second example, a user is authorized to
access a system of federated databases but a supervisor wishes to set a limit on either the
number or on the contents of allowed transactions. This is however presently almost impos-
sible to enforce, although this would have been useful in the celebrated case of the Barings
bank for instance. Another requirement is that security be achieved through a zero-knowledge
identification mechanism [BFE92]. Our solutions to these problems are based upon the fact



that we have clauses with annotations in a mediatory system. We give only a very brief
sketch of these ideas. The security mechanism is based upon SELANE ( see [BGD93] for a
description and relevant definitions and references) that stands for Secure Local Area Net-
work Environment and has been designed and implemented in our Institute. It proposes
the use of secure key issuing authorities (SKIA), which provide principals with certificates
required for one way or mutual authentification. Fach principal’s certificate contains a long
term public and private key. The so-called ElGamal public key signature scheme is used for
user registration and authentification. The one-way function used in this scheme is an expo-
nentiation modulo an appropriate number p. Authentification is achieved by establishing a
common session key that is derived from the certificates issued by the SKIA. This key can be
used during transactions to ensure confidentiality. In our context, the exponential is used as
an annotation in the clauses of GAP and the security scheme is managed by the mediator.
The lattice associated to this function is simply made of the true and false values whether
authentification and certification are granted or not. This is checked through the mechanisms
described in section 3.2. Such an approach allows also to issue certificates at the level of any
transaction in the system. In addition, the supervisor/mediator can issue "annotations” that
limit the range of allowed transactions.

5 Conclusion

We have demonstrated how any kind of software can be integrated in a declarative manner.
Most recent attempts only integrated relational and object-oriented databases. The resulting
system is implemented and ready for use in various application domains. We have also un-
derlined how a security mechanism, based on existing methods, can be extended to mediated
knowledge bases. This is however not yet implemented. The results sketched in this paper
are applicable to the design of secure decision support systems in a straightforward manner.
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