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Zusammenfassung

Englische Fachbegriffe

Die vorliegende Dissertation ist mit Ausnahme dieser Zusammenfassung in englischer
Sprache geschrieben. Da Veröffentlichungen in der Geophysik praktisch ausschließlich in
Englisch verfasst werden, sind viele aus dem Englischen kommende Fachtermini auch in
der deutschen Sprache gebräuchlich. Bei neueren Fachbegriffen – wie „Common-Reflection-
Surface Stack“ – existiert oft kein angemessenes deutsches Äquivalent. In solchen Fällen
wurde deshalb bewusst auf die Übersetzung verzichtet.

Einleitung

Die Zielsetzung der seismischen Datenverarbeitung besteht darin die Lösung eines inver-
sen Problems zu finden. Dabei möchte der Geophysiker oder speziell der Reflexionsseis-
miker mit Hilfe des aufgezeichneten Wellenfeldes ein geologisches Bild erhalten. Dieses
Abbild des Erduntergrundes wird z.B. in der Erdölindustrie verwendet, um zu entschei-
den, wo Bohrlöcher gebohrt werden. Falls ein Bohrloch „trocken“ ist, das heißt, dass
kein Kohlenwasserstoffreservoir gefunden wurde, liegt der Verlust im Bereich mehrerer
Millionen Dollar. Daher gibt es stets Bemühungen die Qualität bestehender Abbildungs-
verfahren zu verbessern und gleichzeitig die Kosten der Datenverarbeitung zu senken.

Im Prinzip benötigt der Geophysiker vier Schritte, um das Erdinnere abzubilden:

i. Führe eine Datenakquisition durch, bei der jeder Tiefenpunkt mehrmals beleuchtet
wird. Das Resultat sind sogenannte mehrfach überdeckte Daten.

ii. Konstruiere ein erstes grobes, glattes elastisches Modell des Untergrundes.

iii. Erstelle eine simulierte zero-offset (ZO) Sektion. Dies ist ein Seismogramm, bei dem
Quelle und Empfänger an ein und demselben Ort sind.

iv. Transformiere die ZO Sektion von dem Zeitbereich in den Tiefenbereich. Dieser
Prozess wird als Tiefenmigration bezeichnet.

Jeder der vier Schritte ist in der geophysikalischen Literatur durch eine große Anzahl von
Publikationen ausführlich dokumentiert. Ich möchte hier nur auf zwei exzellente Bücher
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Zusammenfassung

verweisen, die wiederum eine Vielzahl von Veröffentlichungen zitieren. Das Buch von
Yilmaz (1987) beschäftigt sich mit vielen praktischen Aspekten der seismischen Daten-
verarbeitung, wohingegen sich das Buch von Sheriff und Geldart (1995) mehr auf die
Theorie und die Seismologie konzentriert. Rein theoretisch und sehr ausführlich behan-
deln Aki und Richards (1980) die Wellenausbreitung in der Erde.

In dieser Arbeit konzentriere ich mich auf die Anwendung von drei kinematischen Wel-
lenfeldattributen, mit der Absicht einerseits die Qualität der Bilder im Zeit- und Tiefen-
bereich zu verbessern und andererseits die Rechenzeit der letzten drei Schritte zu redu-
zieren. Dabei taucht die Frage auf: „Ist es möglich, dreiviertel des Abbildungsprozes-
ses mit nur drei kinematischen Wellenfeldattributen zu bewältigen?“ Die Antwort lau-
tet: „Im Prinzip ja.“ Natürlich ist die Anwendung der kinematischen Wellenfeldattribute
von konventioneller Datenverarbeitung begleitet und die Attribute sind in konventionel-
le Konzepte eingearbeitet.

Charakteristische Muster und Attribute in der Seismik

Mustererkennung und Musterbeschreibung sind die Basis wissenschaftlicher Arbeit. Ein
ganzer Katalog seismischer Attribute steht zur Verfügung. Diese Attribute charakterisie-
ren geometrische, kinematische, dynamische oder statistische Muster in den aufgezeich-
neten Daten. Chen und Sidney (1997) zählen ungefähr 80 seismische Attribute zur Reser-
voirbestimmung und Reservoirbeobachtung auf, die in den letzten 30 Jahren gefunden
wurden. Zwei dieser Attribute werden in dieser Arbeit verwendet. Das eine ist der sem-
blance coefficient (Ähnlichkeitskoeffizient), der für die Kohärenzanalyse eingesetzt wird.
Das andere ist die Enveloppe, die hier im Bereich der zerstörungsfreien Prüfung einge-
setzt wird. Die drei kinematischen Wellenfeldattribute, sprich die des Common-Reflection-
Surface (CRS) Stack, sind nicht in dem Katalog erwähnt, da der CRS Stack sehr neu ist,
Tygel et al. (1997). Dieser simuliert eine modellunabhängige ZO Sektion von mehrfach
überdeckten Daten. Das heißt, dass keine Geschwindigkeitsinformationen über den Un-
tergrund bekannt sein müssen. Die ZO Sektionen des CRS Stack sind durch die Kohä-
renzanalysen an den Daten bestimmt. Eine andere modellunabhängige ZO Simulations-
methode ist die multifocusing homeomorphic imaging Methode. Die kinematischen Attribu-
te dieser Methode werden zur Vorhersage und zur Abschwächung bzw. Unterdrückung
von Mehrfachreflexionen angewandt, Keydar et al. (1998) und Zaske et al. (1999). Bevor
ich einen Überblick über die Anwendungen der kinematischen Wellenfeldattribute des
CRS Stack gebe, was einem Überblick dieser Arbeit gleichkommt, beschreibe ich kurz,
nach welchen Mustern viele Reflexionsseismiker suchen, um das Erdinnere abzubilden.

Ein grundlegendes Muster in der Seismik ist eine hyperbolische Reflexionskurve, die
man erhält, wenn das Signal einer Punktquelle von vielen Empfängern aufgezeichnet
wird (common-shot configuration). Der Einfachheit halber befinden sich die Quelle und die
Empfänger auf einer ebenen Erdoberfläche wie in Abbildung 1. Für eine ebene, hori-
zontale Grenzschicht beschreibt die Reflexionskurve eine Hyperbel. Die Gleichung der
Laufzeitkurve ist eine Funktion der Entfernung zwischen Quelle und Empfänger (off-
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set), der Geschwindigkeit des Mediums oberhalb der Grenzschicht und der doppelten
Laufzeit der Vertikalen zwischen Quelle und Reflektor. Falls der Reflektor geneigt oder

Quelle
E m p f ä n g e r

Abbildung 1: Common-shot configurati-
on.

gekrümmt ist, muss die Funktion der Lauf-
zeitkurve entsprechend geändert werden,
um die Reflexionskurve, oder Teile dieser,
weiterhin richtig im Seismogramm beschrei-
ben zu können. Die hyperbolische Laufzeit-
kurve im Seismogramm wird Primärreflexi-
on genannt, wenn die propagierende Welle
nur einmal auf ihrem Weg von der Quelle
durch das Medium zu den Empfängern re-
flektiert wurde. Wird die eingestrahlte Wel-
le mehrmals zwischen zwei Reflektoren re-
flektiert, treten die bereits oben erwähnten
Mehrfachreflexionen auf. Theoretisch sind
die kinematischen Wellenfeldattribute des
CRS Stack immer mit Primärreflexionen ver-
knüpft.

Jäger et al. (2001), Mann et al. (1999) und Müller (1999) haben gezeigt, dass der CRS
Stack zero-offset Sektionen mit verbessertem Signal-zu-Rausch (S/N) Verhältnis und ver-
besserter Kontinuität der Reflexionsereignisse im Vergleich zu herkömmlichen ZO Simu-
lationen erzeugt. Mit anderen Worten: Die charakteristischen Muster in den gemessenen
Daten werden unter Verwendung des CRS Stack besser beschrieben als durch herkömm-
liche Methoden. Diese Ergebnisse haben mich ermutigt, mit den CRS Stack Attributen
nach Anwendungen zu suchen, um weitere Schritte des Abbildungsprozesses des Erd-
untergrundes zu verbessern oder zu beschleunigen.

Übersicht und Zusammenfassung der Arbeit

Strahlentheorie

Die Strahlentheorie bildet die Basis für den CRS Stack, die true-amplitude (TA) Migrati-
on und die Inversion eines Geschwindigkeitsmodells. Die Hochfrequenzapproximation
der akustischen Wellengleichung führt zur Beschreibung der Wellenpropagation mittels
Strahlen. Dabei beschreibt die Eikonalgleichung (1) die Kinematik der Strahlen und die
Transportgleichung (2) die Dynamik:

(r� )2
=

1
c2 (1)

2rA � r� + Ar2� = 0 : (2)

Die Gleichungen von Bortfeld (1989) beschreiben Laufzeiten in der näheren Umgebung
eines (zentralen) Strahls, so genannte paraxiale Laufzeiten, mittels der surface-to-surface
Propagatormatrix T. Die Propagatormatrix verknüpft Verschiebungsvektoren und Diffe-
renzen von Langsamkeitsvektoren, die sich auf verschiedenen Flächen befinden, linear
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Abbildung 2: Illustration der NIP- und N-Eigenwellen sowie des Auftauchwinkels �, des
Normalstrahls.

miteinander, siehe Gleichung (2.13) und Abbildungen 2.1 und 2.2. Das Besondere daran
ist, dass lediglich die Vektoren auf der Anfangs- und Endfläche bekannt sein müssen.
Informationen über das Medium dazwischen sind nicht notwendig. Mit Hilfe der pa-
raxialen Laufzeiten sowie der 4� 4 Matrix T bzw. ihrer vier 2� 2 Submatrizen werden
die (erste) Fresnelzone, die (erste) projizierte Fresnelzone und der geometrische Ausbrei-
tungsverlust (geometrical spreading, GS) von Hubral et al. (1992b) und Schleicher et al.
(1997) ausgedrückt. Desweiteren basieren sowohl der CRS Stack als auch meine parsimo-
nious true-amplitude Migration auf den Bortfeldschen Formulierungen.

Fast alle zitierten Veröffentlichungen in dieser Arbeit behandeln die 3-D Wellenausbrei-
tung. Von Kapitel 2.3 an schreibe ich alle Gleichungen für den 2-D Fall. Der Grund dafür
ist sehr einfach: Zum momentanen Zeitpunkt ist die praktische Arbeit mit dem CRS Stack
für den 2-D zero-offset Fall möglich. Trotzdem können sämtliche Methoden, die in dieser
Arbeit präsentiert werden, für 3-D erweitert und auch praktisch umgesetzt werden, wenn
der 3-D CRS Stack programmtechnisch fertiggestellt ist.

Common-Reflection-Surface Stack

Der Operator des CRS Stack wird durch die hyperbolische Laufzeitgleichung

t2
hyp(�; h) =

�
t0+

2
v0

(� � �0) sin�
�2

+

2
v0

t0 cos2�

�
(� � �0)2

RN
+

h2

RNIP

�
(3)

im midpoint–half-offset–Zeitraum (�-h-t) beschrieben. Seien �S und �G die Akquisitions-
koordinaten von Quelle und Empfänger, so ist die midpoint-Koordinate � = (�G + �S)=2
und die half-offset-Koordinate h = (�G � �S)=2. Die Zweiweglaufzeit des Normalstrahls
ist t0, die Mediumsgeschwindigkeit der ersten Schicht v0. Die drei CRS Stack Attribute �,
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RNIP und RN entsprechen dem Auftauchwinkel des Normalstrahls an der Erdoberfläche,
dem Radius der Wellenfront des explodierenden Diffraktors NIP (normal incidence point)
und dem Radius der Wellenfront eines am Punkt NIP explodierenden Reflektorelemen-
tes, Hubral (1983). Anhand der Abbildung 2 wird deutlich, dass die CRS Stack Attribute
integrative Größen sind. Das heißt, dass jedes Attribut durch den gesamten Verlauf des
Normalstrahls vom Punkt NIP zum Auftauchpunkt �0 bestimmt ist. Durch eine Kohä-
renzanalyse entlang des CRS Stack Operators werden die CRS Stack Attribute gewählt,
die die höchste Kohärenz aufweisen. Die Normalwelle besitzt am Punkt NIP dieselbe
Krümmung wie der Reflektor. Diese Kurve wäre im Dreidimensionalen eine Fläche, eben
eine common-reflection-surface. Die paraxialen Laufzeiten der Gleichung (3) spannen im
(�-h-t) Raum eine Fläche auf, über die summiert wird. Das Summationsergebnis, die Sta-
pelung (engl. stack), wird in den Punkt P0 mit den Koordinaten (�0; h = 0; t0) platziert,
siehe Abbildung 3.3. Wird dies für alle Punkte der Ebene h = 0 durchgeführt, ist das Er-
gebnis eine simulierte zero-offset Sektion.

Bislang ist die Größe der Apertur willkürlich bzw. auf der Basis von Erfahrungen ge-
wählt worden. Eine minimale Apertur, die das beste S/N Verhältnis ergibt, stimmt mit
der so genannten (ersten) projizierten Fresnelzone überein, die unter Verwendung der
CRS Stack Attribute ausgedrückt werden kann, siehe Gleichung (3.11) für die paraboli-
sche Laufzeitformel (3.2) bzw. Gleichung (3.12) für die hyperbolische Laufzeitformel (3).
Da stets von der ersten Fresnelzone oder ersten projizierten Fresnelzone die Rede ist,
wird das Wort „erste(n)“ im weiteren nicht mehr erwähnt. Im 2-D Fall, der hier immer
betrachtet wird, reduziert sich die Fresnelzone auf eine „Fresnelkurve“. Ich bleibe jedoch
bei dem Ausdruck Fresnelzone. Geometrisch betrachtet ist die projizierte Fresnelzone
die erste Fresnelzone auf dem Reflektor projiziert entlang von paraxialen Normalstrah-
len auf die Akquisitionsfläche. In Abbildung 2 ist der blaue Strahl der (normale) Zen-
tralstrahl und die braunen (normalen) Strahlen sind zugehörige Paraxialstrahlen. Die er-
ste Fresnelzone auf dem Reflektor entspricht lokal der Normalwelle am Punkt NIP und
ist begrenzt durch die Paraxialstrahlen, die im Zeitbereich folgendes Kriterium erfüllen:
Die Laufzeitdifferenz zwischen dem reflektierten Paraxialstrahl und dem diffraktierten
Strahl, der durch die Punkte �1 und NIP verbunden ist, ist gleich der Länge des Signals
TW bzw. im Frequenzbereich gleich der halben Länge der Periode T eines monofrequen-
ten Signals. Dies gilt natürlich auch für den Paraxialstrahl, der die zweite Grenze der
projizierten Fresnelzone �2 markiert. Damit wird die Apertur für ZO berechnet und ba-
siert nicht mehr auf Abschätzungen und Erfahrungen.

Da sich der CRS Stack Operator über endliche offsets erstreckt, die Gleichungen jedoch
nur für ZO gelten, habe ich eine Näherung auf der Basis der Arbeit von Kvasnička and
Červený (1996) vorgeschlagen. Da die Implementation dieser Näherung in den bestehen-
den CRS Stack sehr zeitintensiv sein wird, steht diese Arbeit noch aus. Trotzdem wird
die projizierte Fresnelzone zur Bestimmung der Apertur bereits im CRS Stack wie folgt
genutzt: Für den neuen Fresnel CRS Stack wird die Ellipse in Abbildung 3.8 als Aper-
tur verwendet. Für ZO entspricht die Apertur (kleine Achse der Ellipse) der projizierten
Fresnelzone, die große Halbachse der Ellipse entspricht in half-offset Richtung ebenfalls
der projizierten Fresnelzone.
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An einem realen Datenbeispiel (zur Verfügung gestellt von der BEB Erdöl Erdgas GmbH)
ist zu erkennen, dass der Fresnel CRS Stack der Abbildung 3.12 nicht nur besser ist als die
entsprechende konventionelle ZO Simulation in Abbildung 3.9, sondern auch besser ist
als der bereits existierende Initial CRS Stack (Abbildung 3.11) und Optimised CRS Stack
(Abbildung 3.10). Was bedeutet hier „besser“? Zum einen ist das S/N Verhältnis gegen-
über den anderen ZO Simulationen größer geworden, zum anderen wurde die Auflösung
erhöht, ohne dass die Kontinuität der Reflexionsereignisse nachgelassen hat. In den Kä-
sten A bis D sind Unterschiede in den Sektionen gut erkennbar.

In der Theorie wird davon ausgegangen, dass der geometrische Ausbreitungsverlust in
einem geschichteten Medium, z.B. eine Schicht von Meeressedimenten, gegenüber allen
anderen Verlusten während der Wellenpropagation dominiert. Kann man den geometri-
schen Ausbreitungsverlust rückgängig machen, erhält man ein Seismogramm das, Refle-
xionsereignisse zu großen Laufzeiten sichtbar macht, und was viel bedeutender ist, die
Amplituden der Reflexionsereignisse geben, bis auf einen konstanten Faktor, die Quell-
stärke, den Reflexionskoeffizienten der jeweiligen geologischen Grenzschichten wieder.
Der 2-D GS Faktor (3.16) berechnet nur den Verlust in der Strahlebene (in-plane GS). In
der realen Erde findet der Ausbreitungsverlust auch senkrecht dazu statt (out-of-plane
GS). Dieser kann mittels Gleichung (3.18) approximiert werden.

Dadurch, dass der Ausbreitungsverlust durch die CRS Stack Attribute berechnet werden
kann, ist es nicht mehr notwendig, einen beliebigen Verstärkungsfaktor zu verwenden,
um Reflexionsereignisse sichtbar zu machen. Desweiteren sind die Amplituden in den
GS-korrigierten ZO Sektionen ein Maß für die Impedanzkontraste im Untergrund und
liefern somit direkt geologische Informationen. Voraussetzung für die Verwendbarkeit
der Informationen ist ein so genanntes true-amplitude pre-processing. Leider wurde auf die
Erhaltung der Amplitudenverhältnisse während der Datenverarbeitung des BEB Daten-
satzes nicht konsequent geachtet. Die Unterschiede und Vorteile zwischen Abbild 3.12,
konventioneller Verstärkungsfaktor, und Abbild 3.13, in-plane GS- und out-of-plane GS-
Faktor, sind dennoch zu sehen. Alle Reflexionsereignisse sind in Abbildung 3.13 zu er-
kennen; nahe der Oberfläche sind sie schwächer. Die große, stark verrauschte Region
unterhalb der Domstruktur wurde nicht hervorgehoben, sondern abgeschwächt.

Der neue Fresnel CRS Stack, die projizierte Fresnelzone sowie der geometrische Ausbrei-
tungsverlust finden in den kommenden Abschnitten weitere Verwendung.

True-amplitude Migration mit CRS Stack Attributen

Das Ziel der true-amplitude Migration ist die Transformation der ZO Sektion aus dem Zeit-
bereich in den Tiefenbereich unter Berücksichtigung der Amplituden. Das heißt, dass die
Amplituden nach der Transformation den Reflexionskoeffizienten der Grenzschichten
entsprechen, bzw. um einen konstanten Faktor abweichen. Für die TA Migration ver-
wende ich die gewichtete modifizierte Diffraktionsstapelung von Schleicher et al. (1993).
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Diese Migration vom Kirchhofftyp geht davon aus, dass der Untergrund aus Diffrakti-
onspunkten zusammengesetzt ist. Gleichung (4.4) ist die entsprechende zweidimensio-
nale TA Migration. In Worte gefaßt geht man bei diesem Typ der post-stack Kirchhoff-
Migration wie folgt vor, siehe dazu Abbildung 4.2:

i. Für einen beliebigen Punkt M im Untergrund, welcher nicht mit einem Punkt MR
auf einem Reflektor übereinstimmen muß, werden mittels ray tracing Strahlen zu
jedem ZO Quell-Empfänger Paar gezogen. Damit ist die Diffraktionskurve TD be-
kannt.

ii. Die antikausale halbe Zeitableitung wird von jeder analytischen Spur berechnet.
Der Imaginärteil der analytischen Spur wird mit Hilfe der Hilberttransformierten
der realen, sprich gemessenen, Spur berechnet.

iii. Jeder Punkt der Diffraktionskurve wird mit der Gewichtsfunktion (4.10) multipli-
ziert.

iv. Die Daten entlang der Diffraktionskurve werden gestapelt, das heißt aufsummiert,
mit 1=

p
2� multipliziert und in den zugehörigen Diffraktionspunkt in die Tiefe

platziert.

v. Dies wird für jeden Punkt des diskretisierten Untergrundes durchgeführt.

Nachdem die konventionelle Methode bekannt ist, erkläre ich meine 2-D parsimonious
true-amplitude Migration. Das Wort „parsimonious“ heißt übersetzt „geizig“ oder „spar-
sam“. Im Laufe der Erläuterungen wird deutlich bzw. weise ich darauf hin, warum dieses
Adjektiv gewählt wurde.

Eine simulierte ZO Sektion des CRS Stack dient als Eingangsdatensatz für die parsimo-
nious TA Migration. Die zugehörigen CRS Stack Attribute werden entweder für eine Mi-
gration mittels Stapelung oder mapping verwendet. Zunächst gehe ich auf die Migrati-
on mittels Stapelung ein. Die Diffraktionskurve wird mit der hyperbolischen paraxialen
Laufzeitgleichung (3) berechnet, indem RN = RNIP gesetzt wird. Damit hat die Normal-
welle am Punkt NIP den Radius Null, entsprechend eines Diffraktionspunktes. Folglich
ist das aufwändige ray tracing wie in Punkt i.) bzw. Abbildung 4.2 nicht erforderlich.
Desweiteren wird nicht entlang der gesamten Diffraktionskurve, die durch die Aufnah-
megeometrie beschränkt ist, aufsummiert, sondern nur innerhalb der projizierten Fres-
nelzone, siehe gestrichelte Linien ausgehend von �1 und �2 in Abbildung 4.3.

In der Abbildung ist zu sehen, dass die projizierte Fresnelzone um den stationären Punkt
NR platziert wurde. Der stationäre Punkt ist derjenige, an dem die Diffraktionskurve TD
und die Reflexionskurve TR tangential zueinander sind. Den Hauptanteil des reflektier-
ten Signals erhält man durch die Aufsummierung innerhalb der projizierten Fresnelzone
zentriert um den stationären Punkt. Dies wurde ausführlich von Schleicher et al. (1997)
und Sun (1998) gezeigt. Sie haben auch gezeigt, dass sich das S/N Verhältnis verschlech-
tert, wenn die Apertur größer gewählt wird, und dass das Migrationsrauschen zunimmt,
wenn der stationäre Punkt am Rand bzw. außerhalb der Apertur liegt. Folglich ist die
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Zusammenfassung

Kenntnis des stationären Punktes wichtig, um ein Abbild guter Qualität zu erhalten. Der
Auftauchpunkt des Normalstrahls entspricht dem stationären Punkt. Da mit jedem Zeit-
sample des CRS Stack ein Normalstrahl verknüpft ist, ist der stationäre Punkt gleich der
�-Koordinate eines jeden Zeitsamples. Bislang ist der CRS Stack das einzige Verfahren,
das automatisch die Lage des stationären Punktes liefert.

Nachdem die analytische Spur und die antikausale halbe Zeitableitung berechnet und die
Signale auf der Diffraktionskurve mit der Gewichtsfunktion multipliziert wurden, wird
das innerhalb der projizierten Fresnelzone gestapelte Signal in den Punkt M R = NIP
platziert. Hierfür wird lediglich ein Strahl, der Normalstrahl von �0 zu MR = NIP, gezo-
gen. Ein Nachteil besteht darin, dass die Strahlen nicht von jedem Punkt in der Tiefe zu
jeder ZO Lokation entlang der �-Achse gezogen werden, sondern „nur“ jeder Normal-
strahl, dessen Lage über den Zeitbereich und den Auftauchwinkel bestimmt ist: Nicht
jedem Punkt im diskretisierten Tiefenbereich wird ein Signal zugeordnet. Dies geschieht
aufgrund der Fokussierung und Defokussierung von Strahlen, während sie durch das
Geschwindigkeitsmodell gezogen werden, es sei denn, dieses ist sehr einfach. Die entste-
henden Lücken in den Reflektoren sind deutlich in Abbildung 4.12 zu sehen.

Diese Lücken schließen sich, wenn zwei weitere Normalstrahlen durch das Modell ge-
zogen werden. Diese paraxialen Normalstrahlen starten an den Rändern der projizierten
Fresnelzone. Die zugehörigen Auftauchwinkel und Laufzeiten werden mit den Gleichun-
gen (4.12) bis (4.14) von Höcht et al. (1999) berechnet. Zusätzlich wird die Normalwelle
in den Punkt NIP zurückpropagiert. Die Schnittpunkte der paraxialen Normalstrahlen
mit der Normalwelle bei NIP stimmen näherungsweise mit den Grenzen der tatsächli-
chen ersten Fresnelzone auf der Grenzschicht überein. Nun wird das gestapelte Signal
nicht nur dem Punkt MR zugeordnet, sondern allen Punkten auf der Fresnelzone mit
Krümmungsradius RN am Punkt MR = NIP. Abbildung 4.13 zeigt, dass alle Lücken ge-
schlossen sind.

Eine schnellere Methode als das Stapeln ist das mapping. Dabei wird die ZO Sektion
des CRS Stack mit dem entsprechenden geometrical spreading multipliziert, was dem ge-
wünschten true-amplitude Signal (4.3) gleicht. Dies kann direkt dem jeweiligen Tiefen-
punkt bzw. der Fresnelzone in der Tiefe zugeordnet werden.

Mit Hilfe von verrauschten und unverrauschten synthetischen, mehrfach überdeckten
Daten wurde der Initial und Fresnel CRS Stack generiert. Ich habe zuerst überprüft, ob
die Amplituden der ZO Simulationen mit, per ray tracing bestimmten, ZO Amplituden
übereinstimmen. Die Abweichungen des Fresnel CRS Stack waren sehr gering und deut-
lich kleiner als die des Initial CRS Stack, Abbildungen 4.7 bis 4.10. Bei den durchgeführten
Migrationen hat sich herausgestellt, dass das Ergebnis der mapping Methode, angewandt
auf den Fresnel CRS Stack, die besten Werte liefert, Abbildungen 4.14 bis 4.21.

Die parsimonious TA Migration wurde auf einen Ausschnitt des BEB Datensatzes ange-
wandt, siehe Abbildung 5.7. Da nur ein ray tracer für geschichtete Medien zur Verfügung
stand, der auch die CRS Stack Attribute verarbeiten konnte, war es nicht möglich, die Mi-
gration auf den kompletten BEB Datensatz anzuwenden, siehe dazu auch den nächsten
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Abschnitt. Wenn ein ray tracer mit entsprechenden Möglichkeiten für so genannte Hinter-
grundgeschwindigkeitsmodelle zur Verfügung stünde, hätte der gesamte BEB Datensatz
migriert werden können.

Erstellung eines Geschwindigkeitsmodells mittels CRS Stack Attributen

Für die Simulation der ZO Sektion und für die Berechnung der projizierten Fresnelzo-
ne, des geometrischen Ausbreitungsverlustes oder der Diffraktionskurve war kein Ge-
schwindigkeitsmodell erforderlich. Sämtliche Resultate waren datenabhängig. Die Tie-
fenmigration bedingt ein Geschwindigkeitsmodell. Unter der Verwendung der Horizont-
Inversion von Majer (2000) kann ein geschichtetes Geschwindigkeitsmodell mit konstan-
ten Schichtgeschwindigkeiten produziert werden. Bislang war es nur möglich, syntheti-
sche Daten zu verwenden, da die Fluktuationen der CRS Stack Attribute dann sehr klein
waren. Da sich dies bei realen Daten dramatisch ändert, musste ein Glättungsalgorith-
mus gefunden werden, der eine stabile Inversion garantiert. Mit der Implementation der
robust locally weighted regression von Cleveland (1979) ist es nun möglich, CRS Stack At-
tribute von Realdaten zu invertieren, um ein Geschwindigkeitsmodell zu erstellen. Die
Horizont-Inversion ergab ein Geschwindigkeitsmodell für einen Teil des BEB Datensat-
zes, das dem Geschwindigkeitsmodell der konventionellen Methode (NMO/DMO Ana-
lyse) ähnlich ist.

Die Stabilisierung der Inversion von Realdaten schließt den Kreis der rein datenabhängi-
gen true-amplitude Migration. Für komplexere ZO Sektionen müssen Lösungen gefunden
werden, die die Lücken in den Daten schließen, wenn ein Horizont dadurch unterbro-
chen wurde, dass die Daten im Zeitbereich nicht geeignet waren. Das tritt z.B. dann auf,
wenn das S/N Verhältnis sehr klein ist oder wenn kollabierende Strukturen ein Reflexi-
onsereignis unterbrechen, siehe Box A in Abbildung 3.12.

Anwendung des CRS Stack und der Migration in der zerstörungsfreien Prü-
fung

Der CRS Stack wurde zum ersten Mal im Bereich der zerstörungsfreien Prüfung (non-
destructive testing, NDT) angewandt. Die synthetischen Modelle repräsentieren Beton, der
nicht wie die Erde als geschichtetes Medium modelliert wird, sondern als ein zufallsver-
teiltes Medium. Risse oder Fremdkörper, die in dem Beton eingebettet sind, sollen abge-
bildet werden. Die übliche Datenakquisition in NDT besteht aus ein oder zwei Spuren
(zero-offset und ein offset). Die verwendete Quelle emittiert eher eine ebene Welle als eine
Kugelwelle. Diese Vereinfachungen beschränken die Möglichkeiten bei der Abbildung.
Um die Vorteile eines mehrfach überdeckten Datensatzes, wie er in der Reflexionsseis-
mik üblich ist, zu zeigen, wurde ein solcher für zufallsverteilte Medien mittels Finite-
Differenzen-Methoden erstellt. Anschließend hat der CRS Stack aus dem Datensatz eine
ZO Sektion generiert. Im Vergleich mit dem Standardverfahren in NDT zeigt der Fresnel
CRS Stack deutlich den geneigten Einschluss, siehe Abbildungen 6.21, 6.22 und 6.24.
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Zusammenfassung

Für die Tiefenmigration ist eine standardmäßige 2-D Kirchhoff-Migration mit konstan-
ter Geschwindigkeit eingesetzt worden. Das Novum bei letzterem ist, dass während der
Migration eine Kohärenzanalyse gemacht wird. Ein Kohärenzmaß ist die in der Geophy-
sik weit verbreitete semblance, Neidell and Taner (1971). Ein anderes Kohärenzmaß ist
die �-Korrelation (Gelchinsky et al., 1986), die unterschiedliche Phasengeschwindigkei-
ten berücksichtigt. Die Ableitung der semblance wurde als neues Attribut eingeführt, um
die Auflösung der zugehörigen semblance Sektion zu erhöhen. Es hat sich bei den drei
verschiedenen Modellen gezeigt, dass der Riss oder die Fremdkörper in den semblance
Sektionen deutlich zu erkennen waren und ihre Lokalisierung in den tiefenmigrierten
Bildern verbessert werden konnte. Diese Aussage trifft bei der �-Korrelation und bei der
Ableitung der semblance nur auf die Experimente zu, bei denen eine ebene Welle in das
Medium eingebracht wurde. Bei dem mehrfach überdeckten Datensatz, bei dem der CRS
Stack zur Anwendung kam, wurde eine Punktquelle eingesetzt. Bei diesem Datensatz
konnten keine verwertbaren Ergebnisse mit der �-Korrelation oder der Ableitung der
semblance erzielt werden, was eventuell an dem deutlich schlechteren S/N Verhältnis im
Vergleich zum Ebene-Welle Experiment lag. Die Anwendung des CRS Stack und der Ko-
härenzanalyse während der Migration an Realdaten wäre eine zukünftige Arbeit.

Schlussbemerkung

Es hat sich gezeigt, dass für die kinematischen CRS Stack Attribute eine Vielzahl von
Anwendungsmöglichkeiten existieren. Die bereits bestehenden Verfahren können auf
2-D finite-offset und 3-D erweitert werden. Eine sehr interessante neue Anwendung wäre
die angle-versus-offset (AVO) Analyse, die durch einen 2-D finite-offset CRS Stack möglich
wird.
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Abstract

In my thesis I make use of kinematic wavefield attributes to improve the quality of 2-D
seismic images and to reduce the computation time for processing. With the kinematic
wavefield attributes of the model independent Common-Reflection-Surface Stack I (i)
determine the minimum aperture for stacking, (ii) compute the geometrical spreading
which is required for true-amplitude processing and (iii) developed a parsimonious true-
amplitude zero-offset post-stack migration.

The minimum aperture is defined by the projected first Fresnel zone and yields a zero-
offset section with the optimal signal-to-noise ratio. The geometrical spreading is used
as a “natural” data-driven gain function which is exact for 2-D and approximated for
2.5-D. With the Common-Reflection-Surface Stack the normal ray associated with each
zero-offset sample is known. Instead of tracing many rays for each diffraction point in
order to obtain the corresponding diffraction traveltime curve, I only trace the normal
ray down and approximate the diffraction traveltime curve by means of the kinematic
wavefield attributes.

The simulation of the zero-offset section, the computation of the projected Fresnel zone,
and the geometrical spreading are data-driven. However, for the migration I need a
macro-velocity model. A co-worker used the attributes for a velocity model inversion
using synthetic data. With the application of a robust locally weighted regression, I make
the inversion process stable for real data. Thus, I present the complete processing chain –
zero-offset simulation, velocity model inversion, depth migration – to obtain a subsurface
image without the use of an initial velocity model but by means of data-driven attributes.

For the first time, the Common-Reflection-Surface Stack is applied to synthetic non-
destructive testing data where the elastic waves propagate through a random medium
which represents concrete. An effective constant velocity is used for the post-stack depth
migration of the zero-offset section. During the migration two different coherence anal-
yses are performed with the aim to better localise a crack or a foreign body within the
concrete.

xv





Chapter 1

Introduction

The purpose of seismic data processing is to solve the inverse problem. That is, given the
recorded wavefield, geophysicists want to determine the geologic structure. This image
of the earth’s subsurface serves, for example, in the oil industry as a reference to decide
where bore-holes are going to be drilled. If a bore-hole is “dry”, i.e., no hydrocarbon
reservoir was found, the loss is in the range of millions of dollars. Therefore, the aim is
to find methods which improve the quality of today’s images and to decrease the cost of
data processing. The work on hand is a contribution to those aims.

In principle the geophysicist has to perform four steps in order to obtain an image of the
earth’s subsurface:

i. Acquire data which illuminate each depth point several times. The result is a so-
called multi-coverage data set.

ii. Construct an initial macro-earth model.

iii. Produce a simulated zero-offset (ZO) section. It is a seismogram where source and
receiver are at coincident location.

iv. Transform the time domain ZO section into the depth domain. This process is
termed time-to-depth migration or simply post-stack depth migration.

Each of the four steps is documented in the geophysics literature by an immense number
of publications – using pre-stack depth migration (PreSDM), item iii. and iv. reduce to
one step. In this thesis, I focus on the application of three kinematic wavefield attributes
with the intention to reduce the computation time of the last three steps and to improve
the quality of the time and depth domain sections. The question that arises is: Is it pos-
sible to cover three quarter of the imaging process with just three kinematic attributes?
The answer is: In principle, yes. Of course, conventional processing accompanies the
application of the kinematic wavefield attributes and they are embedded in conventional
concepts.

1



Chapter 1. Introduction

1.1 Patterns and attributes in seismics

Pattern recognition and pattern description is the basis for scientific work. A whole cata-
logue of seismic attributes is available which describes specific measurements of geomet-
ric, kinematic, dynamic or statistical patterns derived from seismic data. Chen and Sid-
ney (1997) list about 80 seismic attributes for reservoir forecasting and monitoring found
in the last 30 years. Two of them are used in this thesis: The semblance coefficient which
is used for coherence analysis and the envelope that is applied to non-destructive testing
data. The three kinematic wavefield attributes, namely the Common-Reflection-Surface
(CRS) Stack attributes, are not mentioned in the list because the CRS Stack is quite new,
Tygel et al. (1997). It simulates a model-independent ZO section from multi-coverage
data. This means that no initial velocity information is required. The CRS Stack is data-
driven using coherence analysis. Another model-independent ZO simulation method is
the multifocusing homeomorphic imaging technique. Its kinematic attributes are used to
predict and attenuate multiples, Keydar et al. (1998) and Zaske et al. (1999). Before I give
an overview of the applications of the kinematic wavefield attributes of the CRS Stack
which is equivalent to an overview of the thesis, I describe what kind of patterns many
geophysicists, including me, are looking for in order to image the subsurface.

In seismics, a fundamental pattern is the hyperbolic reflection event that is obtained if
the signal of a point source is recorded by many receivers (common-shot configuration).

R e c e i v e r s
Source

Figure 1.1: Common-shot configuration.

Shot and receivers are, for simplicity, sup-
posed to be on a flat earth’s surface as de-
picted in Figure 1.1. For a flat horizontal in-
terface and a homogeneous overburden the
reflection event is a hyperbola which is de-
scribed by the Pythagorean theorem. The
traveltime equation is a function of the dis-
tance between source and receiver (offset),
the velocity of the medium above the inter-
face and the traveltime of twice the vertical
path from the source to the interface. If the in-
terface dips or is curved, the traveltime func-
tion has to be changed in order to describe
the hyperbolic curve or parts of it in the seis-
mogram. The hyperbolic traveltime curve in
the seismogram is called primary reflection if
the propagating wave was reflected only once along its path from the source through the
earth to the receivers. The kinematic wavefield attributes of the CRS Stack are always
related to primary reflections.

Jäger et al. (2001), Mann et al. (1999), and Müller (1999) showed that the CRS Stack
yields zero-offset sections with increased signal-to-noise ratio and increased continuity
of reflection events compared to conventional ZO simulations, like PreSDM or normal-
moveout/dip-moveout (NMO/DMO) Stack. In other words, the patterns in the recorded
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1.2 Overview of this thesis

data are better described by the use of the new CRS Stack than by conventional methods.

1.2 Overview of this thesis

The fundamentals of ray theory are summarised in Chapter 2 which are needed to gain a
comprehensive understanding of the CRS Stack, the true-amplitude (TA) migration, and
the velocity model inversion. It shows that the high-frequency solution of the acoustic
wave equation leads to the description of wave propagation by means of rays. Bort-
feld’s formulation of paraxial traveltimes by means of the surface-to-surface propagator
matrix T in 1989 are the basis for the Fresnel zone, projected Fresnel zone and the geo-
metrical spreading as expressed by Hubral et al. (1992b) and Schleicher et al. (1997). The
cited publications (also in the following chapters) usually handle 3-D wave propagation.
From Section 2.3 on, I express all equations for the 2-D case. The reason is simple: At
the present stage, the CRS Stack works, in practice, for 2-D zero-offset. All methods pre-
sented in the thesis can be extended to 3-D, once the 3-D CRS Stack is available.

In Chapter 3, I write down the basics of the CRS Stack and present the first applications
to a real data set. There, the projected Fresnel zone and the geometrical spreading is ex-
pressed in terms of CRS Stack attributes. An application of the projected Fresnel zone is
given with the new Fresnel CRS Stack and I propose how to choose the stacking aperture
for finite-offset. The geometrical spreading is utilised as a “natural” gain function to en-
hance weak reflections at large ZO traveltimes. The out-of-plane geometrical spreading
is approximated by CRS Stack attributes. Thus, the “natural” gain function is applicable
to real data if the subsurface parameters do not vary perpendicular to the acquisition line
(2.5-D situation) and if the velocity distribution is well described by the root-mean-square
(RMS) velocity.

Both, the projected Fresnel zone and the geometrical spreading, in terms of data-driven
CRS Stack attributes, are of major importance for my parsimonious true-amplitude mi-
gration in Chapter 4. The migration is parsimonious with respect to three items: 1.) It
makes use of the minimal migration aperture, determined by the projected Fresnel zone.
As it is centered around the stationary point, it is also the optimal migration aperture,
Schleicher et al. (1997) and Sun (1998). 2.) The diffraction curve which is required for the
diffraction stack is not determined by ray tracing but is given by an analytical hyperbolic
expression. 3.) Only a maximum of three rays have to be traced in order to assign the
stacked signal to the corresponding depth point.

I use synthetic data for the tests in Chapter 4. First, I check whether an output of the
CRS Stack is suitable for a TA migration. Second, I test the parsimonious true-amplitude
migration.

A velocity model was not needed for the simulation of the ZO section as well as for the
computation of the projected Fresnel zone or the geometrical spreading. However, a ve-
locity model is required for the time-to-depth migration. In Chapter 5, the CRS Stack
attributes of a real data set enter the horizon inversion of Majer (2000) which produces

3



Chapter 1. Introduction

a layered velocity model with constant layer velocities. Before, it was only possible to
use synthetic data as the fluctuations of the CRS Stack attributes were small. As this
changes dramatically in a real data set, a smoothing algorithm had to be found to guar-
antee a stable inversion. For this task, I employed the robust locally weighted regression
of Cleveland (1979) and tested it on the real data set of Chapter 3.

In Chapter 6, the CRS Stack is, for the first time, applied to the area of non-destructive
testing (NDT). The synthetic models represent concrete which is not modelled as a lay-
ered medium, like the earth, but as a random medium. Cracks or foreign bodies, embed-
ded in the concrete, have to be imaged. The standard data acquisition in NDT consists
of one or two traces (zero-offset and one offset) with sources emitting rather plane waves
than spherical waves. This simplicity restricts the capabilities of imaging. In order to
show the advantages of a multi-coverage data set in imaging, as it is common practice
in reflection seismics, such a data set was generated with a subsequent application of the
CRS Stack. For the time-to-depth migration, a standard 2-D constant velocity Kirchhoff
migration was utilised. There, the novelty is a coherence analysis performed during mi-
gration. One coherence measure is the semblance (Neidell and Taner, 1971) another is
the �-correlation (Gelchinsky et al., 1986), which accounts for different phase velocities.
The derivative of the semblance is introduced as a new attribute in order to increase the
resolution of the corresponding semblance section.

4



Chapter 2

Ray theory

Ray theory is one possibility of describing the propagation of seismic body waves. Other
methods, e.g., finite-difference (FD), Kelly et al. (1976), or finite-element (FE), Strang and
Fix (1973), methods are also widely used. Those methods discretise the medium and
the wave equation and thus provide a solution for the wavefield on a grid. All meth-
ods have, of course, advantages and disadvantages and are, therefore, used depending
on boundary conditions and tasks to be fulfilled. The description of wave propagation
by means of FD computations is especially suitable for a heterogeneous medium where
the physical parameters vary on a length scale smaller than the dominant wavelength of
the propagating signal. This method is very accurate but the memory and computation
time requirements are often very large. Ray theory yields good results for inhomoge-
neous, isotropic and anisotropic, layered, smoothly varying media. The ray theory does
not have to overcome problems like grid dispersion and reflections from model bound-
aries. The constraints with regard to the ray code, i.e., the type of wave, are also more
comprehensive. E.g., multiples can easily be suppressed by not taking their ray code into
account. The appearance of multiples is inevitable when FD schemes are applied.
For a profound study on ray theory, the reader is recommended to refer to Červený (2001)
and Popov (1996).

2.1 Basics

2.1.1 Wave equation

The wave equation is the basis of the mathematical description of wave propagation.
It is obtained by inserting Hooke’s law into the equation of motion for the continuum.
Hooke’s law is valid for small deformations and linearly relates the strain in a deformed
body to the applied stress. The derivation of the general elastodynamic equation can be
found, e.g., in Aki and Richards (1980). For a homogeneous, isotropic, elastic medium it
reads in 3-D:

�
@2u(r; t)
@t2 = f (r; t)+ (�+ 2�)r[r � u(r; t)]� �r� [r� u(r; t)] : (2.1)
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Chapter 2. Ray theory

Here, u(r; t) denotes the displacement vector at location r and time t. f (r; t) is the density
of the external body force. The density � and the Lamé parameter � and � determine the
physical properties of the medium. In Equation (2.1)r= @

@x x̂+ @
@y ŷ+ @

@z ẑ is the gradient
operator and r = (x; y; z)T denotes the global Cartesian coordinates. Hooke’s law linearly
relates stress and strain whereas the elastodynamic equation relates the spatial variations
of the stress tensor with the time variations of the displacement vector u(r; t). To solve
the differential equation (2.1), it can be separated into two wave equations by taking once
the divergence and once the curl of that equation. This yields (a) a wave equation for the
rotational part of the wavefield and is associated with two shear waves (S-waves) and the
shear modulus �. From now on, I focus on (b) the wave equation for the compressional
part and I assume that the medium does not show any resistance to shear stress (� = 0):

r[�r � u(r; t)]� �
@2u(r; t)
@t2 = f (r; t) : (2.2)

Now, divide Equation (2.2) by �, take the divergence, r�, and replace the displacement
vector u(r; t) by the (scalar) pressure field p(r; t)=��r� u(r; t) which yields the so-called
acoustic wave equation:

r
�

1
�
r(p(r; t)+ p0(r; t))

�
� 1

�

@2 p(r; t)
@t2 = 0 : (2.3)

The applied pressure p0 represents in Equation (2.3) the pressure distribution equivalent
to the force density f (r; t)= �rp0(r; t). Equation (2.3) becomes even more familiar if the
density is constant:

r �p(r; t)+ p0(r; t)
�� 1

c2
@2p(r; t)
@t2 = 0 ; (2.4)

where c =
q

�
� is the propagation velocity of a disturbance. The Lamé parameters and

the density depend on the vector r if the medium is inhomogeneous.

2.1.2 Eikonal and transport equation

The kinematic and dynamic properties of wave propagation can be computed with ray
theory using a high-frequency ansatz for the acoustic wave equation. There exists also
a high-frequency solution of the elastodynamic wave equation which is not relevant in
the context of this thesis. The high-frequency solution requires the material parameters
of the medium not to vary greatly over distances of the order of a wavelength �, i.e., the
medium has to be “smooth”. The ansatz to find an approximate time-harmonic high-
frequency solution of the acoustic wave equation (2.4) is

p(r; t)= A(r)e�i!(t�� (r)) ; (2.5)

with ! denoting the angular frequency. A general ansatz would be p(r; t) = A(r)w(t�
� (r)), where w(t� � (r)) denotes an arbitrary function. Inserting Equation (2.5) into ex-
pression (2.4) and using the vectorial identity r � (ab) = b � ra+ ar � b, the wave equa-
tion (2.4) becomes

�!2A
�

(r� )2 � 1
c2

�
+ i!

h
2rA � r� + Ar2�

i
+r2 A= 0 : (2.6)
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2.1 Basics

In Equation (2.6) are three terms with two unknowns. To find a solution for the unknowns
� and A, the last term of the order !0 in Equation (2.6) is negligible compared to the terms
of order !1 and !2 for ! � 0, i.e., for high frequencies. Because of this assumption, the
solution will be a high-frequency solution of the acoustic wave equation. The exception to
the rule are caustics, cusps and at points where waves are critically reflected and generate
head waves. There, ray theory breaks down and the term of order ! 0 is not negligible
anymore. Finally, the first and second term on the left hand side remain to be solved.
They yield the eikonal equation

(r� )2
=

1
c2 (2.7)

and transport equation

2rA � r� + Ar2� = 0 : (2.8)

The eikonal equation represents a non-linear partial differential equation of the first order
for the traveltime � (x), which is termed the eikonal. The eikonal equation can be solved
with the method of characteristics, Bronstein and Semendjajew (1991), which leads to the
so-called ray tracing system which is equivalent to a system of six ordinary differential
equations:

d r
d �

= c2p (2.9)

d p
d �

= �1
c

d c
d r

; (2.10)

where p = (p1; p2; p3)T is the slowness vector and jpj = 1=c. Thus, the connection be-
tween wave equation and ray theory is established by solving the high-frequency part of
the wave equation by the method of characteristics.

The dynamic property of a wave, viz. the amplitude, is determined by the transport
equation. It represents a linear partial differential equation of the first order in A(r).
Using ray coordinates, the solution of the transport equation reads

A =
Ψ0(1; 2)q

J
c

: (2.11)

Ψ0 is the constant of integration only depending on the ray coordinates 1 and 2 which
represent arbitrary take-off parameters, e.g., two independent components of the slow-
ness vector at the source. The parameter J is the so-called ray Jacobian, i.e., it is a functional
determinant:

J =
1
c

���� d (x; y; z)
d (� ; 1; 2)

���� : (2.12)

� is the eikonal. For fixed 1 and 2, one special ray is described and the parameter �
indicates a position of a point on this ray. More details about the ray Jacobian and its
significance in ray theory can be found in Chapter 2.6.
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Chapter 2. Ray theory
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Figure 2.1: Surface-to-surface propagation of a central and paraxial ray.

2.1.3 2-D wave propagation

For the propagation of waves in two dimensions, e.g., in the xz-plane, three items have to
be considered. (a) the y-component of the vector r remains constant. (b) the application
of the y-component of the gradient operator yields zero as no changes in the y-direction
occur. (c) a point source has to be replaced by a line source with its symmetry axis par-
allel to the y-direction. This is required to obtain the correct dynamic properties of the
propagating wavefront. In a homogenous medium, the amplitude of a point source is
proportional to 1=R, the amplitude of a cylindrical wave is proportional to 1=

p
R, where

R is the radius of the wavefront.

2.2 Paraxial rays and propagator matrix

A ray (SG) in the vicinity of the central ray (SG) can be described by the paraxial ray
theory (Bortfeld, 1989; Červený, 2001). Two parameters are needed to describe a paraxial
ray: (i) the distance vector r to the central ray and (ii) the deviation of the slowness vector
p from the slowness vector p0 of the central ray. Paraxial ray theory means that the values
of the parameters at any point of a paraxial ray are linearly dependent on those at its ini-
tial point. I use the formulation of Bortfeld (1989) who employs the 4�4 surface-to-surface
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2.2 Paraxial rays and propagator matrix
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Figure 2.2: Illustration of the cascaded projection, after Bortfeld (1989).

propagator matrix T in order to relate the change of the quantities p and r due to the wave-
front propagation from the anterior to the posterior surface. The anterior and posterior
surfaces are the surfaces where the ray starts and ends, respectively. Let the vectors p and
r be associated with the anterior surface and the vectors p 0 and r 0 be associated with the
posterior surface. In general, the surfaces do not coincide although it is often the case that
sources and receivers are placed upon one and the same surface. Figure 2.1 depicts the
3-D finite-offset situation where the anterior and posterior surfaces are separate and the
central and paraxial rays are reflected at the surface ΣR. Bortfeld (1989) projects the three-
component vectors r (r 0) and p (p 0) onto the anterior (posterior) surface to obtain the
two-component vectors ~r (~r 0) and ~p (~p 0). This is illustrated in Figure 2.2, which depicts
Bortfeld’s idea in the xz-plane. The two-component vector ~r = (x; y)T is obtained by a
projection along the z-axis onto the xy-plane. The z-axis is perpendicular to the xy-plane.
S denotes the starting point of a paraxial ray. In order to get the two-component vector ~p,
two cascaded projections are necessary. First, the three-component vector p with origin
at S has to be projected along its normal onto the plane that is tangent in S, which yields
pT. Second, pT is projected onto the xy-plane, which produces ~p, see Figure 2.2. Now, I
can write down the equation that relates the components of the anterior (~r; ~p� ~p0)T and
posterior (~r 0; ~p 0 � ~p 0

0)T surfaces of the paraxial rays by a linear relationship:�
~r 0

~p 0� ~p 0

0

�
= T(G; S)

�
~r

~p� ~p0

�
: (2.13)

The first-order approximations of ~r 0 and ~p 0 � ~p 0

0 correspond to second-order approxi-
mations of the traveltime, i.e., it is in accordance with what is generally called Gaussian
optics. The 4� 4 propagator matrix T is set up by four 2� 2 submatrices A, B, C, and D:

T(G; S)=
�

A B
C D

�
: (2.14)

Inserting Equation (2.14) into (2.13) yields, for example, that A is the Jacobian matrix
@(x 0; y 0)=@(x; y), taken at ~x = 0 and ~p = ~p0, i.e., at the central ray. Some properties of the
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Chapter 2. Ray theory

propagator matrix are given in Appendix A.

Another well known propagator matrix is the ray-centred Π matrix, Červený (2001). The
relationship between the T and Π matrix has been published by Hubral et al. (1992a).

2.2.1 Rays in 2-D

The paraxial ray theory in two dimensions is described by the distance vector ~r = (x; z)T

and the slowness vector ~p = (p; q)T at the anterior surface. Similarly, ~r 0 = (x 0; z 0)T and
~p 0

= (p 0; q 0)T describe paraxial ray theory at the posterior surface. The projection of them
onto the anterior (posterior) x(x 0)-axis reduces them to scalars x (x 0) and p (p 0). As a con-
sequence, the 4� 4 propagator matrix T becomes a 2� 2 matrix T. The 2� 2 submatrices
A, B, C, and D become 1� 1 matrices, i.e., scalars A, B, C, and D. In the following, I call
these scalars elements as they are elements of the 2� 2 propagator matrix T.

2.3 Paraxial traveltimes

As mentioned in the introduction, from now on I am using all equations for the 2-D case.
When I refer to previous equations of this chapter, I apply the 2-D version of that formula.

The Common-Reflection-Surface (CRS) stack, Chapter 3, makes use of the parabolic or
hyperbolic traveltime approximation, respectively, for paraxial rays. Bortfeld (1989) de-
rived the parabolic traveltime approximation for a so-called seismic system (arbitrary
number of homogeneous, isotropic layers) using Hamilton’s equation for transmitted
rays from the initial surface to the final surface

dt = p 0dx 0� p dx : (2.15)

The traveltime difference of the central ray and a corresponding paraxial ray is denoted
by dt. Next, I have to solve Equation (2.13) for p and p 0, which yields

p = p0+ B�1x 0� B�1Ax (2.16)

p 0

= p 0

0+Cx+ DB�1x 0� DB�1Ax : (2.17)

Inserting Equations (2.16) and (2.17) into Equation (2.15) and a subsequent integration
gives the traveltime formula for paraxial rays, Bortfeld (1989):

tpar(x; x 0) = t0(x0; x 0

0)� p0x+ p 0

0x 0� xB�1x 0

+

1
2

x2B�1A+
1
2

x02DB�1 : (2.18)

Hubral et al. (1992a) showed that Equation (2.18) also holds for a seismic system that
consists of laterally inhomogeneous layers. Because of the parabolic form Equation (2.18)
is called parabolic traveltime. For many years it has been known that for a simple layered
medium and near vertical reflections, a hyperbolic traveltime approximation is better
than a parabolic traveltime approximation, see e.g. Ursin (1982). Therefore, Schleicher
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2.4 Fresnel zone

et al. (1993) squared Equation (2.18) and retained only second-order terms in x and x 0 to
obtain the hyperbolic equivalent

t2
hyp(x; x 0) =

�
t0(x0; x 0

0)� p0x+ p 0

0x 0

�2

+ t0(x0; x 0

0)
�
�2xB�1x 0

+ x2B�1A+ x02DB�1
�
: (2.19)

2.4 Fresnel zone

The (first) Fresnel zone plays an important role in imaging. The 2-D Fresnel zone is de-
fined as a slice of the 3-D Fresnel volume perpendicular to the central ray. Only if the
central ray is normal to a plane interface, the interface Fresnel zone coincides with the
Fresnel zone defined in the previous sentence. In general the Fresnel zone is not circular
but has an elliptic shape. The size of the first Fresnel zone is often used as a measure of
lateral resolution that depends on the frequency, the velocity of the medium, and on the
traveltime. From now on, I am omitting the word “first” if no ambiguities arise, as I will
only consider the first Fresnel zone throughout this thesis. In 2-D, the term Fresnel zone
is not correct as there exists no extension into the y-direction (perpendicular to the xz-
plane), see Figure 2.3. Something like "width of the Fresnel line" could be an appropriate
description for 2-D but it seems to be rather far-fetched. Thus, I stick to the term "Fresnel
zone" also in 2-D.

I use the Fresnel zone to define the local minimum aperture for the CRS stack, Chapter 3,
and for my parsimonious migration, Chapter 4.2. Correctly speaking, I do not use the
Fresnel zone but the so-called projected Fresnel zone, (Hubral et al., 1993b; Schleicher et
al., 1997) as a minimum aperture. The projection of the Fresnel zone along the normal
ray up to the acquisition line results in the minimum aperture. A detailed description is
given in Section 2.5.

As a result of numerous experiments, it is known that the wavefield at a receiver is af-
fected by the structure in some vicinity of the central ray. Therefore, the ray is no longer
considered as a mathematical ray, but can be interpreted as the trajectory along which
the high-frequency part of the energy of the seismic wave under consideration propa-
gates from the source to the receiver, Červený (2001). E.g., in Born and Wolf (1987) it is
shown that the total disturbance at a receiver equals half the disturbance due to the first
Fresnel zone. This emphasises the importance of the first Fresnel zone.

The extension of the Fresnel zone at the target reflector is limited by a traveltime differ-
ence that equals half the period, T=2, of a mono-frequent wave. The traveltime difference
is given by the different paths of the reflected ray (SMRG) and the diffracted rays (SM1G)
and (SM2G) and their associated traveltimes. In Figure 2.3, the point MR is a specular re-
flection point whereas the points M1 and M2 are diffraction points.

The subsurface points are denoted by the 2-D Cartesian coordinates x and z. A point in
the time domain is determined by the two-way traveltime t and the acquisition coordi-
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Figure 2.3: The difference of the traveltime t0 of the reflected ray (SMRG) and the travel-
time td of the two diffracted rays (SM1G) and (SM2G) define the (first) Fresnel zone.

nate �. The case where source and receiver are separated, i.e., the offset case, as in Figure
2.3, is better suited for illustration than the ZO case, which I am actually interested in.
The equation

jt(S;G)� t(S; M)� t(M;G)j � T
2

(2.20)

defines the size of the Fresnel zone for the 2-D case on the reflector (M is either M1 or
M2). This is the definition proposed by Kravtsov and Orlov (1980). Equation (2.20) is the
definition of the size of the Fresnel zone for the mono-frequent case. Later in the synthetic
and, of course, in the real examples, the propagating wave is not mono-frequent but is
a transient signal with a certain frequency bandwidth. Thus, the width of the Fresnel
zone is determined by the length, TW , of the wavelet. This time-domain definition cor-
responds with the one used by Knapp (1991) who examined the Fresnel zone associated
with broadband data.

The aim is now to express the Fresnel zone in terms of elements of the surface-to-surface
propagator matrix because those elements can be determined by means of traveltimes at
the surface. I start with the assumption that the source and the receiver have a certain
offset. The parabolic traveltime approximations for the down-going t(S; M) and up-going
t(M;G) paraxial ray in Figure 2.3 then read in 2-D:

t(S; M) = t(S; MR)+ pMR xM+
1
2

x2
MD1B�1

1 (2.21)

t(M;G) = t(MR;G)� pMR xM +
1
2

x2
MB�1

2 A2 : (2.22)

xM denotes the 1-D coordinate of the normal projection of M onto the line that is tan-
gent in MR. MR also denotes the origin for the coordinates along this tangent line. The
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2.5 Projected Fresnel zone

slowness coordinate pMR is the projection of the 2-D slowness vector ~pMR at MR onto the
tangent line. The indices at the propagator elements are due to the decomposition of
the total ray. Hubral et al. (1992b) showed, actually in 3-D, that the propagator matrix T
can be decomposed into two propagator matrices that correspond to the up-going and
down-going ray

T = T2T1 : (2.23)

This equation is the chain rule . The index 1 denotes the down-going and the index 2 the
up-going ray. Next, I insert Equations (2.21, 2.22) into Equation (2.20) which yields

jx2
MHj � T ; (2.24)

where H is the Fresnel zone element, Hubral et al. (1992b):

H = D1B�1
1 + B�1

2 A2 : (2.25)

The Fresnel zone, defined by Equation (2.24), might differ slightly from the exact one
defined by Equation (2.20). This is due to the paraxial approximation. The Fresnel zone
element H reduces to

H = 2D1B�1
1 = 2B�1

2 A2 = 2D0B�1
0 ; (2.26)

which can be derived by using the symplecticity property and the equation for the ZO
reverse ray as described in Appendix A. Thus, for ZO, the Fresnel zone element can be
expressed by a single one-way propagator matrix T0 with the elements A0, B0, C0, and
D0.

2.5 Projected Fresnel zone

The seismic data that contain the information about the subsurface are acquired at the
earth’s surface, except for vertical seismic profiling which is performed in boreholes. In
order to reconstruct the geometry and the change in impedance of the subsurface, i.e.,
to image the subsurface, the measured data that correspond to one diffraction point in
the subsurface have to be summed up (stacked). This is demanded by Kirchhoff theory
(Schneider, 1978; Born and Wolf, 1987), see Chapter 4 for more details. To yield an im-
age without any loss, the Kirchhoff-migration integral (4.4) would extend from �1 to
+1 with the assumption that no noise is present. All seismic data measured in the field
include noise, viz. signals that do not represent the structure of the earth. Sources that
produce noise are, e.g., wind, traffic, power lines etc. The image quality does not improve
if the size of the aperture, which determines the integral boundaries, is larger than the
so-called projected Fresnel zone. This has been shown by Schleicher et al. (1997) and Sun
(1998), see also Subsection 4.1.2.

The projection of the interface Fresnel zone up to the acquisition line, which coincides
with the �-axis, is shown in Figure 2.4. The interface Fresnel zone at depth is illustrated
by a bold arc at MR. The upper half of Figure 2.4a shows the time-domain. The dotted
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Figure 2.4: Duality points MR and NR are centre points of the projected and interface
Fresnel zone (bold drawn), respectively.

curve, labelled TD, is the diffraction traveltime curve, that corresponds to the depth point
MR(x; z), i.e., it is regarded as a diffraction point. The solid curve, labelled TR, is the
primary ZO reflection traveltime curve associated with the second reflector. The point
NR(�; t) is a stationary point, which means that the reflection and diffraction traveltime
curves are tangent at this point. The outstanding feature of the stationary point is de-
scribed in Section 4.1.2. The points NR and MR are so-called duality points, Tygel et al.
(1995). The depth point MR is related to the time-domain point NR via the normal ray
that emerges at its �-coordinate, �0. MR is the centre point of the Fresnel zone at depth
and �0 is the corresponding centre point of the projected Fresnel zone at the acquisition
line.

The projected Fresnel zone, Hubral et al. (1993b), is defined by the upper endpoints of
the bundle of normal, paraxial rays (brown lines in Figure 2.4) that leave the considered
reflector perpendicularly within the interface Fresnel zone. In Figure 2.4, the projected
Fresnel zone is indicated by a bold line, centred at �0. Figure 2.4b shows the primary
zero-offset (ZO) paraxial reflection rays (�i Mi �i), where i = 1; 2, and the correspond-

14



2.5 Projected Fresnel zone

ing diffraction rays (�i MR�i). Zero-offset means that source and receiver are coincident.
If the difference of the traveltimes pertaining to the reflected and diffracted ray equals
T=2, the boundary of the projected Fresnel zone is obtained. T is the period of a mono-
frequent wave. The definition of the first interface Fresnel zone is illustrated by Fig-
ure 2.4c. A point Mi belongs to it if and only if the traveltime difference of the ZO central
ray (�0MR�0) and a Fresnel zone ray (�0Mi�0) is less than or equal to T=2. The Fresnel zone
ray is in accordance with the description of Červený and Soares (1992) of rays within a
Fresnel volume, see Figure 3.5. The definition of the projected Fresnel zone of Hubral
et al. (1993b) is for ZO in accordance with the definitions illustrated by Figure 2.4b. For
simplicity, the index i that is related to the paraxial rays is dropped from now on.

Now, I describe mathematically how to project the interface Fresnel zone around MR
in Figure 2.4 up to the acquisition line. As I consider a measurement line instead of a
surface, the following equations can be reduced to scalars. Although a projection always
needs vectors, the second component of the 2-D vector is set to zero due to Bortfeld’s
definition. The vector xM with its origin at MR is obtained in the same way as described
before. It is the normal projection of the vector onto a straight line. The vector has its
origin at MR and determines the actual point M on the curved element. This line is
tangent to the reflector at MR. The next step is the projection of the Fresnel zone from the
tangent along paraxial rays up to the measurement line, i.e., onto the �-axis. In terms of
the corresponding scalars and as a first order approximation it can be expressed by

� = PxM : (2.27)

The projection P has to be determined. Here, I follow the line of Hubral et al. (1993b).
Inserting Equation (2.27) into Equation (2.24) yields the projected Fresnel zone for zero-
offset:

j�2HPj � T ; (2.28)

where HP is given by

HP = P�2H : (2.29)

HP is the so-called projected Fresnel zone element. Solving the system of equations for a
paraxial normal ray by applying the one-way ray propagator matrix T0 yields

xM = (A0� B0D�1
0 C0) � = D�1

0 � : (2.30)

The symplecticity, see Appendix A.2, has been applied to obtain the right-hand side of
Equation (2.30). Comparing Equations (2.27) and (2.30) yields P = D0. Hence,

HP = D�2
0 H = 2D0B�1

0 ; (2.31)

where Equation (2.26) has been inserted to get the right-hand side. Finally, a simple
expression for the projected Fresnel zone is obtained if Equation (2.31) is compared with
Equation (A.2) and (A.9b) of Appendix A:

HP = 4B�1 : (2.32)
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Hubral et al. (1993b) showed that the propagator matrix element B can be obtained by
taking the second order derivatives of the difference of two identified traveltime func-
tions that correspond to the same event. One traveltime function is identified in the
common-midpoint (CMP) section, the other in the ZO section. Obviously, and this is the
particular importance, no knowledge about the reflector overburden is required to get
the Fresnel projection element. In Chapter 3, I describe a model-independent stacking
method which generates as a by-product attributes that are related to the propagator ma-
trix element B.

In Figure 2.4, the projected Fresnel zone is bounded by the paraxial ray at �, where the
traveltime difference of the reflection traveltime t(� M �) and the diffraction traveltime
t(�MR�) is equivalent to T=2 or TW , respectively. The boundary of the projected Fresnel
zone can now be expressed due to paraxial ray theory in 2-D by

j4B�1(� � �0)2j � T : (2.33)

Here, (� � �0) is the distance between the central ray and a paraxial ray on the midpoint
axis.

2.6 Geometrical spreading

Suppose, e.g., a point source is excited, the spherically emitted wavefront propagates
through a homogeneous medium and no intrinsic damping occurs. Then, in 3-D the
spherical divergence makes the amplitude of the wave change inverse proportional to the
radius of the curvature of the propagating wavefront. In other words, as a consequence
of the law of conservation, the energy density changes such that the surface integral of
the considered wavefront is constant. For a more general medium like an inhomoge-
neous layered medium where the wavefront is no sphere anymore, the term geometrical
spreading (GS) is used instead of spherical divergence. The GS has a major impact on the
change in amplitude if transmission losses are negligible. If the GS is applied to, e.g., a
zero-offset section, the section would display the correct reflection coefficient for a seis-
mic event if the source strength is known. Such a true-amplitude (TA) section is of great
support for geological interpretation, e.g., to find a hydrocarbon deposit. In 2-D, the
amplitude is inverse proportional to the square root of the curvature of the propagating
wavefront. Because of its importance, there exists a great number of publications with
respect to geometrical spreading. Here, I list some in my opinion important publications:
Newman (1973), Popov and Pšenčík (1978), Ursin (1982), Hubral (1983), Bleistein (1986),
Červený (2001).

2.6.1 Geometrical spreading in 2-D

The following considerations are valid for an inhomogeneous isotropic 2-D medium. The
geometrical spreading can be determined by examining the density of the ray field which
in turn can be expressed by the curve that connects a central ray and a paraxial ray, see
Figure 2.5. This I call an elementary ray section or simply ray section. The ray section
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Figure 2.5: The differential curves, dLA and dLB, of the ray section are perpendicular to
the rays.

encompasses the family of rays within the limits (;+ d), where  is the ray coordinate
of the central ray. As indicated in Figure 2.5, the lateral boundaries are formed by rays,
whereas the front and back of the ray section is bounded by a wavefront at two different
time steps. It is assumed that the energy flows within the ray section.

The ray Jacobian, J, which appears in the expression of the solution of the transport equa-
tion (2.11), is directly related to the geometrical spreading. The ray Jacobian (2.12) reduces
now to

J =
1
c

���� d (x; z)
d (; � )

���� : (2.34)

The Jacobian, J, is the Jacobian of the transformation of the ray coordinates  and � to
general Cartesian coordinates ~x = (x; z)T. The ray coordinate � denotes the eikonal but it
would also be possible to use the arc length of the ray s. Note that the unit tangent vector
to the ray at ~x(� ) is defined as ~t = d~x=d � . In an inhomogeneous isotropic medium the
wavefront is always perpendicular to the rays, i.e., perpendicular to ~t. The Jacobian (2.34)
represents the front of the ray section normalised with respect to d. The quantity J van-
ishes when the curvature of the considered wavefront increases to infinity. Such points
are called caustic points . The geometrical spreading is related to the ray Jacobian by

L = jJj 1
2 ; (2.35)

where L is the so-called geometrical spreading factor (GSF). Let, for instance, the differ-
ential line dLA of Figure 2.5 be a part of a wavefront where energy initially flows through.
For high frequencies the same energy is subsequently distributed over a different, here
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greater, differential line dLB. Therefore, the intensity, IB, decreases compared to IA and
the relationship of the areas and intensities can be expressed by the following equation:

IA dLA = IB dLB : (2.36)

As the amplitudes are proportional to the square root of intensities, the geometrical
spreading factor for point B is defined as

LB =

�
dLB

dLA

�1=2

: (2.37)

For a homogeneous medium the geometrical spreading reduces to spherical spreading,
i.e., L =

p
R =

p
v0t0, which has been normalised by a unit radius. R is the radius of the

wavefront curvature, v0 the velocity of the homogeneous medium, and t0 is the source-
receiver traveltime. This is valid for wavefronts reflected on a planar horizontal/dipping
interface. Newman (1973) showed that the GSF for a reflection from the N-th layer in a
model with homogeneous horizontal layers yields:

L =
PN

i=1 tiv2
i

v0
= t0

v2
RMS
v0

: (2.38)

Take the square root of (2.38) and it is valid for 2-D. The traveltime t0 =
PN

i=1 ti is the ver-
tical two-way traveltime and vRMS is the well known root-mean-square (RMS) velocity.
Now, I introduce the normalised geometrical spreading, where Q2 is an element of the prop-
agator matrix Π:

L =
1p

vGvS
jQ2j

1
2 e�i �2 � : (2.39)

Here, the definition of the square root of the ray Jacobian has been taken into account.
The phase shift is given due to the number of caustics counted along the ray from the
source, S, to the receiver, G. � is the so-called KMAH index, see Červený (2001). The
relationship of the submatrices of Π and T, described in Hubral et al. (1992a), leads to

L =
p

cos�G cos�Sp
vGvS

jBj 1
2 e�i �2 � : (2.40)

For the ZO case the emergence angles �G and �S as well as the velocities vG and vS of the
first layer are identical, hence

L =
cos�

v0
jBj 1

2 e�i �2 � : (2.41)

A nice and comprehensive derivation of the 3-D version of Equation (2.40) can be found
in Schleicher (1993).
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2.6 Geometrical spreading

2.6.2 Geometrical spreading in 2.5-D

In seismics the term “2.5-D” is defined by taking into account 3-D wave propagation in a
3-D laterally inhomogeneous earth. The parameters of the medium are not supposed to
vary in the out-of-plane y-direction. The geometrical spreading for 2.5-D wave propaga-
tion can be decomposed into an in-plane and out-of-plane component (Bleistein, 1986). The
3-D point-source geometrical spreading factor in the 2.5-D model is expressed for ZO in
accordance to Tygel et al. (1998)

L3 = L2
p
� : (2.42)

L2 denotes the in-plane, whereas
p
� denotes the out-of-plane component of the 3-D

geometrical spreading. The in-plane factor is identical to the 2-D (line-source) GSF (2.41).
From now on, I will not consider the phase of the geometrical spreading because the
method described in the next chapter is not able to supply it. Nonetheless, if the signal is
recovered correctly it is at least possible to recognise whether the number of caustics the
ray has gone through is even or odd. If the number is even and provided the reflection
coefficient is positive, the shape of the wavelet is identical with the source wavelet, other-
wise the wavelet has got the shape of its Hilbert transform. For more details see Hubral
et al. (1993a). Please note the relationship of the in-line geometrical spreading and the
projected Fresnel zone:

L2 / H�1=2
P : (2.43)

Sun (1996) investigated the relationship between the Fresnel zone and the geometrical
spreading in 3-D in detail.
The out-of-plane geometrical spreading

p
� is given by

� =

Z
v(s) d s =

Z
v2(t) d t : (2.44)

Here, s is the arc length and t is the traveltime along the normal ray. A comparison
of Equation (2.44) with Equation (2.38) shows that for a horizontally layered mediump
� = vRMS

p
t0. In Section 3.2.4 it is described how the in-plane and the out-of-plane

geometrical spreading is computed for an arbitrarily curved inhomogeneous medium.

19



Chapter 2. Ray theory

20



Chapter 3

Common-Reflection-Surface Stack

The Common-Reflection-Surface (CRS) Stack (Hubral et al., 1999; Mann et al., 1999; Jäger
et al., 2001) is a macro model independent stacking method to simulate a zero-offset sec-
tion. It is most desirable to work with a model independent stacking method because
deviations from the real subsurface are obviously causally related to wrong assumptions
and are thus eliminated by not taking them into account. “Data-driven stacking method”
might be a more appropriate terminology because it emphasises that the results depend
on the data which in turn have to depend on the subsurface. It is important to realise
that no initial model serves as a basis for the simulation of the ZO section. Here, I stick
to the term “model independent”. In order to generate a CRS stack, three attributes have
to be found, viz., one emergence angle and two radii of wavefront curvatures. These at-
tributes are related to characteristic properties of wave propagation. I will focus on the
normal moveout (NMO) velocity, the projected Fresnel zone and the geometrical spread-
ing factor. As well as the CRS Stack, other model independent stacking methods exist. A
comprehensive overview is given by the publications in the special issue of the Journal
of Applied Geophysics (Hubral, 1999).

The basics of the CRS Stack are shortly reviewed in the following section. Afterwards,
the relationship of the attributes and the listed wavefield properties are derived and the
improvements that have been achieved by applying them is presented by a real example
in this chapter and by a synthetic example in the next chapter.

3.1 Basics

3.1.1 Conventional stacking

In order to obtain an image of the subsurface, a multi-coverage data set is acquired. In
off-shore seismics, i.e., marine seismics, it means that a vessel tows arrays of receivers,
called streamers, while periodically acoustic sources, called air guns, are fired. The ef-
fect is that the same region in the subsurface is multiply illuminated. For a horizontally
layered earth the effect can be easily illustrated. In Figure 3.1 a common-shot (CS) and a
common-midpoint (CMP) configuration is depicted. While the CS configuration illumi-
nates a region of an interface the CMP configuration multiply illuminates a point of the

21



Chapter 3. Common-Reflection-Surface Stack

G G G G GS
profile

direction

depth

v

54321 S S S S S CMP G

depth
R

G G G G
profile

direction

v

1 2 3 4 5 5 4 3 2 1

Figure 3.1: Common-shot and common-midpoint configuration.

reflector. Strictly speaking, the region of influence is not a point but mainly the first Fres-
nel zone as described in Section 2.4. In reality, the data always contain noise due to wind,
traffic etc. The signal-to-noise (S/N) ratio can be increased if the data that illuminated
the same point (the same first Fresnel zone) are summed, i.e., stacked. The improvement
of the S/N ratio gained by stacking is theoretically

p
N (Yilmaz, 1987) with the assump-

tion that the signal on the traces of the CMP gather is identical and the random noise is
mutually uncorrelated from trace to trace.

Here, I outline the simulation of a ZO section for a simple model as sketched in Figure
3.1. The intention is, of showing how the conventional processing works in principle.
During the parameter search (Subsection 3.1.5), the CRS Stack uses to some extend the
conventional method.

For processing, the data of many common-shot experiments are resorted into CMP gath-
ers with midpoint coordinate � = (�G + �S)=2 and half-offset coordinate h = (�G � �S)=2,
where �S and �G denote the source and receiver coordinates. In the next step, a veloc-
ity analysis is performed on selected CMP gathers. The parameters t0 and vNMO of the
traveltime curve, that is best aligned to the data, are used for stacking. t0 is the reflection
traveltime for ZO and vNMO is the NMO velocity. For a single horizontal interface and a
CMP configuration the traveltime curve is a hyperbola:

t2(h) = t2
0+

4h2

v2
NMO

; (3.1)

The moveout of the hyperbola can be compensated with a correct NMO velocity, thus
the reflection event is flattened and can be horizontally summed. The stacking result is
placed into the ZO trace. If the reflector is inclined, the rays of a CMP configuration are
not reflected at the same point anymore. This reflection point dispersal is corrected by a
dip moveout (DMO) correction, Deregowski (1986) and Hale (1991).

More details on sophisticated velocity analysis are presented by Yilmaz (1987) and the
derivation of traveltime formulae for models with arbitrary plane layers or curved inter-
faces are described, e.g., in Hubral and Krey (1980).
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Figure 3.2: Illustration of the two eigenwaves, viz., the NIP-wave and normal wave.

3.1.2 Eigenwaves

The CRS Stack is based on paraxial ray theory which has been summarised in Section 2.2.
To obtain the traveltime formulation for a 2-D inhomogeneous model with arbitrarily
curved interfaces, two theoretical experiments are performed, which yield two different
so-called eigenwaves, Hubral (1983). In principle, these eigenwaves are associated with
an exploding diffractor, denoted NIP in Figure 3.2, which produces the NIP-wave with
radius RNIP at the surface and an exploding reflector which yields the normal-wave (N-
wave) with radius RN at the surface. Here, NIP stands for normal incidence point, i.e.,
the endpoint at depth of the central ray that is normal to the considered reflector (blue
ray in Figure 3.2). The central ray is refracted at the interfaces due to Snell’s law, whereas
the wavefront curvatures of the NIP- and N-wave change due to the refraction and trans-
mission law of curvature, Hubral and Krey (1980). The exploding reflector is locally ap-
proximated by an arc segment around NIP and is shown in green in Figure 3.2. The
NIP- and N-wave are eigenwaves because a wave that originates with the radius of cur-
vature RS = �(RNIPRN)1=2 emerges with an identical radius of curvature at the receiver
RG = RS. The reason for this identity is that the waves are eigenvalues of the propagator
matrix T for a normal ray.

3.1.3 CRS traveltime

Schleicher et al. (1993) followed Ursin (1982) in order to express the parabolic and hyper-
bolic paraxial traveltime Equations (2.18) and (2.19) in terms of midpoint and half-offset
coordinates. Then Tygel et al. (1997) combined that result with the formulation of the
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Figure 3.3: The green surface is the CRS stacking surface, i.e., the primary paraxial re-
flection response for all zero-offset and finite-offset reflections associated with the red arc
segment. The stacked result is assigned to the ZO point P0.

propagator matrix in terms of wavefront curvatures as published by Hubral (1983). Their
combination leads to a parabolic paraxial traveltime approximation in 2-D in terms of the
CRS Stack attributes:

tpar(�; h) = t0+
2
v0

(� � �0) sin�+
cos2�

v0

�
(� � �0)2

RN
+

h2

RNIP

�
: (3.2)

If Equation (3.2) is squared and only the terms up to second order in (� � �0) and h are
retained (Schleicher et al., 1993), the hyperbolic traveltime equivalent is obtained:

t2
hyp(�; h) =

�
t0+

2
v0

(� � �0) sin�
�2

+

2
v0

t0 cos2�

�
(� � �0)2

RN
+

h2

RNIP

�
: (3.3)

It is assumed that the near surface velocity, v0, is known. The emergence angle � is
enclosed by the normal ray and the surface normal as depicted in Figure 3.2. The point
to be simulated in the ZO section is denoted by the midpoint coordinate �0, which is also
the location of the emerging central (normal) ray, and the two-way ZO traveltime t0. In
Figure 3.3 that point is named P0. The upper half of that figure shows a blue traveltime
surface which is the kinematic primary reflection response of a simple two-layer model
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Figure 3.4: The fan-shaped NMO/DMO operator is the reflection response of the circu-
lar reflector with the shape of the ZO isochrone. The red Huygens’ surface in the time
domain is the multi-coverage data set of the point diffractor at R.

with constant layer velocity as displayed in the lower part of Figure 3.3. The traveltime
surface is embedded in the midpoint–half-offset–time (�-h-t) domain. The red circular
element has got the same curvature at R as the interface. All the rays shown are normal
to this element and the traveltimes associated with these rays lie on the green traveltime
curve at zero-offset which is the curve at the very front. The traveltimes that correspond
to one and the same reflection point R for rays with a finite-offset, describe a common-
reflection-point (CRP) trajectory which is emphasised by the bold green curve in Figure
3.3. The complete green surface, which is built up of CRP trajectories for each point on
the red circular element, is the CRS operator in time. The green surface is the stacking
surface to simulate the zero-offset point P0.

3.1.4 Comparison of traveltime equations

Müller (1999) and Jäger (1999) compared the traveltime Equations (3.2), (3.3), and three
variations of the multifocus formula, (Gelchinsky et al., 1997; Tygel et al., 1997), which is
also a model independent stacking method. They showed that the hyperbolic CRS Stack
traveltime formula is the most robust and has got the best balance between accuracy and
computational cost.

The advantage of the CRS Stack becomes obvious in comparison with conventional stack-
ing methods. Therefore, I will compare the summation operators of the NMO/DMO
process and of the prestack depth migration (PreSDM) process with the CRS stacking
operator. The cyan, fan-shaped stack surface, Figure 3.4, obviously takes a much smaller
part of the multi-coverage dataset into account than the CRS does. The cyan stack sur-
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Chapter 3. Common-Reflection-Surface Stack

face can be regarded as the primary reflection response for a reflector that is, with respect
to geometry, identical to the circular ZO isochrone and tangent to the actual reflector
in R. Hence, the NMO/DMO stack can be looked upon as the envelope of zero-offset
isochrones. In contrast to this, the CRS can be regarded as the envelope of arc segments
which possess locally at R the same curvature as the reflector. The fan-shaped surface is
tangent to the blue traveltime surface along the green CRP trajectory that is associated
with the NIP R.

The other well-known conventional stacking surface belongs to the prestack depth mi-
gration (PreSDM) which is displayed in red in Figure 3.4. Again, the summation surface
is tangent to the blue surface along the green CRP trajectory but now, it is assumed that
the reflector is build up by diffractors which is in agreement with Huygens’ principle.
Therefore, the PreSDM operator is a collection of Huygens’ traveltime curves, which are
in general described by a double square root expression and for ZO by hyperbolas for
a reflector with a homogeneous overburden. For a time migration, the stacking result
would be assigned to the apex of the red ZO traveltime curve. Compared to the PreSDM,
the CRS Stack operator better matches the blue surface.

The NMO/DMO operator and the PreSDM operator are special cases of the CRS operator.
This can be understood if one conceives the red arc in Figure 3.3 to be a mirror which
changes its shape such that it coincides with the ZO isochrone that corresponds to the
NMO/DMO stack process or such that it reduces to a point diffractor as required for
the PreSDM operator. The mirror can be changed by means of three parameters: The
distance from the surface point �0 to the reflector point R which is for a simple two layer
model equivalent to RNIP, the radius of curvature of the mirror, i.e., RN at point R, and
the direction of the mirror determined by the angle �. All three attributes are integral
quantities. RNIP determined at the surface is, for example, the integral quantity of all
transmissions and refractions along the central ray from NIP to �0.

3.1.5 Parameter search

The values of the CRS Stack attributes which build up the best traveltime surface to sim-
ulate the point P0 have to be found. No initial guess is used in order to have no restric-
tions. The only restriction is, to search for each attribute within a user-defined range and
determine the best value with a coherence analysis. To be on the safe side, this range
is chosen rather to large than to small. The three CRS Stack attributes are not found
at once because it would be computationally much too expensive. Müller (1999) and
Jäger (1999) describe the complete CRS Stack computation routine which involves three
one-parameter searches. Optionally, a local optimisation can be done where the initially
found parameters are the starting point in the three-dimensional attribute domain. The
optimised three parameters are determined in one step. The optimisation routine, which
is very time consuming, uses the flexible polyhedron search according to Nelder and
Mead (1965). Of course, the following steps are the same for the parabolic traveltime
Equation (3.2).
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First step: A combined parameter is searched for in the CMP gather, thus, � = �0 and
Equation (3.3) reads:

t2
hyp(�; h) j(�=�0) = t2

0+ 2
t0

v0
cos2�

h2

RNIP
: (3.4)

The dependency on � and RNIP can be combined to one parameter q:

q = cos2�R�1
NIP ; (3.5)

which can be related to the NMO-velocity (Hubral and Krey, 1980, see Equation 6.9 with
different notation):

v2
NMO =

2v0RNIP

t0 cos2�
=

2v0

t0
q�1 : (3.6)

This step is called Automatic CMP Stack and corresponds in principle to a velocity anal-
ysis as performed on selected CMP gathers in standard processing. Here, the optimal
stacking hyperbola is found for each single point to be simulated in the ZO section.

Second step: In the ZO section, made available by the Automatic CMP Stack, Equa-
tion (3.3) can be reduced to:

thyp(�; h) j(h=0;RN=1) = t0+
2
v0

(� � �0) sin� ; (3.7)

where the second-order term in (� � �0) has been neglected. This first-order approxima-
tion is equivalent to a plane wave approximation as RN =1 and one obtains, with this
Plane Wave Stack, the emergence angle �. The angle can be inserted into Equation (3.5)
and then be solved for RNIP.

Third step: While � is already known, the third parameter RN is searched for by the
usage of

t2
hyp(�; h) jh=0 =

�
t0 +

2
v0

(� � �0) sin�
�2

+

2
v0

t0 cos2�
(� � �0)2

RN
: (3.8)

RN associated with the maximum coherency is chosen to simulate the corresponding ZO
point in step four.

Fourth step: All three parameters are found for a certain ZO point, thus, they can be
inserted into Equation (3.3). The subsequent stack along the traveltime curve is called
Initial CRS Stack. The word ’initial’ is used because the CRS Stack attributes used for
this stack serve as initial values for the optional optimisation process which yields the
Optimised Stack.
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3.2 Application of attributes

The attributes of the CRS Stack characterise the emerging wavefront. Consequently, the
attributes are related to the physical process of wave propagation through the examined
medium which in turn determines the kinematical and dynamical behaviour of the wave.
Thus, it should be possible to develop applications which describe the kinematic and
dynamic properties of the wave by means of CRS Stack attributes. In the next subsections,
I show applications of the attributes which will be used in combination with various
methods and seismic processing steps in the following chapters.

3.2.1 Projected Fresnel zone

The derivation of the projected Fresnel zone was presented in Section 2.5. There, I men-
tioned that Hubral et al. (1993b) were able to compute the projected Fresnel zone if the
event in a CMP and ZO section has been identified as one and the same and the trav-
eltimes of this event had been picked. The disadvantage of that method is the identifi-
cation because it requires interactive picking which is quite time consuming. The min-
imum aperture is evaluated non-interactively, i.e., automatically, with the subsequent
equations. The element B of the propagator matrix T can be expressed in terms of the
2-D zero-offset CRS Stack attributes, Müller (1999):

B =
2v0

cos2�

�
1

RNIP
� 1

RN

�
�1

: (3.9)

Inserting Equation (3.9) into Equation (2.33), the projected Fresnel zone is obtained by:

����2(� � �0)2 cos2�

v0

�
1

RNIP
� 1

RN

����� � T : (3.10)

Taking only the boundary of Inequation (3.10) into account and solving it for (� � �0)
gives half the size of the minimum aperture. Equation (3.10) can also be derived by sub-
tracting the parabolic reflection traveltime (3.2) from its corresponding diffraction travel-
time which is obtained if RNIP = RN. Thus, for half the size of the projected Fresnel zone,
considering parabolic traveltime curves, I obtain

rp = j� � �0j = 1
cos�

vuut v0T

2
��� 1

RNIP
� 1

RN

��� : (3.11)

Please note that Equation (3.11) does not depend on the half-offset h. Thus, with the
parabolic 2nd order CRS traveltime approximation it is not possible to determine the
minimum aperture in offset direction. In Section 3.2.2, I performed some examinations
regarding the size of the projected Fresnel zone for a finite-offset configuration.

In order to compute the size of the projected Fresnel zone with the hyperbolic traveltime
I need Equation (3.3). Setting again RNIP = RN and subtracting the reflection time thyp
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from the diffraction time thyp;d the traveltime difference for the ZO case (h = 0) yields

T
2
= jthyp;d� thypj =

������
s�

t0+
2
v0

(� � �0) sin�
�2

+

2
v0

t0 cos2 �
(� � �0)2

RNIP

�
s�

t0+
2
v0

(� � �0) sin�
�2

+

2
v0

t0 cos2 �
(� � �0)2

RN

������ : (3.12)

Equation (3.12) cannot be solved analytically for the requested minimum aperture. Thus,
the equation has to be solved numerically, i.e., it has to be searched for (�� �0) so that the
traveltime difference equals half the period of the mono-frequent wave.

3.2.2 Projected Fresnel zone for finite-offset configuration

The size of the minimum aperture is known for ZO in order to simulate the ZO section.
But nothing is known about the change of the aperture if the stack includes finite offsets,
which is always the case as long as the ZO section is simulated. In the program of the CRS
Stack the user chooses the size of the maximum offset that should be taken into account.
The size of the aperture decreases in midpoint direction with increasing offset such that
the aperture is of elliptical shape, Mann (2000). Kvasnička and Červený (1996) present
exact analytical expressions of interface Fresnel zones for direct and unconverted seismic
body waves. Their equations are valid for laterally homogeneous one-layer models with
either a horizontal or dipping interface. I computed the associated projected Fresnel
zones and expressed their equations in terms of the CRS Stack attributes. This enabled
me to compare it with the projected Fresnel zone computed by means of the hyperbolic
traveltime approximation (3.3) with h 6= 0.

Figure 3.5 shows a Fresnel section, which is an ellipse as long as the layer is homogeneous.
This is a 2-D slice of a 3-D Fresnel volume for a point source at S and a receiver at G. It is an
idealised picture of the extent of the region that contributes to a primary reflected signal.
The penetration of the section into the reflector is not considered. The image source S �

and the corresponding Fresnel section, using the velocity v of the first layer, is depicted
in order to make the up-coming descriptions more clear. The Fresnel section is given by
all Fresnel rays from the image source S� via an arbitrary point F to the receiver G that
needs no more than T=2 compared to the traveltime of the straight raypath (S�G). Here,
T is again the period of a mono-frequent wave. zS (zG) is the distance of the reflector
normal to the source (receiver). The semi-axes are denoted by a and b, the reflection
point on the reflector Σ is Q and the radius of the interface Fresnel zone is r. The exact
analytical expression for the radius of the interface Fresnel zone for a dipping interface
in a two-layer model with constant layer velocities is given by Kvasnička and Červený
(1996):

r = b

p
1+ g2

1+ g2�2

r
1� m2

a2 + g2�2 ; (3.13)
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Figure 3.5: 2-D slice of a 3-D Fresnel volume. As the offset h increases, the interface
Fresnel zone radius r also increases. The interface Fresnel zone is no longer symmetrical
to point Q if the interface Σ dips.

where g = 2h=(zS + zG), � = b=a and m is given by Equation (3.15). The semi-axes are
expressed by:

a =
l
2

�
1+

vT
4

�
; b =

p
vTl
2

�
1+

vT
4l

�1=2

: (3.14)

Here, l is the length of the distance SQG in Figure 3.5. The second terms in the brackets
in Equation (3.14) is neglected for a high-frequency approximation as it is the case for the
CRS Stack. The variable m of Equation (3.13) and l of Equation (3.14) can be obtained by

m =
1
2

(zS � zG)
q

1+ g2 ; l = (zS + zG)
q

1+ g2 : (3.15)

In Figure 3.5 it is obvious that zS 6= zG in case of a dipping layer. The shown ellipse is the
boundary of the Fresnel volume in the in-plane, i.e., the plane in which the reflection ray
is embedded. In Appendix B, I put down the calculations how to project the Fresnel zone
with radius r, Equation (3.13), expressed in terms of the CRS Stack attributes �, R NIP,
and RN.

Figure 3.6 shows the ratio of the projected Fresnel zone radii computed with the hy-
perbolic and parabolic traveltime formulae described above and divided by the exact
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Figure 3.6: The ratio of the approximated and exact projected Fresnel zones for finite
offset decreases with increasing half-offset. Thus, the projected Fresnel zone using the
CRS Stack traveltimes (3.2) and (3.3) becomes smaller with increasing half-offset.

analytical expression (B.17) in Appendix B. The following parameters have been used:
RNIP = 3 km, RN =1, v0 = 2:5 km/s, and T = 0:04 s. The solid curves depict the ratio
using the hyperbolic traveltime approximation, whereas the dashed curves correspond
to the calculations with the parabolic equivalent. The projected Fresnel zones coincide if
the ratio equals 1, which is always the case for zero-offset. Looking at Figure 3.6, three
facts can be stated: First, the deviation from the exact solution increases with increasing
offset. Second, the ratio decreases with increasing dip. Third, the parabolic approxima-
tion is always not as accurate as the hyperbolic approximation but their curves come
closer as the dip is incremented and the offset is held constant. Here, a 10 % deviation for
the hyperbolic case is reached for a half-offset of 1000 m and a dip of 10Æ or a half-offset
of 450 m and a dip of 40Æ. Because, the ratio is always smaller than 1, except for ZO, it
means that the exact projected Fresnel zone is bigger than the approximated one. It is
not shown here, but the deeper the reflector the smaller the deviation. The same is valid
for increasing frequencies. If, for instance, RNIP = 6 km instead of 3 km, the projected
Fresnel zone for the hyperbolic approximation deviates only 12 % from the exact one at
1 km half-offset and a dip of 40Æ.

The conclusion is that, in principle, the projected Fresnel zone can be estimated quite
well with the hyperbolic ZO traveltime approximation for small offsets and a simple
subsurface.
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Figure 3.7: Ratio of the approximated and exact projected Fresnel zone radii computed
with the hyperbolic approximations of Figure 3.6, but with a proposal to use the NMO-
velocity and to divide the results of Figure 3.6 by the Cosine of the emergence angle.

3.2.3 Proposal for an aperture in offset-direction

The S/N ratio of a stacked section is the best if the stacking operator uses the mini-
mum aperture that is equivalent to the projected Fresnel zone. Thus, I would propose
three changes of the projected Fresnel zone using the CRS Stack traveltime: First, use the
NMO-velocity (3.6) instead of the velocity of the first layer. Second, assume flat horizons,
RN =1. Third, divide the resulting projected Fresnel zone by cos�. The result of these
changes is depicted in Figure 3.7. The hyperbolic traveltime approximation and all the
parameters, which had been previously used for producing Figure 3.6, have been taken.
In contrast to Figure 3.6, the ratio of the radii is most times greater than 1. This is due
to the cos� in the denominator of the NMO-velocity and the factor of the third change
1= cos�. Except for a horizontal layer, the deviation from 1 starts at ZO, decreases at first
continuously with offset and increases again at large offsets. A ratio greater than 1 is to
be preferred as it encompasses at least the first projected Fresnel zone which ensures the
recovery of the signal, Schleicher et al. (1997) and Sun (1998).

3.2.3.1 Implementation

In the latest version of the CRS Stack, Mann (2000), the aperture is of elliptical shape, see
Figure 3.8. The aperture in midpoint direction for ZO, meanwhile, equals the projected
Fresnel zone. The maximum offset to be considered has to be determined by the user.
This parameter, obviously, has to be always set manually. It is implemented in a time-
variant manner and corresponds to the great semi-axis of the half-ellipse of the aperture
in Figure 3.8. Although it has been proven to be successful in practice, a discrepancy
regarding theory exists.
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Figure 3.8: The elliptically-shaped aperture is the one that is implemented in the CRS
Stack. The black lines mark the boundary of the exact projected Fresnel zone, see Ap-
pendix B.

The facts are that in general

� the aperture should increase in midpoint direction with increasing offset and

� the boundary of the aperture is not parallel to a constant midpoint but runs diago-
nally in the half-offset-midpoint domain.

Several items justify the application of an elliptically shaped aperture:

� The CRS Stack is based on paraxial ray theory,

� the hyperbolic traveltime Equation (3.3) is a part of a Taylor expansion, thus, it is
an approximation, and

� the S/N ratio decreases with increasing distance from the ZO central ray.

The black lines in Figure 3.8 are associated with the exact boundary of the aperture, where
the same parameters as before have been used and a dip of 20Æ was assumed. The ellipse
that depicts the aperture as it is actually implemented in the CRS Stack is only exact for
ZO but not for any finite offset. From Figure 3.8 it can be deduced that the stack result
should change compared to the conventional result if the exact aperture were applied.
This is due to the fact that a non-negligible amount of traces of the considered apertures
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differs from each other. Thus, I recommend changing the aperture so that the great semi-
axis of the ellipse is parallel to the family of centres of the projected Fresnel zones for
finite offsets (dashed line in Figure 3.8).

I propose to use a rotated ellipse as an aperture instead of using the complete midpoint
range at a certain offset because the distance to the central ray increases such that the
paraxial ray theory might be violated and the S/N ratio might be too poor. These are
suggestions for examinations in future time.

At present, I use a non-rotated ellipse as shown in Figure 3.8 for the Fresnel CRS Stack. The
small semi-axis in CMP direction at ZO has got the size of the projected Fresnel zone. The
large semi-axis is twice as large as the small semi-axis which is a good empirical value.

3.2.4 Geometrical spreading in terms of CRS Stack attributes

In Section 2.6, I described the theory of the GS, i.e., its relation to the ray Jacobian as well
as its connection to paraxial rays. I still have to put down the equation of the GS in terms
of the CRS Stack attributes. Because the in-line GS and the projected Fresnel zone are
related to each other, Expression (2.43), the in-line GS is similar to Equation (3.11):

jL2j = cos�
v0

jBj1=2
=

s
2
v0

���� 1
RNIP

� 1
RN

����
�1

: (3.16)

Thus, by multiplying the projected Fresnel zone (3.11) by a factor of 2v0T1=2 cos�, I arrive
at the GS.

The out-of-plane geometrical spreading,
p
�, of Equation (2.44) can be approximated by

the CRS Stack attributes. For plane horizontal iso-velocity layers the following relation-
ship between the RMS velocity and the quantity � of Equation (2.44) exists:

vRMS =

r
�

t0
: (3.17)

For parallel plane dipping iso-velocity layers, the RMS velocity equals vNMO cos�, where
� is the dip and emergence angle for ZO, respectively. Since a relation between v NMO and
the CRS Stack attributes exists (Hubral and Krey, 1980, see Equation (6.9) with different
notation), I approximate the quantity � for arbitrary media with:

� � t0v2
NMO = 2v0RNIP : (3.18)

3.2.5 Discussion

In Section 3.2 I presented two applications of the CRS Stack attributes: (i) the projected
Fresnel zone and (ii) the geometrical spreading. It is new that they are expressed in terms
of model independent attributes, which are found automatically due to coherency anal-
ysis. Therefore, their values do not depend on the picking and interpretation of the user
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anymore. Such a conventional method is described by Schleicher et al. (1997).

The determination of the projected Fresnel zone has two positive aspects: First, the num-
ber of traces to be stacked to simulate a ZO section becomes a minimum. Second, stacking
within the projected Fresnel zone produces the best S/N ratio. Unfortunately, the pro-
jected Fresnel zone is only exact in the ZO section. This problem can be solved exactly
with the common-offset CRS Stack Zhang et al. (2001) or approximately with the pro-
posal I made in Subsection 3.2.3.

I also produced, what I would call, a recursive Fresnel CRS Stack. It is obtained with the
following steps: (i) search for the three CRS Stack attributes, compute the projected Fres-
nel zone and produce a Fresnel CRS Stack. (ii) go to the beginning of the program and
search again for the three CRS Stack attributes but now use the projected Fresnel zone as
the aperture in midpoint direction and twice the projected Fresnel zone as the aperture
in offset direction. (iii) compute the projected Fresnel zone and the recursive Fresnel CRS
Stack with the recursively computed CRS Stack attributes. In comparison, the quality of
the recursive Fresnel CRS Stack decreased. The events became more rugged and more
discontinuous. The size of the projected Fresnel zone decreased. If the recursive compu-
tation of the CRS Stack attributes is performed several times each of the attributes does
not approach asymptotically a value. Therefore, the recursive Fresnel CRS Stack does not
converge to a final ZO section.

The simulated ZO section does not display correctly the ratio of amplitudes of events.
The multiplication of the ZO section with the in-plane and out-of-plane GS remedies the
discrepancy. The disadvantage is that the out-of-plane GS, which cannot be neglected in
the real world, assumes a horizontally layered earth. But it is known that a simplification
like the horizontally layered earth is often used by the oil industry to obtain successful
initial results. The validity for true-amplitude processing is checked in Section 4.3.

Multiplying the simulated ZO section with the in-plane and out-of-plane GS has another
advantage. It serves as a “natural” gain function. Usually, some gain function, which can
be a quite sophisticated time and space varying gain function, is applied to seismograms
in order to enhance amplitudes at large traveltimes, often without physical background.

3.3 Real data example

In cooperation with the oil and gas company BEB, I was supplied with a real data set in
order to apply the CRS Stack to it. Therefore, I had the chance of testing the new fea-
tures on a real data set. On the one hand the results are compared to the NMO/DMO
stack supplied by Geco-Prakla and on the other hand the conventional CRS stacks are
compared with the new implementations. These involve the projected Fresnel zone and
the geometrical spreading. The new applications were also tested on synthetic data. The
results are shown in connection with true-amplitude migration in Section 4.3.
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Figure 3.9: NMO/DMO stack produced by Geco-Prakla.
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Figure 3.10: Optimised CRS Stack.
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Figure 3.11: Initial CRS Stack.
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Figure 3.12: Fresnel CRS Stack.
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The axes of all sections are not the original ones, as I had to falsify them for publica-
tion. The falsification was done after the complete processing chain. Before I received the
multi-coverage data set, the data were processed with the following processing chain:
manual trace editing, spherical divergence correction using a time and space variant ve-
locity function, minimum delay transformation, surface-consistent deconvolution, vari-
ous static corrections, muting of the direct wave.

3.3.1 The new Fresnel CRS Stack compared with the old CRS stacks

Figures 3.9 to 3.12 show four different simulated ZO sections of the same multi-coverage
data set. In the seismograms, blue (red) denotes a positive (negative) amplitude and
white corresponds to the zero-crossing of the signal. Figure 3.9 displays the conventional
NMO/DMO stack of Geco-Prakla, Figure 3.10 is the Optimised CRS Stack, Figure 3.11 is
the Initial CRS Stack, and Figure 3.12 is the Fresnel CRS Stack. The Initial and Optimised
CRS Stack were introduced by Müller (1999). The Fresnel CRS Stack is new. In order to
see events at late times, the seismograms were multiplied by et0 , where t0 is the ZO two-
way-traveltime. Afterwards, an automatic gain control (AGC) with a window length of
1 s was applied.

At first glance, the difference of the S/N ratio of the conventionally processed data and
the CRS Stack results are most obvious. The basic, large scale events are easily detected
in each section: the dome-like events, the wedge on the upper right, the collapse of the
structures in box A, and the deeper event at the lower right. The dome-like events de-
noted 1 and 2 can be followed, with some interruptions, from the left to the right. The
events from the top up to about 0.4 s are not imaged well, because of the muting within
the CMP gather which has been done during pre-processing.

The events of the Optimised CRS Stack are the smoothest ones and the events have nearly
everywhere the best continuity. An exception can be seen in box A. The short events in
the middle of this collapsing structure are most continuous in the Fresnel CRS Stack. To
my opinion all CRS Stack sections are better than the conventional NMO/DMO stack.
Thus, I compare the different CRS Stack results with each other and will focus on the
events enclosed by the boxes.

For the Fresnel CRS Stack, the stacking aperture was two to three times smaller than
for the Initial or Optimised CRS Stack. The Fresnel CRS Stack shows two major improve-
ments: First, the resolution is higher than in the Initial and Optimised CRS Stack. Second,
the events are more continuous than in the Initial CRS Stack. It is not as good as in the
Optimised CRS Stack because it is not possible to have on the one hand maximal conti-
nuity and on the other hand maximal resolution. Thus, I suppose that the Fresnel CRS
Stack combines optimal continuity with optimal resolution.

The best example for this is depicted in box A. The boundary of the collapse is well re-
solved and the continuity of the events is preserved. In the middle of box B are two little
events which are only separated by the Fresnel CRS Stack (see arrow). The separation
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Figure 3.13: Fresnel CRS Stack multiplied by the GSF.
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Figure 3.14: Section of the emergence angle.
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is indicated in the Initial CRS Stack but in the Optimised CRS Stack it appears as one
continuous event. The event in the middle of box C is interrupted over a length of about
450 m. This can be seen again very clear in the Fresnel CRS Stack and it is slightly visible
in the NMO/DMO stack. Without the comparison it would hardly be detectable in the
Initial and Optimised CRS Stack. A stack of narrow events is visible in the Fresnel CRS
Stack in the middle of box D. The boundaries are well resolved compared to the other
CRS Stacks.

A disadvantage of the Fresnel CRS Stack can be seen in the large region in the lower part
of the section which contains a lot of noise. Because the stacking operator is smaller com-
pared to the one of the Initial and Optimised CRS Stack, coherent noise (snakes) appears
more enhanced. Therefore, it is in those regions of the Fresnel CRS Stack more difficult
to differ between event and noise than in the other CRS stacks.

Whereas I applied an arbitrary gain function to Figures 3.9 to 3.12, I multiplied Figure 3.13
with the 2.5-D GSF (in-plane GSF times out-of-plane GSF). The GSF in terms of CRS
Stack attributes can be regarded as a new “natural” gain function. The pre-processing
chain contained a time and space variant spherical divergence correction. If I assume
that the transmission loss in this real data set is negligible, the parameters of the correc-
tion were not chosen properly, otherwise I would not have to apply the AGC and e t0 as
a gain function. Because the spherical divergence correction did its job not well, I sup-
pose that Figure 3.13 shows the quality of the GSF. Events at all times are made visible
without an additional AGC or any other gain function. In Subsection 4.3.2 it becomes
evident on synthetic data that the 2-D GSF is correctly determined by the CRS Stack at-
tributes. For the synthetic example, the 2.5-D GSF is approximated quite well, too. If
the pre-processing was performed carefully with respect to amplitudes, the application
of the GSF to the Fresnel CRS Stack could display correct relative amplitudes, i.e., correct
relative reflection coefficients. This could be used for geological interpretation.

3.3.2 CRS Stack attribute sections and new applications

The three CRS Stack attribute sections are depicted in Figures 3.14 to 3.16. As the cur-
vature of the anticlinal structure is moderate, the emergence angles encompass a range
of about 15 degree, Figure 3.14. The stripe-pattern in the upper left part of Figure 3.14
correlates with the slightly wavy appearance of the package of events. The wavy shape
of the events is most obvious in the Fresnel CRS Stack, Figure 3.12. The radius of the
NIP wave is shown in Figure 3.15. As expected, the NIP wave radius principally in-
creases with increasing traveltime - the radius of the NIP wave is linear proportional to
the traveltime in a homogeneous medium. The lateral change of the NIP wave radius
can be traced along some outstanding events. The section of the curvature of the normal
wave, Figure 3.16, shows fluctuations of an event more pronounced than the two pre-
vious sections. I decided to show the inverse of the radius of the normal wave because
if the emerging normal wave is nearly planar, it has either a slight positive or negative
curvature. Thus, a planar normal wave with a huge positive or negative radius is repre-
sented practically by the same colour, i.e., white. High frequent fluctuations of the values
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Figure 3.15: Section of the radius of the NIP wave.
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Figure 3.16: Section of the curvature of normal wave.
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within the attribute sections correspond to regions with low S/N ratio. The boundary
of these low S/N ratio regions are not coincident for the three attribute sections. Com-
pare the areas of short period changes of the emergence angle section with the NIP wave
and normal wave section. Because the area of strong fluctuations is the smallest in the
emergence angle section and lateral changes are long periodic compared to the other at-
tribute sections, it can be deduced that the emergence angle is the most robust CRS Stack
attribute.

The section of the radius of the projected Fresnel zone, Figure 3.17, was obtained with
Equation (3.12). This section is very similar to the NIP wave section, because the range of
the emergence angle is moderate and the absolute radius of the normal wave is in general
quite large compared to the radius of the NIP wave. Thus, R NIP is for this real data ex-
ample the dominant parameter for Equation (3.12). For the computation of the projected
Fresnel zone, I assumed a wavelet length of 50 ms. This section could be improved by
taking into account a time varying wavelet. During wave propagation, the high frequen-
cies are attenuated stronger than the low frequencies. Hence, the time duration of the
wavelet increases with increasing traveltime.

Figure 3.18 depicts the 2.5-D GS. It was calculated with equations (2.44), (3.16), and (3.18).
Again, some dominant events can be seen and the GS, as expected, increases with in-
creasing traveltime. The close relationship between the projected Fresnel zone and the
GS, mentioned in subsection 3.2.4, is also mirrored by the corresponding sections 3.17
and 3.18. The GS can be regarded as a “natural” gain function. Applying it to the associ-
ated ZO section makes events visible at small traveltimes as well as at large traveltimes.
The GS section of Figure 3.18 was multiplied with the Fresnel CRS Stack of Figure 3.12 in
order to obtain Figure 3.13.
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Figure 3.17: Section of the radius of the projected Fresnel zone.
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Chapter 4

True-amplitude migration with CRS
Stack attributes

In reflection seismics, migration is a key method to obtain an image of the subsurface.
The immense number of publications at present and over the last few decades reflects
the importance of and demand for this topic. Instead of citing many references, I want to
focus the reader’s attention on a few publications that I reckon are fundamental for the
basics and for some widely used modern specialisations.

The statement that Hagedoorn (1954) formed the foundations of migration has found
wide acceptance.1 He described how to perform migration of time sections in 2-D and
3-D based upon the application of wavefront charts and diffraction curves. In the early
days of migration, the aim was mainly to transform the data from time to depth, i.e.,
it was reduced to kinematics. Schneider (1978) gave an integral formulation for migra-
tion. He included boundary value problems and thus considered amplitude and wave-
form reconstruction in addition to diffraction summation. The first algorithm of a finite-
difference migration based upon the scalar wave equation was proposed by Claerbout
and Doherty (1972). The concept of time-to-depth migration along the image ray was in-
troduced by Hubral (1977). A least-squares method for migration was given by Tarantola
(1984). The interested reader gains comprehensive information and an enormous num-
ber of references on (true-amplitude) migration by reading Berkhout (1985), Bleistein et
al. (2001), and Schleicher et al. (2001). For the more practical aspects of migration and a
huge number of examples, I recommend the excellent books of Yilmaz (1987) and Claer-
bout (1993), where the latter book also offers many source codes for pre-processing and
migration.

The data recorded in the field are exposed to “environmental influences” like wind, traf-
fic, source- and receiver-coupling, etc. and to “ray path-bounded” influences like geo-
metrical spreading, transmission loss, intrinsic absorption, attenuation due to thin lay-
ers, etc. (Sheriff, 1975). With various filters and deconvolution methods during pre-

1His work will be honoured with a special issue on migration in Geophysical Prospecting. Date of publica-
tion is planned to be at the end of 2001.
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processing, the effect of environmental noise on the data can be minimised. To account
for the change of the amplitude, dynamic migration methods are required. For a layered,
laterally inhomogeneous earth where the layers are well separated compared to the dom-
inant wavelength of the propagating wave, the geometrical spreading has got the largest
effect on the ZO primary reflections. In the literature, the terminology true-amplitude
(TA) migration usually means to compensate for the GS factor and to neglect all other
amplitude factors. A comparison of three TA migration approaches associated with the
names Berkhout, Bleistein/Hubral, and Tarantola was presented by Gray (1997). That com-
parison reflects that none of the methods is in every respect superior to the others. It de-
pends on the model, the acquisition geometry and on the considered wave types which
method is suited best. Below, I use the TA migration theory of Bleistein and Hubral.
Their extensive work on migration and wave propagation is summarised in the books of
Bleistein et al. (2001) and Schleicher et al. (2001). In this chapter, I combine the TA mi-
gration with the attributes of the CRS Stack, to perform a parsimonious true-amplitude
post-stack migration.

4.1 2-D true-amplitude Kirchhoff migration

For the signal to be true-amplitude migrated, I use an expression which is the result of
zero-order ray approximation. Speaking in terms of 2-D, the signal U(�; t) denotes the
principal component of the particle displacement of a primary reflection, i.e., the particle
displacement in the direction of the emerging ray, see blue arrows in Figure 4.1:

U(�; t)= Rc
A
L

F[t� TR] : (4.1)

TR denotes the traveltime of the primary reflection. Rc is the plane wave reflection coeffi-
cient (RC) at the reflection point MR. The transmission loss along the reflection ray path
is given by A and the geometrical spreading by L . The analytic point-source wavelet is
represented by F[t], which consists of the real source wavelet (as real part) and its Hilbert
transform (as imaginary part). A reproducible source is assumed, hence, F[t] does not
depend on �. In this work I assume that the transmission loss is negligible, that means
A = 1. Taking those prerequisites into account, Equation (4.1) can be approximated by

U(�; t) � U0(�)F[t� TR] ; where U0(�) =
Rc

L
: (4.2)

This leads to the definition of the analytic true-amplitude signal (Schleicher et al., 1993),
i.e., the source wavelet F[t] is multiplied by the angle-dependent reflectivity. Due to the
imaging principle, I have to shift the event to t= 0. This represents an exploding reflector
which yields

U(t)TA = RcF[t] � LU(�; t+ TR) : (4.3)

For the TA migration, I use a weighted modified diffraction stack as described by Schlei-
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Figure 4.1: The output of the summation along the diffraction traveltime curve TD is
assigned to the corresponding diffraction point MR.

cher et al. (1993). The summation along the diffraction traveltime curve TD is mathemat-
ically expressed as

V(M; t) =
1p
2�

Z
A

d� WDS(�; M)@1=2
t� U(�; t)

������
t=TD(�;M)

; (4.4)

where @
1=2
t� U(�; t) denotes the anti-causal time half-derivative of the input traces. The

partial differentiation has to be performed in order to correctly recover the source pulse.
In the absence of noise, the region of integration A would be ideally the whole �-axis.
When noise is present the integral boundaries are given by the projected Fresnel zone as
mentioned in Section 2.5 and 3.2.1. Actually, the diffraction stack result does not depend
on the time t. The time-dependency is introduced in order to apply a Fourier transform
and to subsequently use the method of stationary phase, Bleistein (1984). The application
of this method is possible as !� 1, which has already been assumed in the framework
of ray theory. Now, the TA weight function WDS(�; M) is going to be determined.

Inserting Equations (4.2) into Equation (4.4) and transforming it into the frequency do-
main reads

V̂(MR; !) =

r
i!
2�

F̂[!]
Z
A

d� WDS(�; MR)
Rc

L
ei!Tdi f : (4.5)
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F̂[!] and V̂(MR; !) are the Fourier transforms of F[t] and V(MR; t), respectively. In Equa-
tion (4.5) it is assumed that M is an actual reflection point, i.e., M= MR. As stated above,
the Fourier transform is followed by the method of stationary phase by expanding the
phase function Tdi f = TD � TR into a Taylor series up to second order with respect to �0,
otherwise integral (4.5) cannot be solved analytically:

Tdi f (�; MR) = Tdi f (�0; MR)+
1
2

(� � �0)2Hdi f : (4.6)

As the diffraction and reflection traveltime curves are tangent at the stationary point
NR, their gradients are identical. Thus, the first order term of the Taylor expansion is
zero. I assume that Hdi f is nonsingular. Hence, I do not take any points into account
where Hdi f = 0. The application of the method of stationary phase in the high-frequency
approximation yields

V̂(MR; !) ' F̂(!)WDS(�0; MR)
Rc

L
ei!Tdi f

1q
jHdi f j

� e�i �2 � ; (4.7)

where � is again the KMAH index, Červený (2001). Now, I define

WDS(�0; MR) = L
q
jHdi f j ei �2 � (4.8)

and insert it into Equation (4.7). It reduces the approximation (4.7) to the spectrum of
the TA source wavelet RcF̂[!] multiplied with a phase shift factor ei!Tdi f that accounts
for the difference between the reflection and diffraction traveltime curve at the stationary
point. Going back to the time domain, a comparison with the TA definition (4.3) yields
that the geometrical spreading effect is removed, Schleicher et al. (1993). Using equations
of Tygel et al. (1995) that describe the relationship of the so-called dual points NR and MR
in Figure 4.1, it can be stated that

Hdi f =
@2Tdi f

@�2

�����
�=�0

= HP : (4.9)

The projected Fresnel zone element HP is related to the propagator element B, Equa-
tion (2.32). Insert Equation (2.32) and (2.41) into (4.8) finally yields for the weight function
of the 2-D ZO migration

WDS(�0; MR) =
2 cos�

v0
: (4.10)

The factor cos� vanishes if the vertical component is measured at a non-free surface
instead of the principle component. In case of a free surface, the weight function has to
be multiplied with a conversion coefficient, Červený (2001). The weight function (4.10)
can be used not only for points MR but for any arbitrary depth point M because WDS does
not depend on any reflector properties. Provided the source signal is a function of finite
duration, F[t] vanishes outside an interval �TW < t < TW . If the point M is close to the
reflector, it corresponds to a small traveltime difference t = Tdi f (�0; M) inside the interval
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4.1 2-D true-amplitude Kirchhoff migration

�TW < t < TW . The value RCF[t] is then given by the TA migration. If the point M
moves further away from the reflector, the traveltime difference Tdi f (�0; M) moves out of
the interval�TW < t < TW and the result of the TA stack practically vanishes, Schleicher
et al. (1993).

4.1.1 2.5-D true-amplitude Kirchhoff migration

In the real world, wave propagation always takes place in 3-D. To apply my parsimonious
TA migration in Section 4.2 in 3-D, it would require a 3-D CRS Stack with its associated
attributes. At present, the 3-D CRS Stack is still under development (at the Geophysi-
cal Institute at Karlsruhe University, Germany). Often, geological situations exist which
allow to consider 3-D wave propagation in a medium that does not vary in the horizon-
tal direction perpendicular to the seismic line. The stack involved in Kirchhoff migra-
tion needs to be performed only along a curve instead of a 3-D data volume. Thus, the
diffraction stack integral (4.4) remains the same but the weight function WDS (4.10) has to
be multiplied by the out-of-plane GSF

p
� provided by Equation (2.44) or approximated

by CRS Stack attributes as in Equation (3.18).

4.1.2 Stationary point

Let me point out a problem that has been mentioned by Schleicher et al. (1997). They
wrote: “...there is still the fundamental and unsolved problem of finding a technically feasible
method for the determination of the tangency point �0 where the minimum aperture is to be cen-
tred”.

The point dual to the tangency point NR is the diffractor MR located at the normal inci-
dence point (NIP) on the target reflector, Figure 4.1. The �-component of the tangency
point is the so-called stationary point where the gradients of the reflection and diffraction
traveltime curves are identical. A stationary phase analysis concludes that a finite migra-
tion aperture results in a migrated image with three components: One comes from the
tangency point and gives the migrated signal. The other two components come from the
boundaries of the migration aperture and result in migration noise. To obtain a TA mi-
grated section and to suppress migration noise, the migration aperture has to be centred
around the stationary point and the input data have to be tapered at the boundary of the
migration aperture. The effect of the location of the stationary point, i.e., whether it is
within the migration aperture, at the boundary, or outside the migration aperture was
extensively examined by Sun (1998) in 2-D and by Sun (2000) in 3-D. The results of Sun
(1998) state that the stationary point �0 should lie within the central part of the migration
aperture. The central part is determined by

jTdi f (�)� t(�0)j = TW =2 ; (4.11)

where TW denotes the duration length of the seismic pulse and �0 is the stationary point.
The traveltime at the stationary point is t(�0) and Tdi f (�) = TD(�)�TR(�) is the traveltime
difference of the diffracted and reflected signal. The boundary of the migration aperture,
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Chapter 4. True-amplitude migration with CRS Stack attributes

which is equivalent to the boundary of the projected Fresnel zone, is obtained if the right-
hand side of Equation (4.11) is multiplied by 2.

Conventional migration methods, post-stack or pre-stack Kirchhoff migration, are based
upon a model that consists of point diffractors. Thus, these methods neither contain a
specular reflection nor a normal ray. But it is this normal ray in a ZO section that de-
termines the stationary point. By definition, each sample in the simulated ZO section of
the CRS Stack is associated with a normal ray. It means, if a sample in the time-domain
really corresponds to a reflection event, the stationary point is automatically determined.
This not only solves the problem raised by Schleicher et al. (1997). With the CRS Stack
attributes it can also be checked whether the stationary point lies within the central part
of the migration aperture or beyond it.

For the parsimonious TA migration as well as for the Fresnel CRS Stack, the minimum
aperture is centred at the stationary point in order to produce an image with optimal S/N
ratio. Katz and Henyey (1992) proposed a method to estimate the stationary point and
the minimum aperture. Their approach improved the S/N ratio of the image but relied
on a velocity model.

4.1.3 Steps of conventional 2-D TA Kirchhoff migration

Conventional 2-D post-stack Kirchhoff migration is performed in the following way, see
also Figure 4.2: It is assumed that each point M at depth is a diffraction point which
serves as a secondary Huygens’ point source. From each diffraction point M many rays
are traced up to the coincident source and receiver locations along the seismic line. E.g.,
the traveltime t(�A) associated with the ray (�A MR�A) yields the diffraction traveltime at
the ZO coordinate �A. The diffraction traveltime TD is obtained if ray tracing is performed
for all ZO locations. Before stacking, the anti-causal time half-derivative of the input
traces is computed. The signals aligned along the diffraction traveltime curve TD are
multiplied by the weight function WDS, summed, multiplied by ∆�=

p
2�, and assigned

to the point MR. Here, ∆� is the trace spacing which corresponds to d� in the diffraction
stack integral (4.4). All points on a depth grid are going to be assigned with stacked
signals, which prevents the presence of gaps.

4.2 Parsimonious 2-D true-amplitude migration

Before I describe my parsimonious TA migration, I want to point out that recently Hua
and McMechan (1999) published another kind of parsimonious 2-D migration. They use
local slant stacking to find the emergence angle for an amplitude associated with a plane
wave. Afterwards, they shoot the ray down with the known initial angle and distribute
the amplitude along the local wavefront which has a radius of curvature proportional to
the ray length. Their imaged interfaces look smeared and frayed.

Now, my parsimonious 2-D TA migration is explained by means of Figure 4.3. A simu-
lated ZO section produced by the CRS Stack serves as the input for the migration. The
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Figure 4.2: Many rays have to be traced in
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Figure 4.3: A maximum of three rays are
traced employing the parsimonious TA
migration.

corresponding CRS Stack attributes are used to perform the migration either by stacking
or by mapping. A parsimonious 2.5-D TA migration is obtained if the input data set is
multiplied by

p
� as mentioned in Subsection 4.1.1. The quality of the resulting depth

sections is examined using a synthetic data set in Section 4.3. The application to a real
data set is shown in Subsection 5.3.4, where the model needed for migration is inverted
by means of CRS Stack attributes.

4.2.1 Stacking

The diffraction traveltime curve is computed for each ZO sample with the hyperbolic
paraxial traveltime formula (3.3) by setting RN = RNIP. Therefore, no ray tracing is
needed to obtain the stacking curve. Because I assume smoothly varying media where
paraxial ray theory is valid, the deviations between the analytical diffraction traveltime
curve and the one obtained via ray tracing should be small within the projected Fresnel
zone. As described in Subsection 4.1.2, the �-coordinate of a ZO sample in a CRS Stack
section is the stationary point. The projected Fresnel zone computed with CRS Stack at-
tributes, Equation (3.12), is centred at the stationary point �0. The outer vertical dashed
lines in Figure 4.3 depict the boundary of the projected Fresnel zone, where the traveltime
difference of the diffracted and reflected traveltime equals the duration of the wavelet.
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Chapter 4. True-amplitude migration with CRS Stack attributes

The operator @1=2
t� U(�; t) is applied to the input traces which are then multiplied by WDS,

stacked within the projected Fresnel zone and multiplied by ∆�=
p

2�. The ZO data are
tapered at the edges of the projected Fresnel zone.

So far, no velocity model was needed. In the next step, one ray is traced through a given
macro-velocity model. It starts at the stationary point �0 with a take-off angle �0, which
is the emergence angle that corresponds to the ZO sample N R(�0; t0). This (central) ray
ends at MR, where MR coincides with NIP. The depth image is somehow discretised. In
general, MR does not fall onto a grid point. Hence, bilinear interpolation is performed
and the stacked signal is distributed to the four nearest grid points, weighted by the dis-
tance to the individual grid point. In standard Kirchhoff migration, the interpolation is
done, e.g., in the (�; t)-domain. When the rays are traced from MR to the ZO locations,
the endpoints of the rays do not coincide in general with the ZO locations.

In principle, the parsimonious TA migration is identical to a TA Kirchhoff migration. The
main difference is that the ray tracing is performed for each time sample and not for
each depth sample. Consequently, it is not assured that stacked signals are assigned to
each depth sample. This is because rays focus at anticline structures and defocus at syn-
cline structures, which then appear discontinuous in the migrated section. This problem
can be overcome by tracing two more rays, namely the paraxial ZO rays which emerge
at the boundaries �1 and �2 of the projected Fresnel zone, Figure 4.3. The emergence an-
gles of the paraxial rays differ with respect to �. Assuming a circular normal wavefront
emerging at time t0 at �0, the emergence angle �p and the traveltime tp for a paraxial
point � can be expressed as, Höcht et al. (1999):

sin�p(�) =
� � �0+ RN sin�0

RN A(�)
; (4.12)

tp(�) =
2
v0

RN [A(�)� 1]+ t0 ; (4.13)

where

A(�) =

s
(� � �0)2

R2
N

+ 2
(� � �0) sin�0

RN
+ 1 : (4.14)

The normal wave with radius RN is propagated along the central ray to NIP where it has
locally the same curvature as the interface. The intersections of the normal wave at NIP
with the paraxial rays yield the boundaries of the Fresnel zone at the interface. The latter
Fresnel zone differs slightly from the exact interface Fresnel zone because of the approx-
imations made for computing the traveltimes and the emergence angles of the paraxial
rays.

The stacked signal is assigned to each point on the interface Fresnel zone, which involves
again bilinear interpolation as explained above. When this procedure is done for a whole
section, depth points are multiply assigned. This is considered by normalising the value
at each depth sample by the number of assignments. Distributing the stacked signal
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Figure 4.4: Synthetic model made up by five homogeneous layers.

along the interface Fresnel zone fills the gaps. Because the conventional Kirchhoff mi-
gration is the basis for the parsimonious TA migration, it belongs to the Kirchhoff-type
migration methods.

4.2.2 Mapping

Another approach to produce a TA image is obtained if the stacking is replaced by a mul-
tiplication of the ZO traces with the geometrical spreading (3.16). This operation gives
the TA signal (4.3), i.e., no additional factor or half-derivative has to by applied. There-
fore, the GS corrected signal can be immediately mapped from NR to MR or assigned
along the interface Fresnel zone as described in the previous subsection.

With the term stack-migrated section, I refer to the procedure where the data were stacked
and then assigned to depth. When the ZO samples are multiplied by the GSF before the
depth point assignment, I call it map-migrated section.

4.2.3 Data selection via CRS Stack coherence section

For each CRS Stack exists a coherence section. The semblance (see Section 6.3.2) is used
for coherence analysis. This section can be used to decrease the amount of data to be
migrated. If the ZO sample NR in Figure 4.3 was selected, it means that its corresponding
CRS Stack attributes are used for migration as described above. Let me emphasise that
all samples aligned along the diffraction traveltime curve within the projected Fresnel
zone are used for stacking. These samples are used for the stack even if their associated
coherence coefficient is smaller than the applied threshold.
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Figure 4.5: Shot gather generated with the NORSAR ray
tracer and added noise.
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Figure 4.6: Fresnel CRS Stack of the noisy input data set.

4.3 Synthetic example

The parsimonious TA migration was tested with a model consisting of five layers with
curved interfaces, see Figure 4.4. The layers have from top to bottom a constant P-wave
velocity of 1500 m/s, 1800 m/s, 2000 m/s, 2200 m/s, and 2500 m/s. The whole model
extends from 0 to 10000 m. The maximum depth of the model is 3500 m. The results
are always shown between 1000 and 8500 m. The single-spread data acquisition was as
follows: The first shot location was at 1000 m. 142 shot gather were generated each having
101 receivers. The source spacing was 60 m, the receiver spacing 20 m. The receivers were
located to the left of the source, i.e., their horizontal �-coordinates were smaller than the �-
coordinate of the source. The source moved to the right, thus, the largest offset of 2000 m
was first gained when the source was also at the �-coordinate 2000 m. The synthetic
data were produced with the NORSAR ray tracer. The source wavelet was a zero-phase
Ricker wavelet, i.e., it was the second derivative of the Gaussian distribution curve with
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4.3 Synthetic example

dominant frequency of 20 Hz. The time sampling of the ZO section was 2 ms, the spatial
sampling 10 m. In the migrated section the sampling was 5 m in vertical direction and
10 m in horizontal direction. The migration was tested on noise free data and on data
where noise was added. A shot gather with noise is shown in Figure 4.5.

4.3.1 True-amplitude CRS Stack

The CRS Stack was applied to the synthetic multi-coverage data set in order to produce
a simulated ZO section. Before I used this ZO section as the input for the parsimonious
TA migration, it has to be ensured, that the CRS Stack did not destroy the amplitudes.
Therefore, I compared the amplitudes pertaining to the correct NORSAR ZO rays with
the amplitudes of the CRS Stack simulated ZO sections. The Fresnel CRS Stack of the
noisy input data set is depicted in Figure 4.6. Each of the four events is clearly visible but
from that Figure it cannot be deduced that the dynamics were preserved.

In all the following figures that compare the amplitudes or the RCs, black curves corre-
spond to the first event (interface), red curves to the second, green curves to the third
and blue to the fourth event (interface). Figures 4.7 and 4.8 compare the amplitudes of
the NORSAR ZO section (solid curves) with the amplitudes of the Initial CRS Stack and
Fresnel CRS Stack (dashed curves), respectively. Here, no noise was added to the input
data of the CRS stacks. Figures 4.9 and 4.10 are the noisy equivalents to Figures 4.7 and
4.8. It is obvious that the Fresnel CRS Stack recovers the signal better than the Initial CRS
Stack. The picked amplitudes of the CRS stacks are always smaller than the NORSAR
ZO amplitudes. This is because the amplitude decreases with offset and the reflectivity is
angle dependent. As long as the reflection angle is small, the reflectivity decreases with
increasing reflection angle. The peaks and troughs in the Figures 4.7 to 4.10 are due to
the synclines and anticlines of the interfaces. A syncline (anticline) focuses (defocuses)
the reflected wavefield. Thus, the GSF decreases (increases) compared to a GSF associ-
ated with a wavefield reflected at a plane interface. Especially, where the influence of the
interface curvature is large, the Fresnel CRS Stack recovers the amplitude better than the
Initial CRS Stack.

It can be concluded that the deviations of the Initial CRS Stack from the NORSAR ZO
section rapidly increase where interface curvatures increase. The deviations are much
smaller in the Fresnel CRS Stack. Thus, it should be preferred for a TA migration in com-
parison to the Initial CRS Stack. From these results it can be deduced that the amplitude
of the Fresnel CRS Stack does not change significantly in the paraxial vicinity of the cen-
tral ray. So far, no explanation could be found for the fact that the deviation of the first
interface is larger than for the deeper interfaces.

4.3.2 True-amplitude migration

The parsimonious TA migration was applied to the Initial and Fresnel CRS Stack. The pa-
rameters associated with the ZO samples within a black strip around the reflection events
of Figure 4.11 served as the input for the migration algorithm. Figure 4.12 displays the
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Figure 4.7: Amplitudes of the ZO ray (solid) compared with
the amplitudes of the Initial CRS Stack (dashed).
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Figure 4.8: Amplitudes of the ZO ray (solid) compared with
the amplitudes of the Fresnel CRS Stack (dashed).

migrated section where the noisy data were stacked within the projected Fresnel zone
along the diffraction traveltime curve and subsequently assigned to NIP. As described
above, due to this special kind of migration, it happens that not all depth points are cov-
ered with a migrated signal. These gaps close if the stacked signal is assigned to all depth
points along the interface Fresnel zone. This shows Figure 4.13. Here, the input data were
noisy, too. Compare the migrated sections with the model 4.4, which was also used for
ray tracing. It can be stated that the positions of the reflectors are correct.

Next, I want to check the dynamics of the parsimonious TA migration. The picked am-
plitudes of the migrated sections are displayed with the same colour code as in the pre-
vious subsection. As the reflection coefficients are constant along the interfaces, they
appear as straight lines in Figures 4.14 to 4.21. The RCs are computed by R= (vi+1�i+1�
vi�i)=(vi+1�i+1+ vi�i), where v is the velocity, � is the density of the ith and (i+ 1)th layer.
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Figure 4.9: Amplitudes of the ZO ray (solid) compared with
the amplitudes of the noisy Initial CRS Stack (dashed).
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Figure 4.10: Amplitudes of the ZO ray (solid) com-
pared with the amplitudes of the noisy Fresnel CRS Stack
(dashed).

I only consider P-waves, thus, v is the P-wave velocity. The RCs are from top to bottom:
0.091, 0.053, 0.048, and 0.064. For this TA analysis, the data were always assigned to all
points along the interface Fresnel zone.

Instead of describing each single figure, I focus on characteristics visible in several fig-
ures:

� Amplitudes of the Fresnel CRS Stacks are always closer to the RCs than the ampli-
tudes of the Initial CRS Stacks.

� The amplitude deviations from the RC associated with the first, second, and third
interface are always small compared to the fourth interface.

� The fluctuations of the amplitudes along an interface are smaller in the map-migrated
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Figure 4.11: Data selection for parsimonious TA migration.
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Figure 4.12: Migrated data were merely assigned to NIP.
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Figure 4.13: Migrated data were assigned to all points along the in-
terface Fresnel zone.
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Figure 4.14: Comparison of exact RCs and amplitudes of
stack-migrated Initial CRS Stack (noise free).
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Figure 4.15: Comparison of exact RCs and amplitudes of
stack-migrated Fresnel CRS Stack (noise free).
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Figure 4.16: Comparison of exact RCs and amplitudes of
map-migrated Initial CRS Stack (noise free).
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Figure 4.17: Comparison of exact RCs and amplitudes of
map-migrated Fresnel CRS Stack (noise free).
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Figure 4.18: Comparison of exact RCs and amplitudes of
stack-migrated Initial CRS Stack (with noise).

interface4th3rd2nd1st

1000 2000 3000 4000 5000 6000 7000 8000
Distance (m)

0.03

0.05

0.07

0.09

0.11

0.13

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t

Figure 4.19: Comparison of exact RCs and amplitudes of
stack-migrated Fresnel CRS Stack (with noise).
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Figure 4.20: Comparison of exact RCs and amplitudes of
map-migrated Initial CRS Stack (with noise).
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Figure 4.21: Comparison of exact RCs and amplitudes of
map-migrated Fresnel CRS Stack (with noise).

sections than in the stack-migrated sections.

� The amplitudes of the map-migrated sections are always smaller than the stack-
migrated sections.

� The deviations increase where the interfaces become curved. This was already ob-
servable in Figures 4.7 to 4.10.

� The quality of the map-migrated sections is higher than the quality of the stack-
migrated sections.

If all data are used for migration instead of the subset selected by a threshold in the
semblance section, the results hardly change. In general the deviations slightly increase.
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Figure 4.22: Reflection coefficients compared with the GS
corrected Initial CRS Stack (no noise).
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Figure 4.23: Reflection coefficients compared with the GS
corrected Fresnel CRS Stack (no noise).

4.3.3 Geometrical spreading for map migration and as a “natural” gain func-
tion

When a simulated ZO section is multiplied by the GSF the data can be map-migrated. It
can also serve as a “natural” gain function which displays the reflection coefficients. If
the source strength is not known, the section does not show the absolute RC but correct
relative amplitudes. Figures 4.22 to 4.25 depict the reflection coefficients as straight lines
and the GSF corrected or naturally gained ZO sections. The Fresnel CRS Stacks yield re-
sults which are closer to the exact values than the Initial CRS Stacks. The noise introduces
high-frequent fluctuations to the curves.

Two phenomena are observable if Figures 4.22 to 4.25 are compared to their migrated
equivalents 4.16, 4.17, 4.20, and 4.21: First, there exists virtually no difference in the high-
frequent fluctuations of the migrated data with noise and without noise. Second, the
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Figure 4.24: Reflection coefficients compared with the GS
corrected noisy Initial CRS Stack.
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Figure 4.25: Reflection coefficients compared with the GS
corrected noisy Fresnel CRS Stack.

W-shaped parts, especially of the second and third event, are flattened in the migrated
equivalents. The high-frequent fluctuations were not present in the noise free data in
the time domain, hence, they were produced due to the migration process. In addition,
the rearrangement of the data due to the transformation from time to depth removes the
W-shaped parts.

4.3.4 2.5-D migration

The NORSAR ray tracer also computed the out-of-plane GS. Therefore, all the computa-
tions I did for 2-D, were performed for 2.5-D, too. The only difference to the 2-D migra-
tion was the computation of the out-of-plane GS using Equation (3.17) and a subsequent
multiplication with the ZO sections. For this model the differences are so small that they
are not recognisable compared to the 2-D results and are therefore not shown.
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Chapter 5

Velocity model derived by CRS Stack
attributes

The CRS Stack attributes can be employed for the velocity inversion. Various inversion
algorithm are described by Majer (2000). He tested the algorithms on synthetic data. My
aim was to apply the algorithm also on real data because then the CRS Stack attributes
can also be applied to real data to obtain

� a data-driven ZO section,

� a data-driven velocity model, and

� a data-driven parsimonious TA migration.

This means that for the whole cycle of transforming a multi-coverage data set into a depth
image, no initial velocity information is required. The inversion process is quite sensitive
to fluctuations of the input data. Thus, a smoothing algorithm had to be found which
makes the inversion process of real data robust. A short review of the applied inversion
algorithm, the sophisticated smoothing algorithm I found, and a real data example is
presented in the following sections.

5.1 Horizon inversion

From the analysis performed by Majer (2000) it can be deduced that the well-known Dix
inversion algorithm (Dix, 1955) is sufficient for gently dipping interfaces but does not
yield the best results, especially when the model is complex. The Dix inversion algo-
rithm was translated into a trace by trace inversion, i.e., all information used from sev-
eral events of one and the same trace is inverted to depth before the next trace enters into
the inversion procedure. Thus, the CRS Stack attributes of neighbouring traces have no
influence on the inversion process of individual traces. In addition, the Dix inversion al-
gorithm merely requires the NMO velocity of the CRS Stack (Equation 3.6) and does not
make use of the full potential of the CRS Stack attributes. This is different in the horizon
inversion which I shortly review.
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Figure 5.1: The transmission law, Snell’s law, and refraction law is required to obtain
the refraction angle, the velocity on the refracted side, and the radius of curvature of the
refracted wavefront (modified after Majer (2000)).

Three laws are needed for the inversion process. In the following three equations, the
index I is attached to the parameters pertaining to the wavefront or ray incident on the
interface, whereas the index T corresponds to the parameter of the wavefront or ray on
the refracted side of the interface, respectively. The transmission law

R1 = R0+ v∆t (5.1)

describes the change of the wavefront radius R0 due to the propagation of the wavefront
through a homogeneous layer with velocity v. ∆t is the propagation traveltime. The
refraction law

1
RT
=

vT cos2 I

vI RI cos2 T
+

1
RF cos2 T

�
vT

vI
cosI � cosT

�
: (5.2)

yields the radius of the wavefront refracted at the interface with local interface curvature
1=RF, Hubral and Krey (1980). Here, v is the layer velocity and  is the angle measured
versus the interface normal at the refraction point. The well-known Snell’s law is given
by

sinI

vI
=

sinT

vT
: (5.3)
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5.2 Robust locally weighted regression

Equations (5.3) to (5.2) can be solved for the parameters T, RT, and vT. The three param-
eters on the refracted side are needed for a horizon inversion in a layer-stripping method,
i.e., the homogeneous layers are calculated recursively from top to bottom.

Suppose, the ZO traveltimes, the emergence angles, and the radii R NIP were picked along
several events. The horizon inversion starts with the picked data of the first event (small-
est traveltime). The take-off angles of the traced rays are the emergence angles obtained
by the CRS Stack. As indicated in Figure 5.1, only the transmission law is needed to ob-
tain the first layer. The endpoints of the rays pertaining to the first layer are connected
by a curve which is computed using cubic spline interpolation or polynomial approxi-
mation. The difference of how to connect the endpoints, i.e., constructing the interface, is
shown at the second interface in Figure 5.1. The cubic spline interpolation passes through
all endpoints which produces a strongly fluctuating interface (green). This is not suitable
for the inversion of the subsequent interfaces. The polynomial approximation generates
a smooth interface with long periodic fluctuations (red).

Next, the rays and NIP-wavefronts of the second event are propagated through the first
layer and are refracted at the first constructed interface. At the interface, Snell’s law and
the refraction law is applied to the rays and NIP-wavefronts. Then the parameters T, RT,
and vT are computed. Applying again the transmission law yields the blue rays where
the endpoints are connected as described above. This procedure is applied to as many
events as possible, as long as the fluctuations of the associated attributes can be brought
under control.

5.2 Robust locally weighted regression

At first, I smoothed the data by means of simple statistical methods, like arithmetic mean,
median filtering, triangular weight function combined with the arithmetic mean etc. The
outputs were not satisfying in the sense that the algorithm of the horizon inversion either
collapsed or produced layered models which were far from being realistic. The robust
locally weighted regression of Cleveland (1979) supplied smoothed CRS Stack attributes
which ensured a stable horizon inversion.

The first step is to choose a weight function with the following properties:

� W(x) > 0 for jxj < 1,

� W(�x)=W(x),

� W(x) is a non-increasing function for x � 0, and

� W(x) = 0 for jxj � 1.

Examples of such a weight function are a boxcar, a triangle or the cosine function (within
the boundaries from �� to +�). The second step is to fit a polynomial of dth order to
the points (xi; yi) within the window using weighted least squares with weights wk(xi).
Specifically, the index i = 1; : : : ;n denotes the sample points of an event where n is the
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number of picked samples. For each xi, weights wk(xi) are defined for all xk, k = 1; : : : ; r,
using the weight function W. This is done by centring W at xi and scaling it so that the
point at which W first becomes zero is at the rth nearest neighbour of xi. This yields the
initial fitted ŷi at each xi, which is the locally weighted regression.

In the third step, a different set of weights Æ i is defined for each (xi; yi) based on the size
of the residual (yi � ŷi). The robustness weights are defined as

Æk = B(ek=6s) ; (5.4)

where s is the median of ei = jyi � ŷij and B is the bisquare weight function given by

B(x) = (1� x2)2 ; for jxj < 1 ;

= 0 ; for jxj � 1 : (5.5)

Large residuals result in small weights and small residuals result in large weights. The
fitted values are calculated again with a new set of weights Æ iwk(xi) which are multiplied
with the original data. The last step is repeated several times and the result is the robust
locally weighted regression.

The number of iterations can be determined. The length of the smoothing window is
obtained by r = f n, where r is rounded to the nearest integer and f is a factor between
zero and one. If f is close to zero, the window length for smoothing is short. Thus,
the curve of fitted points is characterised by short period fluctuations. In the extreme,
if f = 1 all input samples are used for the fit. The robust locally weighted regression
was designed to gain the best fit for data for which yi = g(xi)+ �i, where g is a smooth
function and �i is a random variable with mean zero and constant scale.

5.3 Real data example

A subset of the Fresnel CRS Stack of the BEB data set from Chapter 3 served as the input
for the picking, smoothing and horizon inversion. The subset is the layered structure on
the left side of Figure 3.12, which is displayed enlarged in Figure 5.2.

5.3.1 Data picking

The data were picked with a semi-automatic picker which follows the maximum am-
plitude of an event. If the time increment from one trace to the next exceeds a given
threshold, the picker stops. This happens because of the discontinuity of events as, e.g.,
in box A in Figure 3.12.

The traveltimes of seven events were picked (some are indicated by the arrows in Fig-
ure 5.2) which were in a range between 0.3 and 3.2 s. At earlier traveltimes continuous
picking was not possible because of the muting in the multi-coverage data set. At later
traveltimes the S/N ratio was to small for the continuous picking. With these traveltimes
as a reference, the emergence angles and the radius of the NIP-wavefront were extracted
from the CRS Stack attribute sections.
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Figure 5.2: The ZO traveltime was picked along several events in order to extract the
associated emergence angle and radius RNIP which are required to perform the horizon
inversion.

5.3.2 Data smoothing

The emergence angle and the radius of the NIP-wavefront had to be smoothed for the
horizon inversion. For the robust locally weighted regression, the window length was
determined by f = 0:1, the number of iterations was 2. Figures 5.3 and 5.4 depict in
red the original emergence angles and radii of the NIP-wavefront, respectively. The blue
curve is the output of the arithmetic mean, and the green curve is the smoothed output
of the robust locally weighted regression. The original curve of the emergence angles
is already quite smooth in the middle of the event, which is different with R NIP. There
the fluctuations at the sides are also larger than in the middle, but in general the values
change much more from trace to trace than the emergence angles do. Up to 80% does
RNIP change by moving to the next trace in the middle of the event. The blue curve
follows the red curve such that it does not compensate for outliers. If these outliers are not
suppressed, the inversion algorithm either breaks down or yields unacceptable results.
The green curve is smooth along the whole event in both graphs. Therefore, the robust
locally weighted regression eliminates on the one hand outliers and is on the other hand
still smooth if the original function strongly fluctuates over many input samples.

5.3.3 Velocity model

The horizon inversion was performed as described in Section 5.1. In Figure 5.5, seven
interfaces were generated. The layer velocities are in a range of 1.8 and 4 km/s. The
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Figure 5.3: Original emergence angles of an event (red), output of the arithmetic mean
(blue), and of the robust locally weighted regression (green).
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Figure 5.4: Original radius of NIP-wavefront of an event (red), output of the arithmetic
mean (blue), and of the robust locally weighted regression (green).

velocity model in Figure 5.6 was produced by Geco-Prakla with a NMO/DMO velocity
analysis. Their velocities occupy the same range. The velocity distribution in Figure 5.6 is
quite similar to the output of the horizon inversion up to about 2.8 km depth. Both types
of inversion recover the high velocity zone which is displayed in light blue and light to
dark blue, respectively.

I suppose that the amount of time spent for interactive working to produce the ve-
locity model with the horizon inversion is much smaller than during a conventional
NMO/DMO analysis. In the horizon inversion the data only have to be picked in the
ZO section and smoothed afterwards. In a NMO/DMO velocity analysis one has to se-
lect many CMP gathers. Then for a range of velocities, semblance plots are generated.
With these semblance plots one has to decide interactively which velocities yield the best
alignment of the NMO/DMO operator for the events of the associated CMP gather. This
is a time consuming process.
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Figure 5.5: Velocity model obtained by means of the horizon inversion.
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Figure 5.6: Velocity model of Geco-Prakla.
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Figure 5.7: Parsimonious 2.5-D TA migration using the layered velocity
model.

5.3.4 Parsimonious 2.5-D TA migration

The parsimonious TA migration was applied to the subset of the Fresnel CRS Stack de-
picted in Figure 5.2. First, I multiplied the ZO section with the 2.5-D geometrical spread-
ing factor. Second, the true-amplitude weighted ZO samples were map-migrated to the
corresponding interface Fresnel zones. All ZO samples entered the parsimonious TA mi-
gration. Hence, no selection by means of the CRS Stack coherence section was done.

The migrated section and the ZO section look similar because the subsurface is a stack of
gently dipping layers and gently changing velocities. Therefore, the reflection events do
not migrate much. The slightly wavy form of the events in the ZO section appears en-
hanced in the migrated section. This wavy character can also be observed in the section
of the emergence angle 3.14 and in the section of the curvature of the normal wave 3.16.
As this effect is visible in the CRS Stack attribute sections, it does not surprise that the
amplitude changes along the events. In Section 3.3, I mentioned that a spherical diver-
gence correction using a time and space variant velocity function was applied to the
multi-coverage data set. Because of this pre-processing, no matter whether the spheri-
cal divergence correction was done properly or not, it is difficult to interpret this kind
of amplitude change. Very recently, Herkenhoff et al. (2001) presented data with a simi-
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lar amplitude behaviour. His idea was that lense shaped structures focus the wavefield
and consequently change the amplitudes. Although, I cannot proof this suggestion on
the data from BEB, I reckon it is an idea which one can keep in mind as an option for
interpretation. If a ray tracer, like the NORSAR ray tracer, would be available where the
CRS Stack attributes could be given as input, the parsimonious TA migration could also
be applied to smooth macro-velocity models.

With this example, I presented the applicability of the horizon inversion and the parsi-
monious TA migration to real data. Of course, improvements are required to apply the
algorithms to more complex data. E.g., create blocky velocity models to allow for lateral
velocity changes and find solutions to handle gaps in the picked events.
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Chapter 6

Application of CRS Stack and
migration in non-destructive testing

The collaborative research centre (CRC) 381 (Sonderforschungsbereich 381) was an oppor-
tunity to test the CRS Stack and coherence analysis during migration in non-destructive
testing (NDT). The aim of the CRC 381 is to characterise the development of failures.
For this, methods are required for the detection of damages, failures, foreign bodies, or
cracks within a variety of materials. The sub-project C4 focused at the simulation and
mathematical description of wave propagation in random media and at the imaging of
cracks in random media. I mainly worked on the latter task but also on the simulation
of the wave propagation in random media in order to obtain synthetic data for testing
imaging methods (Vieth et al., 1999; Vieth and Shapiro, 1999; Burr et al., 1998).

Kirchhoff migration is also known in non-destructive testing, Langenberg et al. (1993). To
my knowledge, the integration of a coherence analysis into migration is a new concept
for both NDT and geophysics. For velocity analysis the semblance, see Section 6.3.2, is a
common coherence measure in geophysics, but has not been integrated in the process of
migration, so far. Up to now, the application of the semblance and the �-correlation, see
Section 6.3.3, was not reported in NDT.

6.1 Random media

Concrete is a typical example of an existing random material investigated by an engi-
neering group (sub-project A6) of the CRC 381. Concrete samples were examined with
NDT methods for locating cracks or little foreign bodies like polystyrene or metal. Fig-
ure 6.1 depicts a synthetic concrete model. The background material shown in light blue
is cement, the stuffing material, i.e., gravel of different size is dark blue, and the air inclu-
sions are white. A crack was modelled as an accumulation of many small air inclusions.
The physical characteristics of the gravel, cement and air inclusions were determined by
their compressional and shear wave velocities vP, vS and by the density �. This concrete
model was created with the program Medium2D of Burr (1996). The crack can have a
certain length and direction but is restricted to the area where cement is present because
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Figure 6.1: Concrete model as a random medium. Dark blue: gravel, light blue: cement,
white: air inclusions and crack, respectively.

a crack does not go through gravel but stays within the cement.

In Chapter 3 to 5, a layered medium was assumed. The geological equivalent would be
homogeneous layers of different sediments. The fine details of the medium were of no in-
terest, thus, the velocity of a subsurface layer is regarded as an effective or homogeneous
velocity. Shapiro et al. (1996) describe the effect of random isotropic inhomogeneities on
the phase velocity of seismic waves. The effective velocity (average of the phase velocity
using a large data basis) depends on the frequency of the source wavelet, the correlation
length of velocity and density fluctuations, and on the traveltime distance.

6.2 Data acquisition in non-destructive testing

Ultrasonic transducers are used to examine concrete. These piezoelectric transducers are
the most common mechanism for converting electrical pulses into elastic waves. The
piezoelectric material expands or contracts depending on the polarity of the electric field.
Because this mechanism works vice versa, the piezoelectric transducers can be employed
as a source and as a receiver.

The coupling of the transducer and the concrete is a big problem for the engineers. There-
fore, they prefer to use transducers with large diameters (5 cm and more) in order to make
sure that enough energy can be transfered into the concrete. Often, only one or two trans-
ducers are used for the data acquisition, i.e., a ZO trace and one offset trace is obtained.
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Conventional transducers have to be glued onto the object to be examined which makes
the acquisition very time consuming. The “air propagation transducer” is known for a
number of years, but only recently began finding useful applications for crack detection.
The energy loss due to the large impedance mismatch between air and the solid being in-
spected can be overcome by increasing the available power. According to Haufler (2000),
this type of transducer is very efficient, in the sense of saving acquisition time. Thus, it
might be the right tool to obtain large multi-coverage data sets.

6.3 Wavefield attributes and coherence measures for imaging

The (real) wavefield of a random medium at a point � at traveltime t can be written as,
Shapiro et al. (1996):

u(�; t) = hu(�; t)i+ u f (�; t) ; (6.1)

where hui is the coherent field or mean-field and u f is the fluctuation of u, subsequently
called the incoherent field. Its mean is hu f i= 0. The intention is to make use of the mean-
field and the fluctuation of u to better localise a crack or foreign body. The following
wavefield attributes and coherency measures were applied either during or after Kirch-
hoff migration. As mentioned before, Kirchhoff migration is based on a high-frequency
approximation and the CRS Stack is based on ray theory which in turn is based on a high-
frequency solution of the wave equation. The high-frequency approximation applies to
the mean-field associated with the wave propagation in the corresponding homogeneous
reference medium (effective medium). Therefore, the CRS Stack and Kirchhoff migration
can be utilised for imaging in a random medium. Objects are imaged as long as they are
larger than the fluctuations of the medium parameters.

6.3.1 Envelope

The envelope is defined as

E(�; t) =
p

u2(�; t)+ v2(�; t) : (6.2)

Here, u(�; t) is the real part and v(�; t) is the imaginary part of the analytic signal. The
imaginary part of the recorded (real) signal is computed with the Hilbert transform. The
envelope represents the coherent part of the wavefield. Hence, it is used to emphasise
the coherent reflection of a crack in a strongly scattering medium. The idea to compute
the envelope of a migrated image was published by Simon (1998). There, the data were
acquired above crystalline subsurface which possesses a heterogeneous structure similar
to concrete.

6.3.2 Semblance and derivative of semblance

In seismics, a widely used coherence function is the semblance, Neidell and Taner (1971).
The semblance is a cheap coherence measure which yields, according to Mauch (1999)
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“best visual interpretable results” and is “best able to enhance weak coherent reflections”
compared to other standard coherence measures. The semblance coefficient S is given by

S =

k+(N=2)P
j=k�(N=2)

�
MP

i=1
ui; j(i)

�2

M
k+(N=2)P

j=k�(N=2)

MP
i=1

ui; j(i)2

: (6.3)

The number of traces is denoted by M, the number of samples of the time window equals
N+ 1. ui; j(i) is the sample of the i th trace and the j th time increment. The time window
is centred around the reference time t = k∆t, where ∆t is the sampling interval. The
semblance coefficient has a range from 0 to 1, where 1 means that the signal along the
reference time does not change at all.

The semblance coefficient is computed during 2-D Kirchhoff migration along the diffrac-
tion traveltime curve. The same diffraction traveltime curve is used for stacking. The
computed semblance coefficient is assigned to the same depth location where the stacked
signal is assigned to. Thus, I obtain a migrated section and a semblance section.

Because of the length of a transient signal, a crack does not appear as a thin line in a sem-
blance section but as an extended region with the crack somewhere inside of it. In order
to locate the crack more precisely, I propose to compute the derivative of the semblance
in depth direction

Sd =
d S
d z

: (6.4)

The onset of the reflected signal, if it is minimum phase, can be detected with Sd as it is
the location where the semblance coefficient changes maximally.

6.3.3 �-correlation — a combined phase and group correlation

Standard coherence measures, e.g., (normalised) cross-correlation or semblance, assume
that the shape of the signal does not change within the spread of receivers. This is not
the case in complex media where the scattering of waves plays a dominant role. The in-
terferential character of a wavefield yields different phase and group velocities. This was
shown by Gelchinsky et al. (1985). They pointed out that the group velocity is associ-
ated with the large scale structure, whereas the phase velocity corresponds rather to the
inner structure of a rugged interface. This observation was extensively confirmed with
synthetic and real data by Gelchinsky et al. (1985). In order to obtain a better velocity
analysis for complex geologic media, a combined phase and group correlation was given
by Gelchinsky et al. (1986).
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A narrow-band signal with the amplitude spectral density jF(�; !)j

u(�; t) =
1
�

!0+∆!=2Z
!0�∆!=2

j F(�; !) j cos [!t��(�; !)] d! (6.5)

can be represented, using Taylor expansion, in the form

u(�; t) = f1[�; t� �g(�)] cos!0 [t� �p(�)]

� f2[�; t� �g(�)] sin!0 [t� �p(�)] ; (6.6)

where

f1(�; t) = jF(�; !)jsin[∆![t� �g(�)]=2]
∆![t� �g(�)]=2

� ∆!
2

f2(�; t) =

����d F(�; !)
d!

���� 1
t� �g(�)

�
sin[∆![t� �g(�)]=2]

∆![t� �g(�)]=2
� cos

∆!
2

(t� �g(�))
�
� ∆!

2
; (6.7)

with

�g =
@�(!0; �)

@!0
and �p =

�(!0; �)
!0

: (6.8)

�g is regarded as the traveltime corresponding to the wavefront of the wave package or
group velocity, respectively, whereas � p is associated with the traveltime of individual
waves of different phase velocities. Those individual waves of different phase velocities
make up the wave package. !0 is the dominant frequency of the signal and the width
of the signal spectrum ∆! is assumed to be small in comparison with !0, i.e., ∆!� !0.
For the phase and group correlation, the signal (6.6) is represented by means of complex
terms:

u(�; t) = E(�; t� �g(�)) cos' (�; t) : (6.9)

The first term on the right-hand side is the envelope (6.2) and ' (�; t) is the instantaneous
phase

'(�; t) = Φ (�; t� �g(�))+ !0 � (t� �p(�)) : (6.10)

It is composed of the slowly varying term Φ and a rapidly changing term !0 � (t� �p(�))
which is the product of the dominant frequency and the phase traveltime. Insert the
functions

f1(�; t) = E(�; t) cos ∆!(t) � t
f2(�; t) = E(�; t) sin ∆!(t) � t (6.11)

where

∆!(t) = !(t)� !0 ; ! = @'=@t (6.12)

79



Chapter 6. Application of CRS Stack and migration in non-destructive testing

into Equation (6.9) yields the signal in the form of the Taylor expansion (6.6).

Now, I introduce a function Ψgp(�; �0; t0; !0) which is applied for coherence analysis. The
index g is assigned to the group traveltime and p to the phase traveltime:

Ψgp(�; �0; t0; !0) = '(�; t = t0+ ∆�g)� '(�0; t0)

+ !0Æ�gp(�; �0) (6.13)

where

Æ�gp(�; �0) = ∆�g(�; �0)� ∆�p(�; �0) (6.14)

and

∆�k = �k(�)� �k(�0) ; (6.15)

with k representing either g or p. ∆�k is the traveltime difference of the reflection trav-
eltime curve of two adjacent traces. In order to have a smooth function for coherence
analysis I use the cosine of Ψ. The application of some addition formulae yields:

cos
�
Ψgp(�; �0; t0; !0)

�
=

u(�; t0+ ∆�g) u(�0; t0)+ v(�; t0 + ∆�g) v(�0; t0)
E(�; t0 + ∆�g) E(�0; t0)

cos
�
!0Æ�gp

�
� v(�; t0+ ∆�g) u(�0; t0)� u(�; t0+ ∆�g) v(�0; t0)

E(�; t0 + ∆�g) E(�0; t0)
sin
�
!0Æ�gp

�
(6.16)

where

cos'(�; t) = u(�; t)=E(�; t) ; sin'(�; t) = v(�; t)=E(�; t) : (6.17)

If the time shift due to the difference of the phase velocity and the group velocity is
already corrected for, Equation (6.15) is zero. Consequently, the second term of Equa-
tion (6.16) is zero and cos

�
!0Æ�gp

�
equals one. Thus, Ψgp(�; �0; t0; !0) = ∆'(�; �0; t0) =

'(�; t = t0 + ∆�g)� '(�0; t0). The function ∆'(�; �0; t0) only depends on the group veloc-
ity and enters now into the so-called �-correlation.

6.3.3.1 �-correlation

For every trace n, (n = 1; : : : ;N), the following functions are computed within a time
window of 2M+ 1 samples with a sample interval of ∆t:

cos ∆'n(�n; �0; t0) = cos ['0(�0; t0)� 'n(�n; t0+ ∆�n(�n; �0))] (6.18)

cos ∆'n(�n; �0; t0) =
1

2M+ 1

MX
m=�M

cos ∆'n(�n; �0; t0+m∆t) (6.19)

�2
n(�n; �0; t0) =

1
2M

MX
m=�M

[cos ∆'n(�n; �0; t0+m∆t)� cos ∆'n(�n; �0; t0)]2 : (6.20)
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Figure 6.2: A part (10x6cm) of the crack-
model.
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Figure 6.3: Plane wave response of the
crack-model.

Equation (6.18) is equivalent to Equation (6.16) for Æ�gp = 0. The sample average is given
by Equation (6.19) and the sample variance by Equation (6.20). The value ∆�n(�n; �0)
which minimises the value of �2

n defines the group time shift ∆�g(�n; �0). For a multichan-
nel procedure, the following function is used

�2(�0; t0) =
1
N

NX
n=1

�2
n(�n; �0; t0) ; (6.21)

which is the final equation used for �-correlation.

6.4 Migration and correlation

Several models and the corresponding synthetic seismograms were produced in order to
examine which wavefield attributes and correlation algorithms are successful in combi-
nation with Kirchhoff migration. The results for two concrete models with different types
of inclusions are exemplarily presented. The first kind of inclusion is a crack, the second
kind is a foreign body. Both types are often the focus for investigations made on concrete.
Thus, the question is: Is it possible to detect and determine the correct location of a crack
or a foreign body within a random medium like concrete?

6.4.1 Crack-model

The first model is the crack-model. Figure 6.2 shows a part of the model with a width of
10 cm and a depth of 6 cm (actual depth is 10 cm). The following technical informations
correspond to a typical type of concrete in civil engineering. The ellipses which represent
gravel of different sizes make up 50 % of the overall area. The gravel has a P-velocity
of 4.03 km/s, a density of 2.59 g/cm3, and a standard P/S-ratio of

p
3. The background

material, i.e. the cement, has a P-velocity of 3.95 km/s, a density of 2.17 g/cm3 and also
a P/S-ratio of

p
3. The model has a porosity of 4 %, i.e., 4 % of the area is covered by air
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inclusions. The area of the crack is about 8 mm2.

In Chapter 2, I mentioned that ray tracing is suitable for smoothly varying media whereas
FD schemes are suitable for wave propagation in a heterogeneous medium. Witte et al.
(1996) examined kinematic ray tracing in random media and supply the explanation why
the synthetic seismograms were not computed with ray tracing as in the previous chap-
ters but with FD. They conclude that it “only gives correct first-arrival traveltimes for
sufficiently weak and smooth velocity fluctuations and for sufficiently short travelpaths”.
Another result is that “in spite of very dense ray fields, the ray-tracing traveltimes show
pronounced short-scale variations with distance. The reason is that ray tracing disre-
gards diffracted rays and the associated wavefront healing”. The wavefront healing pro-
cess obtained by FD computation is displayed in Figure 6.4 (for more comments on the
snapshots see below).

The finite-difference program ULTIMOD of Karrenbach (1995) was used to compute the
propagation of a plane wave through the model. In order to handle high contrasts,
the computations in ULTIMOD are performed on a rotated staggered grid Saenger et al.
(2000). A minimum phase Ricker-wavelet (first derivative of the Gaussian distribution
curve) served as a source signal. The source was modelled as a body-force with a direc-
tion perpendicular to the top (depth= 0 cm) of the model. Its fundamental frequency
was 300 kHz, whereas the maximum frequency was 500 kHz. The plane wave response
is depicted in Figure 6.3, where blue (red) denotes a positive (negative) amplitude and
white corresponds to the zero-crossing of the signal. This colour code is the same for all
seismograms, snapshots, or depth images. There the z-component, i.e., perpendicular to
the top of the model was measured. The two-way traveltime of the reflection of the crack
is about 16 �s. The blue horizontal event at the top of Figure 6.3 exists because sources
and receivers are located at the same position in a thin (1.6 mm) homogeneous layer of ce-
ment. The first lobe of the minimum phase wavelet can be measured nearly undisturbed.
The second part of the signal, i.e., the negative amplitude, is already strongly distorted
because of scattering and interference with reflections from the top of the model. The
model was surrounded by an air layer of 4 mm to obtain a free surface.

Different observations can be made in Figure 6.3: (a) the seismogram looks wavy, frayed
and changes smoothly. (b) the amplitude of the back-echo, i.e., the reflection from the
bottom of the model, is about as strong as the reflection of the crack. (c) lots of diagonal
reflections are present. These phenomena can be explained with the six snapshots shown
in Figure 6.4 with a time increment of 2.1 �s beginning at 6.3 �s. The scattering at the air
inclusions and the scattering and reflection at the gravel produces from the beginning on,
Figure 6.4 (a), a wavefield that changes its phase smoothly laterally and vertically. The
plane wave is not plane anymore but turns into a wavy line. As the wavefront passes the
crack, two phenomena can be observed: (i) a part of the plane wave is reflected back to
the surface and (ii) the wavefront heals on its way down. Thus, it is nearly plane when
it hits the lower side of the model. The diagonal reflections are due to critical reflections
that generate head waves at the sides of the model. The head waves propagate such that
they arrive at the receiver a little after the reflection from the crack arrives at the top.
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Figure 6.4: Six snapshots of the plane wave propagation.
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Figure 6.5: Constant velocity migration of
the ZO section of Figure 6.3.
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Figure 6.6: Envelope of the image, Fig-
ure 6.5.
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Figure 6.7: Semblance section computed
during migration.
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Figure 6.8: �-correlation computed during
migration.

These head waves correspond to the events, which occur immediately after source initia-
tion, in the upper left and right corner and dip towards the crack reflection in the middle
of Figure 6.3.

The effective velocity of, e.g., a concrete block is often determined by performing many
transmission experiments. A pulse is excited by an ultrasonic transducer on one side and
the signal is measured by another ultrasonic transducer on the other side of the concrete
block. The first arrivals have to be picked and averaged. The traveltime distance, which
is known, has to be divided by the average traveltime of many experiments, which yields
the effective velocity ve f f . For constant velocity migration, ve f f is used.

In this experiment sources and receivers were placed on the same side. Thus, the back-
echo serves as a reference to determine the effective velocity. For this model the effective
velocity is ve f f =3500 m/s.
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Figure 6.9: Magnification of the crack re-
gion of the model.
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Figure 6.10: Magnification of the crack re-
gion of the semblance section.
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Figure 6.11: Magnification of the crack
region of the section of the semblance-
derivative.
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Figure 6.12: Magnification of the crack re-
gion of the � section.

The image in Figure 6.5 was obtained using the Kirchhoff-migration integral (4.4) with
the constant velocity ve f f . The steeply dipping events are not visible anymore because
they correspond to the vertical sides of the model. The crack appears enhanced but it is
difficult to define where it starts and ends in lateral direction. The slight dip of the crack
is migrated correctly. The envelope of the image, Figure 6.6, improves the S/N ratio.
Thus, the crack is even more pronounced and it is laterally better restricted. Figure 6.7
is the semblance section. A window width of 0.23 �s was applied in time direction. In
the semblance section, the crack is associated with the first big spot having a semblance
coefficient close to 1. The second spot below corresponds to the negative amplitude of
the Ricker source wavelet.

The time window for the �-correlation was 0.86 �s. The phase traveltime was defined as
�p(�) = �g(�)+ ∆t � n, where ∆t is the sampling rate and n is an integer that varied from
-10 to +10. To compute the �-correlation, Figure 6.8, it takes about 100 times more than to
compute the semblance section. The result is not as clear as it is in the semblance section.
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Please remember that a small � coefficient is related to a coherent signal and a large �
coefficient is associated with an incoherent signal. The crack is depicted by small values.
In the semblance section there appears coherent energy mainly above the crack whereas
it is mainly below the crack in the � section.

For a better evaluation, I zoomed into the model, Figure 6.9, the semblance section, Fig-
ure 6.10, the section of the semblance-derivative, Figure 6.11, and the � section, Fig-
ure 6.12.

Because the source wavelet was minimum phase, the onset of the reflection marks the
location of the crack. The S/N ratio is small at the onset of the reflection event and in-
creases, at first quickly and then slower, up to the maximum amplitude location. This can
be seen in the semblance section 6.10. Therefore, the exact position of the crack is obtained
by the semblance-derivative because the maximal vertical change of the semblance, i.e.,
the change between incoherent and coherent energy, is due to the rapid increase of the
amplitude of the source wavelet. Negative values in Figure 6.11 are set to zero as only
the increase of the semblance is of interest. Due to the derivative the crack is not only
confined vertically but also laterally.

The magnification of the � section, Figure 6.12, shows the coherent region at the same po-
sition as in the semblance section. Though, the section seems to have a better resolution,
it is not possible to confine the lateral extent more precisely than in Figure 6.11, which is
the best result.

6.4.2 Poly-model

The poly-model is displayed in Figure 6.13. The white rectangular inclusions represent
polystyrene. This model was also built by the sub-project A6 of the CRC 381. The in-
tention was to model a laboratory experiment and to compare theory and experiment.
Unfortunately, up to now no laboratory data are available. The poly-model has a size of
35�10 cm. The physical parameters of the cement and the gravel are equivalent to the
crack-model of Section 6.4.1 but here, 8 % of the area is covered by air inclusions. This
porosity value was determined by the sub-project A6 of the CRC 381. The data acquisi-
tion is equivalent to the crack-model experiment. The size of the polystyrene is 5�1 cm.
It is a type of plastic with a density of 1.05 g/cm3 a P-velocity of 2.35 km/s, and a S-
velocity of 1.45 km/s. The top of the left (right) polystyrene area is at a depth of 4.5 cm
(3 cm). The left side of the left (right) polystyrene area is at a distance of 10 cm (24 cm).

The plane wave response of the model is depicted in Figure 6.14. The source wavelet was
the same as for the crack-model. The first reflection on the left and right correspond to the
top of the polystyrene. The second event with opposite phase is associated with the bot-
tom of the polystyrene. The horizontal event on the right at about 45 �s can be explained
by the following propagation path: Transmission of the plane wave into the polystyrene,
reflection at the bottom, reflection at the top, again a reflection at the bottom, and finally
a transmission through the top of the polystyrene. The back-echo is not plane as in the
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Figure 6.13: Poly-model with two polystyrene areas.
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Figure 6.14: Plane wave response of the poly-model.

crack-model because the influence of the polystyrene areas on the wave healing process
is too large. Again, head waves are visible but do not appear as dominant as in Figure 6.3,
which is due to the better S/N ratio of the reflection events. Here, the effective velocity
is 3400 m/s, which is 100 m/s slower than in the crack-model. The migrated section in
Figure 6.15 shows the top and bottom of the polystyrene with opposite sign. The S/N ra-
tio is already quite good, hence, I do not show the envelope of the image because it does
not improve much compared to the image. The lateral confinements could be more dis-
tinct in the image. In the semblance section, Figure 6.16, those confinements improved.
The time window used to determine the semblance coefficient was 0.23 �s long. For this
model the � section, Figure 6.17, is better than for the crack-model, which is due to the
increased S/N ratio of the events. The reflections from the lower side of the polystyrene
are weaker than from the upper side. This is slightly visible in the semblance section and
quite apparent in the � section.

A closer look at the results can be taken using Figures 6.18-6.20. The left polystyrene
area extends from 10 to 15 cm and the upper side is at 4.5 cm depth. The extension
of the imaged polystyrene is similar in the zoomed sections of the semblance and the �-
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Figure 6.15: Constant velocity migration of the ZO section of Fig-
ure 6.14.
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Figure 6.16: Semblance section computed during migration.
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Figure 6.17: � section computed during migration.
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Figure 6.18: Magnification of the left polystyrene area of the semblance
section.
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Figure 6.19: Magnification of the left polystyrene area of the semblance-
derivative section.
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Figure 6.20: Magnification of the left polystyrene area of the � section.
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correlation. The width of the target zone is smaller in the semblance-derivative section. In
the latter section the vertical position deviates from the exact position by approx. 2 mm.
The deviation can be explained by a migration velocity that is a little to small. Due to the
changing S/N ratio along the minimum phase source wavelet, the top of the polystyrene
area appears in the semblance and � section to be somewhere between a depth of 4.5 to
4.8 cm. The top of the area is quite straight in the � section compared to the semblance
section. This, I suppose, is the effect of taking the phase traveltime into account.

6.5 Dip-model — The CRS Stack in NDT

If the target is parallel to the measurement surface it can be easily detected using only one
transducer but if the target has got a certain dip it might not be localised. In NDT “angle
beam transducers” are used to detect cracks with a certain angle to the surface normal,
Bray and Stanley (1997). The disadvantage is that only a fixed angle can be tested with
one special transducer. This problem could be overcome if a multi-coverage data set is
acquired with many point sources and many receivers as in seismic exploration. This
kind of acquisition is so far a problem in NDT because a point like transducer might not
transfer enough energy into the test material. In addition, moving the transducers means
to stick them on and remove them from the surface of the object many times which is
very time consuming. Again, the air coupled transducer could be the solution.

In cooperation with the engineers of the sub-project A6, an experiment was designed to
detect a dipping (45Æ) polystyrene area in concrete, Figure 6.21. The aim was to apply
the CRS Stack to a NDT data set. The parameters of the geometry of source and receiver
were supplied by sub-project A6. The model actually has a width of 30 cm but shown
are only 20 cm as no additional information can be gained between 20 and 30 cm. For
the data acquisition an extension of the model up to 30 cm was assumed to be sufficient.
All up-coming sections are displayed up to a distance of 20 cm. The source had a width
of 2 mm, the width of the receiver was 10 mm. 28 shot-gather with 29 receivers per shot
were synthetically acquired. The first source position was at a distance of 1.6 cm and was
moved 1 cm per shot to the right. The source was again a minimum phase Ricker-wavelet
but with fundamental frequency of 250 kHz and a maximum frequency of 300 kHz. The
physical parameters of the model were the same as in the two models above except that
the porosity amounted to 2 %. After the acquisition, the direct wave was muted in the
shot gathers.

The result of a simple one-transducer-experiment is depicted in Figure 6.22. A transducer
with a diameter of 1 cm served as a source and a receiver. It is obvious that such a simple
acquisition is not appropriate for a simple dipping object. In the Fresnel CRS Stack below
it, Figure 6.24, the object is easily detectable but it has to be migrated into the correct posi-
tion. Only in comparison with the Fresnel CRS Stack, the reflection from the polystyrene
can be identified in the simple ZO experiment, Figure 6.22. The migrated reflection in
Figure 6.23 coincides with the model at the top of the polystyrene and has the right dip
but the positive lobe of the wavelet does not extend to the bottom of the polystyrene.
A migration velocity of ve f f =3500 m/s was used. The envelope of the migrated Fres-
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nel CRS Stack, Figure 6.25, did produce a slight improvement compared to the migrated
section with respect to S/N ratio. Although the semblance coefficients are small in Fig-
ure 6.26 in comparison to the plane wave experiments, the dipping polystyrene stands
out clearly. Like the positive lobe in the migrated section, the polystyrene appears short-
ened compared to the model. Short period fluctuations along the object and in its vicinity
are visible in the semblance section. They are the reason why the derivative of the sem-
blance section cannot reveal the dipping object. The parameters of the �-correlation were
chosen within reasonable ranges. With tolerable effort, a good image of the dipping in-
clusion could not be obtained by means of the �-correlation, see Figure 6.27.

A practical alternative would be the angle beam method. Due to lack of time, this kind of
experiment could not be simulated. Practically, one would have to test many angles. The
question is: Is the operating expense of multiple angle beam experiments smaller than
one multi-coverage data set? For instance, five angle beam experiments would allow five
certain dip angles, whereas a multi-coverage data set allows a continuous imaging of
dips only limited by the acquisition aperture.

91



Chapter 6. Application of CRS Stack and migration in non-destructive testing

0
2.

5
5

7.
5

10
D

ep
th

 (
cm

)

0 5 10 15 20
Distance (cm)

 

Figure 6.21: A part (10x20cm) of the dip-
model.
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Figure 6.22: ZO section of the dip-model
using a transducer with a diameter of 1cm.
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Figure 6.23: Migrated Fresnel CRS Stack.
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Figure 6.24: Fresnel CRS Stack.
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Figure 6.25: Envelope of migrated Fresnel
CRS Stack.
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Figure 6.26: Semblance section computed
during migration.
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Figure 6.27: � section computed during
migration.
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Chapter 7

Conclusions and perspectives

With the kinematic wavefield attributes of the CRS Stack a sequence of steps were pre-
sented in order to perform seismic imaging without the knowledge of a velocity model.
In addition, the CRS Stack which was developed for reflection seismic imaging of layered
media, was successfully applied, for the first time, in non-destructive testing.

The projected Fresnel zone and the geometrical spreading were expressed in terms of
CRS Stack attributes. They play an important role in seismic imaging. First, the projected
Fresnel zone, utilised as a minimum aperture, improves the simulated zero-offset sec-
tions. Therefore, the computation time is reduced to a minimum. Second, the capricious-
ness of choosing an aperture is removed by the application of the projected Fresnel zone
as a minimum aperture. In addition, due to the fact that a ZO sample of the CRS Stack is
associated with the normal ray, the minimum aperture is centered at the stationary point.
This ensures to stack within the optimal range where the reflection signal comes from.
Third, the geometrical spreading, based on the data-driven CRS Stack attributes, is a nat-
ural gain function. The natural gain function has got the effect that events at small and
at large traveltimes are visible. Fourth and even more important, the amplitudes are cor-
rect with respect to the reflection coefficients. Thus, it is possible to use the GS corrected
zero-offset sections for geological interpretation with respect to dynamics and not only
with respect to the kinematics.

The CRS Stack attributes are computed for ZO. The CRS operator also includes data at fi-
nite offset. Hence, I proposed how to choose the aperture in midpoint direction for finite
offsets. I recommend to implement the rotated elliptical aperture in future as it should
further improve the results. The quality of the CRS Stack could not be improved by re-
cursively computing and applying the projected Fresnel zone. My approach to obtain a
ZO section with good resolution and continuous events is to choose for the parameter
search an aperture rather too large than too small, compute the projected Fresnel zone,
and perform a stack within those boundaries.

I presented a new parsimonious true-amplitude migration which makes extensive use
of the CRS Stack attributes. A validation test concerning the TA character of the Initial
and Fresnel CRS Stack revealed that the Fresnel CRS Stack is recommended for further
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TA processing rather than the Initial CRS Stack. This test was necessary as these stacks
serve as input for the parsimonious TA migration. The map-migrated synthetic depth
section yielded the best results with respect to true-amplitude, fluctuations, and compu-
tation time. Using the coherence section of the CRS Stack for the selection of the data
to be migrated, turnaround times can be additionally reduced. The application to real
data was shown and is also possible in a TA sense if the 2.5-D GS is valid. So far, it
is a disadvantage that the amplitude fluctuations along the picked events could not be
reduced. Once the CRS Stack is available for finite offsets in 2-D or for ZO in 3-D, the
parsimonious TA migration can also be extended to perform the corresponding 2-D or
3-D migration. Of course, the migration algorithm also works for macro-velocity models
and is not restricted to layered models. If a ray tracer would have been available that can
do ray tracing for macro-velocity models and uses the CRS Stack attributes as input, the
parsimonious TA migration could have been applied to the complete BEB data set using
the BEB macro-velocity model.

With the implementation of the robust locally weighted regression, it is now possible to
invert CRS Stack attributes from real data to build a velocity model. The horizon in-
version yielded a velocity model of the BEB data that is similar to their conventional
NMO/DMO analysis. The stabilisation of the inversion of real data closes the cycle of
a data-driven true-amplitude migration. Just remember that the CRS Stack does not re-
quire a velocity model, the inversion algorithm does not need an initial velocity model,
and the migration makes use of the output of the horizon inversion. For more complex
ZO sections, solutions are required to handle gaps in the picked events. The inversion of
a blocky model would lead to layers with lateral inhomogeneities which is more realistic
than the capabilities of the actual version.

The CRS Stack was also successfully applied to synthetic data in non-destructive test-
ing. The acquisition of multi-coverage data is rarely performed in this special field. But
I recommend to demand multi-coverage data, e.g., with air coupled transducers because
it replaces the restricted processing of ZO or angle beam data acquisition. The conven-
tional semblance, which is well known in geophysics, and the �-correlation were applied
during standard 2-D Kirchhoff migration. The aim was to better localise the boundaries
of cracks or foreign bodies in concrete. While the semblance always yielded good re-
sults, the �-correlation failed during the migration of the ZO section of the dip-model.
Besides the encouraging quality of the semblance, it is about two orders faster than the
�-correlation. Additionally, I calculated the derivative of the semblance and the envelope
of the image. The first increased the resolution, the second emphasised the crack region
or the foreign bodies. As the computation time is negligible for the envelope and for the
semblance, I propose to utilise the envelope for a rough localisation and the semblance
or semblance-derivative for a detailed localisation. Unfortunately, no real data set was
available to test the coherence measures or the CRS Stack. The application to real data
should be a task for the future.

94



References

Aki, K., and Richards, P. G., 1980, Quantitative seismology, volume 1, Theory and Meth-
ods: W. H. Freeman and Company, New York.

Berkhout, A., 1985, Seismic migration - imaging of acoustic energy by wave field extrap-
olation. Part A: Theoretical aspects: Elsevier.

Bleistein, N., Cohen, J., and Stockwell, Jr., J., 2001, Mathematics of multidimensional seis-
mic migration, imaging and inversion: Springer.

Bleistein, N., 1984, Mathematics of wave phenomena: Academic Press Inc.

Bleistein, N., 1986, Two-and-one-half dimensional in-plane wave propagation: Geophys-
ical Prospecting, 34, 686–703.

Born, M., and Wolf, E., 1987, Principles of Optics - Electromagnetic Theory of Propaga-
tion, Interference and Diffraction of Light: Pergamon Press, 6th (corrected) edition.

Bortfeld, R., 1989, Geometrical ray theory: Rays and traveltimes in seismic systems
(second-order approximations of the traveltime): Geophysics, 48, no. 3, 1342–1349.

Bray, D. E., and Stanley, R. K., 1997, Nondestructive evaluation: a tool in design, manu-
facturing, and service: CRC Press.

Bronstein, I. N., and Semendjajew, K. A., 1991, Taschenbuch der Mathematik: B. G. Teub-
ner Verlagsgesellschaft.

Burr, E., Vieth, K.-U., and Shapiro, S., 1998, Processing and imaging simulated ultrasonic
B-scans of concrete: Otto-Graf Journal, 9, 9–18.

Burr, E., 1996, Theoretische Beschreibung und numerische Simulation elastischer
Wellenausbreitung in zufallsverteilten Medien: Master’s thesis, University of Karls-
ruhe.
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Kvasnička, M., and Červený, V., 1996, Analytical expressions for Fresnel volumes and
interface Fresnel zones of seismic body waves. Part 1: Direct and unconverted reflected
waves: Studia geophysica et geodeatica, 40, 136–155.

97



References

Langenberg, K.-J., Fellinger, P., Marklein, R., Zanger, P., Mayer, K., and Kreutter, T., 1993,
Inverse methods and imaging, in Evaluation of materials and structures by quantita-
tive ultrasonics, Springer, 317–398.

Majer, P., 2000, Inversion of seismic parameters: Determination of the 2-D iso-velocity
layer model: Master’s thesis, University Karlsruhe, Germany.

Mann, J., Jäger, R., Müller, T., Höcht, G., and Hubral, P., 1999, Common-reflection-surface
stack - a real data example: Journal of Applied Geophysics, 42, 301–318.

Mann, J., 2000, Common-reflection-surface stack (user’s manual): Geophysical Institute,
University of Karlsruhe, 4.1b edition.

Mauch, R., 1999, Coherency analysis of seismic data: Master’s thesis, University of Karls-
ruhe.

Müller, T., 1999, The Common Reflection Surface Stack Method - Seismic imaging with-
out explicit knowledge of the velocity model: Ph.D. thesis, University of Karlsruhe,
Germany.

Neidell, N. S., and Taner, M. T., 1971, Semblance and other coherency measures for mul-
tichannel data: Geophysics, 36, no. 3, 482–497.

Nelder, J. A., and Mead, R., 1965, A simplex method for function minimization: Com-
puter Journal, 7, 308–313.

Newman, P., 1973, Divergence effects in a layered earth: Geophysics, 38, no. 3, 481–488.
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Appendix A

Some properties of the ray
propagator matrix

A.1 Reverse ray

T� is the surface-to-surface ray propagator matrix of the reverse ray in which source S
and receiver G are interchanged. The wave travels now along the central ray but in
opposite direction. This fact is mathematically expressed by the slowness vectors of the
reverse ray at G and S which have the same components as the corresponding vectors of
the original ray but with opposite sign. In terms of the elements of the propagator matrix
T, the reverse propagator matrix reads (Hubral, 1983; Hubral et al., 1992a)

T�

=

�
D B
C A

�
: (A.1)

In the ZO situation (when the central ray reduces to the normal ray) T = T� . Therefore,
the condition

A= D (A.2)

holds for a normal ray.

A.2 Symplecticity

From elementary mathematical rules, it is known that Equation (2.15) is only integrable
if its expression on the right-hand side is a total differential. This is the case if the mixed
second-order derivatives of t are independent of the order of differentiation, i.e.

@2t
@x @x0

=

@p
@x0

!
=�@p0

@x
=

@2t
@x0 @x

: (A.3)

Taking equations (2.16) and (2.17) into account this condition reads

B�1
= �

�
C� D B�1 A

�
(A.4)
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Appendix A. Some properties of the ray propagator matrix

or

A D� B C= 1 : (A.5)

This is the symplectic property of the 2� 2 matrix T. According to Červený (2001), I can
write the symplectic property in the form

TTJT = J ; (A.6)

where TT is the transposed matrix of T and J is the 2� 2 matrix given by

J =
�

0 1
�1 0

�
: (A.7)

A.3 Chain rule

The chain rule states that for any point M along the central ray SMG the surface-to-
surface propagator matrix T satisfies the equation

T(G; S)= T(G; M)T(M; S) : (A.8)

T(G; M) and T(M; S) denote the propagator matrices for the ray branches SM and MG
that build up the ray SMG. This equation holds for all points M, no matter if M lies
upon an actual reflecting or transmitting interface or an arbitrarily introduced fictitious
interface. If I denote the elements of the propagator matrix of the first ray branch SM
by A1,B1,C1, and D1 and the elements of the second ray branch by A2,B2,C2, and D2 the
elements of the whole ray SMG can be expressed by

A = A2 A1+ B2 C1 ; (A.9a)

B = A2 B1+ B2 D1 ; (A.9b)

C = C2 A1+ D2 C1 ; (A.9c)

D = C2 B1+ D2 D1 : (A.9d)

Just as T(G; S) can be decomposed into the product of T(G; M) and T(M; S), the latter two
ray-branch propagator matrices may be further decomposed. This means that ultimately
the propagator matrix T can be written as a product of many ray-segment propagator
matrices. This general decomposition is referred to as chain rule of the T propagator
matrix.
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Appendix B

Projected Fresnel zone - finite-offset
configuration

This Appendix shows that it is possible to express Kvasnička and Červený (1996) analyti-
cal expression of the interface radius, Equation (3.13), in terms of the CRS attributes. This
radius is then projected onto the acquisition line along the paraxial reflection rays. Al-
though, it can be expressed analytically, it is not possible to compute it straight forward.
This is due to the fact that the paraxial reflection rays have to obey the boundary condi-
tion that their traveltimes have to differ by T=2 compared to the traveltimes of their, in Q,
diffracted rays, see Figure B.1. A range of reflection angles, Ψ1 and Ψ2, has to be tested to
fulfill the T=2-condition. These calculations, expressed in terms of the CRS attributes, are
performed in order to compare this analytically expressed projected Fresnel zone with
the one using the parabolic and hyperbolic traveltime approximations (3.2) and (3.3), re-
spectively.

All subsequent variables are depicted in Figures 3.5 and B.1. For simplicity, it is assumed
that the acquisition line is at z = 0. The origin of coordinates is located at the midpoint,
CMP. Here, the emergence angle, �, is positive if the ray emerges on the right of the sur-
face normal, otherwise it is negative. The surface normal points in positive z-direction.
The angle is counted from the normal to the surface. The same convention holds for the
dip, i.e., it is positive in Fig. B.1. The source is assumed to be on the up-dip side.

The source, receiver and normal incidence point are expressed by:

S = (�h; 0)T ; G = (h; 0)T ; N IP = RNIP(sin�; cos�)T ; (B.1)

where T denotes transpose. The distance between the source/receiver and its projection
onto the reflector along the reflector normal equals:

zS = RNIP � h sin j�j ; zG = RNIP+ h sin j�j : (B.2)

Thus, the endpoint of the projection of the source is:

Sp= S+ (zS sin�; zS cos�)T : (B.3)
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Appendix B. Projected Fresnel zone - finite-offset configuration
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Figure B.1: The sketch serves for the description how to project the analytically expressed
interface Fresnel zones for finite offset.
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The following distances

jSpN IPj = h
cos�

; jQN IPj= h2 cos Æ sin Æ
RNIP

(B.4)

and the so-called off-ray shift of the interface Fresnel zone, Kvasnička and Červený (1996),
which describes the distance between the reflection point Q and the centre of the interface
Fresnel zone QS:

d =
jmgj�2

p
1+ g2

1+ g2�2 : (B.5)

Here, I sticked to the notation of the interface Fresnel zone, r, expressed by Equation 3.13.
Now, the vectors associated with the reflection point, Q, the centre of the interface Fresnel
zone, QS, and the boundaries of the interface Fresnel zone, F1 and F2, are given by:

Q = N IP� jQN IPj (cos�;� sin�)T ; QS = Q+ d (cos�;� sin�)T (B.6)

F1 = QS+ r (cos�;� sin�)T ; F2 = QS � r (cos�;� sin�)T (B.7)

Next, the projections of F1 and F2 along the interface normals to the surface have to be
calculated. For this, various distances are needed:

jSpF1j = jSpN IPj � jQN IPj � r+ d ; jSpF2j = jSpF1j+ 2r (B.8)

jF1K1j = zSjSpF1j tan j�j ; jF2K2j = zSjSpF2j tan j�j : (B.9)

Thus, the projections yield:

K1 = (F1;X+ jF1K1j sin j�j; 0)T ; K2 = (F2;X+ jF2K2j sin j�j; 0)T ; (B.10)

where the x-component of the vectors F1 and F2 are denoted by F1;X and F2;X. The emer-
gence angles of the reflected paraxial rays at S1, S2, G1, and G2 have to be determined:

�S1 =

�

2
���Ψ1 ; �G1 =

�

2
+��Ψ1 (B.11)

�S2 =

�

2
���Ψ2 ; �G2 =

�

2
+��Ψ2 : (B.12)

Application of the sine law yields:

jS1K1j = jF1K1j sin Ψ1

sin �S1

; jG1K1j = jF1K1j sin Ψ1

sin �G1

(B.13)

jS2K2j = jF2K2j sin Ψ2

sin �S2

; jG2K2j = jF2K2j sin Ψ2

sin �G2

: (B.14)

This leads to the locations of the sources and receivers of the paraxial rays:

S1 = (K1;X � jS1K1j; 0)T ; G1 = (K1;X � jG1K1j; 0)T (B.15)

S2 = (K2;X � jS2K2j; 0)T ; G2 = (K2;X � jG2K2j; 0)T : (B.16)

In practice, at this point of the calculations it is possible to test whether the correct reflec-
tion angles Ψ1, Ψ2 have been chosen or not because all coordinates are known to compute
the reflection and diffraction rays. Eventually, the size of the projected interface Fresnel
zone is obtained by:

FP = jG1G2j : (B.17)

105



Appendix B. Projected Fresnel zone - finite-offset configuration
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