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Abstract

We introduce a new model of quantum finite automata. By using
ancilla qubits, it becomes possible to recognize any regular language
with certainty. Some nonregular languages can be recognized with one—
sided unbounded error. We analyze a class of languages that can be
recognized in this model in terms of a cascade composition of automata.
This also allows to treat the case of an automaton with both classical
and quantum states.

1 Introduction

Quantum Computers, if they can be built, could be much more powerful than
classical computers. However, their exact power is hard to estimate. This
motivates the study of quantum finite automata: they are the quantum coun-
terparts of a well-known classical model and may pave the way toward a better
understanding of the theory behind quantum computing.

Several definitions of quantum finite automata (QFA) have been proposed
([3, 7, 8]). Some of them are considerably less powerful than classical finite
automata (FA), others significantly more powerful. With the latter class, e.g.
the 2QCFA in [3], it seems quite difficult to characterize the languages that
they can recognize.
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We introduce a new model of QFA. It uses ancilla qubits to satisfy unitar-
ity conditions while simulating arbitrary FA. Ancilla QFA can recognize any
regular language with certainty. Just like other types of QFA, they can also
recognize certain nonregular languages with one—sided unbounded error. We
suggest a characterization of a subset of these languages; to this end, we in-
troduce a cascade composition of ancilla QFA and examine especially the case
where every part of the cascade either simulates a classical FA or needs no
ancilla qubits. This approach could be of interest also in the study of hybrid
models like the 2QCFA in [3].

The paper is organized as follows: section 2 contains a brief introduction to
QFA. Ancilla QFA are introduced and discussed in section 3, and the cascade
composition is derived in section 4. The final section summarizes the results
and points out some open questions.

2 Definitions

Generally, quantum finite automata (QFA), just like classical finite automata,
have a finite set @) of states, a finite input alphabet ¥ and a transition function
0 that specifies how the automaton’s state changes depend on the inputs.

Quantum finite automata are different from their classical counterparts in
that they can be in a superposition of states. A superposition is a vector in
a |@Q|-dimensional complex vector space. We can choose a canonical basis of
that space and a numbering of the states in () and identify the state ¢; with
the ith basis vector. We use the Dirac notation and write |g) for a state ¢. A
superposition of states is written as ) _, @i|gi); a; is the amplitude of state
g;. All superpositions are required to have unit norm.

On reading an input, a quantum finite automaton changes its superposition
of states. This change must preserve the unit norm; in finite-dimensional
vector spaces, that is the case iff the corresponding operator is unitary.

Orthogonal measurements can be applied in order to determine the au-
tomaton’s current state. They are given by an observable (a decomposition of
C®l into mutually orthogonal subspaces). When an observable is applied to a
state, that state changes probabilistically to its projection onto one of the sub-
spaces. The probability depends on the amplitudes; for example, measuring



a|qo) + Blg1) with the observable {qo, 1} takes the system to state |go) with
probability |a|* and to state |g;) with probability |3]?.

Quantum systems can be composed using the tensor product. For example,
if one part is in state |g) = >_; a;[g;), and the other is in state [p) = >, 5;(p;),
then together they are in state |¢) ® |p) = |q,p) = >, ; €iBjlai, pj)-

Several kinds of quantum finite automata have been proposed. We give a
brief description of two of them before introducing the new model.

2.1 MO-QFA

Measure-once QFA (MO-QFA) [8] are 5—tuples A = (Q, X, §, qo, Q) where Q
and ¥ are defined as above and Qr C @ is the set of accepting states. The
automaton is started in the configuration corresponding to its starting state
do, on a tape containing an input word over Xt to which # and $ have been
added as start and end markers, respectively (#,$ ¢ X). This is done with all
the QFA we discuss, even if it is not always explicitly mentioned.

For each 0 € ¥ U {#, $}, the transitions of the automaton on input o can
be written as a complex |@Q| x |@| matrix V,, whose entry ¢j is the amplitude
6(qi,0,q;) for going from state ¢; to state g; on input o. The automaton
processes ¢ by multiplying its current state vector with V.

In order for A to be a well-formed quantum finite automaton, these ma-
trices must be unitary. This is the case iff

Ya1,¢2 € Qo € SU{H,8}: Y 8(a1,0,0)8(a2,0,0) = { Lia=a

0 otherwise
q€Q

where = for ¢ € C is the complex conjugate of z.

MO-QFA perform their only measurement after processing the right end
marker. They use the observable (E, Er) where E is the subspace spanned by
{l¢) : ¢ € Qr} and Ep the subspace spanned by {|¢) : ¢ € Qr}. The word is
accepted if this projection leaves the automaton in an accepting state.

The power of MO-QFA depends on whether they are required to accept
with bounded error. Brodsky and Pippenger have shown [5] that the class of
languages recognized by MO-QFA with bounded error is exactly the class of
group languages (i.e., languages whose syntactic semigroup is a finite group).
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On the other hand, the language {w € {a, b}*||w|, = |w|s} can be accepted by
a MO-QFA with unbounded error [5].

2.2 MM-QFA

For bounded error acceptance, the power of MO-QFA is quite limited. One
way of adding a little irreversibility (and thus power) to QFA is by introducing
intermediate measurements.

However, doing a measurement that causes the superposition to collapse
to a single state is not useful—it would turn the QFA into a probabilistic
finite automaton. Instead, one can partition the set of states in three subsets
Qace, @rej and Qnop, called the accepting, rejecting and non-halting states,
respectively, and use the spans of these sets as observable. A measurement is
performed after every step.

Kondacs and Watrous [7] have shown that any language recognized by an
MM-QFA with bounded error is regular. Moreover, there are some surprisingly
simple languages that cannot be recognized by MM—-QFA with bounded error:
one example is the language {a, b}*a.

3 Ancilla QFA

3.1 Definition

For finite automata, the restriction to unitary transitions is quite limiting.
We’ll show a way of getting around this restriction. The idea is to add ancilla
qubits, so that each transition can be unitary. Formally, this is done by adding
an output tape to the QFA.

Definition 3.1 (ancilla QFA) An ancilla QFA is a 6-tuple (Q, %, Q, §, g0, QF)
where Q, X, qo and Qr are just as with MO-QFA. In addition, there is a finite
output alphabet Q0 and the transition function 6 : Q x X x Q x Q — C[0, 1].

Since the output tape may contain a superposition of words, we need a
modified well-formedness constraint for 9.



Lemma 3.2 The evolution specified by 0 is well-formed if Vo € X, q1,q2 € Q -

_ 1 —
> Sawoalaoae) = { o "0 @)
geEQ,weN L 2

Proof: A configuration of an ancilla QFA is a pair (7, ¢) where 7 is the contents
of the output tape, and ¢ is the current state. Each input symbol ¢ € ¥
specifies an operator V, as described before. These operators act on 2*®Q. We
have to show that for every o € X: if 7 # 7' or ¢ # ¢/, then V,|7,q) L V,|7',¢').

Since the automaton moves right after every step and writes an output
symbol every time, V|7, q) L V,|7',¢') whenever 7 # 7'.

So assume 7 = 7' and ¢ # ¢'. Then V,|7,q) L V,|7,¢") if the condition of
the Lemma holds. O

The V, here is an infinite—-dimensional matrix whose rows and columns are
indexed by configurations. However, since the new state and output symbol
do not depend on the tape contents, it is possible to write this matrix with
1©2]|@| columns and |Q| rows.

Similar to simple 2-QFA [7], simple ancilla QFA are simple because the
output symbol depends only on the state.

Definition 3.3 (Simple ancilla QFA) An ancilla QFA is simple if there is
a function D : Q — Q such that Vo € X,q,¢' € Q,w € Q :6(q,0,¢,w) # 0=
D(q) = w.

Lemma 3.4 For every ancilla QFA A, there is a simple ancilla QFA A' sim-
ulating A.

Proof: A’ needs enough output symbols so that D can be injective. 0

It could be argued that adding a quantum output tape whose length is not
constant means that ancilla QFA are not properly finite. On the other hand,
that output tape is never read. Technically, we could use just enough ancilla
qubits to hold a single output symbol. There are two ways of realizing this.
The ancilla qubits could be reset after every step; this would be an irreversible
operation. There is a more complicated solution which is completely reversible.



We use |2 qubits. On each qubit, we can perform two unitary operations
U and V' as well as their inverses. Choose for example U = ﬁa, V = ﬁb where
Us, Uy are as in the proof of Theorem 1 in [3]. Then to write output w;, apply
U to the ith qubit and V' to all other qubits.

With slight modifications, [log, ||| qubits would be enough. With more
operations per qubit, that number could be reduced further. Of course, we
could also use |{2| pairwise prime numbers p; and encode w; as UPiV; then a
single qubit is enough.

3.2 Properties of ancilla QFA

Ancilla QFA can simulate any classical finite automaton.

Lemma 3.5 For every reqular language L, there is k € N such that an ancilla
QFA with k output symbols can recognize L exactly.

Proof: Let L be a regular language, and A a minimal deterministic finite
automaton recognizing L. For every input symbol o, let G, be the directed
graph whose vertices are the states of A with an edge from vertex s to vertex
s" iff A, when in state s and reading input o, goes to state s’. Now let m(o)
be the maximum in-degree of all the vertices in G,, and k = max, m(o).
Then there is an ancilla QFA B with no more than k output symbols which
recognizes L exactly.

B has one state for each state of A, say n states altogether. The transition
function of A on input o can be written as an nxn matrix M such that M;; =1
iff there is a transition from state ¢ to state j on input o and 0 otherwise. All
row vectors of M are normalized because A is deterministic.

If M is unitary, then M can serve as transition matrix for B. If M is not
unitary, there are states 7, j, k of A with ¢ # j such that d4(i,0,k) = 1 and
d4(j,0,k) = 1. We add outputs to obtain a finite transducer A’ with transition
function § 4/ such that 04/ (i, 0,k,wo) = 1, 04 (3,0, k,wy) =0, 04 (j, 0, k,wp) =
0, and d4(j, 0, k,w;) = 1. By repeating this, we can create a unitary transition
matrix for B on input o, using no more than m(o) output symbols. Since this
can be applied for each input symbol, we do not need more than k£ output
symbols altogether.



B recognizes L exactly because all amplitudes in the transition matrices of
B are either 1 or 0. U

Corollary 3.6 For every regular language L, there is k € N such that a QFA
using k ancilla qubits can recognize L exactly.

Thus, Lemma 3.5 is a special case of the fact that any transformation on
qubits can be realized by a superoperator in a suitably enlarged space [1, 6].

One obvious question is whether there is some constant ¢ € N such that
any regular language can be recognized by some ancilla QFA using no more
than c¢ ancilla qubits. The answer is no.

Lemma 3.7 For k € N, let Ly be the class of languages recognizable with
bounded error by an ancilla QFA using no more than k output symbols. Then
Ly C Ly

Proof: We use Theorem 3.3 from [5] which says that a language can be rec-
ognized with bounded error by a MO-QFA iff the language can be recognized
by a classical group finite automaton. Thus we only need to show that no con-
stant number of output symbols can guarantee reversibility, where reversibility
means that given the last output symbol, the current state, and the input sym-
bol, the preceding state is uniquely determined.

For k € N, let X = {ao, ..., ar}, Ly = Zjapa; ...ag_1. Ly is recognized by

the deterministic finite automaton A with k£ + 1 states sg,..., s; and
S1 _] =0
0a(si,a;) =4¢ siq1 j=tandi <k -1

So otherwise

where sg is the starting state and si is the only accepting state. This automa-
ton is minimal, and maxg,,ex, m(a;) = m(ag) = k + 1, so by Lemma 3.5, an
ancilla QFA with k£ + 1 output symbols can recognize L; exactly. However,
with fewer than & + 1 output symbols, there have to be two states g, and g,



such that 6(gz, ag, g1, a) # 0 and (g, ao, g1, a) # 0, so we do not have complete
reversibility. 0

Some people seem to consider proofs more aesthetic if they work with a
two—letter alphabet. The proof of Lemma 3.7 can be modified to work with a
two-letter alphabet by choosing a suitable encoding, e.g. encoding a; as a‘b.

4 Cascade composition of ancilla QFA

Ancilla QFA can be quite powerful if we allow unbounded error recognition.
An automaton A accepts a language L with one—sided unbounded error if A
accepts all words from L with certainty and rejects words not from L with a
probability > 0 (or vice versa). Because the error is one-sided, it is possible
to run the automaton many times to obtain a better error bound.

Ambainis and Watrous [3| have shown that a 2-way automaton with quan-
tum and classical states (2QCFA) can recognize the palindromes over the al-
phabet {a, b} (Lya) in exponential time and {a"b"|n € N} (L.,) in polynomial
time. The state of a 2QCFA has a quantum and a classical part. When the au-
tomaton reads an input, it applies a quantum operation to the quantum part.
This operation depends on the classical state and the input. The operation
can be a unitary transformation or an orthogonal measurement. Afterwards,
the automaton changes its classical state depending on the current classical
state, the input symbol and the result of the measurement, if applicable. The
head movements of the automaton are classical.

It seems difficult to characterize the class of languages that can be recog-
nized by 2QCFA, so we use a restricted model that is still powerful.

For L,q and L., the ability to move left or take a measurement at any time
is needed only to control the running time. A 1QCFA (i.e., a 1-way automaton
with quantum and classical states; it works just like a 2QCFA except the head
can only move right) could recognize both languages with one—sided unbounded
error and make only a single measurement. Such a 1QCFA can be simulated
by an ancilla QFA. This ancilla QFA has a special structure; it is equivalent
to a cascade composition of an ancilla QFA simulating a classical FA and an
MO-QFA.



4.1 Composition of QFA

It is known [8] that MO—-QFA are closed under direct sum and tensor product.
The direct sum A® B of two MO-QFA is a MO-QFA whose transition matrices

have the form N
s 0
Us = ( 0 B, ) ’

where A, and B, are the transition matrices for A and B on input o.

The tensor product A ® B is a MO-QFA whose transition matrices are
U, =A; ® B,.

These compositions do not allow A and B to interact. What about an
analogue of the serial or cascade compositions of classical finite automata [4]?
This requires adding outputs to one of the QFA and having them read by the
second QFA, which could be difficult. However, it turns out that once we write
down the transition matrices for the composite QFA, the outputs are no longer
necessary.

Definition 4.1 (Cascade composition of QFA) Let A = (Q, %, 4, g, QF),
B = (P,Q,v,po, Pr) be two QFA, and h : Q x ¥ — Q a mapping. The
cascade composition of A and B using h is an automaton A ©p B = (Q X
P, %9, (qo,p0), Qr X Pr) where

9((q,p),0,(d,p)) = 0(q,0,4) - v(p, h(g,0),P).

Serial and parallel composition are special cases of cascades: for serial
composition, h depends on g only; parallel composition is obtained when 2 = ¥
and h(q,0) = o for all ¢ € Q.

Let A, (B,) be the transition matrix of A (B) on input ¢ (w), and let A%/
stand for the entry in the ith row and jth column of A,. Then

A2 Buy.o) Ay Bhigo.o)

(o

(A @h B)g— = Ai—vo . Bh(QhU) Ai_al . Bh(q1,0) [P (3)

Thus, the action of 0 on A ®p, B can be written as

(Qap) 'i> (Aa(q)’ Bh(q,a) (p)) (4)



Lemma 4.2 If A and B are QFA, then so is A ®y B, for any h.

Proof: We show that, if A, and all the Byy, ) are unitary, then so is (A®,B),.
All rows are normal, since for all k,

Q| |P| Q|

DD AT PIB, o = > 145
=1

i=1 j=1

2:1’

because the rows of A, and all By, ») are normal. The rows are also pairwise
orthogonal (by a similar argument). O

Lemma 4.3 Let A be an ancilla QFA with §(q;, 0, qj,wr) = a; ;. Let A’ be
an automaton with §'(q;, 0, q;) = D, i ji- A’ need not be well-formed. Define
B, B’ and (A ®y B)" similarly. Then

(Ao B) = A" o B'.

Proof: Let the transition Matrix for B on input h(g;, o) be B;, and define B
similarly for B’. Then

040,0,030 040,0,130
Ao, B=| @o0B1 aio1B:

B(') Zk 0,0,k B(’) Zk 0,1,k
(Ao B) = | BiXraror Bidpaiik

Dok 00k Dk Q01k
With A’ = | 210k 2op@1k --- |,the Lemma follows. O

The ® composition is associative, but not in general commutative. It is
well-defined on ancilla QFA: Let A be an ancilla QFA with 6(g¢;, 0, ¢j, wi) =
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; ;- For the cascade, we use A" with d0(qj,0,q;) = > ijr. A’ need not
be a QFA. However, (A ®, B)' = A’ ®, B' by Lemma 4.3, so in cascading
ancilla QFA we can first eliminate the ancilla qubits, then cascade and then
add ancilla qubits to the result until it is a well-formed QFA.

There are ancilla QFA with four or more states which cannot be decom-
posed as a cascade composition of nontrivial ancilla QFA.

Note that in order for an automaton to be an ®—product, all its transition
matrices have to decompose simultaneously in the manner of equation 3. There
are ancilla QFA for which this is not the case.

On the one hand, the number of states in A ® B is the product of the
numbers of states in A and B, so if an ancilla QFA has a prime number of
states, decomposition is not straightforward. It is possible to add dummy
states so that the automaton can be decomposed, but then one of the factors
may have as many states as the original.

4.2 A cascade of classical FA and MO-QFA

We show how a 1QCFA can be simulated by a cascade composition of ancilla
QFA. Our definition of 1QCFA is almost identical to the definition of 2QCFA
in [3].

Definition 4.4 A 1QCFA is a 10-tuple (Q,S,%,Q,d,h, qo, So, QF, Sr) with
quantum states @, classical states S, input alphabet X, starting states qq, So
and accepting states Qp, Sp. The transition function 6 : S x ¥ — S specifies
the classical state changes. The function h : S x ¥ — € specifies the unitary
transformation w € 2 to be performed on the quantum state.

When the automaton is in state (s,q) and reads input o, it changes its
classical state to §(s,o) and performs the operation h(s,o) on its quantum
state. The automaton accepts if, when it reads the right end marker, its
classical state is in Sp and a measurement with the observable (Q \ Qr, Qr)
leaves the quantum state in a state from Qp.

Lemma 4.5 Fvery 1QCFA can be stimulated by a cascade composition A®y B
of two ancilla QFA. A stmulates a classical FA and B simulates a MO-QFA.
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Corollary 4.6 A language can be recognized with one—sided unbounded error
by a 1QCFA iff it is the inverse image under some finite transduction of a
language that can be recognized with one—sided unbounded error by a MO-QFA.

5 Conclusions and open questions

We have introduced a new model of QFA and shown some of what it can do
as well as suggesting a more general framework for analysis.

Ancilla QFA can simulate classical FA, and the simulation is straightfor-
ward. This is an advantage compared to the simulation using 2-QFA [7]. The
cascade composition allows to study hybrid models, which are interesting be-
cause an automaton that is mostly classical and uses just a few quantum bits
might be one of the earliest types of quantum computers that can be built.

Several extensions of the model are possible. For example, 2—way ancilla
QFA would be interesting, as well as ancilla QFA with intermediate measure-
ments. In order to strengthen the result of Corollary 4.6, it would be desirable
to characterize the class of languages that can be recognized with one—sided
unbounded error by MO-QFA. Equation 4 suggests that it is possible to de-
scribe the semigroups of languages recognized by 1QCFA (and generally by
longer cascades of this type) in terms of a wreath product of finite semigroups
and certain types of infinite semigroups.

References

[1] D. Aharonov, A. Kitaev, and N. Nisan. Quantum circuits with mixed
states. In Proceedings of the 30th Annual ACM Symposium on Theory of
Computing (STOC), pages 20-30. ACM Press, 1998.

2] A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths,
weaknesses and generalizations. FOCS, (39):332-341, 1998.

(3] A. Ambainis and J. Watrous. Two—way finite automata with quantum and
classical states. Technical Report c¢s.CC/9911009, 1999.

12



[4] Michael A. Arbib. Theories of Abstract Automata. Prentice Hall, Inc., New
York, 1969.

[5] A. Brodsky and N. Pippenger. Characterizations of 1-way quantum finite
automata. Technical Report TR-99-03, University of British Columbia,
1999.

6] J. Gruska. Quantum Computing. McGraw—Hill, 1999.

(7] A. Kondacs and J. Watrous. On the power of quantum finite state au-
tomata. FOCS, (38):66-75, 1997.

(8] C. Moore and J. P. Crutchfield. Quantum automata and quantum gram-
mars. Technical report, Santa Fe Institute, 1997.

9] J. Preskill. Lecture Notes for Physics 229: Quantum Information and Com-
putation. http://www.theory.caltech.edu/people/preskill /ph229/, 1998.

13



