
Metaprogramming Applied to Web Component Deployment

Welf Löwe Markus L. Noga
University of Karlsruhe

Program Structures Group

Adenauerring 20a, D-76131 Karlsruhe, Germany

{loewe|noga}@ipd.info.uni-karlsruhe.de

October 31, 2001

Abstract

Metaprogramming is a generic approach described in many articles. Surprisingly, examples of
successful applications are scarce. This paper gives such an example. With a metaprogram of less
than 2500 lines, we deploy components on the web by adding specific XML-based communication
facilities. This underlines the expressiveness of the metaprogramming approach.

1 Introduction

Metaprogramming interprets a source program as data the can be analyzed and transformed. De-
pending on the time of its application, we distinguish between static and dynamic metaprogramming.
The former performs analysis and transformations at compile time, the latter at runtime.
The idea of metaprogramming is not new: it is a direct consequence of the von Neumann computer

architecture. As early as in the 1950s, Lisp 1.5 [7] treated program and data terms uniformly. Both
could be reflected and transformed at runtime. This instance of dynamic metaprogramming was
implemented by simply interpreting all code.
Recently, interest in metaprogramming has been revived. One reason is the success of the Java

programming language and its reflection interface that allows dynamic code analysis. Another is the
need to re-engineer large legacy code bases. Last but not least, software engineering increasingly aims
to reuse predefined components. As these components are defined for as broad a reuse as possible,
deployment should make them fit into any concrete environment. This deployment is automatized
with metaprogramming.
There are quite a few metaprogramming tools around. Most of them specialize in aspect weaving

or refactoring. As such, their users cannot design new metaprograms. Exceptions to this rule are
Puma [1], Transmogrify [2], the Design & Maintenance System (DMS) [3] and Recoder [6]. Apart
from Recoder , the mentioned systems are restricted in the generality of their parsing and semantic
analysis phases. Recoder provides a full compiler front end for Java and access to all syntactic and
semantic information analyzed by it.
While the necessity of metaprogramming is undisputed and supporting tools have already been

developed, the literature does not report many real applications. Publications address specific ques-
tions of metaprogramming at hand, or discuss the application side exclusively, leaving metaprograms
to the intuition of reader. The present paper aims at bridging this gap.
As an sample application of metaprogramming, we discuss the deployment of components on the

web by adding XML-based communication facilities. Although we deploy Java components only, and
our metaprograms use Recoder , we refrain from exploiting Java specifics such as the language reflection
interface. Therefore, our approach generalizes to other languages and tools.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197594564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 CASE STUDY DOMAIN 2

The paper is organized as follows: We first discuss the domain of the case study in section 2. In
section 3, we present a suitable software architecture for the domain. We then generate conforming
implementations with metaprogramming in section 4. The final section, 5, summarizes our results
and outlines directions for future work.

2 Case Study Domain

Web services are a hot topic. In essence, a web service is a class that supports remote method invo-
cation. Invocation data are encoded in XML [13] and usually transmitted via HTTP [4]. The set of
admissible invocation messages can be specified with a DTD or XML Schema [14, 15]. This foundation
is attractive because it is independent of platform and language, based on open standards, intelligible
to humans as well as scripting languages and thus easily amenable to adaptations. Secondary con-
siderations, such as the capability to tunnel corporate firewalls, are still hotly debated and variously
seen as a major benefit or a major security hazard.
Higher-level web service standards such as SOAP and WSDL [11, 12] define method invocation

formats and interface specifications in more detail. Unfortunately, both SOAP and WSDL notations
are quite cumbersome and require extensive print space. For the purposes of this article, we therefore
limit ourselves to plain XML services whose interfaces are described by DTDs. We also disregard the
question of addressing and use direct socket connections. None of these limitations are inherent to
the metaprogramming approach. In production code, they may easily be eliminated.
How are web services to be implemented? Java [5] is today’s educational language of choice. The

metaprogramming system developed by our research group, Recoder [6], operates on Java programs,
and is itself a Java program. Thus, we focus on deploying Java-based web services in this case study.
To do so, we need a model of what exactly to deploy.
We distinguish component classes (or short components) from auxiliary classes: methods of compo-

nent objects may be invoked remotely, while method invocations on auxiliary objects are always local,
i.e. caller and callee run in the same address space. When invoking component methods, component
objects are passed by reference, whereas auxiliary objects are passed by value.
Remote invocation must preserve polymorphism to guarantee location transparency. Moreover,

both parameters passed to and return values of component methods may in general be complex object
graphs, possibly containing cycles.

«interface»

Component

+m1()

+m2()

«interface»

MyComponent

MyImpl

Figure 1: A component specification

3 ARCHITECTURE 3

To eliminate the problem of member variable access, which cannot be redirected in Java, we follow
Java component tradition [10, 9] in specifying components in two parts: a component interface that
specifies the permitted operations, and a component class that implements them. Interfaces must
inherit a component marker interface to designate them as component interfaces (see Fig. 1).
Instead of using the language feature of interface inheritance, we could also specify component

boundaries with an arbitrary metaprogram. This approach becomes appealing when componentifying
legacy systems. In this presentation, we use the component marker interface for simplicity.
Now we can define the application problem precisely: Given a component specified as above, deploy

it as a web service. This can be decomposed in two subtasks. First, add XML-based communication
facilities that allow location-transparent access. Second, generate XML web service descriptions, i.e.,
DTDs. The next section will discuss a software architecture to handle XML-based communication.

3 Architecture

In the mould of classical component architectures like CORBA [8], we use the stub/skeleton pattern
for remote component access. A stub implements the component interface. It runs in the client’s
address space and passes all method invocations over the wire, receiving the return value. A skeleton
runs in the server address space. It decodes incoming messages and invokes the appropriate methods
of the component class, passing return values over the wire. Specific stubs and skeletons are generated
for each component. Fig. 2 shows the classes involved.
As passing return values is symmetric to passing arguments, we focus on passing arguments in this

presentation. In detail, a stub is a proxy for the component class. It converts method calls to an XML
element that encapsulates the method in question, component object references and auxiliary object
values. Component object references can easily be encapsulated by a single element, but auxiliary
object values may be very complex. However, given serializers that map auxiliary classes to elements,
a method is simply mapped to an element containing a fixed sequence of argument elements.

 «interface»

Component

+m1()

+m2()

 «interface»

MyComponent

MyImplMyStub

+handle()

 «interface»

Skeleton

MySkeleton

Figure 2: A deployed component. Classes to the left run on the client, those to the right on the server.
Generated classes are shown in gray.

3 ARCHITECTURE 4

How do these serializers for auxiliary objects work, then? They map auxiliary objects to literal
elements, which contain the sequence of all member variables. Here, primitive types are mapped
directly to XML elements. Component objects are mapped to an element containing a URI reference.
Auxiliary objects are recursively mapped to literals.
This results in a depth-first traversal of the accessible object graph, with component objects treated

as leaves. For this traversal order, all cycles in the object graph manifest themselves as backward edges.
They can be detected by maintaining a set of objects already serialized.
We employ sequential serialization order for reference purposes, facilitating single-pass deserializa-

tion. By universally allowing a backward reference element to stand for literal elements, cyclic object
graphs can be accurately mapped to XML. In contrast, Microsoft .NET serialization does not know
this concept. It can detect cycles, but is incapable of handling them.
Now, let us consider the software architecture of the serializers. A generated XMLSerializer class

contains one static serializer method per auxiliary class, array and interface. These serializer methods
target an invariant XMLSerializerStream object. Its class encapsulates the output stream and the set
of already serialized objects. It contains convenience methods to serialize primitive types, backward
references and nulls (represented as a backward reference to the zeroth object).
For access to private member variables, two serialization helper methods must be woven into the

auxiliary classes. The static serializers can thus employ polymorphic method calls to resolve dynamic
types.

Example 1 Assume the following auxiliary class definitions:

abstract class A { int i; A a; }
interface B { }
class C extends A { float f; B b; }
class X extends C implements B { X x; }
class Y extends X { boolean[] b; }
class Z implements B { X x; }

The following method is generated for Y in XMLSerializer:

public static void serializeClassY(XMLSerializerStream s, Y o) {
if(s.serializeReference(o))
return;

o.serializeXML(s); // o may be of type Y or any subtype thereof
}

The static serializer polymorphically invokes the data type serializer, which in turn monomorphi-
cally invokes the data layout serializer. Prior to serializing its own fields with the appropriate static
serializers, the data layout serializer monomorphically invokes the superclass data layout serializer to
serialize inherited member variables. This multi-stage dispatch has significant runtime flexibility. In
contrast, Microsoft .NET serialization is restricted to statically specified data types. When adding
classes, all methods using their superclasses need to be updated.

Example 2 (Continues Example 1) The following methods are added to class Y:

public void serializeXML(XMLSerializerStream s) {
s.openingTag("<classY>");
serializeBodyClassY(s);
s.closingTag("</classY>");

}

protected final void serializeBodyClassY(XMLSerializerStream s) {
serializeBodyClassX(s); // superclass data layout
XMLSerializer.serializeArrayOfBoolean(s, this.b); // boolean[] b;

}

4 IMPLEMENTATION 5

To illustrate the operation of the serializers, consider the object graph built from classes defined in
Example 1 depicted in Fig. 3. Example 3 below shows the corresponding serialization of the instance
of class Z.

class Z
X x=

boolean[]
int length=3
{false,
 true,
 false}

null

class Y
int i=42
A a=
float f=3.1415
B b=
X x=
boolean[] b=

Figure 3: A sample object graph.

Example 3 (Continues Examples 1,2) Annotated serialization of the Z instance in Fig. 3.

<classZ> <!-- id 1 -->
<classY> <!-- id 2 content of x -->

<int>42</int> <!-- value content of i -->
<ref>2</ref> <!-- reference content of a -->
<float>3.1415</float> <!-- value content of f -->
<ref>0</ref> <!-- null content of b -->
<ref>2</ref> <!-- reference content of x -->
<arrayOfboolean length="3"> <!-- id 3 content of b -->
<boolean>false</boolean> <!-- value content of b[0] -->
<boolean>true</boolean> <!-- value content of b[1] -->
<boolean>false</boolean> <!-- value content of b[2] -->

</arrayOfboolean>
</classY>

</classZ>

Let us return to Fig. 2. So far, we omitted the details of skeleton operation. A skeleton is the
inverse of a stub: it receives XML representations of method invocations from the transport channel,
identifies the method in question and reconstructs the serialized argument sequence. Via a simple
dispatcher, it invokes the appropriate component method. Just like a stub passes arguments, it then
passes the return value over the wire.
Reconstructing the argument sequence requires deserializers for primitive types, component objects

and auxiliary objects. As for serializers, the first two are rather simple constructs. For auxiliary
objects, there are direct correspondences between XMLSerializer and XMLDeserializer as well as
between XMLSerializerStream and XMLDeserializerStream. The main difference is that static
deserializers cannot use polymorphic calls. They must explicitly dispatch over the known subtype
names to call deserializing constructors woven into the auxiliary classes.

4 Implementation

To add the architectural elements discussed in the previous section to the components and auxiliary
classes of section 2, we employ metaprogramming facilities provided by the Recoder system. Following

4 IMPLEMENTATION 6

convention, the metaprogram can be decomposed into separate analysis and transformation phases.
The former derives the required information from the existing sources, the latter performs the actual
modifications required. In the subsections below, we discuss these phases individually.

4.1 Analysis

The analysis phase traverses the input program and derives the data necessary for the transformation
phase. It mainly computes the set of components and the set of auxiliary types required for method
calls to the components. It then determines member variable names and types for auxiliary types, as
well as basic subtype relationships and its transitive closure. Component stub and skeleton generation
additionally require information on available methods.
Although the actual implementation differs slightly, the analysis can be formulated as a fixed-point

iteration. Its initialization looks like this:

� Identify all interfaces that inherit Component.

� For each such interface, identify all available methods.

� For each such method, add all types in the signature to the set of used types.

� Set the auxiliary types to the empty set.

An individual iteration step consists of these operations:

� For all used arrays, add their base types to the used types.

� Add all used types that do not inherit Component to the auxiliary types.

� For all auxiliary types, determine their superclasses and super-interfaces.

� Add them to the used types.

� For all auxiliary types, determine all subtypes.

� For all auxiliary types, identify their member variables.

� For all such member variables, add their types to the used types.

Obviously, a semantically rich model of the input program is required to perform these computa-
tions. While there is no need to visit method bodies, full semantic analysis of type relations, member
signatures and member variables is a prerequisite to this fixed-point iteration.

4.2 Transformation

The transformation phase acts on the program model to actually incorporate the required modifica-
tions. In this case, there are no changes or deletions — only additions are performed.
Although it is plainly necessary to assemble various methods, e.g., static serializers and serialization

helpers, this does not affect existing method bodies. In fact, the stubs, skeletons, static serializer and
deserializer classes may be assembled off-line and added to the model as a whole. Similarly, all
serialization and deserialization helpers can be assembled individually and added to the model on the
method level.

5 CONCLUSIONS 7

4.3 Results

We implemented the analysis and transformation phases with Recoder . As the operations mentioned
correspond very closely to Recoder methods, we do not present actual metaprogram code here. Consult
the Recoder manual [6] for technical details.
Our working prototype supports the full Java type system, including all primitive types, arrays

and arbitrary user-defined classes, abstract classes and interfaces. Serializers, deserializers, stubs and
skeletons are correctly generated. Remote invocations are operable.
Of cause, a working prototype is not a time-tested product. We do not handle exceptions.

java.lang.Object remains problematic, as it has both component and auxiliary subclasses. We
cannot deal with binary classes — while simple in theory, a mapping to user-defined external seri-
alizers has not been implemented yet. In a similar vein, our network handling is very basic, lacking
scalable component addressing schemes or security handling.
However, these domain issues are only mildly relevant to the metaprogramming example. What

counts is this: although our prior exposure toRecoder was strictly theoretical, we were able to build a
working prototype within four person-days. Metaprogram and runtime framework for the generated
code together amount to 2500 LOC.

5 Conclusions

This case study leads to conclusions on three separate levels: domain, process and system architecture.
Let us first consider the problem domain. We have successfully realized web services. Our metapro-

gram invasively integrates existing components into a web invocation architecture. While we chose
to implement a simple XML encoding for readability, full conformance to SOAP and WSDL is easily
achievable with metaprogramming technology.
Apparently, metaprogramming works well for this domain. As we encountered in the constituent

parts of our solution, the related domain of serialization, and therefore the larger issues of data
bindings and persistence, are also well-suited to metaprogramming approaches.
The software development process for this example was a surprise to us. Although we had no prior

experience using Recoder , the metaprogram and the associated runtime framework was implemented
within four person-days. Together, they amount to a slim 2500 LOC. This is an impressive testimony
to the expressive power of metaprogramming.
In the architectural sphere, we note that metaprogramming systems are a good layer of abstraction.

Encapsulating some 82000 LOC behind a clean interface, Recoder provides a complete structure tree
with full semantic analysis and support for general transformations. This is a far harder problem than
most conceivable individual transformations. Metaprogramming systems make sophisticated compiler
technology easily accessible. As such, they are a useful building block for larger systems.
Reading about large systems that manipulate software, one cannot fail to notice that the termi-

nologies of metaprogramming, invasive adaptation and the field of aspect-oriented programming are
overlapping ones. Based on our experience, we recommend a layered architecture for these systems
(see figure 4).

Metaprogramming system

Metaprogram

(Invasive Adaptor)

Metaprogram

(Invasive Adaptor)

Metaprogram

(Invasive Adaptor)

Aspect Weaver

Figure 4: A high-level architecture for metaprogramming systems

REFERENCES 8

A metaprogramming system like Recoder is the foundation. Individual invasive adaptations, like
our study in XML web services, are metaprograms built upon that layer. Finally, an aspect weaver
on top orchestrates the application of the various invasive adaptations.
What is on the road ahead? We plan to conduct further case studies. This increases the library of

metaprograms for invasive adaptation in the architecture sketched above. In due course, this strategy
should yield valuable insights about metaprogram design. It will pave the road to interoperable
metaprograms that may one day be orchestrated by an aspect weaver, which remains a subject for
future research.

References

[1] Homepage of PUMA - The PURE Manipulator. http://ivs.cs.uni-magdeburg.de/~puma/
home-eng.html, 2001.

[2] Transmogrify. http://transmogrify.sourceforge.net, 2001.

[3] Ira D. Baxter. Transformation systems: Domain-oriented component and implementation knowl-
edge reuse. In Proc. 9th Workshops on Institutionalizing Software Reuse, 1999.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. IETF RFC 2616, http://www.ietf.org/rfc/rfc2616.txt.

[5] James Gosling, Bill Joy, and Guy Steele. The Java� Language Specification. Addison-Wesley,
2nd edition, 1996.

[6] Andreas Ludwig. RECODER Homepage. http://recoder.sf.net, 2001.

[7] John McCarthy. Lisp 1.5. Communications of the ACM, 3(4), 1960.

[8] Corba 2.4.2 Specification. OMG, http://www.omg.org/technology/documents/formal/
corbaiiop.htm.

[9] Enterprise JavaBeans 1.1 Specification. SUN Microsystems, http://java.sun.com/products/
ejb/docs.html.

[10] JavaBea(tm) 1.0.1 Specification. SUN Microsystems, http://java.sun.com/products/
javabeans/docs/spec.html, 1997.

[11] Simple Object Access Protocol (SOAP) 1.1. W3C Note 08 May 2000, http://www.w3.org/TR/
2000/NOTE-SOAP-20000508, 2001.

[12] Web Services Description Language (WSDL) 1.1. W3C Note 15 March 2001, http://www.w3.
org/TR/2001/NOTE-wsdl-20010315, 2001.

[13] Extensible Markup Language (XML) 1.0. W3C Recommandation, http://www.w3.org/TR/
1998/REC-xml-19980210, 1998.

[14] XML Schema Part 1: Structures. W3C Recommendation 2 May 2001, http://www.w3.org/TR/
2001/REC-xmlschema-1-20010502, 2001.

[15] XML Schema Part 2: Datatypes. W3C Recommendation 2 May 2001, http://www.w3.org/TR/
2001/REC-xmlschema-2-220010502, 2001.

