
Analysis and Conception of Tuple Spaces

in the Eye of Scalability

Philipp Obreiter

obreiter@ipd.uni-karlsruhe.de

November 4, 2003

Technical Report Nr. 2003-20

University of Karlsruhe
Faculty of Informatics

Institute for Program Structures and Data Organization
D-76128 Karlsruhe, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197594415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction
2 State of the Art in Tuple Spaces
2.1 The Tuple Space Concept and its Extensions
2.2 Related Research Areas
2.3 Prior Studies of Scalability in Tuple Spaces
3 Analysis of Tuple Spaces
3.1 Formalization of Tuple Spaces
3.2 A Taxonomy of Tuple Space Schemes
3.3 Consequences of the Formalization
3.4 Comparison to Other Formal Approaches
3.5 Distribution of Tuples
4 Analysis of Former Approaches towards Scalability
4.1 A Deterministic Model of Scalability
4.2 Distribution Based on Hash Codes
4.3 Analysis of the Concept
4.4 Scenario
5 An Advanced Concept for Scalability
5.1 Intervals
5.2 Transformation of Tuples to Hypercubes
5.3 Distribution Based on Hypercubes
5.4 Formal Scalability Analysis of the Concept
5.5 Comparison to Approaches in Related Research Areas
5.6 Semantic and Nested Tuples
5.7 Spatial Data Structures
Appendix A References

3

1 Introduction

Applications in the emerging fields of eCommerce and Ubiquitous Comput-
ing are composed of heterogenous systems that have been designed sepa-
rately. Hence, these systems loosely coupled and require a coordination
mechanism that is able to gap spatial and temporal remoteness. The use
of tuple spaces for data-driven coordination of these systems has been pro-
posed in the past. In addition, applications of eCommerce and Ubiquitous
Computing are not bound to a predefined size, so that the underlying co-
ordination mechanism has to be highly scalable. However, it seems to be
difficult to conceive a scalable tuple space.

This report is an English version of the author’s diploma thesis. It
comprises the chapter two, three, four, and five. By this means, the design
and the implementation of the proposed tuple space is not part of this report.

-1-

2 State of the Art in Tuple Spaces

Tuple spaces have been conceived and extended under the influence of databases
and messaging systems. However, research has not resolved yet how to render
tuple spaces scalable.

2.1 The Tuple Space Concept and its Extensions

A tuple space [32] is a logically shared associative memory that enables
cooperation based on the blackboard design pattern [43]. Tuples may be written to
the tuple space and they are retrieved as specified by templates. Tuples and
templates are ordered collections of fields that can be either actual or formal. An
actual field has a specific value, whereas a formal field represents a set of values.
There is no schematic restriction on how fields are composed to tuples and
templates. A reading operation returns a tuple that is matched by a template.
Matching is the key concept of tuple spaces, because it enables associative yet
only partly specified retrieval of tuples.

Several extensions of this concept have been proposed in the past [2, 14, 31,
33, 60]. E.g. object orientation has been introduced to tuple spaces [14] and [31]
suggests the use of semantic templates that match tuples structurally. In Bauhaus
Linda [13], it is possible to define nested tuples. Hence, tuples are not structured as
collections any more, but they are trees with fields as their leaves. There are
several implementations of tuple spaces, e.g. Linda [32], JavaSpaces [57] and T
Spaces [61]. They differ in the amount of extensions implemented. A more
detailed introduction to tuple spaces is given in [46].

2.2 Related Research Areas

The interaction model of tuple spaces uncouples its participants. Hence, it is
possible to gap their time and space remoteness. There are concepts in other
research areas that aim at the same goal. However, they differ in their data and
interaction models.

Messaging systems like JMS [38] pass messages through information channels.
The participating entities have to subscribe to information channels prior to
receiving messages. Hence, temporal uncoupling is not provided in general.
Furthermore, there is no concept of data retrieval, but the information channel
determines the nature of the data that is received. On the other hand, it has been
widely acknowledged that messaging systems are inherently scalable. This ensues
from the restriction that information channels have to be defined before the
submittance of a message. In general, the set of information channels can be
partitioned into non overlapping subsets. Hence, parallelization and scalability
may be achieved.

Historically, databases have been invented, in order to gap time remoteness.
Nowadays, remote access to databases has become fairly standard, so that
databases come near to tuple spaces. On the other hand, tuple spaces virtually have

-2-

become a database due to recent extensions of its model. However, data retrieval
in databases is based on the evaluation of queries. Various query languages like
SQL [22] have been developed. In principle, they are not bound to the underlying
data model. In addition, query languages are more expressive than templates, e.g.
queries may be nested and operations can be performed on the result set. In
contrast, the original concept of data retrieval in tuple spaces assumes that only
one tuple, if any, is returned. Furthermore, template matching lacks the arbitrary
use of predicates, as it is common in query languages.

As for the data model, relational databases [18] expect that every tuple
complies with an arbitrary but predefined scheme. The a priori knowledge of key
values in relational data schemata enables the application of indexing algorithms,
so that data retrieval is more efficient than in tuple spaces. There are several
suggestions that extend or replace the relational data model. They are reflected in
recent extensions of the tuple space model. Apart from suggesting its own object
oriented data model [41], object orientation has lead to an extension of the
relational data model, i.e. the object relational data model [56]. In object oriented
data bases, an identity may be assigned to data, and the hierarchy of the type
system is extended to class hierarchies. Furthermore, object orientation introduces
monomorphy to operators, as it is reflected by customizable matching in object
oriented tuple spaces. The NF2 model [52] is yet another proposal that extends the
relational data model. The domain of tuples is not restricted to atomic values any
more, the domain may be a relation. Hence, the data model is extended
recursively. In contrast to nested tuples in Bauhaus Linda, the NF2 model expects
that the data scheme is predefined. Therefore, the definition of keys and indices in
the relational model may be extended to the NF2 model. Recently, this restriction
has been relaxed by proposing semi structured data models like OEM [35] and
XML [10]. Semi structured data schemes are specified by context-free grammars,
if they are defined at all. Otherwise, the data scheme is implicitly given by the
data. Therefore, semi structured data is irregular. E.g. tuple spaces may be
regarded as semi structured database, if nested tuples are taken into account. As a
result, the concept of keys and indexing is not directly applicable to semi
structured databases. Furthermore, query languages like Lorel [1] support
structural queries, since the structure contains information and varies from data to
data. Hence, the expressiveness of data retrieval is enhanced, which is reflected by
the introduction of semantic templates [31] to the tuple space model.

The interaction model of databases has been extended, in order to support the
push model of message passing systems. The push model enables system
components to be notified of specified events. It is supported in some tuple space
implementations, e.g. JavaSpaces and TSpaces.

In conclusion, extensions of the tuple space model are derived from other
research areas. In Figure 1, such dependencies are listed. Note, that the original
tuple space data model corresponds with the relational data model.

-3-

Research Area Influence on Derived Concept
relational databases tuples

data model
class hierarchies
customizable matching

object-relational
databases

matching hierarchiesdata retrieval
semantic templatessemi structured

databases
NF2 model

data model nested tuples

messaging systems interaction model notification service

Figure 1. The tuple space model and its extensions have been conceived under the
influence of other research areas. A list of such dependencies is shown.

2.3 Prior Studies of Scalability in Tuple Spaces

A scalable tuple space is inherently distributed. Different concepts for distributing
tuples have been suggested in the past. However, remarkably few of them aim at
scalability.

In [50], an adaptive mechanism is set in place that automatically moves tuples
to the server with the lowest cost. E.g. if an application exclusively uses specific
tuples, they are moved to the server nearest to the application. Therefore, this
concept improves performance, if access to tuples comes with locality of space and
time. However, some applications make use of a tuple space, in order to gap space
or time remoteness. Hence, this mechanism may lead to performance gains in
some application areas, but it is no general concept for scalability. Yet another
approach [20] includes replication of tuples and induces a logical structure on the
servers. It is assumed that cooperating applications are logically near. However,
such an assumption may be correct in parallel processing, but not for other
applications of tuple spaces. Furthermore, this concept is not really scalable,
because some servers become bottlenecks due to the logical structure. In addition,
it is difficult to dynamically adjust the number of servers.

All of these concepts strictly rely upon locality of access and thus they regard
tuples as black boxes. Since locality cannot not be assumed in general, another
approach [8] distributes tuples based on a tuple's attributes. Hence, retrieval of
tuples is performed on servers that are determined by the template's attributes.
However, templates do not have to fully specify the attributes of the tuples that
they match. Therefore, it is necessary to identify attributes that are shared by a
template and the tuples matched. This problem has not been solved yet, as it is
shown in chapter 4.

Alternatively, the tuple space run-time system dynamically adapts the indexing
of tuples to the usage profile, as it is true for Paradise [9]. It keeps record whether
the fields of a stored tuple are matched by formal or actual fields of a template.
Then, the indexing is based on fields, that are not frequently matched by templates'
formal fields. This strategy requires re-indexing, in order to adapt to time variant
use of templates. If the tuples are stored on different servers, then the re-indexing
requires replacement of the tuples among the servers. Hence, this approach does
not fit well to a distributed tuple space that aims at scalability.

-4-

A completely different approach is presented by Safer Tuple Spaces [36] and
by Enterprise TSpaces [39]. It imposes additional structural restrictions on the
spaces. E.g. each space is only allowed to hold tuples of a predefined type, and it
can be specified which fields of a template have to be actual fields. Hence, tuple
spaces become similar to databases, so that performance gains may be achieved,
e.g. by indexing. However, the popularity of tuple spaces is partly due to its
flexibility that comes from its ad hoc structure and the lack of scheme definitions.
Therefore, the presented restrictions seem to be too severe. Yet it seems to be a
promising idea to include additional information from the tuple spaces'
environment.

3 Analysis of Tuple Spaces

In order to achieve scalability, structural restrictions of the scheme have to be
exploited. E.g. in relational databases, the uniqueness of primary key values is
used. However, the structure of tuple spaces as introduced in [32] has recently
been extended by object orientation, semantic tuples [31] and nested tuples [13].
As a result, tuple spaces are more expressive, but important structural restrictions
are set aside. E.g. in JavaSpaces [57] and TSpaces [61] matching of a tuple can be
implemented regardless of its structure, i.e. its fields. Therefore, a formalization of
tuple spaces must take into account different levels of expressiveness. Afterwards,
the formalization given in this chapter is compared to other approaches.

3.1 Formalization of Tuple Spaces

In a first step, fields and tuples are formalized in a way, that integrates extensions.
One key concept is to regard templates as tuples [13, 31], so that matching induces
a structure on tuples and fields. In the following, the term template depicts a tuple
with a certain role, i.e. the specification of a reading access.

Actual and formal tuples are introduced as trees, with fields as their leaves. In
addition, semantic tuples are defined as sets of actual and formal tuples.

Fields. Let C denote the set of classes and let Ic denote the set of instances of c∈C,
with c ≠ c' implying Ic ∩ Ic' = ∅. The classes are ordered by ≤c ⊆ C2, with c ≤c c' if
and only if c is c' or c is a superclass of c'. Multi-inheritance is explicitly allowed,
but ≤c has to be antisymmetric. Therefore, (C,≤c) is a partially ordered set. It is
assumed that there exists a minimal element ⊥F∈C, i.e. ⊥F ≤c c for all c∈C. E.g. in
Java [58] ⊥F is the class object. Let I denote the set of all instances. Elements of
C are called formal fields and elements of I are called actual fields. Therefore, the
set of fields F is defined as

F = C ∪ �
Cc

cI
∈

.

Let class: F → C denote the mapping class(c) = c = class(i) for any c∈C and i∈Ic. ≤c

partly implies matching on fields, because c matches c' if and only if c ≤c c' .

-5-

Furthermore, an actual field i∈Ic has to be matched by every superclass of c.
Therefore, matchF ⊆ F2 is a matching relation on F if and only if

∀c∈C: ∀f∈F: c ≤c class(f) ↔ matchF(c,f) .

Hence, matchF ∩ C2
 = ≤c. This definition of matching imposes no restriction on

matching between actual fields. E.g. in [57, 61] matching is freely customizable by
polymorphic matching methods.

Tuples. Let τformal(F) and τactual(F) denote the set of formal and actual tuples to a
given set of Fields F. Furthermore, let τ(F) denote the set of formal and actual
tuples. If nested tuples are allowed, then τ(F) and τactual(F) are inductively defined
by

(x1,...,xn) ∈ (τactual(F) ∪ I)n ⇒ (x1,...,xn) ∈ τactual(F) ,
(x1,...,xn) ∈ (τ(F) ∪ F)n ⇒ (x1,...,xn) ∈ τ(F) .

If tuples are vectors of fields, then

τ(F) = �
d

1i

i
F

=
, τactual(F) = �

d

1i

i
I

=

with d ∈ Nat ∪{∞} depicting the maximal dimension of tuples. Note, that this is a
subset of the set of nested tuples. In both cases, the set of formal tuples is defined
as τformal(F) = τ(F) \ τactual(F) . Furthermore, the projection Πi: τ(F) → τ(F) ∪ F is
defined by

(x1,...,xn) ∈ τ(F) ⇒ Πi((x1,...,xn)) := xi .

Let Γ(F) denote the set of semantic tuples with

⊥ℑ(F) = τ(F) and ⊥ℑ(F) ∈ Γ(F) ⊆ P(τ(F)) \ {∅}

with Ρ(A) depicting the power set of A. Note, that Γ(F) is not completely defined
by the condition, in order to reflect different support of semantic tuples in current
implementations. Finally, ℑ(F) := Γ(F) ∪ τ(F) is called the set of tuples. It depends
on F, but an explicit depiction of this dependency may be omitted in later chapters
by using ℑ, Γ and τ. There is at least one semantic tuple in ℑ(F), i.e. ⊥ℑ(F).
Furthermore, ℑP(F) is a superset of ℑ(F), as it is defined as τ(F) ∪ P(τ(F)) \ {∅}. In
addition, let γ: ℑ(F) → P(τ(F)) denote the mapping that is the identity mapping on
Γ(F), and for t∈τ(F) it is defined as γ(t) := {t}. It is extended to
γP: P(ℑ(F)) → P(τ(F)) with

∀ℑ'⊆ℑ(F): γP(ℑ') =�
'T

)T(
ℑ∈
γ .

Matching. Let matchℑ denote the matching relation on tuples. In order to be as
expressive as in [57, 61], no restriction for the matching on tuples is applied,
except of matchℑ ⊆ ℑ(F)2. However, the original concept [32] of matching is to
match the fields of a template to the one of a tuple. This is expressed by ωτ ⊆ τ(F)2

that is defined inductively by

-6-

(r,s)∈ωτ ⇔ r = ⊥F ∨ [r = (r1,...,rn) ∧ s = (s1,...,sn) ∧ ∀i∈{1,...,n}:
(si∈F ∧ matchF(ri,si)) ∨ (ri,si)∈ωτ] .

Then, the definition of ωτ is extended to sets of actual and formal tuples by

ωP := {(T1,T2)∈ℑP(F)2 | ∀t2∈γ(T2): ∃t1∈γ(T1): ωτ(t1,t2) } .

In conclusion, ω := ωP ∩ ℑ(F)2 is the appropriate definition on tuples. Note, that
ω(⊥ℑ(F),x) is true for all x∈ℑ(F).

Signatures. σ: τ(F) → τformal(F) is defined inductively by

t=(x1,...,xn) ∧ n=|σ(t)| ∧ ∀i∈{1,...,n}:
y=Πi(σ(t)) ∧ [(xi,y∈F ∧ class(xi)=y) ∨ σ(xi)=y]

with t∈τ(F). σ(t) is called the signature of t∈τ(F). A set of tuples with the same
signature is denoted by

tσ := { t'∈τ(F) | σ(t) = σ(t') } .

ℑσ(F) is the quotient set [17] of ℑ(F) as implied by

τσ(F) := { tσ | t∈τ(F) } and Γσ(F) := { tσ | T∈Γ(F) ∧ t∈T } .

Tuple Space Schemes. Let F, matchF, ℑ(F) and matchℑ denote sets that comply
with above restrictions. Then, the quadruple (F,matchF,ℑ(F),matchℑ) is called a
tuple space scheme. Ψ is defined as the set of tuple space schemes.

Example. F and ℑ(F) are sets ordered by matchF and matchℑ. Therefore,
(F,matchF) and (ℑ(F),matchℑ) can be visualized as graphs [17]. Semantic, formal
and actual fields or tuples are represented as rhombi, rectangles and circles
respectively. In the following, reflexivity and transitivity is omitted in the figures,
if obvious from the context. Furthermore, only parts of the graphs are shown,
because generally F and ℑ(F) are infinite. Figure 2 shows an example of a scheme.

“Hello“ “World“1234 5678

int string

⊥F
⊥ℑ(F)

(int,⊥F)

(int,(int,int))

(⊥F, string)

(int,string) (⊥F,“Hello“)

(int,“Hello“)

(1234,string)

(1234,(56,78))

(5678,“Hello“)

Figure 2. Excerpt of an exemplary nested tuple space scheme that can be used in Bauhaus
Linda. (F,matchF) is shown on the left and (ℑ(F),matchℑ) on the right.

-7-

Alternatively, tuples may be visualized based on the graph (τ(F),matchℑ). Then,
semantic tuples are represented as hypergraphs [17].

3.2 A Taxonomy of Tuple Space Schemes

Tuple space scheme are very expressive. Except for multiple inheritance and
semantic and nested tuples, JavaSpaces [57] and T Spaces [61] allow such
schemes to be implemented. However, Linda [32] does not support object
orientation, user defined field matching, semantic and nested tuples and user
defined tuple matching. On the other hand, schemes that are allowed in Linda are
by far better structured, e.g. matchℑ=ω is true for these schemes. Therefore, an
analysis of tuple spaces should take into account different levels of restrictions on
F, matchF, Γ(F), τ(F) and matchℑ. As a result, there are five degrees of freedom.

This contribution introduces a taxonomy which is aware of different levels of
restrictions. The degrees of freedom are labeled A, B, C, D and E. A tuple space
scheme is characterized by five index numbers. A scheme with no additional
restrictions imposed upon has the index zero on each axe. The more restrictive a
scheme is, the higher is its index number of the according axe. E.g. a scheme with
A=1 does not allow multiple inheritance. ΨABCDE is defined as the set of the tuple
space schemes with the indices A, B, C, D and E respectively, e.g. Ψ00000=Ψ.
Furthermore, ΨAB depicts the set of fields (F,matchF) with appropriate indices on
the A-axe and B-axe. In the following, the five degrees of freedom and the
definition of their indices are introduced.

Class Hierarchy (the A-Axe). Initially, multiple inheritance is allowed. However,
JavaSpaces [57] and T Spaces [61] expect an inheritance tree which prohibits
multiple inheritance. Furthermore, Linda [32] is not object oriented, so that no
inheritance is supported.

A=1: Multiple inheritance is not allowed. (C,≤c) is a tree [17].

A=2: Apart of ⊥F, no inheritance is allowed, so that C \ {⊥F} is an anti-chain [17].
Furthermore, no instances are allowed for ⊥F. Note, that ⊥F is the void type in
some non object oriented programming languages.

Field Matching (the B-Axe). matchF is already fully defined for formal fields.
However, there is no restriction on how actual fields match other fields. E.g. actual
fields could match ⊥F. Hence, matching on fields is not necessarily acyclic. Let
matchF

* denote the transitive hull [17] of matchF, that is

matchF
*(f1,f2) :⇔ f1= f2 ∨ ∃x0,...,xn∈F:

x0=f1 ∧ xn=f2 ∧ ∀i∈{1,...,n}: matchF(xi-1, xi) .

matchF
* induces the equivalence relation ∼ and the quotient set F∼ with

f1∼f2 :⇔ matchF
*(f1,f2) ∧ matchF

*(f2,f1) .

The relation matchF∼∈F∼2 is well-defined by

-8-

matchF∼(f∼
1,f2

∼) :⇔ matchF
*(f1,f2)

and ≤F∼ := matchF∼ is a partial order on F∼. Note, that F∼ is acyclic.

B=1: matchF is transitive, i.e. matchF = matchF
*. In addition, actual fields may only

match actual fields of the same class, i.e. ∀i∈Ic: ∀f∈C\Ic: (i,f)∉matchF.
Furthermore, (κ∼,matchκ∼) is structured as a tree for an arbitrary class c∈C and
κ :={c}∪ Ic. E.g. the scheme of Figure 3(a) is B=0.

B=2: In addition, ∼ is the identity mapping on F, i.e. f∼
 ={f} for an arbitrary field f.

Then, ≤F:= matchF is a partial order. E.g. the scheme of Figure 3(b) is B=1.

B=3: An actual field may not match any other actual field. Hence, ≤F ∩ I2 is the
identity mapping on I. Note, that matching based on equality [32] fulfills this
restriction.

0 1-4

0
1

2

4

3

~ ~

x modulo y fraction

⊥F

1/2 2/4

6/9 4/6

x modulo 5x modulo 3

0 1

2

0 1

2
3

4

Figure 3. The left (a) gives an example of the transformation between F (above) and its
quotient set F∼ (below). On the right (b), the significance of the B=1 restriction is shown.
Therein, (F,matchF) only complies with B=1, but not with B=2. Matching is induced by the
successor relationship in the x modulo y instances. For fraction instances, matching is
induced by the smaller-or-equals relationship. Note, that only an excerpts of F and F∼ are
shown in (a) and (b).

Semantic Tuples (the C-Axe). The only semantic tuple [31] supported in current
tuple space implementations [57, 61, 32] is ⊥ℑ(F). Semantic tuples are very
powerful, since the power set Ρ(τ(F)) is uncountable [17].

C=1: The only semantic tuple is ⊥ℑ(F).

Nested Tuples (the D-Axe). Most tuple space implementations [57, 61, 32] do not
directly support nested tuples.

D=1: A tuple is vector of fields and there exists a maximal dimension d, i.e.

∀t∈τ(F): [|t| ≤ d ∧ ∀i∈{1,...,|t|}: Πi(t)∈F] .

-9-

Tuple Matching (the E-Axe). According to the definitions of the previous
section, tuple matching can be arbitrarily defined.

E=1: Matching on tuples is defined by ω, i.e. matchℑ = ω.

Examples. Sets of schemes are characterized as in Figure 4. The larger the area of
the polygon, the more expressive and the less structured the schemes are. Current
tuple space implementations extend the expressiveness of tuple spaces in different
directions. However, Linda schemes remain the smallest common divisor, as it is
illustrated in the figure.

A

EB

C D

0

0

0

0 0

1

11

1

2

2
3

1

A

EB

C D

0

0

0

0 0

1

11

1

2

2
3

1

A

EB

C D

0

0

0

0 0

1

11

1

2

2
3

1

Figure 4. The taxonomy classifies Linda schemes as Ψ23111 (left), JavaSpaces and T
Spaces schemes as Ψ10110 (middle) and Bauhaus schemes as Ψ23101 (right). JavaSpaces and
T Spaces schemes support object orientation without multiple inheritance (A=1). In
addition, matching is customizable (B=E=0). Bauhaus Linda introduces nested tuples to
Linda (D=0).

Finally, it is shown that the taxonomy captures the level of structural restrictions.

Theorem 3.2.1. ΨABCDE ⊆ ΨA' B' C' D' E'⇔ [A'≤ A ∧ B'≤ B ∧ C'≤ C ∧ D'≤ D ∧ E'≤ E] .

Proof. Let ψ∈ΨABCDE and A'≤ A, B'≤ B, C'≤ C, D'≤ D and E'≤ E. Then, ψ complies
with the lesser strict conditions of A' B' C' D' E', as already shown for each axe.
Hence, ψ∈ΨA' B' C' D' E'. Let A' >A, B' >B, C' >C, D' >D or E' >E. As it is clear from
the taxonomy' s definition, the conditions on each axe express distinct levels of
strictness. Hence, there has to be tuple space scheme ψ that complies with
ABCDE, i.e. ψ∈ΨABCDE, but not with A' B' C' D' E', i.e. ψ∉ΨA' B' C' D' E'.

3.3 Consequences of the Formalization

Structure on Fields. It is shown that the structure of Ψ12 schemes are trees.
Except for A=0 or B=0, all schemes can be reduced to them. Therefore, the rest of
this contribution lays emphasis on Ψ12 schemes.

Theorem 3.3.1. Each element of Ψ12 is a tree.

-10-

Proof. Assume that there is a (F,matchF)∈Ψ12 that is not a tree, i.e.

∃f ,f1,f2∈F: f ≤F f1 ∧ f ≤F f2 ∧ ¬ f1 ≤F f2 ∧ ¬ f2 ≤F f1 .

If f1,f2∈C, then f1 ≤F class(f) and f2 ≤F class(f) ensues from the definition of matchF.
However, (C,≤C) is a tree (A=1), so that {f1,f2} cannot be an anti-chain. If f1,f2∈I,
then class(f1) = class(f) = class(f2) can be followed (B=1). Again, {f1,f2} cannot be
an anti-chain, because (κ,matchκ) is a tree (B=2). Finally, if f1∈C and f2∈I, then
f1 ≤F class(f) = class(f2). Hence, f1 ≤F f2 ensues from the transitivity of matchF.

Theorem 3.3.2. (F,matchF)∈ΨA1 implies for all f1,f2∈F
a) matchF(f1,f2) → class(f1) ≤C class(f2) ,
b) f1 ~ f2 → class(f1) = class(f2) .

Proof.
a) B=1 implies that matchF is transitive, therefore matchF(class(f1),f2). matchF

is a matching relation, so that class(f1) ≤C class(f2).
b) Because of the antisymmetry of ≤C a direct outcome of a).

Therefore, F~ = C~ ∪ I~ with

C~ := { c~ | c∈C } and I~
c∼ := { i~ | i∈Ic }

is well-defined for B=1. Then, ≤C∼ is defined as

≤C∼ := { (c1
~,c2

~) ∈ C~2 | class(c1) ≤C class(c2) } .

Theorem 3.3.3. (F,matchF)∈ΨA1 implies (F~,matchF∼)∈ΨA2.

Proof. During partitioning, the class hierarchy is left unchanged, so that the index
on the A-axe does not change. The equivalence relation ~ on F~ is the identity
mapping on F~. Therefore, criteria B=1 and B=2 hold for (F~,matchF∼), too.

One Field Tuples. Let τ1(F) denote the set of tuples that have only one field, i.e.
τ1(F) = F1. It is supposed that F and τ1(F) are isomorph [17], if matching on tuples
is induced by matching on fields.

Theorem 3.3.4. (F,matchF,ℑ(F),matchℑ)∈ΨABCD1 and τ1(F) ⊂ ℑ(F), then τ1(F) is
isomorph to F.

Proof. Let f,f*∈F and ϕ: F → τ1(F) with ϕ(f) := (f). Hence, ϕ is bijective and
matchℑ(ϕ(f),ϕ(f*)) ⇔ ω(ϕ(f),ϕ(f*)) ⇔ matchF(Π1(ϕ(f)),Π1(ϕ(f*))) ⇔ matchF(f,f*) .
Therefore, ϕ is an isomorphism.

Structure on Tuples. Let ≤ℑ := matchℑ denote the matching relation on tuples, if
matchℑ is an order on ℑ(F).

Theorem 3.3.5. For (F,matchF,ℑ(F),matchℑ)∈Ψ12101, (ℑ(F),≤ℑ) is a semilattice.

-11-

Proof. In the first step, the theorem is proven for D=1. Since (F,≤F) is a tree, it is a
semilattice. Hence, matchF is an order on F, so that matchℑ = ω is an order on ℑ(F).
Let s1,s2,t1,t2∈τ(F) with sj ≤ℑ tk (j,k∈{1,2}) where {s1,s2} and {t1,t2} are anti-chains.
If the infimum was not well-defined, there would be no x∈τ(F) with sj ≤ℑ x ≤ℑ tk

(j,k∈{1,2}). The length of the vectors s1,s2,t1,t2 is identical. Let it be denoted by n.
Then, x∈τ(F) defined by

|x|=n and ∀i∈{1,...,n}: Πi(x) = inf(Πi(t1),Πi(t2))

leads to a contradiction, because Πi(sj) ≤F Πi(x) ≤F Πi(tk) with j,k∈{1,2} and
i∈{1,...,n}. In the second step (induction step), it is proven that a (ℑ(F),≤ℑ) with
the depth of recursion n+1 is a semilattice, if all (ℑ(F),≤ℑ) with the depth of
recursion n are a semilattices. This is shown in analogy to step one.

Example. Figure 5 gives an example of ordered sets with one being a semilattice.
Note, that (ℑ(F),≤ℑ) is a semilattice in the scheme of Figure 2.

⊥

t1 t2

s1 s2

⊥

t1 t2

s1 s2

x

Figure 5. Graphical representation of two ordered sets. The left one is no semilattice,
because the infimum of t1 and t2 is not well-defined. The right one is a semilattice.

Nested Tuples. As it is clear from their definition, nested tuples are trees with
fields as their leaves. For an arbitrary t∈τ, let ti denote the set of subtrees with the
depth i, that is

t0 := t and ti := { Πj(s) | s∈ti-1\F ∧ j∈{1,...,|s|} } .

Then, the depth of t is defined as depth(t) := max{ i | ti
 ≠ ∅ } and the breadth of t is

defined as breadth(t) := max{ |s| | i∈{0,...,depth(d)-1} ∧ s∈ti
 }. The definitions are

extended to an arbitrary semantic tuple T∈Γ by

depth(T) :=)}t(depth{max
Tt∈

and breadth(T) :=)}t(breadth{max
Tt∈

.

Theorem 3.3.6. Let (F,matchF,ℑ(F),matchℑ)∈ΨABC01 and an arbitrary ℑ'⊆ℑ that
complies with ∃β,θ: ∀T∈ℑ' : [breadth(T) ≤ β ∧ depth(T) ≤ θ]. Then, there exists a
set of fields F* and tuples ℑ* with (F*,matchF*,ℑ*(F*),matchℑ*)∈ΨABC11 and a
mapping Φ: ℑ'→ ℑ*, such that

∀T1,T2∈ℑ' : [matchℑ(T1,T2) ↔ matchℑ*(Φ(T1) , Φ(T2))] .

-12-

Proof. F* is obtained from F by adding the class ϒ with Iϒ = ∅. There is no
subclass of ϒ, it is only matched by ⊥F. Hence, (F,matchF) and (F*,matchF*) share
the same A and B indices. Let τ* denote the set of actual and formal tuples with the
maximal dimension d = βθ, that are not nested (D=1). At first, the mapping Φ is
defined on τ' . Therefore, letφ: τ'→ τ denote the mapping that extends the tree
structure of tuples, so that each leaf node is located on the same level. A tuple t∈τ'
given, such a tree is gradually obtained by extending an arbitrary subtree s∈ti with
i < θ and |s| < β to s' , such that

s =⊥F → s' = (⊥F)β and s ≠⊥F → s' = s × ϒβ-|s' | .

Figure 6 illustrates how φ extends the tree structure. For t1,t2∈τ' , it is inductively
shown that matchℑ(t1,t2) ↔ matchℑ(φ(t1),φ(t2)). If all leaves of t1 and t2 are on the
same level, φ(t1) = t1 and φ(t2) = t2, hence the equivalence is trivial. If the leaves of
t1 and t2 are at least at depth i, the tuples are extended to t1' and t2' , so that the
leaves of t1' and t2' are at least at depth i+1. Two cases may occur while extending
the subtrees s1 and s2 to s1' and s2' : If s1=⊥F, then s1' = (⊥F)β still matches every s2' ,
since |s2' |. Otherwise, matchℑ(s1' ,s2') ↔ matchℑ(s1,s2)∧|s1|=|s2| ↔ matchℑ(s1,s2)
ensues from the definition of matching on ϒ. Hence, the induction hypothesis
implies that the equivalence matchℑ(t1,t2) ↔ matchℑ(φ(t1),φ(t2)) holds.

Let φ*: φ(τ') → τ* denote the mapping that assigns to a tuple the vector of
fields, as they are found in a depth-first search. The tuple' s fields are located on the
same level, so that the dimension of the vector is βθ. Obviously,
matchℑ(t1' ,t2') ↔ matchℑ*(φ*(t1'),φ*(t2')) ensues from matchℑ*=ω (E=1). Therefore,
Φ is defined on actual and formal tuples by φ* • φ, so that
matchℑ(t1,t2) ↔ matchℑ*(Φ(t1),Φ(t2)) holds for arbitrary t1,t2∈τ' .Φ is extended to
semantic tuples by

∀T∈Γ' :Φ(T) := �
ℑ∈
Φ

t

)t(

and Γ* := Φ(Γ'). Hence, ℑ' and ℑ* share the same C index and
matchℑ(T1,T2) ↔ matchℑ*(Φ(T1),Φ(T2)) holds for arbitrary T1,T2∈ℑ' .

fraction

1/2 3/4

⊥F

1/2 3/4

⊥F
fraction ϒ

1/2 3/4⊥F ⊥F fraction ϒ ϒϒ

Figure 6. For β=2 and θ=3, the mapping of the tuple t = ((⊥F,(1/2,3/4)),fraction) to φ(t) is
illustrated. Note, that it is trivial to map φ(t) to a vector of 23=8 dimensions, as it is done by
Φ(t) = φ*(φ(t)) = (⊥F,⊥F,1/2,3/4,fraction,ϒ,ϒ,ϒ).

Semilattices. It has been conjectured in [46], that it is a promising starting point
for achieving scalability, if (F,≤F) and (ℑ(F),≤ℑ) are semilattices [17]. E.g. the
tuples which are stored on a server can be represented by their infimum. Then, the

-13-

matching of the infimum by a template is a sufficient condition for a successful
query on the server.

Let (L,≤L) denote a semilattice. Furthermore, let the infimum be denoted by the
binary operator ∧L ⊆ L2. For an element l∈L, its ancestors l- and successors l+ are
defined by

l- := { k∈L | k ≤L l } and l+ := { k∈L | l ≤L k } .

Theorem 3.3.7. ∀l1,l2∈L: l1
- ∩ l2

- = (l1 ∧L l2)
- .

Proof. k∈l1
-∩l2

- ⇔ k ≤L l1 ∧ k ≤L l2 ⇔ k ≤L inf(l1,l2) ⇔ k∈(l1∧Ll2)
-.

3.4 Comparison to Other Formal Approaches

The presented formalization of tuple spaces aims at identifying and exploiting
structural restrictions in order to achieve scalability. Hence, the data and its
retrieval, i.e. the tuples and templates, is the subject of the formalization.
Furthermore, the taxonomy distinguishes different levels of structural restrictions.
Therefore, it is possible to depict the domain of scalability concepts, i.e. the tuple
space schemes that the concept addresses.

In contrast, the formalization given by Gelernter himself [34] aims at validating
Linda implementations. In consequence, the formalization is focused on the
semantics of tuple space operations and on the processes that cooperate through
the tuple space. According to his formalization, the set of fields is given and tuples
are defined as vectors of fields. The set of templates is the power set of tuples.
Although this formalization is sufficient for the validation of Linda
implementations, it does not suit well as a base for scalability studies. The
formalization is a priori bound to Linda tuple space schemes, so that recent
extensions of tuple spaces are not taken into account. Furthermore, there is no
notion of actual and formal fields and their matching. Consequently, the
formalization overestimates the expressiveness of templates in current tuple space
implementations by introducing them as semantic tuples. Hence, the formalization
partly abstracts from structural restrictions in tuple spaces schemes.

The same is valid for formal approaches that are based on process calculi [11,
45]. These approaches aim at modeling asynchronous coordination and its
semantics. Hence, they lay stress on processes and operations, so that they take a
narrow view of tuple space schemes. E.g. even though LLinda [45] distinguishes
formal and actual tuples, its definition of tuples, fields and matching is identical to
the one given in Ψ23111 schemes.

In conclusion, previous approaches do not aim at formalizing and capturing the
nuances of data and its retrieval in tuple spaces. Therefore, they fail to provide a
formal foundation for identifying and exploiting structural restrictions in tuple
space schemes.

-14-

3.5 Distribution of Tuples

This work is focused on how tuple spaces can scale up with the stored tuples and
their retrieval. However, resources on a single tuple space server are limited.
Therefore, tuples have to be distributed on several servers, in order to achieve
scalability.

Let p denote the number of servers that store tuples. Furthermore, it is
supposed that the servers are indexed from 1 to p. In the following, a server is
identified by its index. Therefore, the servers are represented by the set {1,...,p}. In
addition, ℑ depicts a set of tuples. Let ∆ denote the set of mappings
ℑ → Ρ({1,...,p}) \ ∅, called distributions.

Definition. δ∈∆ is a permissible distribution if and only if

∀T1,T2∈ℑ: matchℑ(T1,T2) → δ(T1)∩δ(T2) ≠ ∅ .

∆p denotes the set of permissible distributions. They ensure that matching tuples
share a common server. If every tuple T1 is stored to δ(T1), then it is enough to
confine to δ(T2), in order to find tuples matched by T2. Permissible distributions do
not distinguish tuples from templates, although a distinction based on the role of a
tuple could be reasonable.

Definition. With δw,δr∈∆, (δw,δr) is a permissible write/read distribution if and
only if

∀T1,T2∈ℑ: matchℑ(T1,T2) → δr(T1)∩δw(T2) ≠ ∅ .

Let ∆wr denote the set of permissible write/read distributions. ∆wr is not empty,
since δ∈∆p implies (δ,δ)∈∆wr. ∆wr can be regarded as the asymmetric extension of
∆p. Semantically, a tuple T1 that is to be written to the tuple space, is stored to
δw(T1). Then, a reading access with the template T2 may be confined to δr(T2).
Note, that the cardinality of δw(T) does not have to be one. Hence, this formalism
does not impose any restriction on the replication of tuples among several servers.

Example. Let δ1,δ*∈∆ with

∀T∈ℑ: |δ1(T)|=1 ∧ |δ*(T)|=p .

Then, (δ*,δ1) and (δ1,δ*) are both permissible write/read distributions. The strategy
pursued by (δ*,δ1), is to write tuples to every server, so that retrieving tuples is
confined to an arbitrary server. On the contrary, (δ1,δ*) implies that tuples are only
written to one server, hence every server has to be queried for retrieval. Figure 7
illustrates this principle.

-15-

� � � � � � � � � � � �

� �

� �� �� �� �� �� �

��

Figure 7. (δ*,δ1)∈∆wr (above) and (δ1,δ*)∈∆wr (below). The arrows indicate which servers
(MU) are taken into account for writing (W) and reading (R) a tuple.

Dynamic Behaviour. The number of servers should be adjusted to the number of
tuples. Hence, a new server has to be added, if several new tuples have to be
stored. On the other hand, a server can be merged with another that stores only few
tuples due to deletions. Incrementing or decrementing p to p' = p ± 1 calls for
adjusting the distribution (δw,δr) to (δw' ,δr'). Note, that if a server with the index
p*<p is abandoned, the remaining servers 1,...,p*-1,p*+1,...,p are reindexed to
1,...,p*-1,p*,...,p-1. If a server is added, replicas of a tuple T have to be stored on
δw' (T) \ δw(T) and to be removed from δw(T) \ δw' (T). Therefore, the total number of
changes is

∑
ℑ∈

δδ+δδ
T

wwww)T('\)T()T(\)T(' .

Hence, the more the distribution is altered, the more it is costly to add a new
server.

4 Analysis of Former Approaches towards Scalability

Former studies of scalability in tuple spaces [8, 40, 46] suggest the use of a hash
function, in order to compute the distribution. It assigns either one arbitrary server
or all servers to a tuple. Hence, this concept lacks a fine granular distribution
strategy. Furthermore, it relies on the proliferation of an appropriate hash function
by the application programmer, if scalability is to be achieved. In most application
areas, this is a highly non trivial task that, in addition, is often not solvable.

At first, a formalization of scalability is given. It provides the foundation for
the analysis of distributions based on hashing. The deficiencies of other
approaches towards scalability have already been shown in section 2.3. This
chapter assumes rather restrictive tuple space schemes, in order to present a fair
view of former studies. Therefore, semantic and nested tuples are prohibited
(C=D=1) and matching is not customized (B=2; E=1).

-16-

4.1 A Deterministic Model of Scalability

In this section, a deterministic model is introduced which describes static and
dynamic behaviour of a tuple space. The model is based on a tuple space scheme
(F,matchF,ℑ(F),matchℑ)∈Ψ and a permissible write/read distribution (δw,δr)∈∆wr.
It does not suffice to achieve scalability of the total size of tuples stored. E.g. an
approach is not scalable, if matching on an arbitrary template is done by querying
every server.

P(ℑ) is closed in regard of the complement, intersection and union of its
elements, hence P(ℑ) is a σ-algebra [27] of sets in ℑ. Let πw,πr: P(ℑ) → [0,1]
denote the mappings, that assign the frequency of writing and reading operations to
sets of tuples. The mappings have to comply with πw(ℑ) = 1 = πr(ℑ). In addition,
the mappings ensure complete additivity, i.e. given a countable collection of non-
overlapping sets ℜi ∈P(ℑ)

)()(
i

iw
i

iw �ℜπ=ℜπ∑ and)()(
i

ir
i

ir �ℜπ=ℜπ∑ .

Hence, πw and πr are probability measures [27] and the triples (ℑ, P(ℑ), πw) and
(ℑ, P(ℑ), πr) are probability spaces [27]. Let Πwr denote the set of usage profiles
(πw,πr) with πw and πr being such probability measures.

For an arbitrary distribution δ, the mapping δ-1:{1,...,p}→ P(ℑ) assigns the
respective set of tuples to a server, i.e. δ-1(q) :={T∈ℑ | q∈δ(T)}. In addition, let
ℑn ⊆ ℑ denote a multiset of n tuples, that are stored in the tuple space. Then,
ℑn(q) ⊆ ℑn is defined as the multiset of tuples on server q by ℑn(q) := ℑn ∩ δw

-1(q) .
Let SM(q) and SQ(q) denote the resources needed on server q for storing tuples

and for processing queries respectively. A processing query is a test on whether a
server contains a tuple that is matched by a template. The unit of SM is tuples,
hence this models abstracts from the size of tuples. The unit of SQ is processing
queries per time unit. It is assumed that the number of reading operations on the
tuple space ℑn is proportional to the number of tuples n. Hence,

SM(q) := |ℑn(q)| and SQ(q) := n ⋅ ∑
−δ∈

π
)q(T
r

1
r

)T(.

Let Aw, Ar and AR denote the average number of servers taken into account while
proceeding a writing, reading and bulk reading operation [32].

Aw := ()()∑
=

=δℑ∈π
p

1i
ww }iT|T{ and AR := ()()∑

=
=δℑ∈π

p

1i
rr }iT|T{ .

In bulk reading operations, every server in δr(T) has to be queried, even if a
matching tuple already has been found on one server. However, a reading
operation should stop after having found a tuple. Let χ: {1,...,p}×ℑ → {0,1} denote
the characteristic function which determines whether a given server holds a tuple
that is matched by a given template. Furthermore, χ(T) is defined as the number of
servers in δr(T) that hold a tuple which is matched by a given template. Then,

χ(q,T) = 1 :⇔ ∃T'∈ℑn(q): matchℑ(T,T')

-17-

χ(T) := ∑
δ∈

χ
)T(q
r

r

)T,q(.

As a result, for a template T |δr(T)| * [max(1,χ(T))]−1 is the expected number of
servers that are queried in random order. Hence,

Ar := () ()
()∑

ℑ∈ χ
δ

⋅π
T

r
r)T(,1max

T
T .

Note, that the definition of SQ is pessimistic, since it assumes that every query is a
bulk reading operation. This is due to the fact that the ratio of reading and bulk
reading operations is not defined in this model to simplify matters.

Server resources are limited, so that they scale up only to a certain degree.
However, scalability means that the tuple space scales up, even for very large n.
Therefore, the load of a server has to be independent of n.

Definition. The properties SM(q) and SQ(q) of the server q scale if and only if they
are elements of O(1).

In analogy, response times should be independent of n.

Definition. The properties Aw, Ar and AR scale if and only if they are elements of
O(1).

It has been suggested [46] that properties in O(log n) may be regarded as scalable,
too. Although such an extension is helpful for more complicated distributions, i.e.
based on trees, it is not functional for distributions based on hashing.

In the context of chapter 1, SM(q) and SQ(q) represent the scalability dimension
(2) and (4) respectively. On the other side, Aw, Ar and AR are linked with the
scalability dimension (5).

Examples. Whatever scheme is used, a scaling property opposes the scaling of
another. The example assumes p∈Ω(n). E.g. in case of (δ*,δ1) used as distribution,
SQ(q), Ar and AR scale, but SM(q) and Aw do not. For (δ1,δ*), p∈Ω(n) and a δ1 that
balances the load, SM(q) and Aw scale, but SQ(q), Ar and AR do not. If tuples are
not distributed at all (p=1), then Aw, Ar and AR scale, but SM(q) and SQ(q) do not.

Definition. A tuple space is scalable if and only if all of its properties scale.

Theorem 4.1.1. The following conditions are sufficient conditions for a tuple space
not to be scalable:

a) ∀T∈ℑ: |δw(T)| ∈ ω(1) ⇒ Aw does not scale
b) ∃T*∈ℑ: πr(T

*) ∈ ω(1/n) ⇒ ∀q∈δr(T
*): SQ(q) does not scale

c) p∈o(n) ⇒ ∃q1,q2∈{1,...,p}: SQ(q1) and SM(q2) do not scale
d) Let g denote a surjective mapping on natural numbers.

∀T∈ℑ:|δw(T)|∈Ω(g(p)) ∧ p/g(p)∈o(n) ⇒ ∃q∈{1,...,p}: SM(q) does not scale

Proof.

-18-

a) Aw = ()∑
ℑ∈
π

T
w T ⋅ ω(1) = ω(1) ⋅ ()∑

ℑ∈
π

T
w T = ω(1) ∉ O(1) .

b) Let q*∈δr(T
), then SQ(q) ≥ n ⋅ πr(T

*) ∉ O(1) .
c) Assume ∀q∈{1,...,p}: SQ(q) and SM(q) scale, then SQ,SM∈O(p) = o(n) with

SQ:= ∑
=

p

1q
Q)q(S and SM:= ∑

=

p

1q
M)q(S . But

SQ = n ⋅ ∑ ∑
= δ∈ −

π
p

1q)q(T
r

1
r

)T(≥ n ⋅ ∑
ℑ∈
π

T
r)T(= n ∉ o(n) ,

SM = ∑
=

δ∈ℑ∈
p

1q
wn |)}T(q|T{| = ∑ ∑

=
δ∈

ℑ∈

p

1q
)T(q

T
w

n

1 = ∑
ℑ∈

δ
nT

w |)T(| ≥ n ∉ o(n).

d) Assume, that SM(q) scales for every q∈{1,...,p}, then SM∈O(p). But

SM = ∑
ℑ∈

δ
nT

w |)T(| = n ⋅ Ω(g(p)) = ω(p/g(p)) ⋅ Ω(g(p)) ∈ ω(p) .

Part (a) proves that writing operations do not scale, if every tuple has to be
replicated on more than a fixed number of servers. Part (b) states that the number
of queries on a subset of servers does not scale, if a template is used with a
frequency ω(1/n). Furthermore, part (c) shows that the number of servers has to be
kept at least proportional to the number of tuples. All these results make sense and
thus partially justify the model. In addition, part (d) relates the degree of
replication to the number of servers needed. E.g. if every tuple is to be replicated
to p servers, then the number of servers has to be at least n2. Hence, replication

to a large number of servers is virtually impossible, if scalability is to be achieved.

4.2 Distribution Based on Hash Codes

The hash function h: ℑ → Nat is only partially defined. Let Def(h) ⊆ ℑ denote the
set of tuples with a defined hash code. Such a tuple is assigned to exactly one
server. It has been suggested [8] that such a tuple T is assigned to the server
indexed

1 + [h(T) mod p] .

Therefore, the appropriate server can be determined in O(1). However, if the
number of servers is changed, most of the tuples have to be moved to another
server. Therefore, adjusting the number of servers to the number of tuples is
costly, i.e. O(n). Another concept [40] avoids this problem, but it takes O(log p) to
determine the appropriate server of a tuple.

Tuples without a defined hash code are assigned to all servers by the
distribution. E.g. a query with the template ⊥ℑ has to be performed on all servers.
In conclusion, the hash function h induces a distribution δh with

-19-

∀T∈ℑ: |δh(T)|∈{1,p} ∧ ∀T,T'∈ℑ: [h(T)=h(T')→ δh(T)=δh(T')] .

In [8, 40], it is not foreseen that a tuple T with δh(T) = {1,...,p} is written to the
tuple space. Hence, the following assumes that a tuple T with δh(T) = {1,...,p} is
written to only one arbitrary server. Therefore, (δh1,δh) is the write/read
distribution used in this concept with

∀T∈ℑ: |δh1(T)| = 1 ∧ δh1(T) ⊆ δh(T) .

4.3 Analysis of the Concept

The concept, as introduced in the previous section, comes with several drawbacks.
In this section, the consequences of its approach are analyzed.

Correctness. The write/read distribution has to be a permissible, of course, so that
(δh1,δh)∈∆wr. Therefore,

∀T1,T2∈Def(h): matchℑ(T1,T2) → δh(T1)=δh(T2) .

Since this has to be true for all p, the hash function has to comply with

∀T1,T2∈Def(h): matchℑ(T1,T2) → h(T1)=h(T2) .

Furthermore, a tuple T1 without a hash code may not be matched by a tuple T2

with a hash code. This is due to |δh1(T1)| = 1 = |δh(T2)| and an arbitrary δh1(T1),
which opposes δh1(T1) ∩ δh(T2) ≠ ∅. Hence,

∀T1,T2∈ℑ: matchℑ(T1,T2) → [T1∉Def(h) ∨ h(T1)=h(T2)] .

Hash Functions. Let Hℑ denote the set of correct hash functions on ℑ. The hash
function hσ has been suggested [8] for schemes in Ψ23111, i.e. Linda schemes. hσ is
based on hashes on signatures, so that

Def(hσ) = {t∈τ(F) | ∀i∈{1,...,|t|}: ∏i(t)≠⊥F} and ∀t∈Def(hσ): hσ(t) = hσ(σ(t)) .

For this kind of schemes, hσ is correct, i.e. hσ∈Hℑ. In addition, the concept of
distribution based on hash functions is hidden from the application programmer, if
hσ is used. However, hσ ceases to be correct for C=2 or D=0. Even worse, it is
proven that the tuple space does not scale in practice.

Theorem 4.3.1. For tσ∈τσ with |tσ∩ℑn| ∈ ω(1) and δh(t) = {q}
a) SM(q) does not scale
b) ()∑

σ∈
π

tt
r t ∈ ω(1/n) ⇒ SQ(q) does not scale

Proof.
a) SM(q) ≥ |tσ∩ℑn(q)| = |tσ∩ℑn| ∈ ω(1)
b) SQ(q) ≥ n ⋅ ()∑

σ∈
π

tt
r t ∈ ω(1)

-20-

In contrast, the hash function introduced in [46] is only defined on the set of actual
tuples. Hence, formal templates cause O(p) for reading operations.

In order to fit to a specific usage profile, the hash function is customizable in
[40]. Hence, the application programmer has to define the hash function by
himself. In addition, he has to ensure that his hash function is correct and that the
tuple space is scalable for his profile. The nature of these constraints is examined
in the following sections.

Constraints on Correctness. Let h denote a hash function on the scheme
(F,matchF,ℑ(F),matchℑ)∈Ψ12111. Hence, ℑ is a semilattice.

Theorem 4.3.2. For arbitrary T1,T2∈ℑ, these are necessary conditions for h∈Hℑ:
a) T1∈Def(h) ⇒ ∀T∈T1

+: h(T) = h(T1)
b) T1∉Def(h) ⇒ ∀T∈T1

-: T∉Def(h)
c) T1,T2∈Def(h) ∧ h(T1) ≠ h(T2) ⇒ T1

+∩T2
+ = ∅

d) h(T1) ≠ h(T2) ⇒ ∀T∈T1
-∩T2

-: T∉Def(h)

Proof.
a) T1≤T ⇒ T1∉Def(h) ∨ h(T1) = h(T) ⇒ h(T1) = h(T)
b) T≤T1 ⇒ T∉Def(h) ∨ h(T) = h(T1) ⇒ T∉Def(h)
c) Assume T∈T1

+∩T2
+, then (a) concludes in h(T1) = h(T) = h(T2).

d) T ≤ T1 ∧ T ≤ T2 ⇒ T∉Def(h) ∨ h(T1) = h(T) = h(T1) ⇒ T∉Def(h)

Keys. Let τn denote the set of tuples that have n fields. This set is partitioned by
J ⊆ {1,...,n} into sets tJ of tuples that are identical on the position j∈J ⊆ {1,...,n}.
Hence,

tJ := { t'∈τn | ∀j∈J: Πj(t) = Πj(t') } .

Then, the set K is a key to a given n if and only if

∀t∈τn: ∀t1,t2∈tK: [h(t1)=h(t2) ∨ t1,t2∉Def(h)].

In other words, for the computation of the hash function it is enough to take into
account the fields of the key. Note, that {1,...,n} is a key. A key is called a minimal
key if and only if it has no subset that is a key, too.

Theorem 4.3.3. For an arbitrary n and h∈Hℑ
a) there is exactly one minimal key.
b) all keys are supersets of the minimal key.

Proof.
a) Assume two different minimal keys K1 and K2. Hence, K' = K1 ∩ K2 is no

minimal key, so that there have to be tuples t1∈τn and t2∈t1
K' with

h(t1) ≠ h(t2) ∧ [t1∈Def(h) ∨ t2∈Def(h)] .

Let t∈τn denote a tuple with

-21-

∀m∈{1,2}: ∀j∈Km: Πj(t) = Πj(tm) .

Then tm∈tKm and t∈Def(h) ↔ tm∈Def(h), so that t1,t2∈Def(h). Hence,
h(t1) = h(t) = h(t2).

b) Let K* denote the minimal key. Assume that there is a key K1 that is not a
superset of K*, so that K*

 \ K1 ≠ ∅. Therefore, the minimal key K2 with
K2 ⊆ K1 is not the same as K*, thus contradicting (a).

In other words, the hash function is only allowed to take into account a specific set
of fields.

Scalability. While defining a correct hash function, the application programmer
has to bear in mind that the tuple space is scalable for his profile. Whatever hash
function is used, Aw scales.

Theorem 4.3.4. The following conditions are sufficient conditions that a tuple
space is not scalable:

a) ∃T∈Def(h): |ℑn ∩ T+| ∈ ω(1) ⇒ ∀q∈δh(T): SM(q) does not scale
b) ()∑

∉
π

)h(DefT
r T ∈ ω(1/n) ⇒ ∀q∈{1,...,p}: SQ(q) and AR do not scale

c) Let g denote a surjective mapping on natural numbers.
p ∈ Ω(n) ∧ ∃ℑ*⊆ ℑ\Def(h): ()∑

ℑ∈
π
*T

r T ∈ ω(g(n)/n) ∧ | �

*T
Tt

1h

n

)t(

ℑ∈
∩ℑ∈ +
δ | ∈ O(g(n))

⇒ Ar does not scale

Proof.
a) Theorem 4.3.2(a) implies SM(q) ≥ |ℑn(q) ∩ T+| = |ℑn ∩ T+| ∈ ω(1) .
b) SQ(q) ≥ n ⋅ ∑

δ∈
∉

π

)T(q
)h(DefT
r

h

)T(= n ⋅ ∑
∉

π
)h(DefT
r)T(∈ ω(1) .

AR ≥ ∑
∉

π
)h(DefT
r)T(⋅ |δh(T)| = n ⋅ ∑

∉
π

)h(DefT
r)T(∈ ω(1) .

c) Let T∈ℑ*, then χ(T) = | �
+∩ℑ∈

δ
Tt

1h

n

)t(| ∈ O(g(p)). Hence,

Ar ≥ () ()
()∑

ℑ∈ χ
δ

⋅π
*T

r
r)T(,1max

T
T = ()∑

ℑ∈
⋅π

*T
r

))n(g(O

p
T = Ω(n/g(n)) ⋅ ()∑

ℑ∈
π
*T

r T

∈ ω(1) .

Part (a) proves that there are only O(1) tuples that are matched by a template with
a hash code. Part (b) states that profiles are only allowed, if the total frequency of
templates without hash code takes O(1/n). Finally, part (c) shows that, a template
without hash code given, the quotient

 template the withoperationsreadingoffrequency

 templateby thematched tuples theofcodeshashdifferentofnumber

-22-

has to be at least proportional to n.

4.4 Scenario

Theorem 4.3.4(b) assumes that bulk operations should scale, too. This is an
arguable assumption, hence this section will not make use of it. Beyond that, the
scenario' s scheme (Ψ23111) is by far more structured than schemes found in
practice. In spite of this, the following scenario clearly demonstrates that the
definition of an appropriate hash function is a highly non trivial task.

Assume that a tuple space is applied for brokering services. These services are
provided by hardware devices that are characterized by the tuple (device_type,
device_attributes, device_address), e.g. (printer, 600dpi,

129.13.65.1). Therefore, an application may specify the type of device needed
and a tuple is returned that indicates the address of an appropriate device. The
number of different device types is expected at o(n). Then Theorem 4.3.4(a) shows
that the device type is not the key of the hash function. Assume that all fields
together are used as key, as it is illustrated in Figure 8(a). Theorem 4.3.2(d)
implies that no template would have a hash value, hence the distribution
degenerates to (δ1,δ*). Then Theorem 4.3.4(c) shows that a template used with the
frequency of z has to match n⋅z tuples in the tuple space. By way of contrast,
assume that the device type and attributes are used as key, as it is illustrated in
Figure 8(b). Then Theorem 4.3.4(a) implies that the number of different device
types and attributes is proportional to n. Furthermore, Theorem 4.3.4(c) and
Theorem 4.3.2(d) show that there have to be at least n⋅z tuples of a certain device
type, if its attributes are not specified by templates with the frequency of z.

(printer,⊥F,⊥F)
{1,...,p}

P1
{1}

⊥ℑ(F)

{1,...,p}

(scanner,⊥F,⊥F)
{1,...,p}

(⊥F,1200dpi,⊥F)
{1,...,p}

(printer,1200dpi,⊥F)
{1,...,p}

(scanner,1200dpi,⊥F)
{1,...,p}

P2
{5}

P3
{6}

P4
{8}

(⊥F,1200dpi,x.x.x.x)
{1,...,p}

P5
{3}

S4
{7}

S5
{8}

S3
{2}

S2
{5}

S1
{12}

(printer,⊥F,⊥F)
{1,...,p}

P1
{3}

⊥ℑ(F)

{1,...,p}

(scanner,⊥F,⊥F)
{1,...,p}

(⊥F,1200dpi,⊥F)
{1,...,p}

(printer,1200dpi,⊥F)
{3}

(scanner,1200dpi,⊥F)
{7}

P2
{3}

P3
{3}

P4
{3}

(⊥F,1200dpi,x.x.x.x)
{1,...,p}

P5
{3}

S4
{7}

S5
{7}

S3
{7}

S2
{7}

S1
{7}

Figure 8. An excerpt of the graph (ℑ,matchℑ) in a service brokering scenario. In the left
(a), the device address is part of the key, in the right (b) it is not. The set δh(T) is included
for every tuple T. P1-4/S2-5 depicts 1200dpi printers/scanners with an arbitrary address.
P5/S1 is a 1200dpi printer/scanner with the same address x.x.x.x. Note, that Theorem
4.3.2(d) implies that the tuple (⊥F,1200dpi,x.x.x.x) has no hash code.

In a distribution based on hashing [40, 8], a tuple is assigned to all servers or to
exactly one. Therefore, the concept introduced in this chapter seems to be too
coarse for practical use. However, it is a good starting point for further refinement.

-23-

5 An Advanced Concept for Scalability

As already mentioned before, one strictly relies on the systematic exploitation of
structural restrictions, in order to conceive a scalable tuple space. More precisely,
if the structure of the graph (ℑ,matchℑ) is known, similar tuples should be stored
on the same server. Then, queries may be directed to servers that hold tuples
similar to the template. However, such an approach requires a notion of similarity.
E.g. hash functions can be used for this purpose [8, 40].

The structure of (ℑ,matchℑ) is implied by the matching on tuples. Therefore, an
arbitrary matchℑ (E=0) hinders a systematic exploitation. In such a case, matching
on fields is irrelevant and information about the structure of (F,matchF) cannot be
used. Hence, the concept of this chapter assumes E=1. Then, a formal or actual
tuple is a vector of fields and matching on it is induced by matching on its fields.
Therefore, similarity of tuples can be expressed as similarity of their fields. For the
moment, it is assumed that tuples may not be nested (D=1).

This chapter introduces a new concept for scalability that has been proposed in
[48]. It fully exploits the structure of tuples and consists of two steps. First, the
structure of fields is taken into account by transforming them into a representation
that is similar to hash codes. Although this transformation has to be implemented
in addition, it is quite straightforward. In a second step, the structure of tuples is
automatically deduced by the transformation to hypercubes. They are able to
express similarity of tuples.

5.1 Intervals

The distribution based on hash functions is too coarse; it either maps to {q} or to
{1,...,p}. The most general distribution maps to an arbitrary subset of {1,...,p}, but
it takes O(p) for computation and storage. Therefore, a distribution has to map to
manageable subsets of {1,...,p} that on the other hand have a sufficient fine
granularity. It seems promising to use intervals for this purpose, because they may
be represented in O(1) and are quite fine granular.

Let J(S) denote the set of intervals on an arbitrary total ordering S and <J a
partial order on J(S) with

∀U,V∈J(S): U <J V ↔ ∀u∈U: ∀v∈V: u < v .

Assume that ιℑ: ℑ → J(Nat) maps a tuple to an interval of natural numbers. In
addition, ιℑ has to comply with

∀T1,T2∈ℑ: matchℑ(T1,T2) → ιℑ(T1)∩ιℑ(T2) ≠ ∅ .

Note, that ιh complies with this demand, if it is the generalization of a hash
function h∈Hℑ, i.e.

∀T∈Def(h): ιh(T):=[h(T),h(T)] ∧ ∀T∉Def(h): ιh(T):=[0,∞] .

Furthermore, assume that ιℑ complies with the inversion, that is

-24-

∀T1,T2∈ℑ: ιℑ(T1)∩ιℑ(T2) ≠ ∅ → T1 ~ T2 .

In general, ιh does not comply with this demand. E.g. in Figure 8(b) (printer,⊥F,⊥F)
and (scanner,⊥F,⊥F) do not match, but the cardinalilty of their intersection is p.
Even though (ℑ,matchℑ) in Figure 8(b) is a semilattice, it is shown that there is no
mapping ιℑ that fulfills this demand.

Assume that there was such a ιℑ. Then,

ιℑ(Tj) ∩ ιℑ(Tk) = ∅ = ιℑ(Sj) ∩ ιℑ(Sk) with j,k∈{1,2,3,4} and j≠k

in Figure 9(a). If ιℑ(T1) < ιℑ(T2) < ιℑ(T3) < ιℑ(T4), then ιℑ(S1) < ιℑ(S2) < ιℑ(S3), too.
Therefore, ιℑ(T1) < ιℑ(S2) < ιℑ(T4), so that there is no valid value for ιℑ(S4), because
ιℑ(S2) ⊂ ιℑ(S4).

S1= (printer,
attributes,⊥F)

S2= (device,
1200dpi,⊥F)

S3= (scanner,
attributes,⊥F)

S4= (device,
600dpi,⊥F)

T2= (printer,
1200dpi,⊥F)

T3= (scanner,
1200dpi,⊥F)

T1= (printer,
600dpi,⊥F)

T4= (scanner,
600dpi,⊥F)

[2,2]

600dpi
[3,3]

1200dpi

[0,0]

printer
[1,1]

scanner

[0,1]

device

[2,3]

attributes

⊥F
[0,∞]

[4,∞]

address

[4,4]
A1 [5,5]

A2
[x,x]
A

Figure 9. Excerpts of the graph (ℑ,matchℑ) on the left (a) and (F,matchF) on the right (b)
in a service brokering scenario. Note, that the definition of a mapping to intervals is trivial,
if the graph is a tree as in (b).

However, Figure 9(b) suggests that it is no problem to map fields to intervals. This
is due to the tree structure of (F,matchF). In practice, fields are often structured as
trees. E.g. all elements of Ψ12 are trees.

In conclusion, the structure of tuples is too complex to be described by intervals.
However, intervals may be used on fields.

5.2 Transformation of Tuples to Hypercubes

Let IF denote the set of mappings ιF: F → J(Nat) that comply with

∀f1,f2∈F: matchF(f1,f2) → ιF(f1)∩ιF(f2) ≠ ∅ .

Furthermore, let IF
⊂

 ⊆ IF denote a subset of mappings ιF∈IF that in addition comply
with

∀f1,f2∈F: matchF(f1,f2) → ιF(f2) ⊆ ιF(f1) .

-25-

IF
⊂ and IF are not empty, because arbitrary constant mappings are element of IF

⊂.
However, sounder mappings can be defined, if (F,matchF) is a tree, as it is true for
elements in Ψ12.

Let υ: P(Sd) → Sd denote a function that maps a set of hypercubes to the
smallest hypercube superset of their union, that is

∀j∈{1,...,d}: Πj(υ({s1,....,sn})) = [min(Πj(�
n

1k
ks

=
)), max(Πj(�

n

1k
ks

=
))] .

Theorem 5.2.1. For U={u1,...,un}, V={v1,...,vm} and uj,vj∈Sd, it is

a) �
n

1k
ku

=
⊆ υ(U)

b) υ(U) ∪ υ(V) ⊆ υ(U ∪ V)
c) U ⊆ V → υ(U) ⊆ υ(V) .

Proof.
a) Trivial.

b) For j∈{1,...,d}, let (U∪V)j = Πj(�
n

1k
ku

=
∪ �

m

1k
kv

=
), Uj = Πj(�

n

1k
ku

=
) and

Vj = Πj(�
m

1k
kv

=
). Then Uj ⊆ (U∪V)j and Vj ⊆ (U∪V)j, so that

Πj(υ(U)) ⊆ Πj(υ(U∪V)) and Πj(υ(V)) ⊆ Πj(υ(U∪V)).
c) Let U' with U ∪ U' = V, then υ(U) ⊆ υ(U) ∪ υ(U')⊆ υ(U∪U') =υ(V) as

implied by b).

The mapping of fields to intervals induces a mapping of tuples to hypercubes, as
denoted by Iℑ: IF → [ℑP(F) → J(Nat ∪ {-1})d]. For an arbitrary ιF∈IF the mapping
ιℑ := Iℑ(ιF) is induced by

∀t∈τ(F): ιℑ(t) = ιF(Π1(t))×...×ιF(Π|t|(t))×[-1,-1]d-|t| ,

∀T∈P(τ(F))\{∅}: ιℑ(T) = υ(�
Tt

)t(
∈

ℑι) .

Therefore, tuples and sets of tuples are mapped to hypercubes with d dimensions.
Note, that semantic tuples are sets of tuples, so that they fit into the above
definition. E.g. for the mapping ιF of Figure 9(b), it is Iℑ(ιF)(⊥ℑ) = [0,∞] × [−1,∞]2

and

Iℑ(ιF) ((printer,attributes,address)) = [0,0] × [2,3] × [4,∞] .

Theorem 5.2.2 and Theorem 5.2.3 examine the correlation of hypercubes to the
matching of tuples.

Theorem 5.2.2. For (F,matchF,ℑ,matchℑ)∈ΨABC11 and ιℑ = Iℑ(ιF) with ιF∈IF, it is
a) ∀t1,t2∈τ: matchℑ(t1,t2) → ιℑ(t1)∩ιℑ(t2) ≠ ∅

-26-

b) ∀T1,T2∈P(τ): ∃(t1,t2)∈T1×T2: matchℑ(t1,t2) → ιℑ(T1)∩ιℑ(T2) ≠ ∅
c) ∀t1,t2∈ℑP: ωP(t1,t2) → ιℑ(t1)∩ιℑ(t2) ≠ ∅
d) ∀t1,t2∈ℑ: matchℑ(t1,t2) → ιℑ(t1)∩ιℑ(t2) ≠ ∅ .

Proof. Since D=1 and E=1, it is matchℑ=ω and tuples are not nested.
a) |t1| = n = |t2| and it is matchF(Πj(t1),Πj(t2)) for an arbitrary j with 1≤j≤n.

Therefore, ιF(Πj(t1)) ∩ ιF(Πj(t2)) ≠ ∅ and it follows ιℑ(t1) ∩ ιℑ(t2) ≠ ∅.
b) matchℑ(t1,t2) and a) implies ιℑ(t1) ∩ ιℑ(t2) ≠ ∅. Theorem 5.2.1(a) and

Theorem 5.2.1(c) imply ιℑ(T1) ∩ ιℑ(T2) ≠ ∅.
c) Let T1 = γ(t1) and T2 = γ(t2), hence T1,T2∈P(τ) \ {∅}, so that ιℑ(T1) = ιℑ(t1)

and ιℑ(T2) = ιℑ(t2). Then ωP(t1,t2) implies that there are (t1' ,t2')∈T1×T2 with
ωτ(t1' ,t2'), so thatιℑ(T1) ∩ ιℑ(T2) ≠ ∅ ensues from b).

d) Because of ℑ ⊆ ℑP and ω ⊆ ωP the direct outcome of c).

Theorem 5.2.3. For (F,matchF,ℑ,matchℑ)∈ΨABC11 and ιℑ = Iℑ(ιF) with ιF∈IF
⊂, it is

a) ∀t1,t2∈τ: matchℑ(t1,t2) → ιℑ(t2) ⊆ ιℑ(t1)
b) ∀t1,t2∈τ: [|t1|=n=|t2| ∧ ∀j∈{1,...,n}: Πj(ιℑ(t2))⊂Πj(ιℑ(t1))] → matchℑ(t1,t2)
c) ∀t1,t2∈ℑP: ωP(t1,t2) → ιℑ(t2) ⊆ ιℑ(t1)
d) ∀t1,t2∈ℑ: matchℑ(t1,t2) → ιℑ(t2) ⊆ ιℑ(t1) .

Proof. Since D=1 and E=1, it is matchℑ=ω and tuples are not nested.
a) If matchℑ(t1,t2), then |t1| = n = |t2| and it is matchF(Πj(t1),Πj(t2)) for an arbitrary

j with 1≤j≤n. Therefore, ιF(Πj(t2)) ⊆ ιF(Πj(t1)) and it follows ιℑ(t2) ⊆ ιℑ(t1).
b) Πj(t2)) ⊂ Πj(t1) implies matchF(Πj(t1),Πj(t2)), so that matchℑ(t1,t2) is true.
c) Let T1 = γ(t1) and T2 = γ(t2), hence T1,T2∈P(τ) \ {∅}, so that ιℑ(T1) = ιℑ(t1)

and ιℑ(T2) = ιℑ(t2). Let t2'∈T2, then ωP(t1,t2) implies that there is a t1'∈T1 with
ωτ(t1' ,t2'), so thatιℑ(t2') ⊆ ιℑ(t1') ensues froma). Therefore, ιℑ(T2) ⊆ ιℑ(T1) is
implied by Theorem 5.2.1(a) and

�
22 T't

2)'t(
∈

ℑι ⊆ �
11 T't

1)'t(
∈

ℑι .

d) Because of ℑ ⊆ ℑP and ω ⊆ ωP the direct outcome of c).

Even if mappings in IF
⊂ had to ensure the equivalence of field matching and

interval inclusion, Iℑ would not induce an equivalence of tuple matching and
hypercube inclusion. E.g. for ιℑ(t1) = [0,2] × [0,0], ιℑ(t2) = [0,2] × [1,2] and
ιℑ(t3) = [1,1] × [0,1], it is ιℑ(T) = [0,2] × [0,2] with T = {t1,t2}. Then,
Πj(ιℑ(t3)) ⊂ Πj(ιℑ(T)) for j∈{1,2}, but matchℑ(T,t3) is false. Therefore, the
definition of IF and IF

⊂ is confined to establish a necessary condition for the
matching of fields.

For an arbitrary set of tuples ℑ' ⊆ ℑ and ιF∈IF, let Iℑ(ιF)(ℑ') be defined as
Iℑ(ιF)(γP(ℑ')). Hence,Theorem 5.2.1(b) implies

�
'T

F)T)((I
ℑ∈

ℑ ι ⊆ Iℑ(ιF)(ℑ') .

-27-

5.3 Distribution Based on Hypercubes

The transformation of tuples to hypercubes abstracts from tuples, however without
ignoring the structure of tuples, as it is induced by matching. Hence, the tuples
may be distributed based on their hypercubes, which gives more room for differing
distribution strategies. One strategy maps a hypercube to a set of natural numbers
which induces distribution as shown in chapter 4. Another approach assigns to
every server a hypercube that identifies its tuple domain. The approach introduces
adaptivity into the distribution, since it takes into consideration, which tuples are
stored in the tuple space. E.g. tuple domains are partitioned in regard of the usage
profile.

Hash Codes. Let G: J(Nat ∪ {-1})d
 → P(Nat) denote a mapping of a hypercube to a

set of hash codes. E.g. such a mapping can be determined with Gödel numbering,
that is

G(S) := { ∏
=

+
d

1j

s1
j

jp | (s1,...,sd)∈S }

with {p1,p2,...} depicting the set of prime numbers. Then, the assignment δG∈∆ of
a tuple to a set of servers is analogous to section 4.1. E.g. based on [8], it is

δG(T) := { 1 + [x mod p] | x ∈ G(Iℑ(ιF)(T)) } .

Theorem 5.3.1. δG is a permissible distribution.

Proof. If matchℑ(T1,T2), Theorem 5.2.2(d) shows Iℑ(ιF)(T1) ∩ Iℑ(ιF)(T2) ≠ ∅. Then,
there is an x∈G(Iℑ(ιF)(T1)) ∩ G(Iℑ(ιF)(T2)). Hence, δG(T1) ∩ δG(T2) ≠ ∅.

Figure 10 illustrates this concept. Note, that it is the generalization of the
distribution in chapter 4, since they are identical in case of

∀T∈ℑ: [|Iℑ(ιF)(T)|=1 ∨ Iℑ(ιF)(T)=Iℑ(ιF)(⊥ℑ)] .

-28-

s3

s2s3

s2 s4 s5

s4

s2s3s5

s3

s5s4

s2

s3

s5

s5s4

s2 s4

s3s5

-1 0 1 2 3 4 5

1

2

3

4

5

x1

x2

T1

T3

T2

T4

T5

T6

s2 s4 s5 s4

s5 s3 s2 s2

s3s2 s4

s3

s5

s3

s4

s2

s3

s5

s2 s4

Figure 10. Distribution strategy based on hashing hypercubes for five servers {s1,...,s5}.
The example shows tuples with one or two dimensions that are mapped to rectangles as
induced by ιF of Figure 9(b). The displayed tuples are T1=(printer), T2=(device,1200dpi),
T3=(scanner,attributes) , T4={(1200dpi),(A1)}, T5={(1200dpi,printer),(600dpi,scanner)}
and T6={(address,address),(1200dpi,1200dpi)}. δG is based on Gödel numbering, so that
δG(T1)={3}, δG(T2)={3,5}, δG(T3)={4,5}, δG(T4)={3,4,5}, δG(T5)={2,3} and
δG(T6)={2,3,4,5}.

However, this distribution strategy has to be refined, because δG(T) takes
O(|Iℑ(ιF)(T)|) in computation complexity and, for an arbitrary mapping G, |δG(T)|
takes O(|Iℑ(ιF)(T)|), too. Furthermore, the servers' tuple domains do not adapt to
the usage profile. For many mappings G, it is costly to adjust the number of
servers.

Tuple Domains. For each server with the index q, Σq denotes its tuple domain, i.e.
its hypercube. Furthermore, the union of the servers' tuple domains has to be a
superset of the hypercubes of the tuples that are stored in the tuple space. Tuple
domains are complete, if their union is equal to the considered hyperspace. Tuple
domains are disjoint, if they are pairwise disjoint. E.g. complete and disjoint tuple
domains have to comply with

�
nT

F)T)((I
ℑ∈

ℑ ι ⊆ �
p

1q
q

=
Σ = [0,∞] × [-1,∞]d-1 and ∀q,q'∈{1,...,p}: Σq ∩ Σq' = ∅ .

The servers' hypercubes induce the distributionδΣ∈∆ with

δΣ(T) := { q∈{1,...,p} | Iℑ(ιF)(T) ∩ Σq ≠ ∅ } .

For a given δΣ∈∆, there are arbitrary distributions δΣ,1∈∆ that comply with

∀T∈ℑ: [δΣ,1(T) ⊆ δΣ(T) ∧ |δΣ,1(T)| = 1] .

Note, that δΣ,1 is not completely defined, in order to be adjustable to other
considerations later in this chapter.

-29-

Theorem 5.3.2.
a) ιF∈IF → δΣ is a permissible distribution.
b) ιF∈IF

⊂ → (δΣ,1 , δΣ) is a permissible write/read distribution.

Proof.
a) If matchℑ(T1,T2), Theorem 5.2.2(d) shows that there is a

x∈Iℑ(ιF)(T1) ∩ Iℑ(ιF)(T2). Then, Iℑ(ιF)(T1) ∩ Iℑ(ιF)(T2) ⊆ �
p

1q
q

=
Σ implies that

there is a q with x∈Σq. Hence, q∈δΣ(T1) ∩ δΣ(T2), so that δΣ∈∆p.
b) If matchℑ(T1,T2), then Theorem 5.2.3(d) shows that Iℑ(ιF)(T2) ⊆ Iℑ(ιF)(T1).

Then, δΣ(T2) ⊆ δΣ(T1), so that δΣ,1(T2) ⊆ δΣ(T1) ensues from δΣ,1(T2) ⊆ δΣ(T2).
Hence, (δΣ,1 , δΣ) ∈ ∆wr.

The distribution strategy for complete and disjoint tuple domains is illustrated in
Figure 11. Note, that Iℑ(ιF)(T) ∩ Σq = ∅ implies, that server q does not hold any
tuple that is matched by template T.

s3

s2

s1

-1 0 1 2 3 4 5

1

2

3

4

5

x1

x2

T3

T2

T4

T5

T6

T1

s4 s5

Figure 11. Distribution strategy based on tuple domains that are complete and disjoint. The
tuples, ιF and {s1,...,s5} are the same as in Figure 10. The servers' rectangles are
Σ1=Iℑ(ιF)((⊥F)), Σ2=Iℑ(ιF)((address,⊥F)), Σ3=Iℑ(ιF)((attributes,⊥F)),
Σ4=Iℑ(ιF)({(device,device),(device,600dpi)}) and
Σ5=Iℑ(ιF)({(device,1200dpi),(device,address)}). Therefore, the tuples are distributed to
δΣ(T1)={1}, δΣ(T2)={5}, δΣ(T3)={4,5}, δΣ(T4)={1}, δΣ(T5)={3} and δΣ(T6)={2,3}.

Unlike the strategy based on hashing, the servers' state is taken into account.
Therefore, it is possible to automatically adapt the distribution to the usage profile
of the tuple space: If the number of tuples that are stored on server q exceeds
maxΣ, the tuple domain of q is split and one additional server is added. If there are
only few tuples stored on two servers with adjacent tuple domains, the domains are
merged.

In order to achieve complete and disjoint tuple domains, a global partitioning
scheme has to be applied. Hence, the tuple domain of a server is not deducible

-30-

from the tuples that it stores. In general, the server' s tuple domain is neither a
subset nor a superset of the hypercube of a stored tuple. In addition, for ιF∉IF

⊂

tuples have to be stored on every server with an intersecting tuple domain, so that
splits may be ineffective.

Alternatively, a server' s tuple domain may be deduced from the tuples it stores,
i.e.

Σq := υ(�
)q(T

F

n

)T)((I
ℑ∈

ℑ ι) .

As a result, tuple domains are neither complete nor disjoint any more. Figure 12
illustrates such tuple domains. As Theorem 5.3.3 shows, they render (δΣ,1 , δΣ) a
permissible write/read distribution even for ιF∉IF

⊂. However, data retrieval
includes several servers in general.

Theorem 5.3.3. If tuple domains are not disjoint, i.e. overlapping, such that
∀T∈ℑn(q): Iℑ(ιF)(T) ⊆ Σq, then (δΣ,1 , δΣ) is a permissible write/read distribution.

Proof. If matchℑ(T*,T) with T∈ℑn(q), Theorem 5.2.2(d) shows that there is a
x∈Iℑ(ιF)(T*) ∩ Iℑ(ιF)(T) ⊆ Σq. Then, Iℑ(ιF)(T*) ∩ Σq ≠ ∅, so that δΣ,1(T) ⊆ δΣ(T*)
ensues from q∈δΣ(T*). Hence, (δΣ,1 , δΣ) ∈ ∆wr.

s3

s1

-1 0 1 2 3 4 5

1

2

3

4

5

x1

x2

T3

T2

T4

T5

T6

T1

s2

Figure 12. Distribution strategy based on tuple domains that are neither complete nor
disjoint. The tuples and ιF the same as in Figure 10. There are only three servers {s1,s2,s3}.
The servers' rectangles are implicitly given by the tuples that they store. The tuples are
distributed to δΣ(T1)={1}=δΣ(T4), δΣ(T2)={2}=δΣ(T6) and δΣ(T3)={3}=δΣ(T5). Therefore, the
servers' tuple domains areΣ1= [0,4] × [-1,-1], Σ2= [0,∞] × [3,∞] and Σ3= [1,3] × [0,3].

In general, tuple domains are disjoint, if the hypercubes of the stored tuples are
points. E.g. this condition holds if only actual tuples are stored and ιF maps actual
fields to one point intervals. Then, the two proposed definitions of tuple domains
are alike with regard to disjointness.

-31-

If data is retrieved by a template T, every server q with Iℑ(ιF)(T) ∩ Σq ≠ ∅ has to
be taken into account, regardless of ιF∈IF

⊂ or ιF∈IF. E.g. for ιF∈IF
⊂, if

Iℑ(ιF)(t1) = [0,2] × [0,0] and Iℑ(ιF)(t2) = [0,2] × [1,2] are stored on server q, then
Σq = [0,2] × [0,2]. If Iℑ(ιF)(T) = [0,3] × [0,1] for template T, it is Iℑ(ιF)(t1) ⊂ Iℑ(ιF)(T)
but Σq ⊄ Iℑ(ιF)(T). Therefore, server pruning is indifferent to ιF∈IF

⊂ or ιF∈IF.
Figure 13 concludes in giving an overview of the different distribution strategies
based on tuple domains.

ιF∈IF ιF∈IF
⊂

based on tuple domains ιℑ(T*) ∩ Σq ≠ ∅, i.e. q∈δΣ(T*)
necessary
condition for
∃T∈ℑn(q):
matchℑ(T*,T)

based on the hypercubes of
stored tuples ιℑ(T*) ∩ ιℑ(T) ≠ ∅ ιℑ(T) ⊆ ιℑ(T*)

disjoint tuple domains, i.e.
∀T∈ℑn(q): ιℑ(T) ∩ Σq ≠ ∅ δΣ δΣ , (δΣ,1 , δΣ)

permissible
distributions overlapping tuple domains,

i.e. ∀T∈ℑn(q): ιℑ(T) ⊆ Σq
δΣ , (δΣ,1 , δΣ)

Figure 13. It is shown how ιℑ = Iℑ(ιF) affects the distribution based on tuple domains. The
first and second line give necessary conditions for pruning servers and tuples respectively.
Letter condition can be exploited, if the set of hypercubes is accessible, i.e. on the server
itself. The last two lines indicate that the distribution δΣ is mandatory, if ιF∉IF

⊂ and the
tuple domains are disjoint. However, δΣ should be avoided, otherwise tuples are replicated
among servers.

5.4 Formal Scalability Analysis of the Concept

In contrast to distributions based on hashing, the distributions introduced in this
chapter are more complex. Hence, a formal analysis of their scalability based on
the deterministic model of section 4.1 is difficult and is highly dependent on ιF.
E.g. for a constant ιF, the tuple space does not scale. Alternatively, simulative
methods or performance tests may be applied, in order to evaluate the scalability
of the concept. This section is focused on analyzing the concept with an eye to the
deterministic scalability model. The computation complexity of the distribution is
not taken into account.

The finest granularity in the hypercube concept are points. If tuples are
distributed by δΣ or δG, all tuples that share one point are stored on the same
server. This has to be taken into account in the definition of ιF.

Theorem 5.4.1. Let δΣ or δG be the distribution and ιF∈IF. If there exists an
x∈[0,∞] × [-1,∞]d-1 with

∃ℑ'⊆ℑn: |ℑ' |∈ω(1) ∧ ∀T∈ℑ' : x∈Iℑ(ιF)(T) ,

then SM(q) does not scale for a server q.

-32-

Proof. If δΣ is applied, let q denote an arbitrary server with x∈Σq. If δG is applied,
let q denote the server as induced by G({x}). Then, it is ℑ' ⊆ ℑn(q), hence
|ℑn(q)|∈ω(1).

The effectiveness of the distribution strategy based on hashing hypercubes has still
to be examined. It strictly depends on an appropriate mapping G, especially in
regard to the dynamic behaviour of the tuple space. Hence, the rest of this section
is focused on the distributions that are based on tuple domains. For δΣ, the
implication given in Theorem 5.4.1 is proven to be an equivalence by Theorem
5.4.2.

Theorem 5.4.2. Let δΣ be the distribution based on tuple domains and ιF∈IF. If
there is no x∈[0,∞] × [-1,∞]d-1 with

∃ℑ'⊆ℑn: |ℑ' |∈ω(1) ∧ ∀T∈ℑ' : x∈Iℑ(ιF)(T) ,

then SM(q) scales for every server and adjusting the number of servers takes O(1).

Proof. Assume that SM(q)∈ω(1) for a server q. Then, its tuple domain is a single
point {x}, otherwise it would have been split. Hence, |ℑn(q)| = SM(q)∈ω(1) and
∀T∈ℑn(q): x∈Iℑ(ιF)(T). If tuple domains are merged or split, only two servers are
concerned, so that adjustment is done in O(1).

In general, Aw does not scale for δΣ. Hence, it is favourable to distribute with
(δΣ,1 , δΣ), if it is permissible. It is clear that SQ(q), AR and Ar suffer from
overlapping tuple domains and templates with large hypercubes. However, an
analysis requires an explicit definition of ιF and of the algorithm that merges and
splits tuple domains. Therefore, a formal analysis is relinquished.

5.5 Comparison to Approaches in Related Research Areas

Several approaches that aim at scalability have been developed in other research
areas. They share in common the use of specific data structures, e.g. indices in
relational databases. Hence, an abstract representation is assigned to data that is
native to the respective data model. The mapping has to preserve important
properties of the data. If a condition on such properties is given, it is possible to
express sufficient or necessary conditions based on the abstract representation. For
example in relational databases, the equality of indices is a necessary condition for
equality of tuples. Favourable characteristics in computation and storage are
mandatory for the data structures that are used as abstract representation. E.g.
indexing takes advantage of hashing algorithms. In conclusion, the main challenge
of defining the mapping ensues from finding an appropriate tradeoff between an
appropriate abstract representation and its algorithmic characteristics. This applies
also to the mapping that is proposed in this chapter. E.g. nested tuples are not
directly supported, in order to take advantage of the experience in spatial data
structures, i.e. hypercubes.

-33-

Yet another concept groups data according to its similarity or structure. Then,
the data set is partitioned into distinct sets. For example, tuples are partitioned into
relations in relational databases, objects are partitioned into extents in object
oriented databases and semi structured data is partitioned into subsets according to
their data scheme. Multiple tuples spaces [33] enable partitioning, too. However,
the similarity of tuples in one space is purely semantic, so that partitions contain
structurally heterogenous tuples. In general, the granularity of semantic
partitioning is coarser than structural partitioning. In addition, contrarily to
relations and extents, the use of multiple spaces is not enforced. Therefore,
scalability concepts for tuple spaces should not depend on multiple spaces.

As for the placement of data, it is suggested that data is situated logically near
to the participating entities that write or retrieve it. If the usage profile of entities is
known in advance, data can be bound statically to appropriate servers. This is
feasible for some application areas of databases, since such information may be
added to scheme definitions. Otherwise, the database has to adapt dynamically to
its environment. The application of this concept has been studied for tuple spaces
in [50]. As it is shown in section 2.3, this approach aims at performance, but
scalability is not achieved in general. Therefore, the concept of this chapter does
not exploit logical proximity. Yet, adaptive placement of tuples is complementary
and can be combined with the proposed concept.

As for data retrieval in database, query languages support operations like
selection and projection, which reduces the size of the result set. E.g. the retrieval
of data can be confined to a considerable subset of servers, if the selection
predicate corresponds to an operation on the abstract representation. In tuple
spaces, there is no notion of result sets. The structure of the retrieved data is
induced by the template, so that it is impossible to define projections. However,
templates enable selections, although the selection predicate is implicitly given by
the template itself. Furthermore, current tuple space implementations have lost
direct control of the selection predicate, since they allow customized matching.
Hence, the selection predicate has to be evaluated on every tuple, in order to
retrieve matching tuples from the tuple space. The concept of this chapter
introduces a necessary condition for matching, i.e. the non-null intersection of
hypercubes. The selection predicate is made explicit by the definition of the
mapping of fields to intervals and by E=1. Therefore, selective data retrieval is
confined to a subset of tuples.

Semi structured databases allow structural data retrieval, so that it is difficult to
conceive scalable data retrieval. E.g. parts of the structure may be wildcarded. In
order to process such queries, an indexing mechanism has been suggested in [42].
The indices are intervals and capture the ancestor-descendent relationship, which
is similar to this chapter' s concept. Yet another approach [19] proposes a priori
definitions of frequently used structural queries. The database administrator is in
charge of finding and defining appropriate patterns. Both strategies have to
compute and store metadata in advance, in order to increase performance. Despite
the lack of schema definitions in tuple spaces, these strategies are useful for the
definition of an appropriate mapping ιF.

The necessity of user defined indexing and its application to object-relational
databases is discussed in [16]. Object-relational databases allow user-defined
predicates and data types. If the indexing of user-defined data types takes into

-34-

account frequently queried properties, retrieval of data may be contained to a
considerable subset. The approach distinguishes equivalent and necessary
conditions that are based on an abstract representation, i.e. the index. Therefore,
selections can exploit the structure of user-defined types. In comparison to tuple
spaces, fields and matching are user-defined too, so that the concept of this chapter
is analogous. Besides, the only predicate is the test whether a tuple is matched by a
template. However, an abstract representation of tuples is deduced automatically
from the indices of its fields, i.e. intervals. Therefore, there exists a necessary
condition for tuple matching. Furthermore, the definition of ιF is facilitated.

5.6 Semantic and Nested Tuples

Semantic tuples. In order to retrieve tuples by structure, semantic tuples have
been suggested in [31]. In general, structural expressiveness is restricted to nested
tuples. According to the definition of nested tuples, ⊥F matches every substructure,
i.e. fields and trees of fields. Hence, semantic tuples can be substituted by nested
tuples for structural queries.

Alternatively, matching of semantic templates may be evaluated by a
disjunctive concatenation of matching predicates. E.g. a tuple is matched by the
semantic template {(int),(string)}, if the tuple is matched either by (int) or
by (string). Semantic tuples are not directly supported in current tuple space
implementations. Hence, the following supposes that semantic tuples are
implemented as list of tuples. Then, the complexity of creation, storage and
matching of an arbitrary semantic tuple is proportional to its cardinality. However,
the hypercube of a semantic tuple T can be determined independently of its
cardinality, if the mapping ιΓ: Γ × Nat → J(Nat) with ιΓ (T , i) := Πi(Iℑ(ιF)(T)) takes
O(1) for every dimension i. This is achieved by automatically evaluating ιΓ while
creating or updating the semantic tuple. Note, that ιΓ (T , i) = υ(ιF({Πi(t) | t∈T})),
so that the complexity of creation and updating is not increased. In conclusion, this
chapter' s concept is valid for semantic tuples, if they are supported by the tuple
space implementation (C=0).

Nested tuples. This chapter' s concept can be extended by defining an appropriate
abstract representation of nested tuples. Based on tuples t with depth(t) = 1 that are
mapped to hypercubes, the abstraction is defined inductively. E.g. a tuple t with
depth(t) = 2 is mapped to a vector of hypercubes, etc. Therefore, the abstract
representation of nested tuples is complex and possibly hampers the concept' s
efficiency.

However, there are only few implementations that directly support nested
tuples. Theorem 3.3.6 suggests the simulation of nested tuples by tuples that are
vectors of fields. In most cases, such a simulation is applicable and the tuple space
implementation does not have to support nested tuples. In addition, this approach
avoids complex abstract representations of nested tuples.

In contrast, it may be attempted to map every node of a nested tuple' s tree to an
additional tuple, as it is true for mapping semi structured data to relational
databases. Then, the atomicity and isolation of tuple storage and retrieval is not

-35-

guaranteed any more. This ensues from the lack of appropriate locking and
scheduling mechanisms in tuple spaces.

In conclusion, this chapter' s concept assumes that nested tuples are either
disallowed or simulated. If this proves to be too restrictive in any application area
of tuple spaces, the set of fields has to be enlarged, in order to include semi
structured data. For example, an XML [10] class can be defined and be inherited
by several subclasses that capture different data schemes. Note, that in general
B=0, if instances of semi structured data are modeled as actual fields. Therefore,
the definition of an appropriate ιF becomes difficult. Nevertheless, it is possible to
take advantage of approaches to index semi structured data, that are introduced in
section 5.5.

5.7 Spatial Data Structures

The concept of this chapter introduces an abstract representation of tuples and
tuple domains, i.e. hypercubes. Hence, the elements of the underlying data
structure are spatially extended objects. Consequently, the spatial data structure
has to support dynamic insertion, deletion, intersection and inclusion queries. Such
data structures have been studied in the past. An overview is given in [30, 51].
They generalize data structures that manage one dimensional points, like the B-
tree [4]. Alternatively, hypercubes are transformed to a representation, that avoids
multiple dimensions or spatially extended objects, as it is true for space ordering
and hyperpoints respectively.

This section is focused on data structures that suit particularly well to the
hypercube concept. Such a data structure is not only applied for server pruning, but
it is also beneficial for tuple pruning on an arbitrary server. Components that prune
servers, are assumed to keep the hypercubes of the tuple domains in main memory.
This assumption is reasonable, since a tuple domain is defined by 2⋅d integers.
Then, the storage complexity of tuple domains is negligible. Furthermore, the
pruning of servers or tuples should be effective, i.e. a maximum of servers or
tuples has to be pruned. However, the computation complexity of pruning should
be low.

As for the storage of tuples, the servers have to hold about the same number of
tuples. Even for ιF∉IF

⊂, the spatial data structure should not require that a tuple is
stored on several servers. In addition, the number of servers should swiftly adjust
to the number of tuples, so that p is gradually incremented or decremented.
Furthermore, splitting or merging tuple domains is performed locally, i.e. by the
respective servers, so that the performance of the other servers is not affected.

The data structure has to cope with non uniform distributions of hypercubes in
the hyperspace. This is particularly valid, if the dimension of most tuples is
considerably lower than d. In addition, the data structure should not become
inefficient, if tuples with large hypercubes are stored.

Hyperpoints. It has been suggested to take advantage of spatial data structures
that is specialized on points. Therefore, d-dimensional hypercubes are mapped to
2⋅d-dimensional hyperpoints in the dual space. Queries that test the intersection or
inclusion of hypercubes, are transformed to equivalent queries in the dual space.

-36-

E.g. for d=1, a tuple t with Iℑ(ιF)(t) = [2,5] is mapped to [2,2] × [5,5]. For template
T with Iℑ(ιF)(T) = [a,b], the intersection query is transformed to the dual space by
querying hyperpoints that are element of [-∞,b] × [a,∞].

As a result, the spatial data structure has to enable unbounded range queries.
Furthermore, the hyperpoints are not uniformly distributed in the dual space. In
addition, the transformation to hyperpoints does not preserve proximity of
hypercubes. In general, the hypercubes of stored tuples are small or points, so that
the approach of transforming to hyperpoints does not suit well. Finally, the servers'
tuple domains are transformed to hyperpoints as well. Hence, the tuple domains do
not partition the hyperspace any more.

Additive Methods. Yet another approach tests intersection or inclusion queries
independently for each dimension. The result of the query is computed by
intersecting the result sets of every dimension. Therefore, a d-dimensional query is
reduced to d one-dimensional queries. Then, d interval data structures, like range
trees [6], are managed simultaneously. E.g. this approach is applied in databases
that compute several indices per data entry. Since the total complexity of a query is
the sum of the complexity of its subqueries, the approach is called additive. It is
particularly efficient, if the dimension of the templates is considerably lower than
d. Furthermore, queries can be computed in parallel.

However, each one-dimensional query is performed independently, so that it
cannot make use of pruning in other dimensions. E.g. for d=2, if no server with
odd index is in the result set of the first dimension, the query of the second
dimension still looks for odd servers and includes some of them in the result set.
This deficiency becomes even more apparent for higher dimensions. In addition,
the total size of all one-dimensional result sets is Ω(d) times larger than the result
set of the original query, as it is true for the computation complexity of the
intersection. Furthermore, the definition of a server' s tuple domain is distributed to
d data structures. Hence, its alteration takes Ω(d), and information about tuple
domains, like adjacency, completeness and disjointness, is spread.

Space Ordering. Another approach exploits the countability of the hyperspace, in
order to transform it to the linear space. The transformation has to be fast and
invertible. In addition, the proximity of objects should be preserved by the
mapping. Morton orders [49] suit best to these requirements, even though the
preservation of proximity is not guaranteed. Figure 14(a) illustrates Morton orders,
that are also known as N orders or Z orders. The transformation
µ: Nat × (Nat ∪ {−1})d−1

 → Nat interleaves the binary representation of each
dimension, i.e.

µ(P) := pj
(d)…pj

(1)…p1
(d)…p1

(1)p0
(d)…p0

(1)

with pj
(i)…p1

(i)p0
(i) being the binary representation of Πi(P) + 1 for i > 0 and of

Π0(P) for i = 0. An arbitrary hypercube C is specified by two hyperpoints lb(C) and
ub(C), that are the lower and upper bounds in every dimension respectively, i.e.

lb(C) := (min(Π1(C)),…,min(Πd(C))) , ub(C) := (max(Π1(C)),…,max(Πd(C))) .

Then, µC: J(Nat) × J(Nat ∪ {−1})d-1
 → J(Nat) maps hypercubes to intervals, as it is

defined by

-37-

µC(C) := [µ(lb(C)) , µ(ub(C))] .

The interval µC(C) implicitly defines the set µC*(µC(C)) of hyperpoints P that
comply with µ(P)∈µC(C). This is illustrated in Figure 14(b). The transformation
preserves necessary conditions for tuple matching, as it is proven in following
theorem. Therefore, server and tuple pruning may be performed on intervals
instead of hypercubes.

Theorem 5.7.1. Let C,C'∈J(Nat) × J(Nat ∪ {−1})d-1 and P,P'∈Nat × (Nat ∪ {−1})d−1.
In addition, let ≤D denote the dominance relation on an arbitrary hyperspace, i.e.
P≤D P' if and only if∀i∈{1,…,d}: Πi(P) ≤ Πi(P'). Then, it is

a) P ≤D P' → µ(P) ≤ µ(P')
b) C ⊆ µC*(µC(C))
c) C ∩ C' ≠ ∅ → µC(C) ∩ µC(C') ≠ ∅
d) C ⊆ C' → µC(C) ⊆ µC(C') .

Proof.
a) Let k denote the highest index, so that the vectors (pk

(d),…,pk
(1)) and

(p'k
(d),…,p'k

(1)) differ. Since P is dominated by P', it is pk
(i)

 ≤ p'k
(i) for every

i∈{1,…,d}. Hence, µ(P) ≤ µ(P') ensues from the definition.
b) Let P denote a hyperpoint in C. Hence, lb(C) ≤D P ≤D ub(C). Then,

µ(lb(C)) ≤ µ(P) ≤ µ(ub(C)) ensues from a). Therefore, µ(P)∈µC(C).
c) Let P∈C ∩ C' , thenµ(P)∈µC(C) ∩ µC(C') ensues fromb).
d) C ⊆ C' implies lb(C') ≤D lb(C) ≤D ub(C) ≤D ub(C'). Hence,µ(lb(C')) ≤ µ(lb(C))

and µ(ub(C)) ≤ µ(ub(C')) ensue froma).

-1 0 1 2 3 4 5

1

2

3

4

5

x1

x2

T6

T4

T1

-1 0 1 2 3 4 5

1

2

3

4

5

x1

x2

Figure 14. On the left (a), the hyperspace is numbered by the Morton order. On the right
(b), the transformation of tuples' hypercubesC to intervals is indicated by drawing the
boundaries of µC*(µC(C)). The tuples are the same as in Figure 10.

However, the implications of Theorem 5.7.1 cannot be replaced by equivalences,
as it is clear from Figure 14(b). Even if tuple domains are disjoint in the
hyperspace, they generally overlap after their transformation. Therefore, it seems
promising to define tuple domains by intervals [3]. Then, a tuple domain Σq is
described by only two integers, but µC*(Σq) is not a hypercube any more. If each

-38-

tuple domain is a superset of the stored tuples' hypercubes, the overlapping area of
tuple domains becomes considerable. E.g. in Figure 14(b), µ(Iℑ(ιF)(T4)) is six
times larger than Iℑ(ιF)(T4). Therefore, ιF∈IF

⊂ has to be assumed, in order to apply
the distribution (δΣ,1 , δΣ).

Space ordering is bijective, so that integer indices of the linear space are d
times longer than original integer indices of an arbitrary dimension. Therefore, the
description of tuple domains and tuples' intervals still takesΘ(d) in complexity. In
addition, the definition of a necessary condition for tuple matching is further
watered-down, so that the effectiveness of pruning deteriorates. Besides, the
interleaving of dimensions is fixed by the spatial order. Hence, tuple domains
cannot adapt to usage profiles that are irregular with regard to the dimension of
stored tuples. E.g. the dimension of tuples is frequently considerably lower than d.
In Figure 14(b), µC*(µ(Iℑ(ιF)(T4))) covers two dimensions, even though the
dimension of T4 is one.

In order to overcome some of these deficiencies, the space ordering approach is
refined in [3]. The size of an integer is reduced by storing a prefix and assuming a
default value for the remaining bits. However, this is only efficient, if certain
integers are favoured for the description of tuples and tuple domains. Furthermore,
it is suggested that the necessary condition is evaluated based on µC*(Σq) in the
hyperspace. Yet this implies that queries do not exploit space ordering.

Nevertheless, the space ordering approach may be applied for nested tuples and
high dimensional tuples. It enables iterative indexing of nested tuples, which
provides the foundation of defining an appropriate ιF. In addition, the dimension of
tuples can be arbitrarily decreased, so that a fixed maximal dimension d imposes
no restriction on the tuple space.

Overlapping Partitions. Upper approaches transform hypercubes to a more
manageable representation. Alternatively, there a spatial data structures that
partition the hyperspace, which is analogous to partitioning the set of tuples into
tuple domains. Such an approach suits well to this chapter' s concept, because tuple
domains are directly represented as partitions in the data structure. If the
distribution (δΣ,1 , δΣ) is applied for ιF∉IF

⊂, tuple domains have to be supersets of
the tuples that they store. Then, tuple domains are not disjoint, as it is shown in
Figure 12. Therefore, the spatial data structure has to manage overlapping
partitions.

The R-tree [37] complies with this demand. The leaves of the tree are
hypercubes of the stored tuples. Then, the hypercube C of an arbitrary node is
recursively defined by

C := υ(�
b

1i
iC

=
) ,

with C1,…,Cb depicting the hypercubes of the sons. As a result, the set of tuple
domains is an arbitrary anti-chain of nodes, such that every leaf is the descendent
of exactly one tuple domain. Note, that the root' s hypercube is a subset of the
hyperspace. In general, the tuple domains are neither complete nor disjoint. Figure
15 illustrates such a tree.

-39-

[0,∞]×[-1,∞]

Iℑ(ιF)(T1)
[0,0]×[-1,-1]

Σ1 [0,4]×[-1,-1]

Iℑ(ιF)(T4)
[3,4]×[-1,-1]

s1

Iℑ(ιF)(T5)
[2,3]×[0,1]

Σ3 [1,3]×[0,3]

Iℑ(ιF)(T3)
[1,1]×[2,3]

s3

Iℑ(ιF)(T2)
[0,1]×[3,3]

Σ2 [0,∞]×[3,∞]

Iℑ(ιF)(T6)
[3,∞]×[3,∞]

s2

Figure 15. For the tuple domains of Figure 12, the respective R-tree is illustrated. The
dashed areas indicate parts of the tree, that are stored and managed locally. Note, that only
s1 is pruned for the template T=(address,address) with Iℑ(ιF)(T) = [3,3]×[3,3], even though
obviously s3 should be pruned, too.

This approach excels by employing a single data structure for server and tuple
pruning. Every server manages the subtree of its tuple domain. A subtree is kept
local and enables tuple pruning on the respective server. The remaining part of the
hypercube tree is globally accessible. Its leaves are the respective nodes of the
tuple domains, so that it provides the foundation of server pruning. As a result,
merging and splitting of tuple domains is accomplished by reassigning tuple
domains to nodes of the hypercube tree.

However, pruning may not be effective, if the overall overlapping area is large.
E.g. even if the hypercube of a template is a hyperpoint, the query is generally
performed on more than one server. Therefore, pruning effectiveness deteriorates,
if tuples with large hypercubes have to be stored in the tuple space. Furthermore,
the insertion of tuples is ambiguous, if their hypercubes intersects with several
tuple domains. Hence, some heuristic has to identify the tuple domain that is
optimal with regard to the overall overlapping area or with regard to the size of the
tuple domains. Besides, the alteration of a node' s hypercube may affect the
hypercubes of its ancestral nodes. Therefore, tuple insertion and deletion has to be
propagated up the tree.

If the hypercube tree is balanced, server pruning takes O(log p). However, it is
difficult to undo splitting of nodes that are close to the root. As a result, the
cohesion of the sons' hypercubes may deteriorate. Therefore, the hypercube tree
has to be restructured periodically. E.g. the R*-tree [5] refines the splitting strategy
of the R-tree. If a tuple domain is splitted, some tuples of the respective server are
reinserted into the tuple space. As a result, splitting the domain of a server cannot
be performed locally any more.

Disjoint Partitions. Yet another approach prohibits overlapping tuple domains.
Then, it is guaranteed that hyperpoint queries are directed to only one server, so
that server pruning is generally more effective.

The R+-tree [55] applies this idea to the R-tree. Apart from the leaves, the
hypercubes of an arbitrary anti-chain of nodes are disjoint. However, the
hypercube of the stored tuples may still overlap. Therefore, a leaf' s hypercube is
not required to be a subset of its father' s hypercube any more. It is only enforced

-40-

that the hypercubes of a leaf and its father are not disjoint. As a result, the notion
of tuple domains is water-down, so that the traversal of the tree during queries is
hardly optimal. Nevertheless, the union of tuple domains has to be a superset of a
stored tuple' s hypercube. Therefore, the insertion of a tuple may necessitate the
enlargement of an ancestral hypercube, if the tuple domains are not complete. In
such a case, it has been proven [30] that the disjointness restraint may cause a
deadlock. Furthermore, the distribution (δΣ,1 , δΣ) is not permissible for ιF∉IF

⊂, as
it is shown in Figure 13. However, the use of δΣ implies that tuples are replicated
among servers, so that insertions and deletions cannot be performed locally. In
addition, tuple domains are splitted more frequently, since the servers store
redundant information. Splitting may not effective in decreasing the server load, if
the majority of the domain' s tuples are replicated. In conclusion, the following
assumes ιF∈IF

⊂ and complete tuple domains. Figure 16 illustrates such a R+-tree.

[0,∞]×[-1,∞]

Iℑ(ιF)(T1)
[0,0]×[-1,-1]

Σ1 [0,∞]×[-1,-1]

Iℑ(ιF)(T4)
[3,4]×[-1,-1]

s1

Iℑ(ιF)(T6)
[3,∞]×[3,∞]

Σ2 [4,∞]×[0,∞]

s2

Iℑ(ιF)(T5)
[2,3]×[0,1]

Σ3 [2,3]×[0,∞]

s3

Iℑ(ιF)(T3)
[1,1]×[2,3]

Σ4 [0,1]×[0,2]

s4

Iℑ(ιF)(T2)
[0,1]×[3,3]

Σ5 [0,1]×[3,∞]

s5

[0,∞]×[0,∞]

[0,1]×[0,∞]

Figure 16. For the complete tuple domains of Figure 11, the respective R+-tree is
illustrated. The dashed areas indicate parts of the tree, that are stored and managed locally.
It is assumed that the tuples T3 and T6 are stored on s4 and s2 respectively, even though it is
possible to store them on s5 and s3 respectively.

Alternatively, the extended k-d-tree [44] systematically decomposes the
hyperspace into disjoint and complete hypercubes. A hypercube is splitted by an
iso-oriented hyperplane, so that every non leaf node has exactly two sons.
However, this implies that a node can only be merged with its buddy. Therefore,
the heuristic for hypercube splitting is simplified at the expense of the applicability
of hypercube merging. Nevertheless, splitting and merging is performed locally.
Figure 17 gives an example for extended k-d-trees.

-41-

x2 = 0

Σ2
x1 = 2

x2 = 3 x1 = 4

Σ4 Σ5 Σ3 Σ2

Figure 17. For the tuple domains of Figure 11, an excerpt of the respective extended k-d-
tree is illustrated. The local parts of the tree are omitted in the figure. The hyperspace is
decomposed by iso-oriented hyperplanes. E.g. the left and right son of the root node store
hypercubes with x1<0 and x1≥0 respectively.

There are several other data structures that partition the hyperspace into disjoint
partitions. However, they are not suited for this chapter' s concept. E.g. priority
search trees [21] are designed for hyperspaces with few dimensions. Quadtrees
[28] prohibit gradual adjustment of the number of servers.

Conclusion. Figure 18 summarizes this section' s analysis of spatial data structures
and their fitness to this chapter' s concept. In general, the R-tree suits best, among
others because of its simplicity. For ιF∈IF

⊂, the R-tree is outperformed by the R+-
tree and the extended k-d-tree. Even though being inferior to partitioning, space
ordering generalizes the hypercube concept with regard to nested and high
dimensional tuples.

-42-

Hyperspace Partitions

overlapping disjointRequirement
Hyper-
points

Additive
Methods

Space
Ordering

R R* R+ E.k-d

Suitability for both, server
and tuple pruning

- - + ++ +

Tuple domains may be
kept in main memory

? ? +/? + +

complexity - -- + o + o +
Pruning

effectiveness o o - - o o
balanced -/? ? ? + + o
no forced
replication

? ? -/? + +Storage

large cubes ? ? -/? - +
gradual ? o + + +Adjustment

of p local ? o + + - +
in general -/? o o + +Adaptivity

to non
uniform

distribution

for tuples
with low
dimensions

? + -- + +

Figure 18. Important properties of spacial data structures are listed in the eye of their
suitability to this chapter' s concept. The question mark indicates that the suitability of the
respective property depends on the employed data structure. E.g., the hyperpoint approach
is not restricted to a specific point access method. For the disjoint partitioning approach, it
is assumed that ιF∈IF

⊂. Otherwise it is not competitive.

Appendix A: References

1. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wienner, J.: The Lorel Query
Language For Semi-Structured Data. International Journal of Digital Libraries, page
68-88, Volume 1 (1997)

2. Anderson, B., Shasha, D.: Persistent Linda: Linda + Transactions + Query Processing.
In J.P. Banatre and D. Le Metayer, editors, Research Directions in High-Level Parallel
Programming Languages, volume 574 of Lecture Notes in Computer Science. Springer
Verlag (1991)

3. Bayer, R.: The Universal B-Tree for Multidimensional Indexing. Internal Report,
Technische Universität München (1996)

4. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices. Acta
Informatica 1, 3, 173-189 (1977)

5. Beckmann, N., Kriegel, N.-P., Schneider, R., Seeger, B.: The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, 322-331 (1990)

6. Bentley, J. L.: Decomposable Searching Problems. Information Processing Letters 8, 5,
244-251 (1979)

7. Berners-Lee, T.: Universal Resource Identifiers in WWW. Internet informational
RFC1630 (1994)

8. Bjornson, R. D.: Linda on Distributed Memory Multiprocessors. PhD thesis, Yale
University, TR931 (1993)

-43-

9. Bjornson, R. D., Carriero, N., Gelernter, D.: From Weaving Threads to Untangling the
web: A View of Coordination from Linda' s Perspective. Multiple tuple spaces in
Linda. In Coordination ' 97, Lecture Notes in Computer Science, pages 1-17. Springer-
Verlag (1997)

10. Bray, T., Paoli, J., Sperberg-McQueen, C. M.: Extensible Markup Language (XML).
http://www.w3.org/TR/PR-xml.html (1997)

11. Busi, N., Gorrieri, R., Zavattaro, G.: A process algebraic view of Linda coordination
primitives. Theoretical Computer Science, 192(2):167-199 (1998)

12. Campbell, D., Osborne, H., Wood, A.: Characterising the Design Space for Linda
Semantics. Technical Report YCS-97-277, University of York (1997)

13. Carriero, N., Gelernter, D., Zuck, L.: Bauhaus Linda. In Paolo Ciancarini, Oscar
Nierstrasz and Akinori Yonezawa, editors. Object-Based Models and Languages for
Concurrent Systems, volume 924 of Lecture Notes in Computer Science, pages 66-76,
Springer-Verlag (1995)

14. Castellani, S, Ciancarini, P., Rossi, D.: The ShaPE of ShaDE: a Coordination System.
Technical Report UBLCS, Dipartimento di Scienze dell' Informazione, Università di
Bologna, Italy (1995)

15. Cellary, W., Gelenbe, E., Morzy, T.: Concurrency Control in Distributed Database
Systems. North-Holland (1988)

16. Chen, W., Chow, J., Fuh, Y., Grandbois, J., Jou, M., Mattos, N. M., Tran, B., Wang,
Y.: High Level Indexing of User-Defined Types. Proceedings of the 25th International
Conference on Very Large Databases (VLDB 1999), pages 554-564, Edinburgh, UK
(1999)

17. Cohn, P., M.: Algebra, John Wiley & Sons, Second Edition (1982)
18. Codd, E. F.: A Relational Model of Data for Large Shared Data Banks.

Communications of the ACM, 13:6, 377-387 (1970)
19. Cooper, B. F., Sample, N., Franklin, M. J., Hjaltason, G. R., Shadmon, M.: A Fast

Index for Semistructured Data. 27th International Conference on Very Large Data
Bases (VLDB 2001), Rome, Italy (2001)

20. Corradi, A., Leonardi, L., Zambonelli, F.: A Scalable Tuple Space Model for
Structured Parallel Programming. Proceedings of the Conference on Massively Parallel
Programming Models, IEEE CS Press, Pages 25-32, Berlin, Germany (1995)

21. McCreight, E. M.: Priority Search Trees, SIAM J. Computing 14, Pages 257-276
(1985)

22. Date, C. J., Darwen, H.: A Guide to the SQL Standard. Third edition, Addison-Wesley
(1993)

23. Davies, N., Wade, S. P., Friday, A., Blair, G. S.: Limbo: A Tuple Space Based
Platform for Adaptive Mobile Applications. Proceedings of the International
Conference on Open Distributed Processing/Distributed Platforms (ICODP/ICDP ' 97),
Toronto, Canada, pp291-302 (1997)

24. Devlin, B., Gray, J., Laining, B., Spix, G.: Scalability Terminology: Farms, Clones,
Partitions, and Packs: RACS and RAPS. Microsoft Research, Technical Report MS-
TR-99-85 (1999)

25. ECOM (Ed.): Electronic Commerce – An Introduction. http://ecom.fov.uni−mb.si
(1998)

26. Dictionary of Computing. http://wombat.doc.ic.ac.uk (2000)
27. Feller, W.: Introduction to Probability Theory and Its Applications. Volume II. Wiley

Series in Probability and Mathematical statistics (1970)
28. Finkel, R., Bentley, J. L.: Quad Trees: A Data Structure for Retrieval of Composite

Keys. Acta Informatica 4(1), 1-9 (1974)
29. Franklin, S., Graesser, A.: Is it an Agent, or just a Program? A Taxonomy for

Autonomous Agents. Proceedings of third Int. Workshop on Agent Theories,
Architectures and Languages (1996)

-44-

30. Gaede, V., Gunther, G.: Multidimensional Access Methods. ACM Computing Surveys
(1997)

31. Gaedke, M., Turowski, K.: Generic Web-Based Federation of Business Application
Systems for E-Commerce Applications. In: S. Conrad; W. Hasselbring; G. Saake (Ed.):
2nd Intl. Workshop on Engineering Federated Information Systems (EFIS99),
Germany (1999)

32. Gelernter, D.: Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1): 80-112 (1985)

33. Gelernter, D.: Multiple tuple spaces in Linda. In E. Odijk, M. Rem, and J.-C. Syre,
editors, PARLE ' 89: Parallel Architectures and Languages Europe. Volume II: Parallel
Languages, volume 366 of Lecture Notes in Computer Science, pages 20-27. Springer-
Verlag (1989)

34. Gelernter, D., Zuck, L: On What Linda Is: Formal Description of Linda As a Reactive
System. In Coordination ' 97, Lecture Notes in Computer Science, pages 187-204.
Springer-Verlag (1997)

35. Goldman, R., Chawathe, S., Crespo, A., McHugh, J. A.: Standard Textual Interchange
Format for the Object Exchange Model (OEM). Department of Computer Science,
Stanford University. California, USA (1996)

36. V. d. Goot, R., Schaeffer, J., Wilson, G. V.: Safer Tuple Spaces. In Coordination ' 97,
Lecture Notes in Computer Science, pages 289-301. Springer-Verlag (1997)

37. Guttman, A: R-trees: A dynamic index structure for spatial searching. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages 47-57
(1984)

38. Van Huizen: JMS, an Infrastructure for XML-based Business-to-Business
Communication, JavaWorld (2000)

39. IBM Systems: Enterprise TSpaces. http://www.almaden.ibm.com/cs/TSpaces (2001)
40. Larsen, J. E., Spring, J. H.: A Dynamically Fault-Tolerant and Dynamically Scalable

Distributed Tuplespace for Heterogeneous, Loosely Coupled Networks (GLOBE),
Master thesis, University of Copenhagen (1999)

41. Lausen, G., Vossen, G.: Models and Languages of Object-Oriented Databases.
Addison-Wesley (1997)

42. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions.
Proceedings of the 27th International Conference on Very Large Databases (VLDB
2001), pages 361-370, Rome, Italy (2001)

43. Luger, et al.: The Blackboard Architecture for Problem Solving, Artificial Intelligence:
Structures and Strategies for Complex Problem Solving, Second Edition, Chapter 5.5,
Benjamin/Cummings Publishing Company (1993)

44. Matsuyama, T., Hao, L. V., Nagao, M.: A File Organization for Geographic
Information Systems Based on Spatial Proximity. Int. J. Comp. Vision, Graphics and
Image Processing 26(3), 303-318 (1984)

45. De Nicola, R., Ferrari, G.-L., Pugliese, R.: Locality based Linda: programming with
ex-plicit localities. Proceedings TAPSOFT ' 97. Lecture Notes in Computer Science
1214, 712-726, Springer Verlag (1997)

46. Obreiter, P.: Extending Tuple Spaces Towards a Middleware for eCommerce.
Studienarbeit, University of Karlsruhe, Germany (2000)

47. Obreiter, P., Graef, G.: Applying Component Based Web Engineering in an
International Enterprise. Proceedings of the International Forum cum Conference on
Information Technology and Communication at the Dawn of the New Millennium,
pages 33-45, Bangkok, Thailand (2000)

48. Obreiter, P., Graef, G.: Towards Scalability in Tuple Spaces. ACM Symposium of
Applied Computing (SAC) Special Track on Coordination Models, Languages and
Applications, Madrid, Spain (2002)

-45-

49. Peano, G.: Sur une courbe qui remplit toute une aire plaine. Mathematische Annalen
36, 157-160 (1890)

50. Rowstron, A.: WCL, a Coordination Language for Geographically Distributed Agents.
World Wide Web Journal, Volume 1, Issue 3, 167-179 (1998)

51. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading MA (1990)

52. Schek, H.-J., Scholl, M. H.: The NF2 relational algebra for uniform manipulation of
external, conceptual, and internal data structures. In J.W. Schmidt, editor, Sprachen
fuer Datenbanken, IFB 72. Springer Verlag (1983)

53. Schoenfeldinger, W.: WWW Meets Linda. In Proc. 4th Int. World Wide Web
Conference: The Web revolution, Boston, MA, World Wide Web Journal 1(1):259-276
(1995)

54. Schroeder, T., Goddard, S., Ramamurthy, B.: Scalable Web server clustering
technologies. IEEE Network, May-June 2000, pp. 38-45 (2000)

55. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-tree: A Dynamic Index for Multi-
dimensional Objects. In Proc. 13th Int. Conf. on Very Large Data Bases (VLDB), 507-
518 (1987)

56. Stonebraker, M.: Object-Relational DBMSs - the Great Next Wave. Morgan-
Kaufmann (1996)

57. Sun Microsystems: JavaSpaces Technology, http://java.sun.com/products/javaspaces
(2000)

58. Sun Microsystems: Java, http://java.sun.com (2000)
59. Weiser, M.: Some Computer Science Issues in Ubiquitous Computing,

Communications of the ACM (1993)
60. Wells, G., Chalmers, A.: An Extended Linda System Using PVM. In PVM Users'

Group Meeting, Pittsburgh (1995)
61. Wyckoff, P., McLaughry, S. W., Lehman, T. J., Ford, D. A.: TSpaces, IBM Systems

Journal (1998)

