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advection-reaction-diffusion systems

Jayantha Pasdunkorale Arachchigea1 2 and Graeme J. Pettetb

Mathematical Sciences School, Queensland University of Technology, Brisbane, Australia
E-mail: aj.pasdunkoralearachige@qut.edu.au, bg.pettet@qut.edu.au

Abstract

The numerical solution in one space dimension of advection–reaction–diffusion systems with

nonlinear source terms may invoke a high computational cost when the presently available

methods are used. Numerous examples of finite volume schemes with high order spatial dis-

cretisations together with various techniques for the approximation of the advection term can

be found in the literature.

Almost all such techniques result in a nonlinear system of equations as a consequence of the

finite volume discretisation especially when there are nonlinear source terms in the associated

partial differential equation models.

This work introduces a new technique that avoids having such nonlinear systems of equa-

tions generated by the spatial discretisation process when nonlinear source terms in the model

equations can be expanded in positive powers of the dependent function of interest.

The basis of this method is a new linearisation technique for the temporal integration of

the nonlinear source terms as a supplementation of a more typical finite volume method. The

resulting linear system of equations is shown to be both accurate and significantly faster than

methods that necessitate the use of solvers for nonlinear system of equations.

Keywords: Nonlinear, Reaction, Advection, Diffusion, Shock, Chemotaxis, Finite volume

method

1. Introduction

The use of advection-reaction-diffusion (ARD) equations for modelling biological processes

can provide insight and perspective into the development of complex yet robust behaviour in

living systems, that otherwise is difficult to achieve by direct or indirect observation of a living

system. As a result, there exists now a substantial and increasing body of literature dealing
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with mathematical models of phenomena as diverse as tumour growth and invasion [1], the

movement of cells in tissues [2] and pattern formation [3].

Usually the transport component of such models are dominantly diffusive or dominantly

advective but there is a developing interest in problems where the contribution of both processes

is important as indeed are the magnitudes of the reaction terms [4]. Although some traction in

determining the behaviour of such systems may be gained by examining them at diminishing

limits of diffusion or advection, the numerical solution of the full system can prove problematic.

Such is the case for the mathematical models of embryologic development [5] where the system

smoothly makes the transition from being dominantly parabolic, exhibiting smooth-fronted

travelling waves, to dominantly hyperbolic with shock-fronted travelling waves. Typically the

methods adopted to reliably capture the travelling wavefronts in such models employ flux-

limiting or gradient averaging techniques at the front [4].

Here we introduce a new method for numerically solving such ARD systems in one space

dimension, based on the usual finite volume paradigm [6] with a third order upwinding scheme

[7] for the calculations of the advection term in space and by employing a very effective integral

approximation technique in time for chosen nonlinear reaction terms. This temporal integration

approximation has been used in finite element and finite difference methods for solving partial

differential equations where source term linearisation is required, see for example [8] and [9]. We

find that the use of this linearisation technique in a finite volume method for solving the problems

of our interest has been very effective in terms of computational cost for the simulations. We

illustrate how the numerical scheme is implemented for a class of multi-species partial differential

equation models where the diffusion component of each balance equation is taken to be Fickian

and the advective velocity depends upon the gradient of another species. Such models are

typically used in the description of chemotactic phenomena where cellular invasion is directed

by a diffusive attractant [4, 5]. We also demonstrate the effectiveness of the method described

here by resolving a number of recent example models within this domain of advection–reaction–

diffusion systems.

These models usually conform to the following description of two (or more) interacting

species u(x, t) and c(x, t) say, both of which disperse by a process modelled as Fickian diffusion.

Additionally species u(x, t), usually taken to be a population density of some cellular species

in time t at position x, is being advectively transported with a velocity determined by the

gradient of another species c(x, t). As a generic example of such systems we will take the

following equations to hold for 0 < x < L < ∞ and t > 0;
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Figure 1: Interior and boundary control volumes.

∂u

∂t
= Du

∂2u

∂x2
− ∂

∂x

(
uχ(c)

∂c

∂x

)
+ f(u, c) (1)

∂c

∂t
= Dc

∂2c

∂x2
+ h(u, c) (2)

where f(u, c) and h(u, c) describe the reaction between the species, and Du and Dc are diffusion

coefficients. The function χ(c) describing the sensitivity of the cells to the chemotactic signal

is variously taken to be a constant or a nonlinear function of c, for example χ(c) = κ, χ(c) =

1/(1 + κc) or χ(c) = κc2 − κc + 1 where κ is a constant [10]. Initial and boundary conditions

may be generally represented as appropriate.

Although we are considering here only one dimensional systems involving 2 or 3 species, the

methods described naturally extend to higher dimensional problems with more species.

2. Discretisation of equations using Finite Volume Method

The model equations are discretised using the vertex centered control volume method with

a uniform mesh. The nodes, xi = iδx, i = 0, 1, 2, 3, ..., N , are chosen along the x−axis between

x = x0 = 0 and x = xN = L; where Nδx = L. Control volumes are constructed around the

interior nodes with control volume faces at xiw = xi− δx
2 and xie = xi+

δx
2 for i = 1, 2, 3, ..., N−1

as shown in Figure 1(a). At the ends of the domain [0, δx2 ] and [L− δx
2 , L], see Figure 1(b), are

considered as the boundary control volumes.

Integration of equation (1) over the control volume [xiw, xie] = [xi −
δx

2
, xi +

δx

2
] w.r.t. x

gives the following equation:

∂

∂t

(∫ xie

xiw

u dx

)
= Du

[
∂u

∂x

]xie

xiw

−
[
uχ(c)

∂c

∂x

]xie

xiw

+

∫ xie

xiw

f(u, c) dx
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The above equation can be approximated as follows under suitable assumptions:

∂

∂t
(Uiδx) ≃Du

(
Ui+1 − Ui

δx
− Ui − Ui−1

δx

)
−
(
Uieχ(Cie)

Ci+1 − Ci

δx
− Uiwχ(Ciw)

Ci − Ci−1

δx

)
+ f(Ui, Ci)δx;

where Ui = Ui(t) ≃ u(xi, t) and Ci = Ci(t) ≃ c(xi, t). Here, the values of C at control volume

faces can be approximated by using the values of C at the nodes around each control volume

face, for example, Cie ≃
Ci + Ci+1

2
.

2.1. A high order approximation of spatial integrals

It should be noticed that the linear approximations

∫ xie

xiw

u(x, t) dx ≃ Uiδx and

∫ xie

xiw

f dx ≃

f(Ui, Ci)δx above are made on the assumption that the function value at the centre of the control

volume represents the average of the function within the control volume. This is not true for

many diffusion problems. A higher order approximation of

∫ xie

xiw

u(x, t) dx can be considered

by using the trapezoidal rule for integration and the Taylor series expansions of the function u

around the point xi as follows:∫ xie

xiw

u dx ≃ δx

2
(uiw + uie)−

(δx)3

12

(
∂2u

∂x2

)
ζ

; xiw < ζ < xie

≃ δx

2

[
2Ui +

(δx)2

4

(
∂2u

∂x2

)
i

]
− (δx)3

12

(
∂2u

∂x2

)
i

=
δx

2

[
2Ui +

(δx)2

12

(
∂2u

∂x2

)
i

]
≃ δx

2

[
2Ui +

(δx)2

12

Ui−1 − 2Ui + Ui+1

(δx)2

]
=

δx

24
[Ui−1 + 22Ui + Ui+1] .

This result has been used in [6] which also explains the necessity of careful treatment of boundary

conditions and requirement of suitable treatment for the advection term when this approxima-

tion is used for the discretisation of advection-reaction-diffusion equations.

For a boundary control volume, for example for the control volume [0, δx/2], one may use

the trapezoidal rule for approximating the above integral as follows:∫ δx/2

x0

u dx ≃ δx/2

2
(u0 + uδx/2)−

(δx)3

12

(
∂2u

∂x2

)
ζ

≃ δx

4

[
U0 +

U0 + U1

2

]
=

δx

8
[3U0 + U1]

due to the fact that a good approximation for

(
∂2u

∂x2

)
ζ

; 0 < ζ < δx/2 will not directly be

available.
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2.2. Approximation of advection term

One may use one of the different approximation methods from among the available tech-

niques such as averaging, upwinding and flux limiting for the treatment of the advection term

in order to replace the values of the governing function [4] at control volume faces during the

process of finite volume discretisation.

The third order upwinding scheme that retains the second order derivative in the Taylor

series expansion for approximation of the governing function at the control volume faces can be

used in order to have an increased accuracy of the solution; see the QUICK scheme in [7]. This

scheme leads to an approximation of, for example, Uie by the following:

Uie =
1

2
(Ui+1 + Ui)−

1

8
(Ui+1 − 2Ui + Ui−1)

under the condition that the mass flow rate, say v, through the face is greater than zero. It is

easy to show that

Uie =
1

2
(Ui+1 + Ui)−

1

8
(Ui+2 − 2Ui+1 + Ui)

when v < 0. Therefore one could approximate Uie or Uiw using the following expressions with

appropriate coefficients ak and bk:

Uie =

i+2∑
k=i−1

akUk or Uiw =

i+1∑
k=i−2

bkUk,

respectively, in order to use the third order upwinding scheme for the discretisation.

Hence the spatial integration of the equation (1) over the interior control volume leads to

the following when the above approximations are used.

δx

24

∂

∂t
(Ui−1 + 22Ui + Ui+1) = Du

(
Ui+1 − Ui

δx
− Ui − Ui−1

δx

)
−

[(
i+2∑

k=i−1

akUk

)
χ(Cie)

Ci+1 − Ci

δx
−

(
i+1∑

k=i−2

bkUk

)
χ(Ciw)

Ci − Ci−1

δx

]

+
δx

24
(f(Ui−1, Ci−1) + 22f(Ui, Ci) + f(Ui+1, Ci+1)).

The integration of the above equation over the time interval [jδt, (j + 1)δt] and its approx-
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imation leads to

δx

24

[(
U

(j+1)
i−1 + 22U

(j+1)
i + U

(j+1)
i+1

)
−
(
U

(j)
i−1 + 22U

(j)
i + U

(j)
i+1

)]
=

Du

δx

[(
U

(j+1)
i+1 − 2U

(j+1)
i + U

(j+1)
i−1

)
(1− α)δt+

(
U

(j)
i+1 − 2U

(j)
i + U

(j)
i−1

)
αδt
]

−

(
χ(C

(j+1)
ie )

C
(j+1)
i+1 − C

(j+1)
i

δx

i+2∑
k=i−1

akU
(j+1)
k − χ(C

(j+1)
iw )

C
(j+1)
i − C

(j+1)
i−1

δx

i+1∑
k=i−2

bkU
(j+1)
k

)
(1− α)δt

−

(
χ(C

(j)
ie )

C
(j)
i+1 − C

(j)
i

δx

i+2∑
k=i−1

akU
(j)
k − χ(C

(j)
iw )

Cj
i − C

(j)
i−1

δx

i+1∑
k=i−2

bkU
(j)
k

)
αδt

+
δx

24

i+1∑
k=i−1

αkf̄(U
(j)
k , U

(j+1)
k , C

(j)
k , C

(j+1)
k , β)δt;

(3)

where 0 ≤ α, β ≤ 1 and αi−1 = 1, αi = 22, αi+1 = 1. Here f̄ is a representative value for the

function f for the interval [jδt, (j + 1)δt] as described below.

2.3. Time integration of nonlinear reaction terms

It should be noted that when the function f(u, c) contains nonlinear terms of u, the above

equation will end up with nonlinear terms of U
(j+1)
i if traditional methods are used to ap-

proximate the integral

∫ (j+1)δt

jδt
f(Ui, Ci) dt. This situation is often handled by using methods

available for example in [11] for solving nonlinear system of equations. However, such methods

for the solutions of nonlinear systems of equations arising from more complicated cell migra-

tion problems lead to costly computational algorithms which are not suitable for some of the

available solvers [12].

Therefore, in this work that introduces a new approach to reduce the above computational

cost while maintaining the accuracy of the solution, the integral∫ (j+1)δt

jδt
f(Ui, Ci)dt ≃ f̄(U

(j)
i , U

(j+1)
i , C

(j)
i , C

(j+1)
i , β)δt; where 0 ≤ β ≤ 1

is approximated appropriately so that f̄ can be written as a linear function of U j+1
i as follows:

f̄(U
(j)
i , U

(j+1)
i , C

(j)
i , C

(j+1)
i , β) = f̄1(U

(j)
i , C

(j)
i , C

(j+1)
i , β)U

(j+1)
i + f̄2(U

(j)
i , C

(j)
i , C

(j+1)
i , β) (4)

assuming that δt is sufficiently small to keep the accuracy of the approximation.

There are many ways for approximating an integration of a function on a very small interval.

For example, one can use δt times the geometric average of the function values at the end

points of the interval rather than using the arithmetic average of those values (or vice-versa)

to approximate the integral of the function over the interval [jδt, (j + 1)δt]. As an example, a

6



representative function of Ui − U2
i for a time point t = (j + 1 − β)δt; 0 ≤ β ≤ 1 of the time

interval [jδt, (j + 1)δt] can be constructed as follows

U
(j+1−β)
i −

(
U

(j+1−β)
i

)2
≃ βU

(j)
i + (1− β)U

(j+1)
i −

(
(U

(j)
i )2

)β (
(U

(j+1)
i )2

)1−β

≃ βU
(j)
i + (1− β)U

(j+1)
i −

(
(U

(j)
i )β(U

(j+1)
i )1−β

)2
= βU

(j)
i + (1− β)U

(j+1)
i − (U

(j)
i )2β(U

(j+1)
i )2(1−β)

by using the arithmetic average and the geometric average for linear and quadratic terms re-

spectively.

One could easily notice that the above approximation represents Ui(1−Ui) within the interval

[jδt, (j + 1)δt] since it becomes U
(j+1)
i (1 − U

(j+1)
i ) and U

(j)
i (1 − U

(j)
i ) when β = 0 and β = 1,

respectively. It gives an interesting and very useful result for finite volume discretisations

of the problem of interest in this work when β = 1
2 is used for a function in the form of

f(u, c) = (µ1 + ν1c)u− µ2u
2 in equation (1) as follows:

f (j+ 1
2
) (Ui, Ci) =

(
µ1Ui + ν1CiUi − µ2U

2
i

)(j+ 1
2
)

≃ µ1
U

(j)
i + U

(j+1)
i

2
+

ν1
2

(
Cj
i U

(j)
i + C

(j+1)
i U

(j+1)
i

)
− µ2U

(j)
i U

(j+1)
i

=
(µ1

2
+

ν1
2
C

(j+1)
i − µ2U

(j)
i

)
U

(j+1)
i +

(
µ1

U
(j)
i

2
+

ν1
2

(
U

(j)
i C

(j)
i

))
;

where the geometric mean of the quantities over the time interval is considered for the quadratic

term U2
i and the arithmetic average is used directly for the linear terms Ui and CiUi of the

governing function f(Ui, Ci). The above discretisation of f has the form given in equation (4).

It is straight forward to show that(∫ (j+1)δt

jδt
{U(xi, t)}2dt

)
− U

(j)
i U

(j+1)
i δt =

(δt)2

2

(
U

(j+1)
i

(
dUi

dt

)(j)

− U
(j)
i

(
dUi

dt

)(j+1)
)

+
(δt)3

6

(
U

(j+1)
i

(
d2Ui

dt2

)(j)

+ U
(j)
i

(
d2Ui

dt2

)(j+1)
)

+ ...

if one uses the Taylor expansions of U(xi, t) = U(xi, tj + δt1) and U(xi, t) = U(xi, tj+1 − δt2)

around tj and tj+1, respectively, with δt1 = t − tj and δt2 = tj+1 − t in order to integrate

{U(xi, t)}2 = U(xi, tj + δt1)U(xi, tj+1 − δt2) over the time interval [jδt, (j + 1)δt]. Note

also that δt = δt1 + δt2 = tj+1 − tj . This proves that the error in the approximation of∫ (j+1)δt

jδt
{U(xi, t)}2dt by U

(j)
i U

(j+1)
i δt is in the order of (δt)2 for sufficiently small time step δt.

This approach can be used to prove the accuracy in the approximation of

∫ (j+1)δt

jδt
{U(xi, t)}mdt

by
(
U

(j)
i

)(m−1)
U

(j+1)
i δt for any integer power m ≥ 2. This will also enable linearisation of any

7



nonlinear function which can be expressed as a power series with non-negative powers of the

function of interest.

2.4. Linearised finite volume equations

Equations (3) and (4) lead to the following implicit finite volume discretisation of equation

(1) between the time interval [jδt, (j + 1)δt]:

i+2∑
k=i−2

pkU
(j+1)
k =

i+2∑
k=i−2

qkU
(j)
k +

i+1∑
k=i−1

rk; (5)

for interior control volumes3 around the points xi; i = 1, 2, 3, ..., N − 1 (with p−1 = q−1 = 0 and

pN+1 = qN+1 = 0) and j = 0, 1, 2, 3, ...,m where the coefficients pk, qk and rk depend on the

function values U
(j)
k , C

(j)
k and C

(j+1)
k for k = i− 2, i− 1, i, i+ 1, i+ 2 and other parameters as

shown in the Appendix.

For the simulations carried out here, the penta–diagonal system of equations given in equa-

tion (5) is reduced to a tri–diagonal system of equations in the form

i+1∑
k=i−1

pkU
(j+1)
k = −pi−2U

(j+1)
i−2 − pi+2U

(j+1)
i+2 +

i+2∑
k=i−2

qkU
(j)
k +

i+1∑
k=i−1

rk (6)

by replacing the terms U
(j+1)
i−2 and U

(j+1)
i+2 in the right hand side with U

(j)
i−2 + δt

∂Ui−2

∂t


j

and

U
(j)
i+2 + δt

∂Ui+2

∂t


j

, respectively. The time derivatives of the function U can be approximated

using the already calculated values of the dependent functions at time level j in finite difference

form of the governing equation (1). This arrangement of explicit treatment of terms that are

away from point xi allows us to use a tri–diagonal matrix algorithm that significantly reduces

the computational cost while maintaining the accuracy of the numerical solutions.

When an updated value for C
(j+1)
i is not readily available it can be again approximated by

C
(j+1)
i = C

(j)
i + δt

∂Ci

∂t


j

3Discretisation of the governing equation at the boundary control volumes, [0,
δx

2
] and [L− δx

2
, L], is done

making sure that the conservativity of the system is maintained considering the type of boundary conditions

associated with the models simulated here. The finite volume method discussed here is applied for all of the

coupled equations which are associated with diffusion, advection and reaction or any combination of them.

8



in the above approximations. The term

∂Ci

∂t


j

can be calculated utilising the available values

u and c at time level jδt in the finite difference approximation of the partial differential equation

associated with the function c. This approach avoids the appearance of the terms C
(j+1)
i (or

U
(j+1)
i ) in the coefficients of U

(j+1)
i (or C

(j+1)
i ) when discretising equation (1) (or equation (2)).

It should also be noted that the discretisation technique discussed here can be used not only

for the term f(u, c) in equation (1) but also for other term h(u, c) in equation (2) in order to

obtain a similar approximation as follows:

h̄(U
(j)
i , U

(j+1)
i , C

(j)
i , C

(j+1)
i , β) = h̄1(U

(j)
i , U

(j+1)
i , C

(j)
i , β)C

(j+1)
i + h̄2(U

(j)
i , U

(j+1)
i , C

(j)
i , β) (7)

for discretising equation (2) in order to solve the equations simultaneously.

2.5. The advantage of having a linear system of equations

The above system of equations, together with finite volume equations relevant to boundary

control volumes, can be solved directly in order to advance the solution forward a time step,

δt. The approach discussed here has avoided the requirement of solving a nonlinear system of

equations using a method such as an inexact Newton method as there are no nonlinear terms of

the governing function u at time level (j+1)δt. It should be noted that the approach discussed

here to integrate the reaction term in order to arrive at a linearised approximation can be easily

extended to 2D and 3D problems. Analysis of other nonlinear functions together with Taylor

approximations for those functions at the vicinity of each control volume will be helpful for

linearising functions other than the quadratic function discussed here. The careful choice of β

in the linearisation will also play an important role for such functions.

2.6. Calculation of spatial discretisation error in the absence of an exact solution

Since exact solutions are not available for most of the examples discussed here, the spatial

discretisation error associated with the numerical solution is measured using a mass balance

error (MBE), see for example [4], as follows:

MBE =
1

m− 1

m−1∑
k=1

[∫ L
0 (u(x, tk+1)− u(x, tk)) dx

tk+1 − tk
−
(∫ L

0
F (x, tk+1)dx− J(x, tk+1)

∣∣∣L
0

)]
where

J(x, t) = −Du
∂u

∂x
+ uχ(c)

∂u

∂x
and F (x, tk+1) = f(u(x, tk+1), c(x, tk+1))

for equation (1). The integration required for the calculation of the MBE are approximated by,

for example, ∫ L

0
F (x, tk+1)dx ≃

N∑
i=1

F (xi, tk+1)δxi

9



where F (xi, tk+1) are the numerical approximations of the function F (x, tk+1) at the points xi

and the δxi is the size of the control volume associated with xi.

This error measurement, MBE that depends on time step size by definition, calculates the

temporal average of the difference between the total change in each species in the domain of

interest from one time step to the next, and the net production within the domain plus the

net movement into the domain. The MBE calculated using the updated information at each

time level is a measure derived to check for any error that will arise if the conservativity of

the problem is violated by the spatial discretisation of the PDEs. We find that the MBE for

the numerical simulations of the models discussed here is decreasing as the size of the control

volumes (δx) are decreased along with proportional time steps (δt).

2.7. Method of manufactured solutions for code verification

In order to verify the accuracy of the numerical techniques used to generate solutions for

a partial differential equation (PDE) model one can use the method of manufactured solutions

[13, 14, 15] when there are no exact solutions known. This method provides a general procedure

for generating an analytic solution for a new PDE model constructed from the model under

investigation for the purpose of code accuracy verification. This approach is used here to

illustrate the accuracy of the code used for the numerical simulations with the newly proposed

method for solving advection–reaction–diffusion problems.

3. Numerical Simulations

The above finite volume method with linearisation (FVML) of the reaction term is used

here for the numerical simulation of a variety of systems of ARD equations, employing the RK4

method for the solution of the ordinary differential equations that are associated with the model

equations. Coupled equations are solved simultaneously using the updated solutions available

at each time step.

A number of different one dimensional examples are provided here to illustrate the effective-

ness of using the finite volume method discussed above which incorporates a new approach of

arriving at a linear system of finite volume equations for nonlinear coupled system of PDEs.

In the first example, the solutions of an advection–diffusion problem which has an exact solu-

tion are depicted, allowing us to verify numerical solutions of an advection–dominated problem

[4]. This example specifically illustrates the advantage of using a high order approximation for

spatial integration together with a third order upwinding scheme for the approximation of the

advection term at the control volume faces. Then we converted this problem into an ARD equa-

tion by introducing a nonlinear source term which is balanced by an equivalent explicit function

10
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Figure 2: Plot of exact solution (solid line) and numerical solution (dotted line) of equation (8) using a third

order upwinding scheme with χ = 2, ϵ = 0.006 and x0 = 0.2 for (a) 25 and (b) 50 control volumes with time step

δt = 0.0005.

so that the equation still satisfy the same exact solution in order to test the FVML method

introduced in this paper. This conversion helps us to verify the FVML code according to the

method of manufactured solutions discussed in [13], [14] and [15]. The next example provides a

benchmark exact solution for the assessment of the newly proposed linearisation technique on

a reaction-diffusion problem. The equation associated with this problem is also converted to an

ARD equation by introducing an advection term to test the FVML technique. Furthermore,

in order to verify the numerical code the method of manufactured solutions is again used in

the subsequent example. A further example shows the accuracy of the method when it is ap-

plied to a coupled advection–reaction–diffusion equation system with a nonlinear reaction term

leading to solutions in the form of travelling waves. Finally an advection–reaction–diffusion

problem with nonlinear reaction terms that often lead to oscillating numerical solutions on

coarse meshes [4, 16] is considered. Further examples to illustrate the ability of the method

to simulate advection–reaction–diffusion problems with nonlinear reaction terms where the so-

lutions of interest exhibit shock-fronted travelling wave profiles will be discussed in the next

article associated with this work.

Note. All the numerical simulations depicted here are done using Matlab codes on a desktop

computer (2.99 GHz, 3.21 GB of RAM) running Matlab 7.9.0.529 (R2009b) 32-bit(win32).

3.1. Diffusion of wound healing chemoattractant

A non–dimensionalised advection–diffusion equation with analytic solution has been consid-

ered in [4] with different values for the diffusion coefficient of the chemoattractant species. The
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Figure 3: Plot of exact solution (solid line) and numerical solution (dotted line) of equation (8) using a third

order upwinding scheme with ϵ = 0.0001, χ = 2 and x0 = 0.2 for 200 control volumes ((a) and (b)) and 500

control volumes ((c) and (d)) with time step δt = 0.0005.

relevant model equation has the form

∂n

∂t
− ∂

∂x

(
ϵ
∂n

∂x
− χn

)
= 0, 0 < x < 1, t > 0, (8)

with boundary conditions

n(0, t) =
1√

1 + 4t
exp

[
−(x0 + χt)2

ϵ(1 + 4t)

]
, t > 0,

n(1, t) =
1√

1 + 4t
exp

[
−(1− x0 − χt)2

ϵ(1 + 4t)

]
, t > 0,

and initial condition

n(x, 0) = exp

[
−(x− x0)

2

ϵ

]
, 0 ≤ x ≤ 1.

These initial and boundary conditions had been chosen in [4] so that an exact closed form

solution given by

n(x, t) = n̂(x, t) =
1√

1 + 4t
exp

[
−(x− x0 − χt)2

ϵ(1 + 4t)

]
12
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Figure 4: Convergence of the solutions of equation (8) using a third order upwinding scheme with χ = 2 and

x0 = 0.2. The convergence of RMSE as the number of node points changes for (a) ϵ = 0.006 and δt = 0.0001,

and (b) ϵ = 0.0001 and δt = 0.0001. The convergence of RMSE as the number of time points changes for (c)

ϵ = 0.006 and δx = 0.005, and (d) ϵ = 0.0001 and δx = 0.005.

could be obtained.

Figures 2 and 3 provide the exact solution (solid line) and numerical solution (dotted line)

obtained using finite volume technique (Crank-Nicholson scheme: α = 0.5) with third order

upwinding scheme to estimate the advective chemoattractant quantity for different diffusion co-

efficients and number of control volumes. It can be easily seen from Figure 2 that the numerical

solution with just 50 control volumes with time step δt = 0.0005 avoids the negative solution

near x = 0.6 that occurs when 25 control volumes are used for the simulation. This error occurs

even with 100 control volumes when MATLAB’s partial differential equation solver, pdepe.m,

and the Numerical Algorithms Group routine, D03PCF, are used for this problem [4]. Figure 3

shows the necessity of increasing the number of control volumes and time steps according to the

Péclet number associated with the problem when a very small diffusion coefficient is used. It

should be noted that FVML recovers the spike in Figure 3b and agrees with the exact solution
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Figure 5: Convergence of the solutions of equation (9) using a third order upwinding scheme with linearisation of

source term (FVML) with χ = 2 and x0 = 0.2. The convergence of RMSE as the number of node points changes

for (a) ϵ = 0.006 and δt = 0.0001, and (b) ϵ = 0.0001 and δt = 0.0001. The convergence of RMSE as the number

of time points changes for (c) ϵ = 0.006 and δx = 0.005, and (d) ϵ = 0.0001 and δx = 0.005.

when a very small time step and a space step are used for the simulations.

Figure 4 shows how the RMSE changes when the time step or the space step changed while

one of them is fixed. These figures provide evidence of stability of the solutions obtained using

the third order upwinding method discussed here.

We modify the advection–diffusion equation discussed here by adding a reaction term into

the equation as shown below in order to verify the code with the FVML technique introduced

here. We used the method of the manufactured solutions as described in [13], [14] and [15] to

construct the problem which still satisfy the same exact solution. The modified equation is read

as
∂n

∂t
− ∂

∂x

(
ϵ
∂n

∂x
− χn

)
− n(1− n) = −g1(x, t), 0 < x < 1, t > 0, (9)

where g1(x, t) is explicitly given by g1(x, t) = n̂(x, t)(1 − n̂(x, t)) so that this modified partial
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differential equation still satisfies the exact solution n = n̂(x, t) when the same initial and

boundary conditions above are used. The results FVML code were in agreement with the exact

solutions and the comparison of the convergence of the RMSE for different time steps and space

steps are shown in the Figure 5 which again provides evidence of the stability of the method

introduced.

3.2. A model of thermal wave propagation

Here we will simulate solutions of a thermal wave problem [8] which is associated with a

time dependent heat equation with a nonlinear source term. This test problem has a smooth

analytical solution [17] in the form of a propagating wave. The nonlinear reaction-diffusion

equation is
∂T

∂t
=

∂2T

∂x2
+

8

δ2
T 2(1− T ); (10)

where δ > 0 with boundary conditions T (−∞, t) = 1 and T (∞, t) = 0 and the initial condition

T (x, 0) = 0.5(1− tanh(x/δ)). The analytic solution of this problem is

T (x, t) = T̂ (x, t) =
1

2

(
1− tanh

[
x− 2t/δ

δ

])
for −∞ < x < ∞, t > 0.

Figure 6 depicts the comparison of the results obtained using pdepe.m and the proposed

method with the exact solutions and Table 1 gives an indication of the computational time

and relevant root mean squares error in generating these solutions. Interested reader will note

that the FVML provides smaller RMSE than pdepe.m for all the cases except for the case

with δx = 0.02 and δt = 0.0005. However, the high computational time (450.1s) required by

pdepe.m suggests that pdepe.m has used a smaller time step than 0.0005 for this specific case.

It is worthwhile to note that the RMSE values of FVML for δt = 0.00005 (or for δx = 0.02)

decrease with δx (or δt). These results suggest that FVML requires the space step to be around

δx = 0.02 and the time step to be around δt = 0.00005 for the convergence of the method, for

this specific test problem considered with δ = 0.1. Note that the parameter value δ = 0.1 is used

for simulations as it provides a steep travelling wave type profile for the exact solution. Solutions

are obtained for the domain −60 ≤ x ≤ 60 even though Figure 6 shows only selected intervals

of the domain where there are significant differences in the solutions. Figure 7 illustrates how

the RMSE and computational time vary with the number of mesh points on the domain for the

numerical simulations that used pdepe.m and FVML.

This reaction-diffusion problem is then converted to an advection-reaction-diffusion problem

by adding an advection term into the equation so that the equation becomes

∂T

∂t
=

∂2T

∂x2
− ∂

∂x
(χT ) +

8

δ2
T 2(1− T ) + g2(x, t); (11)
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Computational time and root mean square error in producing results of equation (10)

δt
Computational Time (s) Root Mean Squares Error

δx = 0.2 δx = 0.1 δx = 0.05 δx = 0.02 δx = 0.2 δx = 0.1 δx = 0.05 δx = 0.02

(i) 0.0005 0.32813 0.625 1.2031 3.2188 0.057153 0.0031418 0.040547 0.04793

(ii) 0.0001 1.5781 2.9531 5.6406 13.9063 0.071584 0.037063 0.0013962 0.01091

(iii) 0.00005 3.1719 5.7969 11.3438 28.09 0.073417 0.040826 0.0078428 0.004412

(iv) N/A 44.8281 88.1875 177.9688 459.1 0.30402 0.16137 0.077766 0.02047

Table 1: Comparison of computational time and root mean square error for the solutions of equation (10) when

δ = 0.1 on the domain −60 ≤ x ≤ 60. (i), (ii) and (iii) - FVML with δt = 0.0005, 0.0001 and 0.00005 respectively.

(iv) - pdepe.m. The values for (ii) are relevant to the results shown in Figure 6.

where g2(x, t) = χ
∂T̂

∂x
is an explicit function of x and t, in order to analyse the stability of the

FVML technique discussed here. The parameter χ is used to switch from the original problem

(χ = 0) to the modified problem (χ = 1) and vice versa. This advection-reaction-diffusion

problem still satisfies the exact solution T (x, t) = T̂ (x, t) given above according to the concept

of method of manufactured solutions. Figure 8 illustrates how the RMSE and the computational

time vary with the number of mesh points on the domain for the numerical simulations that

used pdepe.m and FVML for this modified problem.

Figures 7 and 8 depict how FVML keeps the stability of the solutions when the time step or

the space step are changed. It is obvious that the computational times required for extremely

small time step sizes for FVML are higher than the computational times taken by pdepe.m

when it runs on the same computational meshes where pdepe.m does not change time step size.

It is also worthwhile to note that the accuracy achieved by FVML has always been better than

pdepe.m except for the case where FVML has used a large time step size.

3.3. Code verification using the method of manufactured solutions for an ARD problem

Here we consider the partial differential equation model discussed in the sub section 3.4 for

the purpose of constructing a new advection–reaction–diffusion model that has the manufactured

solutions

u = û(x, t) =
χ2

χ2 + exp(χ(x− x0 − t))

and

c = ĉ(x, t) = 1− 0.5û.

These solutions are chosen considering the expected behaviour of the solutions of the model

considered in that example. Using the method discussed in [13], [14] and [15] it is easy to verify
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Figure 6: Solutions of the equation (10) when δ = 0.1 at time t = 1: dotted line - using finite volume technique

discussed here with δt = 0.0001, thick line - using pdepe.m and dashed line - exact solution.

that u = û(x, t) and c = ĉ(x, t) are solutions for the new model described by

∂u

∂t
− ∂2u

∂x2
+

∂

∂x

(
uχ

∂c

∂x

)
− u(1− u) = f1(x, t) (12)

∂c

∂t
− 1 + c+ uc = f2(x, t) (13)

where

f1(x, t) =
∂û

∂t
− ∂2û

∂x2
+

∂

∂x

(
ûχ

∂ĉ

∂x

)
− û(1− û)

and

f2(x, t) =
∂ĉ

∂t
− 1 + ĉ+ ûĉ.

Now the solutions of the equations (12) and (13) with compatible initial conditions (u(x, 0) =

û(x, 0) and c(x, 0) = ĉ(x, 0) for 0 ≤ x ≤ 1) and boundary conditions (u(0, t) = û(0, t), c(0, t) =

ĉ(0, t), u(L, t) = û(L, t) and c(L, t) = ĉ(L, t) for t > 0) will be u = û(x, t) and c = ĉ(x, t).
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Figure 7: Comparison of RMSE and computational time required for solving equation (10) using FVML and

pdepe.m codes when δ = 0.1 on the domain −60 ≤ x ≤ 60. (a) RMSE and (b) computational time calculated

for simulations by pdepe.m and FVML for different time step sizes (fvml1: δt = 0.0005, fvml2:δt = 0.0001,

fvml3:δt = 0.00005). Similarly (c) and (d) again provide RMSE and computational time for pdepe.m and FVML

(fvml4: δt = 0.00001, fvml5: δt = 0.000005)

The numerical solutions and exact solutions of this constructed model are compared in

Figure 9 for verifying the code which uses the proposed finite volume technique incorporating

an approach to treat the nonlinear source term.

3.4. Diffusive and chemotactic cellular migration

A mathematical model describing cell migration by diffusion and chemotaxis given by equa-

tions
∂u

∂t
= Du

∂2u

∂x2
− ∂

∂x

(
uχ

∂c

∂x

)
+ u(1− u) (14)

∂c

∂t
= 1− c− uc (15)
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Figure 8: Comparison of RMSE and computational time required for solving equation (11) using FVML and

pdepe.m codes when δ = 0.1 on the domain −60 ≤ x ≤ 60. (a) RMSE and (b) computational time calculated

for simulations by pdepe.m and FVML for different time step sizes (fvml1: δt = 0.0005, fvml2:δt = 0.0001,

fvml3:δt = 0.00005). Similarly (c) and (d) again provide RMSE and computational time for pdepe.m and FVML

(fvml4: δt = 0.00001, fvml5: δt = 0.000005)

has been considered in [5] for a number of different constant χ and Du values, with zero flux

boundary conditions and initial conditions given by

u(x, 0) =


1 x < 10

e−ζ(x−10) x ≥ 0 ,

c(x, 0) = 1.0 for 0 ≤ x ≤ L.

Travelling wave solutions with constant wave speed have been obtained in [5], demonstrat-

ing the onset of shock-like wavefronts with increasing chemotactic sensitivity χ. In order to

capture the shock front, Landman et al. [5] separate the model into distinct hyperbolic and

parabolic parts (operator splitting) and employ a front tracking and smoothing algorithm with
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Figure 9: Comparison of numerical solutions (solid line) obtained by proposed method and exact solutions (dashed

line) for the function u of equations (12) and (13) on 0 ≤ x ≤ 50 after 5s with δt = 0.001 and χ = 6.

a dependency on very small time steps for the hyperbolic component.

In contrast to the complexity of such a scheme we show here solutions of the same problem,

where no smoothing at the front has been employed, relying only on our direct finite volume

discretisation of the governing equations. Figure 10 displays the solutions for a number of

choices of the the parameter χ and parameter Du with ζ = 10 using the initial conditions given

above. These results in Figure 10(a) and 10(b), which were obtained with the same parameter

values as in [5], are highly comparable with the simulations provided in [5] demonstrating the

adaptability of our scheme for degenerate parabolic systems. Figure 10(c) and 10(d) show the

result of MATLAB code pdepe.m which fails to cope with very high values of χ (50 and 100)

and very low values of Du (0 and 0.1 near x = 0) respectively.
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Figure 10: Graphs of u(x, 20) and c(x, 20) obtained using the proposed finite volume method (see (a) and (b))

and pdepe.m (see (c) and (d)) for the solution of equations (14)-(15): (a) and (c): The influence of increasing

chemotaxis χ from left to right with values 0, 5, 10, 20, 50, 100 for fixed Du = 1. (b) and (d): The influence

of increasing diffusion (Du) from left to right with values 0, 0.1, 0.5, 1.0, 1.5, 5.0 when χ = 1 fixed. Note that

δt = 0.01 was fixed throughout the computation for simulations in (a) and (b).

3.5. A model of wound healing angiogenesis in soft tissue

The ingrowth of tissue into a thin, disc-like wound chamber within the dermis has been

discussed in [16] as a initial boundary value problem which consists of three governing equations

with diffusion, advection and reaction terms. The governing equations for capillary tip density

n(x, t), chemoattractant concentration a(x, t) and blood vessel density b(x, t) had been non–

dimensionalised to arrive at the following equations with given initial and boundary conditions

below.

Equations:
∂n

∂t
= µn

∂2n

∂x2
− χ

∂

∂x

(
n
∂a

∂x

)
+ λ1ab− λ2n− λ0n

2 (16)
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Figure 11: The comparison of the numerical results for equations (16)–(18) by the proposed method and flux

limiting approach with δt = 0.0005 and pdepde.m.

∂a

∂t
= D

∂2a

∂x2
+

λ4

2

[
1 + tanh

(
1− b

δ

)]
− λ4a− λ5ab (17)

∂b

∂t
= µb

∂

∂x

(
n
∂b

∂x

)
− µn

∂n

∂x
+ χn

∂a

∂x
(18)

Boundary conditions:

n(0, t) = n̂e−α1t,
∂a

∂x
(0, t) = λ7a(0, t)b̂, b(0, t) = b̂,

and
∂n

∂x
(1, t) =

∂a

∂x
(1, t) =

∂b

∂x
(1, t) = 0 for t > 0.

Initial conditions:

n(x, 0) =


n̂

x̄3
(x− x̄)(2x2 − x̄x− x̄2) for x ∈ [0, x̄)

0 for x ∈ [x̄, 1]

a(x, 0) = 0 ∀x ∈ [0, 1]
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Figure 12: The comparison of computational time (in seconds) taken for producing the numerical results for

equations (16)–(18) by the proposed method (FVML), flux limiting approach and pdepde.m. Figures (a) and (b)

show the computational time taken when δt = 0.0005 and δt = 0.001 are used respectively. Note that δt value

for the pdepe.m is not known.

b(x, 0) =

b̄+
b̂− b̄

x̄3
(x− x̄)(2x2 − x̄x− x̄2) for x ∈ [0, x̄)

b̄ for x ∈ [x̄, 1]

The finite volume technique discussed in this paper avoids the requirement of solving a

nonlinear system of equations which typically arise with traditional discretisation procedures

for this type of PDE system.

Figure 11 shows the relevant results with parameter values µn = 0.001, µb = 0.001, D = 1,

χ = 1.5, λ0 = 3, λ1 = 100, λ2 = 1, λ4 = 100, λ5 = 10, λ7 = 10, α1 = 2.5 δ = 0.01, n̂ = 1,

b̂ = 1.5, b̄ = 0.0 and x̄ = 0.05 as used in [4]. The results obtained using the proposed method

(solid lines) are highly comparable with those obtained in [4] using the finite volume method

with a van Leer flux limiting approach (dashed lines). Figure 11 also displays the numerical

oscillations of the solutions obtained using MATLAB’s pdepe.m code to solve the problem

(dash-dot lines). Figure 12 provides comparisons of the computational time for obtaining the

numerical solutions using a flux limiting technique (dashed lines) and MATLAB’s pdepe.m

(dash-dot lines) discussed in [4] and proposed finite volume method with linearisation of source

term (solid lines) for two time step sizes δt = 0.0005 and δt = 0.001. This provides a strong

evidence for the low computational cost required for the numerical simulations of PDE models

with nonlinear source terms when the proposed method is used. Figure 13 provides solutions

of FMVL for the function n at different time levels with δx = 0.0002 and δt = 0.0001. In

addition to that Figure 13 depicts how the absolute value of the MBE, which is a measure of

error in spatial discretisation for the function n(x, t), changes as the number of control volumes
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Figure 13: The plots for the function n(x, t) of equation (16) at time t = 0.3, t = 0.4 and t = 0.5 obtained using

FVML with 5000 control volumes and δt = 0.0001 as the time step and the plot of the absolute value of the error

measurement MBE as δx decreases when δt = 0.0001 for the numerical solutions for the function n of equation

(16) using FVML.

increases for the numerical simulation of the above model given by the equations (16)–(18) using

the proposed method. These results together with the results obtained in the previous sections

provide a strong evidence on the stability and the convergence of the method proposed.

4. Discussion

We are interested here in problems modelled as advection–reaction–diffusion systems in one

spatial dimension where the particular distinguishing characteristic is the need to find numerical

solutions when small limit approximations are not appropriate for the advective, reactive or

diffusive components, individually or in combination.

We have shown in this article just how we have constructed a method of solution even in the

neighbourhood of small limits, that captures to a broad variety of diffusive and tactically driven
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processes modelled in the literature. Many of these problems describe, particularly at the small

diffusion limit, shock-like fronts to travelling wave solutions and typical numerical methods

employed to generate these make use of computationally expensive smoothing or flux-limiting

techniques at the shock front.

In our exploration of advection–reaction–diffusion systems in one spatial dimension, particu-

larly those where the advective and reaction components are of a similar order, and the reactions

are nonlinear, we have recognised that the reaction terms can make a significant contribution

to solution error at the steep front. For this reason we have focused here on the solution of

strongly advective problems, eschewing any front smoothing or flux limiting to show that the

use of a higher order up–winding scheme combined with an appropriate linearisation in time

for the nonlinear reaction terms provides solutions of high accuracy. The increased accuracy of

this approach is best seen by comparing our results with those of Landman et al. [5] and the

flux-limiting approach adopted by Thackham et al. [4].

It would seem natural from the perspective adopted here that the use of both a high order

upwinding scheme and linearisation in time provides an accurate method that could easily be

adapted to include a smoothing algorithm in the neighbourhood of shock fronts, providing a

reliable numerical scheme capable of rendering accurate solutions for a wide range of Péclet and

Damköhler numbers, covering a wide range of advection–diffusion–reaction models of interest

in the bio–mathematical community.
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Appendix

The following equations represent the coefficients associated with the FVML scheme intro-

duced in this article and summarized in equation (5) in Section 2.4.
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