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Abstract 
The study investigated the influence of traffic and land use parameters on metal build-up on 
urban road surfaces. Mathematical relationships were developed to predict metals originating 
from fuel combustion and vehicle wear. The analysis undertaken found that nickel and 
chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, 
cadmium from both exhaust and wear and manganese from geogenic sources. Land use does 
not demonstrate a clear pattern in relation to the metal build-up process, though its inherent 
characteristics such as traffic activities exert influence. The equation derived for fuel related 
metal load has high cross-validated coefficient of determination (Q2) and low Standard Error 
of Cross-Validation (SECV) values indicates that the model is reliable, while the equation 
derived for wear-related metal load has low Q2 and high SECV values suggesting its use only 
in preliminary investigations. Relative Prediction Error values for both equations are 
considered to be well within the error limits for a complex system such as an urban road 
surface. These equations will be beneficial for developing reliable stormwater treatment 
strategies in urban areas which specifically focus on mitigation of metal pollution. 
 
Keywords: Metal build-up; Stormwater pollutant processes; Stormwater quality; Traffic 
emissions; Traffic pollutants; Urban road surfaces 
 
 
1. Introduction 
Stormwater transports a range of potentially toxic metal ions deposited on urban impervious 
surfaces, particularly from road surfaces, to receiving waters causing adverse aquatic 
ecosystem health impacts (Herngren et al., 2006). Effective management of stormwater 
related metal pollution requires accurate estimation of metal loads present on road surfaces 
based on an in-depth understanding of the metal build-up process. Though solids build-up 
process has been widely understood, the transferability of the knowledge to specific 
pollutants such as metals is very limited (Liu et al., 2012).  
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Egodawatta et al. (2013) developed a mathematical model to replicate the metal build-up 
process based on antecedent dry days. However, the model did not consider the specific 
influence exerted by widely acknowledged major anthropogenic sources of metals on road 
surfaces, namely traffic and land use activities (Goonetilleke et al., 2009; Mahbub et al., 
2010). This constrains its use in the development of effective traffic and land use related 
pollution mitigation strategies. Accordingly, the aims of this study were to: (1) investigate the 
influence of traffic and land use characteristics in the metal build-up process on urban road 
surfaces; and (2) develop quantitative mathematical relationships to predict metal loads in the 
build-up on road surfaces based on traffic and land use parameters. The outcomes from this 
study will contribute to the evaluation of metal pollution in the urban environment from 
future changes in traffic and land use characteristics and for the development of reliable 
stormwater treatment strategies in urban areas. 
 
2. Materials and methods 
Eleven road sites were selected in the Gold Coast region, Queensland, Australia with the 
study sites encompassing variations in traffic and land use characteristics (Fig. S1 in 
Supplementary Information). The build-up samples were collected from 2.0 m x 1.5 m plot 
areas in the middle of the traffic lane using the wet and dry vacuuming system described by 
Mahbub et al. (2011), which consisted of a domestic vacuum cleaner fitted with a water 
filtration system. The selected plots were firstly dry vacuumed to collect most of the dust 
samples, and then wet vacuumed after spraying deionized water on the plots at 2 bar pressure 
for three minutes in order to collect the remaining fine particles. Prior to the sample 
collection, the procedure was tested under laboratory conditions and was found to be 97.4% 
efficient (Refer to Supplementary Information).  
 
The samples collected were transported and stored in the laboratory under prescribed 
conditions until the analysis of the following metals commonly present on urban road 
surfaces was undertaken: cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), manganese 
(Mn), nickel (Ni) and zinc (Zn), using Method 200.8 for Inductively Coupled Plasma-Mass 
Spectroscopy (ICP-MS) (US-EPA, 1994) with TraceSELECT (Product No. 54704) as the 
certified reference material. The detection limits for ICP-MS for the selected metals were in 
the range of 0.001 to 0.005mg/L. Additionally, the total solids (TS) was determined using 
Methods 2540C and 2540D (APHA 2004). 
 
Pollutant build-up on road surfaces is influenced by traffic factors such as traffic volume, 
congestion and vehicle mix (EPASGV, 1999), and land use characteristics within the vicinity 
of the site (Goonetilleke et al., 2009). In this context, the following surrogate indicators were 
selected to represent these influential factors in the analysis: annual average daily traffic 
volume (ADT_to) as a surrogate for traffic volume; volume to capacity ratio (V/C) as a 
surrogate for congestion and total heavy duty traffic volume (ADT_hv) as a surrogate for 
vehicle mix. Relevant data was obtained by undertaking classified traffic counts at the 
respective study sites. Surrogates that represented land use factors were the percentage of, 
industrial (I%), commercial (C%) and residential (R%) land use within 1 km radius from the 
sampling points. The data analysis was conducted using multivariate methods including 
principal component analysis (PCA), factor analysis (FA) and multiple linear regression 
analysis (MLR).  
 
PCA transforms a large set of variables into an orthogonal set of principal components. PCA 
transforms original variables to orthogonal principal components (PCs) so that highest 
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variance is associate to first few PCs. This results in the reduction in the number of variables, 
thereby facilitating effective interpretation of the data set. PCA outcomes are often presented 
as biplots, which enable the identification of the underlying relationships between objects and 
variables (Mostert et al., 2010). A detailed description of PCA can be found elsewhere 
(Adams, 1995). Similarly, FA uses few factors to explain the correlation between the 
variables By observing the characteristics of the variables correlated to a factor, it is possible 
to explain what a particular factor represents (Abdi, 2003). MLR is a regression technique 
that is often used to develop mathematical relationships for a dependent variable based on a 
number of independent variables (Ni et al., 2001).  In this study, FA was performed using 
StatistiXL software (v. 1.8, 2008, statistiXL,Broadway–Nedlands, Australia) while 
MATLAB R2009b (Mathworks Inc, Natick, MA, USA) was used for MLR and PCA 
analysis. 
 
3.  Results and Discussions 
 
3.1 Factor Analysis (FA) 
FA was performed on the raw data matrix (Table 1) using principal component extraction 
method with orthogonal VARIMAX rotation technique, which results in factors being 
strongly correlated to a specific set of variables, while weakly correlated with other variables 
as a result of rotating the original factors (Egodawatta et al. 2013). This simplifies the 
interpretation of a complex data set as each variable is primarily associated with a specific 
factor (Abdi, 2003). The factors were extracted based on the initial eigenvalue criteria ≥ 1 
and the results are presented in Table 2. It was hypothesised that metals with the same source 
of origin and build-up process are grouped under the same factor. 
 
As evident in Table 2, Cr and Ni are associated with Factor 1 because they have relatively 
higher loadings in Factor 1 compared to the other factors. Similarly, Pb, Zn and Cu have 
higher loadings in Factor 2, while Mn has higher loading on Factor 3. This suggests that the 
source and build-up process for Pb, Cu and Zn are different to those for Cr and Ni, while the 
source and build-up process for Mn is different to these two metal groups. Furthermore, Cd 
has a loading of 0.29 on Factor 1, 0.11 on Factor 2 and a relatively high negative loading on 
Factor 3. This suggests that the source and build-up process for Cd would be different from 
those of the other metals. 
 
3.2 Exploratory Principal Component Analysis (PCA) 
To facilitate visual display and interpretation of the results, PCA were separately performed 
on standardised data matrices consisting of: (1) metal loads and traffic variables, and (2) 
metal loads and land use variables (Table 1). As shown in Fig. 1(a), when the metal load 
vectors are projected against PC1, all metals except Mn are strongly associated with PC1 
suggesting that the primary source of Mn is different from that of the other metals. Mn is 
likely to be contributed to the build-up primarily by geogenic sources since the V/C vector, 
which is a highly influential traffic variable on PC1 is not correlated with Mn on PC1. In 
contrast, the rest of the metals have positive correlations with V/C when the corresponding 
vectors are projected on PC1, suggesting that they primarily originate from traffic sources.  
 
The ‘traffic-related metals’ are discriminated on PC2 into two groups with Cu, Pb and Zn 
projected against the negative PC2 axis and Cr and Ni projected against the positive PC2 
axis. Although Cd has a low negative PC2 loading, it does not clearly belong to either group. 
Similar conclusions were derived from FA, thus strengthening the PCA outcomes. 
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These observations clearly suggest that the two groups of metals originate from different 
primary traffic sources, while Cd may be contributed by both of these sources. It should also 
be noted that these metals could potentially originate from other sources such as industrial 
activities. However, the Gold Coast region predominantly consists of commercial and 
residential land uses with only light industries that have neither high fuel usage nor other 
significant metal generating activities. As such, it can be hypothesised that vehicular traffic is 
the major source of metals present on the road surfaces at the study sites.  
 
Past studies have identified vehicle exhaust and vehicle component wear such as wear of 
brakes, tyres and engine components as the two major sources of traffic generated metals 
(e.g. Sansalone et al., 1997; Ball et al., 1998). Pb was used as the reference to discriminate 
between the metals contributed by exhaust and those by wear since the traffic source of Pb is 
likely to be vehicle component wear because leaded fuel has been phased out in Australia 
more than a decade ago. Therefore, it can be concluded that Pb, Cu and Zn are mainly 
contributed to road surfaces by the wear of vehicle brakes and tyres whereas Cr and Ni are 
primarily contributed by vehicle exhaust. Cd is contributed by both wear and exhaust. These 
conclusions are in agreement with the composition of vehicle exhaust and vehicle wear as 
reported in past research studies such as Galvagno et al.,( 2002) and Mitrović et al., (2012). 
 
This conclusion was further strengthened by the correlation of V/C vector with Pb, Cu and Zn 
and the correlation of both V/C and ADT_to with Cr and Ni in the PCA biplot (Fig. 1a). 
Frequent stops associated with traffic congestion can result in increased brake and tyre wear. 
In contrast, the smooth flow of traffic would result in only limited wear of vehicle 
components compared to frequent braking. Hence, the V/C vector is correlated with Pb, Cu 
and Zn, while ADT_to is not. On the other hand, vehicle exhaust increases with increased 
traffic volume and congestion, hence the correlation of V/C and ADT_to with Cr and Ni. 
 
According to Fig. 1(b), both Mn and R% have negative loadings on PC1, while the other 
metals along with I% and C% have positive loadings. This further suggests that Mn 
originates primarily from geogenic sources, which are the main sources of metals in 
residential areas (Singh and Gilkes, 1992).  
 
According to the relationships evident on the PC biplot, Mn is perpendicular to R% 
indicating that Mn does not have any correlation with R%. Similarly, I% correlates only with 
the Ni vector in contrast to the strong correlation of C% with Zn, Pb, Cu, Cd and Cr on PC1. 
In general, metals originating from traffic sources are strongly correlated with C% and 
weakly correlated with I%. This can be attributed to the fact that commercial areas have 
higher traffic activities compared to industrial and residential areas. Therefore, it can be 
concluded that it is not strictly land use that influences metal build-up, but rather it is the 
traffic characteristics. However, it is hypothesised that land use implicitly influences traffic 
characteristics. 
 
In summary, the outcomes of PCA confirmed that metals in build-up are discriminated on the 
basis of their sources. Egodawatta et al. (2013) found that the build-up process of metals 
originating from the same source is similar, but different to that for metals originating from a 
different source. Hence, it is hypothesised that the build-up process for Pb, Cu and Zn are 
similar, but different to that for Cr and Ni.   
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3.3 Mathematical relationships for metal build-up based on traffic and land use 
characteristics 

Based on the outcomes of PCA and FA discussed above, mathematical relationships between 
metals in build-up and influential traffic and land use factors were developed considering 
their sources of origin. Accordingly, Cr and Ni were grouped as fuel related metals (FM) and 
Pb, Zn and Cu as wear related metals (WM). Cd and Mn were not included in this analysis 
since Cd was present in relatively low quantity compared to other metals and Mn was 
deemed as originating from geogenic sources and outside the scope of this study.  
 
Mathematical relationships for FM and WM were developed for their cumulative loads using 
Multiple Linear Regression Analysis (MLR). Prior to MLR, FM and WM were normalised 
with respect to the total solids load (TS), as research literature has identified the strong 
relationship between TS and metal loads (Helmreich et al. 2010). Accordingly, the dependent 
variables were (FM/TS) and (WM/TS), while the predictor variables were land use and traffic 
variables as shown below: 
 

 
 

 
  
Since the data matrix was small, the equations were validated using Leave-One-Out Cross- 
Validation (LOOCV) method. The development and cross-validation were performed using 
MATLAB R2009b (Mathworks Inc, Natick, MA, USA) and the derived MATLAB codes are 
presented in the Supplementary Information. The validity of the model was analysed using 
Relative Prediction Error (RPE), Standard Error of Cross-Validation (SECV) and Cross-
Validated Coefficient of Determination (Q2) and the relevant equations are given below 
(Richardson and Reeves, 2005): 

 

 
 

 
 

where N is the 
number of samples, Ypredicted is the (FM/TS) or (WM/TS) predicted using MLR equations, 
Ymeasured is the (FM/TS) or (WM/TS) calculated using the experimental data and Ȳ is the 
mean of Ymeasured.  
 
The RPE values for FM and WM were 34% and 39%, respectively and these values are 
considered well within the error limits for a complex system such as an urban road surface 
(Ni et al. 2001; Mahbub et al. 2011; Egodawatta et al. 2013). Nevertheless, WM has a high 
SECV (17.5) and low Q2 (61%) suggesting that the model is less reliable for quantitative 
prediction, while the Q2 (86%) and SECV (1.04) values indicate a good fit for FM. Hence, 
the former should preferably be used only in preliminary investigations, while the latter can 
be applied for the prediction of FM load. The final equations derived are given below: 
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4. Conclusions 
The primary conclusions derived from this study are: 
• Mn is likely to be contributed to the build-up by geogenic sources. Pb, Cu and Zn are 

primarily contributed to road surfaces by brake and tyre wear, Cr and Ni are by vehicle 
exhaust and Cd is from both exhaust and wear.  

• Land use does not exhibit a clear pattern in influencing the metal build-up process, and 
traffic characteristics primarily influence the metal build-up process. However, it is 
hypothesised that land use implicitly influences traffic characteristics. 

• The prediction equation developed for cumulative metal loads originating from fuel 
exhaust emissions is relatively more reliable since it has an acceptable level of relative 
prediction error, low standard error of cross-validation and high cross-validated 
coefficient. 

• Though the relative prediction error is at an acceptable level, the prediction equation 
developed for cumulative metal loads originating from brake and tyre wear is relatively 
less reliable and should preferably be used only in preliminary studies because of the high 
standard error of cross-validation and low cross-validated coefficient. 
 

Supplementary Information 
The Supplementary Information provides the methodology used for determining the 
efficiency of the sample collection procedure, location of study sites and the Matlab codes 
used for multiple linear regression (MLR) analysis. 
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Fig. 1: PCA biplots for: (a) traffic variables (b) land use variables (Legend: Total traffic 
volume - ADT_to; Total heavy duty traffic volume – ADT_hv; Congestion – V/C; 
Industrial land use - I%; Residential land use - R%; Commercial land use – C%)  

(a) 

(b) 
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7. Tables 
Table 1: Data matrix used in the study 
Site ID Total Solids 

(mg/100m2) 
Metal Loads (mg/100m2) Traffic Variables Land use Variables 

Cd Cr Ni Pb Zn Cu Mn ADT_to ADT_hv V/C C% I% R% 
Ab_c 21.2 0.31 2.38 9.11 33.0 233 102 26.5 8739 101 0.60 0.28 0.04 0.68 
Re_r 64.4 0.17 19.5 49.1 16.2 256 157 43.2 9973 193 0.72 0.04 0.02 0.94 
Pe_r 5.71 0.00 0.00 0.00 12.5 107 75.0 10.6 30 0 0.00 0.03 0.00 0.97 
Bi_r 46.9 0.00 0.86 1.24 42.0 351 143 40 1963 10 0.45 0.24 0.03 0.73 
Be_i 6.19 0.11 1.11 27.9 32.0 158 90 6.99 4630 86 0.46 0.07 0.59 0.34 
Sh_i 18.6 0.00 1.38 1.56 82.9 317 245 39.8 2234 31 0.22 0.05 0.48 0.47 
Ho_c 25.2 0.00 2.75 4.90 30.3 247 119 48.2 25571 270 0.59 0.14 0.01 0.85 
Li_c 5.13 0.29 2.74 4.25 63.7 209 216 5.47 8594 28 0.73 0.26 0.03 0.71 
To_c 6.59 0.05 1.15 7.07 33.4 141 77.3 3.52 5922 61 0.18 0.30 0.17 0.53 
Da_r 110 0.00 2.90 5.46 69.3 177 118 190 993 6 0.09 0.01 0.00 0.99 
Di_r 6.72 0.19 2.17 21.2 41.7 222 83.4 7.20 10682 41 0.69 0.02 0.00 0.98 
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Table 2: VARIMAX rotated factor loadings for metal ions 

Metals Factor 1 Factor 2 Factor 3 
Cd 0.29 0.11 -0.74 
Cr 0.97 0.12 0.01 
Ni 0.93 -0.14 -0.18 
Pb -0.39 0.77 0.26 
Zn 0.13 0.78 0.00 
Cu 0.03 0.94 -0.05 
Mn 0.10 0.17 0.89 
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Methodology used to determine the efficiency of the sample collection procedure 
100 g of uniformaly graded fine material was spread uniformly on a 1 m x 1 m bituminous 
surface that was prepared by cleaning with water and dried for an hour. Initially, dry 
sampling was carried out using the vacuum system followed by wet vacuuming the plots after 
spraying water at 2 bar pressure for three minutes. The collected sample was carefully 
transferred to a crucible and oven dried. The total weight recovered through this sampling 
procedure was calculated and the efficiency of the sample collection procedure was given as 
the percentage of the initial weight, i.e. 100 g. 
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Fig. S1: Location map of the study sites (R, C and I represent residential, commercial and 
industrial land uses). 

 



13 

 

Matlab codes used for Multiple Linear Regression Analysis 
 
function [b,RPE,SECV,Q2] = CVMLR (y,x) 
%CVMLR returns multiple linear regression coefficients (b) with relative 
%prediction error (RPE), standard error of cross-validation (SECV) and  
%cross-validated coefficient of determination (Q2). The input y is the data 
%matrix containing dependent variables and x is the data matrix containing 
%independent variables. 
  
b = regress (y,x); %Matlab built-in function that performs multiple linear  
%regression and returns the regression coefficients matrix, b. The first  
%element of matrix b is the constant followed by regression coefficeints. 
  
PredictMatrix = [ ]; 
  
for n = 1:length(y) 
%Data matrix for model development, consists of all data points except one     
    TestIndex = n; 
    TrainIndex = setdiff(1:length(y),TestIndex) 
    X=x(TrainIndex,:); 
    Y=y(TrainIndex,1); 
     
 %Prediction of Y using regression coefficient for the one left out sample       
    PredictedY = [x(TestIndex,:)]*b;  
  
 %Data matrix consisting of measured and predicted values 
    MeasuredVsPredict = [y(TestIndex,1), PredictedY];  
    PredictMatrix = [PredictMatrix; MeasuredVsPredict];  
end 
  
[NSamples NVariables] = size(X) 
MeasuredY  = PredictMatrix(:,1) 
PredictedY = PredictMatrix(:,2) 
  
%Relative error of prediction 
RPE = sqrt (sumsqr (PredictedY-MeasuredY)/(sumsqr(MeasuredY)));  
  
% Standard error of cross validation 
SECV = sqrt(NSamples/(NSamples-1))*sqrt(sumsqr(MeasuredY-PredictedY)/NSamples); 
  
%Cross-validated R2 
Q2 = 1-(sumsqr (PredictedY-MeasuredY)/sumsqr(MeasuredY-mean(MeasuredY)));  
 


