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Abstract

In this paper we show how to construct optimal bitvector analysis algorithms for parallel
programs with shared memory that are as e�cient as their purely sequential counterparts�
and which can easily be implemented� Whereas the complexity result is rather obvious�
our optimality result is a consequence of a new Kam�Ullman�style Coincidence Theorem�
Thus� the important merits of sequential bitvector analyses survive the introduction of
parallel statements�

Keywords

Parallelism� interleaving semantics� synchronization� program optimization� data �ow
analysis� bitvector problems� de�nition�use chains� partial redundancy elimination� partial
dead code elimination�

Contents

� Motivation �

� Sequential Programs �
�� Representation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Data Flow Analysis � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� The MOP�Solution of a DFA � � � � � � � � � � � � � � � � � � � � � � �
����� The MFP�Solution of a DFA � � � � � � � � � � � � � � � � � � � � � � �
����� The Functional Characterization of the MFP�Solution � � � � � � � � �

� Parallel Programs �
�� Representation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
��� Data Flow Analysis of Parallel Programs � � � � � � � � � � � � � � � � � � � �
��� Bitvector Analyses � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��	 Performance and Implementation � � � � � � � � � � � � � � � � � � � � � � � �

� Applications ��

� Conclusions ��

References ��

A Computing the MFP�Solution ��

B Computing the PMFPBV �Solution ��

C Illustrating Figures ��



� Motivation

Parallel implementations are of growing interest� as they are more and more supported by
modern hardware environments� However� despite its importance �SHW� SW� WS�� there
is currently very little work on classical data �ow analysis for parallel languages� Probably�
the reason for this de�ciency is that a naive adaptation fails �MP� and the straightfor�
ward correct adaptation needs an unacceptable e�ort� which is caused by considering all
interleavings that manifest the possible executions of a parallel program�

Thus� either heuristics are proposed to avoid the consideration of all the interleavings
�McD�� or restricted situations are considered� which do not require to consider the in�
terleavings at all� To our knowledge� the most relevant publications in this direction are
�CH� GS�� In �CH� a situation without synchronization is considered� and in �GS� data
independence of parallel components is required� Thus the result of a parallel execution
does not depend on the particular choice of the interleaving� In �GS�� this is exploited for
the construction of an optimal and e�cient algorithm determining the reaching�de�nition
information�

In this paper we show how to construct arbitrary bitvector analysis algorithms for
parallel programs with shared memory that

� optimally cover the phenomenon of interference

�� are as e�cient as their sequential counterparts and

�� easy to implement�

The �rst property is a consequence of a Kam�Ullman�style ��KU�� Coincidence Theorem
for bitvector analyses stating that the parallel meet over all paths �PMOP � solution� which
speci�es the desired properties� coincides with our parallel bitvector maximal �xed point
�PMFPBV � solution� which is the basis of our algorithm� This result is rather surprising�
as it states that although the various interleavings of the executions of parallel components
are semantically di�erent� they need not be considered during bitvector analysis� which
is the key observation of this paper�

The second property is a simple consequence of the fact� that our algorithm behaves
like standard bitvector algorithms� and the third property is due to the fact� that only
a minor modi�cation of the sequential bitvector algorithm needs to be applied after a
preprocess consisting of a single �xed point routine �cf� Section ��	��

Thus all the well�known algorithms for liveness� availability� very business� reaching
de�nitions� de�nition�use chains �cf� �He��� partial redundancy elimination �cf� �DS� DRZ�
KRS� KRS�� MR��� partial dead code elimination �cf� �KRS��� or strength reduction �cf�
�Dh� JD� JD�� KRS��� can be adapted for parallel programs at almost no cost on the
runtime and the implementation side�

The next section will recall the sequential situation� while Section � develops the
corresponding notions for parallel programs� Subsequently� Section 	 sketches some ap�
plications of our algorithm and Section � contains the conclusions� The Appendix contains
the detailed algorithm and a number of �gures illustrating the formal development of the
paper�





� Sequential Programs

In this section we summarize the sequential setting of data �ow analysis�

��� Representation

In the sequential setting it is common to represent procedures as directed �ow graphs
G � �N�E� s� e� with node set N and edge set E�� Nodes n � N represent the state�
ments� edges �n�m� � E the nondeterministic branching structure of the procedure under
consideration� and s and e denote the unique start node and end node of G� which are as�
sumed to possess no predecessors and successors� respectively� and to represent the empty
statement skip� predG�n��df fm j �m�n� � E g and succG�n��df fm j �n�m� � E g
denote the set of all immediate predecessors and successors of a node n� respectively�
A �nite path in G is a sequence �n�� � � � � nq� of nodes such that �nj � nj��� � E for
j � f� � � � � q � g� PG�m�n� denotes the set of all �nite paths from m to n� and
PG�m�n� the set of all �nite paths from m to a predecessor of n� Moreover� ��p�
denotes the number of node occurrences in p� and � the unique path of length 
� Finally�
every node n � N is assumed to lie on a path from s to e�

��� Data Flow Analysis

Data �ow analysis �DFA� is concerned with the static analysis of programs in order to
support the generation of e�cient object code by �optimizing� compilers �cf� �He� MJ���
For imperative languages� DFA provides information about the program states that may
occur at some given program points during execution� Theoretically well�founded are
DFAs that are based on abstract interpretation �cf� �CC� Ma��� The point of this approach
is to replace the �full� semantics by a simpler more abstract version� which is tailored
to deal with a speci�c problem� Usually� the abstract semantics is speci�ed by a local
semantic functional

�� �� � N� �C �C�

which gives abstract meaning to every program statement in terms of a transforma�
tion function from a complete lattice �C�u�v����� into itself� where the elements of
C express the DFA�information of interest��

Since s and e are assumed to represent the empty statement skip they are associated
with the identity IdC on C� A local semantic functional �� �� can easily be extended to
cover �nite paths as well� For every path p� �n�� � � � � nq� � PG�m�n�� de�ne�

�� p ���df

�
IdC if p � �

�� �n�� � � � � nq� �� � �� n� �� otherwise

�	�	� The MOP �Solution of a DFA

The MOP �solution � the solution of the meet over all paths �MOP � strategy in the
sense of Kam and Ullman �KU� � de�nes the intuitively desired solution of a DFA� This

�The construction of �ow graphs is described in �All��
�In the following C will always denote a complete lattice�

�



strategy directly mimics possible program executions in that it �meets� �intersects� all
informations belonging to a program path reaching the program point under consideration�

The MOP �Solution


�n � N � c� � C� MOP �G��� ����n��c�� �u f �� p ���c�� j p � PG�s� n� g

In fact� this directly re�ects our desires� but is in general not e�ective�

�	�	� The MFP �Solution of a DFA

The point of the maximal �xed point �MFP � strategy in the sense of Kam and Ullman
�KU� is to iteratively approximate the greatest solution of a system of equations which
speci�es the consistency between pre�conditions expressed in terms of C�

Equation System �	�

pre�n� �

�
c� if n � s
u f ��m ���pre�m�� jm � predG�n� g otherwise

Denoting the greatest solution of Equation System �� with respect to the start informa�
tion c� � C by prec� � the solution of the MFP �strategy is de�ned by�

The MFP �Solution
 �n � N � c� � C� MFP �G��� ����n��c�� �prec�

For monotonic functionals�	 this leads to a suboptimal but algorithmic description �see
Algorithm A� in Appendix A�� and the question of optimality of the MFP �solution was
elegantly answered by Kildall �Ki� Ki��� and Kam and Ullman �KU��

Theorem �	� �The �Sequential� Coincidence Theorem�
Given a �ow graph G� �N�E� s� e�� the MFP �solution and the MOP �solution coincide�
i	e	 �n � N � c� � C� MOP �G��� ����n��c�� �MFP �G��� ����n��c��� whenever all the semantic
functions �� n ��� n � N � are distributive	


�	�	� The Functional Characterization of the MFP �Solution

From interprocedural DFA� it is well�known that the MFP �solution can alternatively be
de�ned by means of a functional approach �SP�� Here� one iteratively approximates the
greatest solution of a system of equations specifying consistency between functions ��� n ����
n � N � Intuitively� a function ��� n ��� transforms data �ow information that is assumed to
to be valid at the start node of the program into the data �ow information being valid
before the execution of n�

�A function f � C�C is called monotonic i� � c� c� � C� c v c� implies f�c	 v f�c�	�
�A function f � C�C is called distributive i� �C� � C� f�uC�	 
 u ff�c	 j c � C�g� It is

well�known that distributivity is a stronger requirement than monotonicity in the following sense� A
function f � C�C is monotonic i� �C� � C� f�uC�	 v u ff�c	 j c � C�g�

�



Denition �	� �The Functional Approach�
The functional ��� ��� � N� �C �C� is de�ned as the greatest solution of the equation system
given by


��� n ��� �

�
IdC if n� s
uf��m �� � ���m ��� jm � predG�n�g otherwise

The following equivalence result is important �KS��

Theorem �	� �n � N � c� � C� MFP �G��� ����n��c�� � ��� n ����c��

The functional characterization of the MFP �solution will be the �intuitive� key for com�
puting the parallel version of the maximal �xed point solution� As we are only dealing
with Boolean values later on� this characterization can easily be coded back into the
standard form�

� Parallel Programs

As usual� we consider an imperative parallel programming language with an interleaving
semantics� Formally� this means that we view parallel programs semantically as  abbre�
viations! of usually much larger nondeterministic programs� which result from a product
construction between parallel components� In fact� in the worst case� the size of the nonde�
terministic  product! program grows exponentially in the number of parallel components
of the corresponding parallel program� This immediately clari�es the dilemma of data
�ow analysis for parallel programs� even though it can be reduced to standard data �ow
analysis on the corresponding nondeterministic program� this approach is unacceptable
in practice for complexity reasons� Fortunately� as we will see in Section ���� bitvector
analyses� which are most relevant in practice� can be performed as e�ciently on parallel
programs as on sequential programs�

The following section establishes the notational background for the formal development
and the proofs� One could therefore try to immediately continue with Section ��� and to
 backtrack! to Section �� at need�

��� Representation

Syntactically� parallelism is expressed by means of a par statement whose components are
assumed to be executed independently and in parallel on a shared memory�� As usual� we
assume that there are neither jumps leading into a component of a par statement from
outside nor vice versa�

Similarly to �GS�� we represent a parallel program by a nondeterministic parallel �ow
graph G� � �N�� E�� s�� e�� with node set N� and edge set E�� Except for subgraphs
representing par statements a parallel �ow graph is a nondeterministic �ow graph in
the sense of Section �� i�e�� nodes n � N� represent the statements� edges �m�n� � E�

the nondeterministic branching structure of the procedure under consideration� and s�

and e� denote the distinct start node and end node� which are assumed to possess no
predecessors and successors� respectively� Like in Section �� we assume that every node

�Integrating a replicator statement in order to allow a dynamical process creation is straightforward�

	



n � N� lies on a path from s� to e�� and that the start and end nodes of parallel �ow
graphs represent the empty statement skip� Additionally� predG��n��df fm j �m�n� �
E� g and succG��n��df fm j �n�m� � E� g denote the set of all immediate predecessors
and successors of a node n � N�� respectively�

A par statement as well as each of its components constitute themselves a parallel
�ow graph �cf� Figure  and Appendix C for illustration�� The start node and end node
of a graph representing a par statement have the start nodes and end nodes of the
component �ow graphs as their only successors and predecessors� respectively� GP�G��
denotes the set of all subgraphs of G� representing par statements� Moreover� if G �
GP�G��� then GC�G� denotes the set of �ow graphs of the parallel components of G�
and N odes�G��df

S
fN � jG� � GC�G� g the set of nodes occurring in one of them�� It

is worth noting that for G � GP�G�� every graph G� � GC�G� as well as G itself is a
single�entry�single�exit region of G��

Additionally� we introduce the abbreviations

GP
max�G���df fG � GP�G�� j �G� � GP�G��� G 	 G�
G � G� g

for the set of maximal graphs of GP�G��� and

N�
N�df f s jG � GP�G�� g and N�

X�df f e jG � GP�G�� g

for the set of start and end nodes of graphs of GP�G���
Moreover� the functions start and end map a parallel �ow graph to the start node

and end node of their argument� respectively� and the function ParGraph maps a node
n � N�

N to the uniquely determined �ow graph G with start�G� � n�
Additionally� the function pfg yields for a node n of N� that occurs in a component

G of some �ow graph G� � GP�G��� the smallest �ow graph of GP�G�� containing G"
and it yields G� otherwise� i�e��

pfg�n��df

� T
fG� � GP�G�� jn � N odes�G�� g if n �

S
fN odes�G�� jG� � GP�G��g

G� otherwise

Similarly� the function cfg maps a node n occurring in a component �ow graph of some
graph G � GP�G�� to the smallest component �ow graph containing n� i�e��

cfg�n��df

�
fG� � GC�G� jG � GP�G�� � n � N � g

Both pfg and cfg are well�de�ned� since par statements in a program are either unre�
lated or properly nested�

Finally� given a parallel �ow graph G we de�ne a sequential �ow graph Gseq� which
results from G by replacing all nodes belonging to a component �ow graph of some
graph G� � GP

max�G� together with all edges starting or ending in such a node by an
edge leading from start�G�� to end�G��� Note that Gseq is a nondeterministic sequential
�ow graph in the sense of Section �� This is illustrated in Figure �� which shows the
sequentialized version of the parallel �ow graph of Figure  �see also Appendix C��

�We use the convention that node and edge set� and start and end node of a �ow graph carry the
same index as the �ow graph itself� Hence� G� stands for the expanded version G� 
 �N �� E�� s�� e�	�

�For parallel �ow graphs G and G� we dene� G � G� if and only if N � N � and E � E��

�



G*

Figure � The Parallel Flow Graph G�

Program Paths of Parallel Programs

As mentioned already� the interleaving semantics of an imperative parallel programming
language can be de�ned via a translation that reduces parallel programs to �much larger�
nondeterministic programs� However� there is also an alternative way to characterize the
node sequences constituting a parallel �program� path� following in spirit the de�nition of
an interprocedural program path as proposed by Sharir and Pnueli �SP�� They start by
interpreting every branch statement purely nondeterministically� which allows to simply
use the de�nition of �nite path as introduced in Section �� This results in a superset of the
set of all interprocedurally valid paths� which they now de�ne by means of an additional
consistency condition� In our case� we are forced to de�ne our consistency condition on
arbitrary node sequences� as the consideration of interleavings invalidates the �rst step�

�



G*
seq

Figure �� G�
seq

Here� the following notion of well�formedness is important�

Denition �	� �G�Well�Formedness�
Let G be a �parallel� �ow graph� and p�df �n�� � � � � nq� be a sequence of nodes	 Then p

is G�well�formed if and only if

�	 p�Gseq
� PGseq

�start�Gseq�� end�Gseq��

�	 �� i � f� � � � � qg� ni � N�
N � � j � fi # � � � � � qg� nj � N�

X�

�� k � fi#� � � � � j�g� nk �� N�
X�� �G� � GC�ParGraph�ni��� �ni��� � � � � nj���

is G��well�formed

where p�Gseq
results from p by removing all nodes not in Gseq	

Now the set of parallel paths is de�ned as follows�

Denition �	� �Parallel Path�
Let G� � �N�� E�� s�� e�� be a parallel �ow graph� and p�df �n�� � � � � nq� be a sequence of
nodes of N�	 Then


�	 p is a parallel path from s� to e� if and only if p is G��well�formed	

�	 p is a parallel path from n� to nq if it is a subpath of some parallel path from s�

to e�	

PPG� �m�n� denotes the set of all parallel paths from m to n� and PPG��m�n� the set
of all parallel paths from m to a predecessor of n� de�ned by

PPG� �m�n��df f�n�� � � � � nq� j �n�� � � � � nq� nq��� � PPG� �m�n�g

�



Interleaving Predecessors

Given a sequential �ow graph G� the set of nodes that might dynamically precede a node
n is precisely given by the set of its static predecessors predG�n�� Given a parallel �ow
graph� however� the interleaving of statements of parallel components must be taken care
of� In fact� nodes n occurring in a component of some par statement additionally have
all nodes as dynamic predecessors� whose execution may be interleaved with that of n�
We will denote these  potentially parallel! nodes as interleaving predecessors� The set of
all interleaving predecessors of a node n � N� is recursively de�ned by means of the
function PredItlvgG� � N��P�N��� where P denotes the power set operator�

PredItlvgG� �n��df

������
�����

� if pfg�n� �G�

N odes�ParGraph�n��nN odes�cfg�n�� �

PredItlvgG� �start�cfg�start�ParGraph�n����� otherwise

��� Data Flow Analysis of Parallel Programs

Like for a sequential program� a DFA for a parallel program is completely speci�ed by
means of a local semantic functional

�� �� � N�� �C �C�

that gives abstract meaning to every node of a parallel �ow graph G� in terms of a
function from C to C�

Like in the sequential case it is straightforward to extend a local semantic functional
to cover also �nite parallel paths� Thus� given a node n of a parallel program G�� the
parallel version of the MOP �solution is clear� and as in the sequential case� it marks the
desired solution to the considered data �ow problem�

The PMOP �Solution


�n � N� � c� � C� PMOP �G���� ����n��c�� �u f �� p ���c� j p � PPG� �s�� n� g

Refering to the nondeterministic  product program!� which explicitly represents all the
possible interleavings� would allow us to straightforward adapt the sequential situation
and to state a Coincidence Theorem� However� this would not be of much practical
use� as this approach would require to de�ne the MFP �solution relative to the potentially
exponential product program� Fortunately� as we will see in the next section� for bitvector
algorithms there exists an elegant and e�cient way out�

��� Bitvector Analyses

Bitvector problems can be characterized by their simplicity of the local semantic functional

�� �� � N� �B�B�

which speci�es the e�ect of a node on a particular component of the bitvector �see Section
	 for illustration�� Here B is the lattice �ff f� ttg�u�v� of Boolean truth values with

�



f f v tt and the logical  and! as meet operation u� or its dual counterpart with tt v f f
and the logical  or! as meet operation u�

Despite their simplicity� bitvector problems are highly relevant in practice� as they
include problems like liveness� availability� very business� reaching de�nitions� de�nition�
use chains� partial redundancy elimination� partial dead code elimination or strength
reduction�

We are now going to show� how to optimize the e�ort for computing the PMOP �
solution� This requires the consideration of the semantic domain FB consisting of the
monotonic Boolean functions B�B� Obviously we have�

Proposition �	� �	 FB simply consists of the constant functions C onsttt and C onstf f �
together with the identity IdB on B	

�	 FB� together with the pointwise ordering between functions� forms a complete lattice
with least element C onstf f and greatest element C onsttt� which is closed under
function composition	

	 All functions of FB are distributive	

The key to the e�cient computation of the  interleaving e�ect! is based on the following
simple observation� which pinpoints the speci�c nature of a domain of functions M�M �
M any set� that only consists of constant functions and the identity�

Lemma �	� �Main�Lemma�
Let fi � FB�FB�  � i � q� q � IN � be functions from FB to FB	 Then we have


 k � f� � � � � qg� fq � � � � � f� � f� � fk � � j � fk # � � � � � qg� fj � IdB

The essence of this lemma for our application is that it restricts the way of possible
interference within a parallel program� if there is any interference than this interference
is subject to a single statement within a parallel component� Combining this observation
with the fact� that for m � PredItlvgG� �n�� there exists a parallel path leading to n whose
last step requires the execution of m� we obtain that the potential of interference� which in
general would be given in terms of paths� is fully characterized by the set PredItlvgG� �n�� In
fact� considering the computation of universal properties that are described by maximal
�xed points �the computation of minimal �xed points requires the dual argument�� the
obvious existence of a path to n that does not require the execution of any statement of
PredItlvgG� �n� implies that the only e�ect of interference is  destruction!� This motivates
the introduction of the following predicate�

N onDestructed � N��B de�ned by

�n � N�� N onDestructed�n��df

V
f ��m ���tt� j m � PredItlvgG� �n� g

which indicates that no node of a parallel component destroys the property under con�
sideration� i�e� ��m �� �� C onstf f for all m � PredItlvgG� �n�� Note that only the constant
function induced by this predicate is used in De�nition ��� to model interference� and in
fact� Theorem ��� guarantees that this modelling is su�cient� Obviously� this predicate
is easily and e�ciently computable� Algorithm B� computes it as a side result�

�



Besides taking care of possible interference� we also need to take care of the synchro�
nization required by nodes in N�

X� in order to leave a parallel statement� all parallel
components are required to terminate� The information that is necessary to model this
e�ect can be computed by a hierarchical algorithm that only considers purely sequential
programs� The central idea coincides with that of interprocedural analysis �KS�� we need
to compute the e�ect of complete subgraphs� or in this case of complete parallel compo�
nents� This information is computed in an  innermost! fashion and then propagated to the
next surrounding parallel statement� The following de�nition� which is also illustrated in
Appendix C� describes the complete three�step procedure�

� Terminate� if G does not contain any parallel components� Otherwise� select succes�
sively all maximal �ow graphs G� � GP�G� that do not contain a parallel statement�
and determine the e�ect ���G� ��� of this �purely sequential� graph according to the
equational system of De�nition ��� with respect to the local semantic functional
�� ���

seq
� N �

seq�FB given by

�� n ���
seq

�df

���
��

IdB u C onstNonDestructed�n� if n � N�
N

��� pfg�n� ���� if n � N�
X

�� n �� otherwise

�� Compute the e�ect ���G�� ���� of the innermost parallel statements G�� of G by

���G�� ���� �uf ��� end�G�
seq� ��� j G� � GC�G

��� g

�� Transform G by replacing all innermost parallel statements G�� � �N ��� E��� s��� e���
by �fs��� e��g� f�s��� e���g� s��� e���� and replace the local semantics of s�� and e�� by
IdB uuf �� n �� j n � N ��g and ���G�� ����� respectively� Continue with step �

This three step algorithm is a straightforward hierarchical adaptation of the algorithm for
computing the functional version of the MFP �solution for the sequential case� Only the
third step realizing the synchronization at nodes in N�

X needs some explanation� which
is summarized in the following lemma�

Lemma �	� The PMOP �solution of a parallel �ow graph G that only consists of purely
sequential parallel components G�� � � � � Gk is given by


PMOP �G��� ����end�G�� �uf ��� end�Gi� ��� j  � i � k g

Also the proof of this lemma is a consequence of the Main Lemma ��	� As a single
statement is responsible for the entire e�ect of a path� the e�ect of each complete path
through a parallel statement is already given by some path through one of the parallel
components �the one containing the vital statement�� Thus in order to model the e�ect
�or PMOP �solution� of a parallel statement� it is su�cient to meet the e�ects of all paths
that are local to one of the components� and it is exactly this fact� which is formalized in
Lemma ����

Now the following theorem can be proved by means of a straightforward inductive
extension of the functional version of the sequential Coincidence Theorem ���� which is
tailored to cover complete paths� i�e� paths going from the start to the end of a parallel
statement�






Theorem �	� �The Hierarchical Coincidence Theorem�
Let G � GP�G�� be a parallel �ow graph� and �� �� � N��FB a local semantic functional	
Then we have


PMOP �G��� ����end�G�� � ���G ����

After this hierarchical preprocess the following modi�cation of the equation system for
sequential bitvector analyses is optimal�

Denition �	� The functional ��� ��� � N��FB is de�ned as the greatest solution of the
equation system given by
�

��� n ��� �

��������
�������

IdB if n� s�

���ParGraph�n� ���� � ��� start�ParGraph�n�� ���u C onstNonDestructed�n� if n � N�
X

uf ��m �� � ���m ��� jm � predG��n�g u C onstNonDestructed�n� otherwise

This allows us to de�ne the PMFPBV �solution� a �xed point solution for the bitvector
case� in the following fashion�

The PMFPBV �Solution


PMFPBV �G���� ��� � N��FB de�ned by �n � N� � b � B� PMFPBV �G���� ����n��b� � ��� n ����b�

Like in the sequential case the PMFPBV �strategy is practically relevant� because it can
e�ciently be computed �see Algorithm B� in Appendix B�� The following theorem now
establishes that it also coincides with the desired PMOP �solution�

Theorem �	� �The Parallel Bitvector Coincidence Theorem�
Let G� � �N�� E�� s�� e�� be a parallel �ow graph� and �� �� � N��FB a local semantic
functional	 Then we have that the PMOP �solution and the PMFPBV �solution coincide�
i	e	�

�n � N�� PMOP �G���� ����n� �PMFPBV �G���� ����n�

Proof	 The proof follows the same pattern as for the known versions of the coincidence
theorem �cf� �KS� KU��� Induction on the number of steps of the �xed point iteration for
determining the PMFPBV �solution for establishing

�A� PMOP �G���� ��� 
 PMFPBV �G���� ���

and induction on the length of a parallel path for the converse implication

�B� PMFPBV �G���� ��� 
 PMOP �G���� ���

Whereas the proof of �A� is only slightly altered� the proof of �B� requires some extra
e�ort�

�Note that ��� ��� is the straightforward extension of the functional dened in Denition ���� Thus the
overloading of notation is harmless� as no reference to the sequential version is made in this denition�





Let b � B and n � N�� and let us assume for �A� wlog� that PMOP �G���� ����n��b� � tt�
Obviously� for every statement m� which can be executed in parallel with n� there exists
a path in PPG� �s�� n�� having m as its last component� i�e�

PPG��s�� n��PPG� �s��m� �� �

Thus N onDestructed�n� � tt� Now the rest of the proof is the  standard induction! on
the number of �xed point iterations mentioned above �cf� �KS� KU��� re�ned to take care
of the distinction between  standard! nodes and nodes taken from N�

X � which requires the
application of Theorem ����

For �B�� we can assume wlog� that

��� PMFPBV �G���� ����n��b� � tt

holds� In particular� this means that N onDestructed�n� � tt� i�e� none of the statements
m � PredItlvgG� �n� satis�es ��m �� � C onstf f � Now it is the Main Lemma ��	 which guar�
antees that this is already su�cient to guarantee that the standard sequential bitvector
analysis is not interfered by any parallel statement� The proof is a slightly modi�ed
version of the standard induction on the path length�

Let p � �n�� � � � � nk� � PPG� �s�� n� be a parallel path� Then we must show that

�� nk �� � � � � � �� n� ���b� � tt

In the case of k � 
 this is trivial� as only the start node s� is reachable� Thus our
assumption forces b � tt as desired�

For k �  we need to distinguish the  standard! cases from the case where n � N�
X �

For the  standard! case� let 
 � l � k be the index of the last step of p that was done by
a predecessor m � predG� �n�� i�e� �� nl �� � ��m ��� Such a step must exist� as k � � which
excludes n � s�� and we know by induction�

PMFPBV �G���� ����m��b� 
 �� nl�� �� � � � � � �� n� ���b�

and therefore by monotonicity

��m ���PMFPBV �G���� ����m��b�� 
 �� nl �� � � � � � �� n� ���b�

On the other hand� assumption ��� forces

��m ���PMFPBV �G���� ����m��b�� � tt

and therefore� together� as all the ni� l #  � i � k� are members of PredItlvgG� �n�

�� nk �� � � � � � �� n� �� � tt

which completes the proof for the standard case�

Thus it remains to consider the case� where n � N�
X � In this case� assumption ��� reads

as follows�

tt � PMFPBV �G���� ����n��b� � ���ParGraph�n� ���� � ��� start�ParGraph�n�� ���

Now let 
 � l � k be the index corresponding to m � start�ParGraph�n��� Then we
can apply the induction hypothesis in order to obtain�

PMFPBV �G���� ����m��b� 
 �� nl�� �� � � � � � �� n� ���b�

Now the application of Theorem ��� allows to complete the proof as in the standard case�

�



��� Performance and Implementation

Our algorithm is based on a functional version of an MFP �solution� as it is common for
interprocedural analyses� However� as bitvector algorithms only deal with Boolean values�
proceeding argument�wise� would simply require to apply a standard bitvector algorithm
twice� In particular� for regular program structures� all the nice properties of bitvector
algorithms apply� In fact� for the standard version of Algorithm B� a single execution is
su�cient� as we can start here with the same start information as the standard sequential
analysis� Thus� even if we count the e�ort for computing the predicate N onDestructed

separately� our analysis would simply be a composition of four standard bitvector analyses�
In practice� however� our algorithm behaves much better� as the existence of a single
destructing statement allows us to skip the analysis of large parts of the program� In fact�
in our experience� the parallel version often runs faster than the sequential version on a
program of similar size�

The same argumentation also indicates a way for a cheap implementation on top
of existing bitvector algorithms� However� we recommend the direct implementation of
the functional version� which to our experience� runs even faster than the decomposed
standard version� This is not too surprising� as the functional version only needs to
consider one additional value and does not require the argumentwise application�

� Applications

As mentioned already� bitvector problems have a broad scope of applications ranging from
simple analyses like determining whether some variable is live at a given program point
or whether a program term has been computed on every program execution reaching a
particular program point to more sophisticated applications like de�nition�use chains �cf�
�He��� partial redundancy elimination �cf� �DS� DRZ� KRS� KRS�� MR��� partial dead
code elimination �cf� �KRS���� or strength reduction �cf� �Dh� JD� JD�� KRS����

Below we present the local semantic functionals of four bitvector problems in order
to give a �avour of how a typical bitvector analysis looks like� Moreover� these analyses
are all practically relevant� since they are the central components of two algorithms that
eliminate all partially redundant computations in a program �KRS�� and remove all
assignments in a program that are partially dead �KRS��� respectively�

Following �KRS� all partial redundancies in a program can be eliminated by comput�
ing the set of program points where a computation is up�safe�� i�e�� where it has been
computed on every program path reaching the program point under consideration� or
down�safe��� i�e�� where it will be computed on every program continuation reaching the
end node of the program� The DFA�problems for up�safety and down�safety are speci�ed
by the local semantic functionals �� n ��

us
and �� n ��

ds
� respectively�

�� n ��us�b��df �b � C omp�n�� � T ransp�n� �

���
��

C onsttt if T ransp�n� � C omp�n�
IdB if T ransp�n� � �C omp�n�
C onstf f if �T ransp�n�

	Up�safety is also known as availability �
�
Down�safety is also known as very business or anticipability �

�



�� n ��
ds

�b��df C omp�n� � �T ransp�n� � b� �

���
��

C onsttt if C omp�n�
IdB if �C omp�n� � T ransp�n�
C onstf f if �C omp�n� � �T ransp�n�

In fact� based on the sets of up�safe and down�safe program points� the busy code motion
transformation of �KRS� eliminates all partial redundancies in a program�

Following �KRS�� all partially dead assignments in a program can be eliminated by
successively moving assignments as far as possible in the direction of the control �ow
and by subsequently removing all assignments whose left hand side variable is dead after
the execution of the assignment under consideration� In order to capture the second
order e�ects of partial dead code elimination� this two step procedure is repeated until
the programs eventually stabilizes� Below the local semantic functionals specifying the
DFA�problems for the sinking of assignments �� n ��delay and the detection of dead variables
�� n ��dead are presented� which are the central components of the algorithm of �KRS���

�� n ��
dead

�b��df �U sed�n� � �b � M od�n�� �

���
��

C onsttt if �U sed�n� � M od�n�
IdB if �U sed�n� � �M od�n�
C onstf f if U sed�n�

�� n ��
delay

�b��df �b � C omp�n�� � �LocBlocked�n�

�

���
��

C onsttt if �LocBlocked�n� � C omp�n�
IdB if �LocBlocked�n� � �C omp�n�
C onstf f if LocBlocked�n�

Based on these two analyses the algorithm of �KRS�� succeeds in eliminating all assign�
ments in a program that are partially dead�

� Conclusions

We have shown how to construct optimal bitvector analysis algorithms for parallel pro�
grams with shared memory that are as e�cient as their purely sequential counterparts�
and which can easily be implemented� At the �rst sight� the existence of such an algorithm
is rather surprising� as the interleaving semantics underlying our programming language
is an indication for an exponential e�ort� However� the restriction to bitvector analysis
constrains the possible ways of interference in such a way� that we could construct a �xed
point algorithm that directly works on the parallel program without taking any interleav�
ings into account� The algorithm is implemented on the Fixpoint Analysis Machine of
�SBCKKMR��
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A Computing the MFP 	Solution

Algorithm A	� �Computing the MFP �Solution�

Input� A �ow graph G � �N�E� s� e�� a local semantic functional �� �� � N�FB� and
a function finit � FB re�ecting the assumptions on the context in which the procedure
under consideration is called	 Usually� finit is given by IdB	

Output� An annotation of G with functions ��� n ��� � FB� n � N � representing the
greatest solution of the equation system of De�nition �		 In fact� after termination of
the algorithm the functional ��� ��� satis�es


�n � N� ��� n ����MFP �G��� ����n� �MOP �G��� ����n�

BEGIN

MFP�G� �� ��� finit�
END�

where

PROCEDURE MFP �G � �N�E� s� e� � SequentialF lowGraph"
�� �� � N�FB � LocalSemanticFunctional"
fstart � FB�"

VAR f � FB"
BEGIN

� Initialization of the annotation array gtr and the variable workset �
FORALL n � Nnfsg DO ��� n ��� �� C onsttt OD"
��� s ��� �� fstart"
workset �� fn jn� s � �� n ���C onstf f g"

� Iterative �xed point computation �
WHILE workset �� � DO
LET n � workset
BEGIN

workset �� worksetnfn g"
f �� �� n �� � ��� n ���"
FORALL m � succG�n� DO
IF ���m ��� f THEN ���m ��� �� f "workset �� workset�fm gFI OD

END

OD

END�

�



B Computing the PMFPBV 	Solution

Algorithm B	� �Computing the PMFPBV �Solution�

Input� A parallel �ow graph G� � �N�� E�� s�� e��� a local semantic functional �� �� �
N��FB� a function finit � FB and a Boolean value binit � B� where finit and binit
re�ect the assumptions on the context in which the procedure under consideration is called	
Usually� finit and binit are given by IdB and f f � respectively	

Output� An annotation of G� with functions ���G ���� � FB� G � GP�G��� representing
the semantic functions computed in step � of the three step procedure of Section 	� and
with functions ��� n ��� � FB� n � N�� representing the greatest solution of the equation
system of De�nition 	�	 In fact� after the termination of the algorithm the functional
��� ��� satis�es


�n � N�� ��� n ����PMFPBV �G���� ����n� �PMOP �G���� ����n�

Remark� The global variables ���G ����� G �
S
fGC�G�� jG� � GP�G�� g� each of which is

storing a function of FB� are used during the hierarchical computation of the PMFPBV �
solution for storing the global e�ect of graphs that are a component of some graph G �
GP�G��	 Additionally� the global variables harmful�G�� G �

S
fGC�G�� jG� � GP�G�� g�

store whether G contains a node n with �� n �� �C onstf f 	 These variables are used to
compute the value of the predicate N onDestructed of Section 		 Finally� every �ow
graph G � GP�G�� is assumed to have a rank� which is recursively de�ned by


rank�G��df

�

 if G � GP

min�G��
maxf rank�G�� jG� � GP�G�� � G� � G g #  otherwise

where
GP

min�G���df fG � GP�G�� j �G� � GP�G��� G� 	 G
G� � G g

denotes the set of minimal graphs of GP�G��	

BEGIN

� Synchronization
 Computing ���G ���� for all G � GP�G�� �
GLOBEFF�G�� �� ���"

� Interleaving
 Computing the PMFPBV �Solution ��� n ��� for all n � N� �
PMFPBV �G�� �� ��� finit� binit�

END�

where

PROCEDURE GLOBEFF �G � �N�E� s� e� � ParallelF lowGraph"
�� �� � N�FB � LocalSemanticFunctional�"

VAR i � integer"
BEGIN

FOR i �� 
 TO rank�G� DO
FORALL G� � fG��

seq jG
�� � GP�G� � rank�G��� � i g DO

�



FORALL G�� � GC�G�� where G�� � �N ��� E��� s��� e��� DO

LET �n � N ��� �� n ���� �

���
��

IdB u C onst� �G�GC�pfg�n��� �harmful� �G� if n � N�
N

��� pfg�n� ���� if n � N�
X

�� n �� otherwise
BEGIN

harmful�G��� �� � j fn � N �� j �� n ���� � C onstf f g j �  �"
MFP�G��� �� ����� IdB�"
���G�� ���� �� ��� end�G��� ����

END

OD"
���G� ���� ��uf ���G�� ���� jG�� � GC�G

�� g
OD

OD

END�

PROCEDURE PMFPBV �G � �N�E� s� e� � ParallelF lowGraph"
�� �� � N�FB � LocalSemanticFunctional"
fstart � FB"
harmful � B�"

VAR f � FB"
BEGIN

IF harmful THEN FORALL n � N DO ��� n ��� �� C onstf f OD

ELSE

� Initialization of the annotation arrays ��� ��� and the variable workset �
FORALL n � Nnfsg DO ��� n ��� �� C onsttt OD"
��� s ��� �� fstart"
workset �� fn jn� s � �� n ��� �C onstf f g"

� Iterative �xed point computation �
WHILE workset �� � DO
LET n � workset
BEGIN

workset �� worksetnfn g"
IF n � NnN�

N

THEN

f �� �� n �� � ��� n ���"
FORALL m � succG�n� DO
IF ���m ��� f THEN ���m ��� �� f "workset �� workset� fm gFI

OD

ELSE

FORALL G� � GC�ParGraph�n�� DO
PMFPBV �G�� �� ��� ��� n ����

P
G���GC�ParGraph�n��nfG�g

harmful�G��� � OD"

f �� ���ParGraph�n� ���� � ��� n ���"
IF ��� end�ParGraph�n�� ��� f

THEN

��� end�ParGraph�n�� ��� �� f "

�



workset �� workset� f end�ParGraph�n�� g
FI

FI

END

OD

FI

END�

Let ��� n ���
alg

� n � N�� denote the �nal values of the corresponding variables after the
termination of Algorithm B�� and ��� n ���� n � N�� the greatest solution of the equation
system of De�nition ���� then we have�

Theorem B	� �n � N�� ��� n ���alg � ��� n ���

�




C Illustrating Figures
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