View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

Efficient Specification Techniques for Software Visualization

Arne Frick
Universitat Karlsruhe
Fakultat fur Informatik
Vincenz-Prief3nitz-Str. 1
Postfach 6980
D-76128 Karlsruhe
Federal Republic of Germany
EMail: frick@ira.uka.de

February 18, 1994

Abstract

Software Visualization is developing into an im-
portant tool for teaching algorithms and debug-
ging complex sequential and parallel programs.
However, specifying the relationship between
program objects (static ones as code statements
or variables and dynamic ones as data struc-
tures or object states) and their geometric coun-
terparts turns out to be the major bottleneck in
using SV systems [1, 2, 3].

My work aims at the development of a simple,
universal, flexible, and modular architecture al-
lowing novice and expert users to efficiently
specify visualizations at arbitrary levels of ab-
straction (abstract data type operations, pro-
gram statement or variable observation). Thus,
it represents a natural extension of the concept
of a debugger program, but is also a valuable tool
for Intelligent Tutoring Systems.

My approach is best described as a combina-
tion of visual programming and direct manipula-
tion techniques with the additional possibility
of conventional programming.

A key feature of the architecture is a Visual-
ization Description Language (VDL) which is in-
terpreted and can be extended at run-time. This
allows for the construction of domain-specific

visualization components which are re-usable
as long as the visualization targets remain in the
same domain.

1 Introduction

The bottleneck for Software Visualization on
the road from academia to wide-spread appli-
cation is the large amount of time that has to
be spent developing and describing the map-
ping between program objects and their visual-
ization. A few examples showing evidence for
this fact are given. BROWN and SEDGEWICK [3]
pointed out that the development of a view for
an algorithm animation in BALSA meant an ef-
fort of 15-25 hours of programming, not count-
ing another 1-2 hours of writing a script for the
animation using the view. This situation has
not changed much until 1992, when BROWN re-
ported that in the course of the DEC SRC Algo-
rithm Animation Festival 1992, it took a group
of test persons two weeks of intensive training
and testing to be able to develop simple anima-
tions [2].

Besides algorithm animation, visualization
techniques can be exploited in Intelligent Tutor-
ing systems. Here, the situation is hot much bet-

provided by KITopen

https://core.ac.uk/display/197596234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ter. ANDERSON [1] states that the development
of a tutoring session in high school mathematics
of 1 hour length takes 100 hours development
time!. These figures show the relevance of be-
ing able to efficiently specify visualizations.

We strive to solve the problem of specify-
ing visualizations by developing an architecture
called DynaStruct. The name is an abbreviation
for Dynamic Structure Visualization. This re-
flects the fact that the architecture is not solely
usable for software visualization, but in general
for graphical simulation applications. Possible
input sources in a SV environment include pro-
gram traces, hand-written scripts or the output
of a graphical specification tool.

2 Architecture

In this section, we describe the DynaStruct ar-
chitecture. First, the design goals are explained.
Following that, we show how to achieve them.

The major design goals for DynaStruct are us-
ability, universality, flexibility and modularity. A
system derived from the architectural specifica-
tion should be simple to use. Every conceiv-
able visualization in the visualization domain
should be specifiable. A modular structure al-
lows for components to be exchanged if either
the application domain (graphs, geometry, par-
allel and distributed algorithms) or the visual-
ization domain change. Modularity therefore
inherently also supports scalability in terms of
domain changes.

By flexibility we mean the possibility to ex-
tend the functionality of a system at run-time.
This design goal supports the usability of the
system. Although universality guarantees that
the designer of a view can express every possible
visualization in the visualization domain, it can
be very tedious to start the design of a view from
scratch. In this situation, the following observa-
tion helps: each application area has a largely

!The duration was calculated for slow students. That
means that fast students might finish way ahead of time.

3
data
base
¢
@
E=s o 8| |39
= = simulation and 2 2=
S<d7 control engine 5] -3
E 3

mapping layer

PN

s
<
=

GUI
specification, | | Renderer
user control

Figure 1: The DynaStruct architecture

unique set of constructors. Since the designer of
avisualization system cannot foresee every pos-
sible application of her system, she has to allow
for structuring primitive constructors into more
powerful ones. Over time, the system gradually
adopts more and more visual primitives for an
area of application.

The main components of the DynaStruct ar-
chitecture are shown in figure 1. An object-
oriented data-base contains the complete history
of a visualization, if desired, as well as the cur-
rent mapping of program objects to visualiza-
tion objects. The visualization itself is modeled
as a simulation process involving events occur-
ing in the algorithm under consideration and ac-
tions workin upon the visualization. A sophisti-
cated control mechanism allows for navigating
in the history, possibly changing algorithm data
somewhere in the past of the simulation and ex-
ecuting from then on.

There are three well-known techniques for
specifying the mapping between program ob-
jects and visualization objects [8]:

e code modification

e annotation

e declaration, constraints

The code modification method violates the
software engineering principles of modularity,
information hiding and code clarity. Further-
more, the source code might not even be avail-
able in modifiable form, as might be the case for
library routines.

Our approach uses direct manipulation tech-
niques on top of a graphical user interface (GUI)
in order to visually specify the relationship be-
tween program objects and visualization objects.
Technically speaking, the GUI drives a symbolic
debugger to implant annotations and declara-
tions into the program code. Conditional break-
points can be used for implementing constraints.
However, this cannot be considered a full-blown
declarative approach since the visualization de-
signer has to specify the location of the con-
straint checks.

3 Work in Progress

We currently finish the design of the VDL. A
first prototype has has been used to visualize
several graph algorithms. This work is being
complemented by empirical studies [4].

As a result of user input, emphasis in VDL is
being put on the issue of granularity. When visu-
alizing complex algorithms, users want to see a
visualization on an abstract level first, focusing
in on details only when necessary. Consider for
example an algorithm visualizing the network
flow algorithm by Ford and Fulkerson [5]. At
a coarse-grained level, the algorithm consists of
the steps

o find anaugmenting path in the residual net-
work

o determine the flow through the augmenting
path

e add the augmenting flow to the current ne-
towrk flow to get updated maximal flow

This example illustrates a few interesting points:

e users normally do not want to see how the
augmenting path is found; they are satisfied
with the path and the possibility to check
whether this is indeed an augmenting path

o if, however, they choose to view the path-
finding part, they are no longer concerned
with the higher-level details, but want to
understand the abstract operation entirely
in terms of the locally relevant data.

We conclude that an algorithm visualization
system should provide for mechanisms to ex-
press and support granularity.

4 Directions for Future Work

The DynaStruct architecture currently works in
the 2D visualization domain. Other visualiza-
tion domains include 3D, sound and other possi-
ble visualization techniques included in the def-
inition “various techniques to enhance the hu-
man understanding of computer programs” [7].
Extension of our ideas to other visualization do-
mains should be straight-forward due to the or-
thogonal construction of the language, which
allows for easy addition of new operations even
at run-time.

It remains to investigate how distributed and
parallel programs can be visualized with this
architecture. We conjecture that due to observa-
tional difficulties, the best strategy in these areas
is to create offline traces can then be visualized
without interfering with the timing behaviour
of the software systems under observation.

Dynastruct was designed to support the in-
teractive specification of the mapping between
entities (abstract or concrete) in the algorithm
under consideration and visualization entities.
However, the domain-specific knowledge still
has to be hand-coded in domain-modules. A
natural extension of our visual specification
technique is to incorporate ideas from the pro-
gramming by demonstration method [6]. This
might lead to methods for the interactive speci-
fication of the domain-specific knowledge itself.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

John R. Anderson. Intelligent tutoring and
high school mathematics. In Proc. 1TS'92,
volume 608 of LNCS, pages 1-10. Springer,
1992.

Marc H. Brown. The 1992 SRC Algorithm
Animation Festival. DEC SRC Technical Re-
port 98, Digital Systems Research Center, 130
Lytton Avenue, Palo Alto, California 94301,
March 1993.

Marc H. Brown and R. Sedgewick. Tech-
niques for algorithm animation. IEEE Soft-
ware, 2(1):28-39, January 1985.

Delel Chaabouni, Arne Frick, Stefan
Hanflgen, Christopher Hundhausen, and
Gunther Mossakowski. Spezifikation einer
Visualisierung fur den Ford-Fulkerson Al-
gorithmus, 1994. German; instructions for a
video-taped interactive experiment.

Thomas H. Cormen, Charles E. Leiserson,
and Ronald L. Rivest. Introduction to Algo-
rithms. MIT Press, 1989.

A. Cypher. Watch what | do — Programming
by Demonstration. MIT Press, 1993.

Blaine A. Price, Ronald M. Baecker, and
lan S. Small. A principled taxonomy of soft-
ware visualization. Journal of Visual Lan-
guages and Computing, 4(3), September 1993.

Guia-Catalin Roman and Kenneth C. Cox. A
taxonomy of program visualization systems.
IEEE Software, 26(12):11-24, December 1993.

