-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by KITopen

Iterative Solution of Linear Systems

with Improved Arithmetic and Result Verification

PhD Thesis, July 2000
Axel Facius
Universitat Karlsruhe (TH)


https://core.ac.uk/display/197593823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Meinen Eltern,
Inge und Armin






Iterative Solution of Linear Systems

with Improved Arithmetic and Result Verification

Zur Erlangung des akademischen
Grades eines

DOKTORS DER
NATURWISSENSCHAFTEN

von der Fakultat fur Mathematik der
Universitat Karlsruhe (TH)

genehmigte

DISSERTATION

von

Dipl.-Math. techn. Axel Facius
aus Schwabisch Gmund

Tag der mundlichen Prufung: 26. Juli 2000
Referent: Prof. Dr. U. Kulisch
Korreferent: H.-Doz. Dr. R. Lohner






Contents

Introduction
Notation

Preconditioned Krylov Subspace Methods
1.1 Subspace Methods . . . . . . . . .. .. ... ...
1.2 Generating Krylov Spaces . . . . . . . . ... ... .. ... ... ...
1.2.1  Arnoldi Algorithm . . . . . . . ...
1.2.2  Lanczos Algorithm . . . . . . .. ... ..o
1.2.3 Bi-Lanczos Algorithm . . . . . . ..o
1.3 Convergence Properties . . . . . . . . . ... ... ..
1.3.1 Symmetric Case . . . . . . . . ...
1.3.2 Nonsymmetric Case . . . . . . . .. ... ... ...
1.4 Preconditioners . . . . . . . . L
1.4.1 Splitting Techniques . . . . . . . . .. .. ... ... .. ....
Jacobi Preconditioners (21), GauB-Seidel Preconditioners (22), Relaxation
Methods (22)

1.4.2 Incomplete Decompositions . . . . . . . . .. ... ... .. ..
LDMT" Decomposition of General Matrices (24), LDL" Decomposition
of Symmetric Matrices (24), Cholesky or LLT Decomposition of S.P.D.
Matrices (24), Pivoting and Reordering Algorithms (25)

1.5 Krylov Type Linear System Solver . . . . . . ... ... ... ... ...
151 Overview . . . . . . . .
1.5.2 Conjugate Gradients (CG) . . . . ... . ... .. ... .....
1.5.3 Bi-Conjugate Gradients (BiCG) . . . . .. ... ... ... ...
1.5.4 Conjugate Gradient Squared (CGS) . . . . .. .. .. ... ...
1.5.5 Generalized Minimal Residuals (GMRES) . . . .. .. ... ...
1.5.6 Stabilized Variants and Quasi Minimization . . . . . . . . . . ..

Smoothing Residual Norms (37), Quasi Minimization (37)

Krylov Methods and Floating-Point Arithmetic

2.1 Floating-Point Arithmetics . . . . . . . . . .. .. ... L.
2.1.1 Floating-Point Numbers . . . . . . .. .. ... ... ......
2.1.2 Roundings . . . . . ... ...

2.2 Finite Precision Behavior of Lanczos Procedures . . . . . .. ... ...

23 Examples . . . ..



Contents

2.3.1 Preconditioning . . . .. ... oL 44
2.3.2 Convergence . . . . . . . . ... 45
Improved Arithmetics 47
3.1 The Exact Scalar Product . . . . . . .. ... .. ... .. ....... 48
3.2 Multiple Precision . . . . .. ... 49
3.2.1 Staggered Precision Numbers . . . . . . . .. ... ... 49
Basic Arithmetic Operations (50), Elementary Functions (50), Vector Oper-
ations (51)
3.2.2 Contiguous Mantissas . . . . . . . .. ... 51
3.3 Interval Arithmetic . . . . . . . . .. .. 52

Excursion: Enclosing Floating-Point Computations (54)

Error Bounds for Solutions of Linear Systems 55
4.1 Interval Extensions of Point Algorithms . . . . . . . . .. .. ... ... 56
4.2 Enclosures via Fixed Point Methods . . . . . . .. ... ... ... ... 56
4.3 Error Bounds via Perturbation Theory . . . . . . . ... ... ... ... 57
431 BasicErrorBounds . . . . ... ... 0oL 58
4.3.2 Improved Error Bounds . . . . . . ... ... 59
4.3.3 \Verified Computation . . . . .. . ... ... ... 63

Decomposition Error || LU — A||5 (63), Smallest Singular Value (63), Veri-
fying Positive Definiteness of TT” — 02T (65), Recursion Coefficients of the
GauB Quadrature Rule (65), Solutions of Symmetric Tridiagonal Systems (66)

High Performance Object Oriented Numerical Linear Algebra 67
5.1 Genericity . . . . . .. 68
5.1.1 Data Structures: Containers . . . . . . .. . ... ... ..... 69
5.1.2 Traversing and Accessing Elements: Iterators . . . . . . . . . .. 70
513 APointof View . . . . .. ... 73
5.2 Two-Stage Programming . . . . . . . . . ... ... ... ..., 73
5.2.1 Compile Time Programming . . . . . . .. ... ... ... ... 74
5.2.2 Self Optimization . . . . . . . . ... .. .. ... ....... 78
5.2.3 Expression Templates . . . . . . ... ... ... ... .. ... 79
Excursion: Exact Scalar Product (84)
vk — A Variable Precision Krylov Solver 85
6.1 Functional Descriptionof vk . . . . . . . . .. ... 85
6.1.1 Variable Precision . . . . . . .. ... o0 86
6.1.2 Matrix Types . . . . . . . ... 88
6.1.3 Preconditioners. . . . . . .. .. Lo 89
6.1.4 KrylovSolvers . . . . . . ... 90
6.1.5 Verification . . . . .. ..o 90
6.1.6 Output . . . . . . .. . 90
6.2 Usingvk . . . . . . . 91
6.2.1 Compiling vk . . . . . . . ..o 91
6.2.2 Command Line Options . . . . . . .. .. . ... ... ..... 93

6.3 xvk — A Graphical User Interface . . . . . . . .. ... ... .. .... 94



Contents

7 Computational Results 97
7.1 Level of Orthogonality . . . . . . .. . ... ... ... ... ... ... 97
7.2 High Precision and Exact Scalar Products . . . . . .. . ... ... ... 99
7.3 Beyond Ordinary Floating-Point Arithmetic . . . . . . . ... ... ... 101
7.4 Does Higher Precision Increase the Computational Effort? . . . . . . .. 102
7.5 Solving lll-Conditioned Test-Matrices . . . . . . . . . ... . ... ... 103
7.6 Verified Solutions for ‘Real-Life’ Problems . . . . . . . .. .. ... ... 105
7.7 \Verification via Normal Equations . . . . . . . .. .. .. ... ..... 106
7.8 Performance Tuning . . . . . . . ... 107
Conclusion 109

A Used Matrices 111

B Free and Open Source Software 115

C Curriculum Vitae 117

Bibliography 119






1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8
1.9
3.1
3.2
3.3
3.4
4.1

4.2
4.3

4.4
5.1

List of Algorithms

Arnoldi algorithm with a modified Gram-Schmidt procedure . . . . . . . 12
Lanczos algorithm for symmetric system matrices . . . . . . . . ... .. 14
Bi-Lanczos algorithm without look-ahead . . . . . . . .. ... ... .. 16
Preconditioned Lanczos algorithm . . . . . . . .. .. .. ... ... .. 20
Conjugate Gradient algorithm derived from a Lanczos process with Petrov

condition . . . ... 30
Preconditioned Conjugate Gradient algorithm . . . . . . . . . .. .. .. 31
Preconditioned Bi-Conjugate Gradient algorithm . . . . . . . . . . . .. 33
Preconditioned Conjugate Gradient Squared algorithm . . . . . . . . .. 35
Preconditioned Generalized Minimal Residual algorithm with restart . . . 37
Rounding a long accumulator to staggered . . . . . . . . ... ... .. 50
Subtraction of staggered numbers . . . . . .. ..o 51
Exact scalar product of staggered vectors . . . . . . . . ... ... .. 52
Enclosing floating-point expressions . . . . . . . . ... ... 54
Computing a verified upper bound for the defect of a triangular matrix

factorization . . . . . .. L 64
Computing a verified lower bound for the smallest singular value of a

triangular matrix . . . . ... oL 65
Interval Lanczos-algorithm . . . . . . . . . ... .00 66
Interval GauB algorithm for a tridiagonal matrix . . . . . . . .. ... .. 66
A generic routine for printing arbitrary matrices . . . . . . . . ... . .. 72

— vii —






Introduction

Calvin: You can't just turn on creativity like a faucet.
You have to be in the right mood.
Hobbes: What mood is that?

Calvin: Last-minute panic.

Calvin and Hobbes (by Bill Watterson), 1991

During the last decades, we have had an exponential growth of processor speed and
storage capacity. Due to Moore’s law, these quantities increase by a factor of two
every 18 months. This means, we have about one thousand times the computing
power today than we had in 1985, the year when the IEEE floating point standard
754 [4] was released. This standard proposes a 64 bit arithmetic for floating-point
operations and up to now there are hardly any improvements innovated by hardware
manufactures. The complete computing power is still utilized to increase the size of
problems that can be handled.

“There will still be people who say not all the relevant physics is in the models,
but that’s still a much smaller criticism than not being able to establish firm results
for the physics that is being modeled.” (John Gustafson, 1998 [54])

One of the largest consumers of floating-point arithmetics are iterative solvers
for linear systems of equations. Most of todays big problems in scientific computing,
e.g, in structural engineering or fluid dynamics are modeled by differential equations
which lead to large linear systems after discretization. Therefore it is an important
task to develop accurate and reliable algorithms for this purpose.

Frequently, preconditioned Krylov subspace methods are used to solve these
large and often sparse linear systems. Theoretically, Krylov methods have many
favorable properties concerning convergence rates, accuracy, computing time, and
storage requirements. Unfortunately, these properties prevalently do not hold in
the presence of roundoff errors. Computing time increases due to unnecessarily
many iterations and expensively computed stopping criteria and more storage is
needed, e.g, because of reorthogonalization strategies. Moreover, convergence does
sometimes not happen at all or stagnates without delivering the desired accuracy.

There are many investigations which try to quantize the attainable accuracy
or convergence rates in finite precision arithmetic. However, the purpose of this
work is not to try to get the best result with the given arithmetic. We aim to fix

-1-



Introduction

our requirements on final accuracy and then choose an appropriate arithmetic that
enables us to meet these requirements.

After identifying the critical parts which mostly suffer from finite precision arith-
metic, we selectively introduce arithmetical improvements to reduce the propagated
errors and thereby reducing the number of needed iterations.

The work in this thesis is based on recent developments on state of the art linear
system solvers, on arithmetical tools for verification and highly accurate computing,
as well as on high performance object oriented programming. Starting from there,
we develop powerful algorithms which are capable to deliver almost any desired
accuracy. Additionally, if the system is not too large, we are often able to prove
the correctness of our results, i.e., we can give a rigorous upper bound for the error
norm.



Introduction

The thesis is structured as follows.

Chapter 1 gives an introduction into the theory of preconditioned Krylov sub-
space methods. We start with a unified description of subspace methods in general
and various Krylov subspace generation techniques. After summarizing the most im-
portant results of infinite precision convergence theory, we give a detailed introduc-
tion into generic preconditioners. Particularly, we focus on splitting techniques and
incomplete factorizations with a special emphasis on suitable modifications made
for the requirements of our verification methods. Based on these fundamentals,
we give a broad overview over Krylov subspace solvers and describe some of the
most important variants in more details. For each method we prove the important
short recurrence properties and give pseudo-programming language formulation of
the preconditioned algorithm.

In Chapter 2, we investigate the behavior of preconditioned Krylov Methods in
the presence of finite precision arithmetic. After introducing the basic concepts of
floating-point numbers and arithmetic with these numbers, we present the central
results of finite precision theory of Krylov methods. Based on the error analysis of
C. Paige, we proved the direct dependency of the level of orthogonality among the
Krylov basis vectors on the used arithmetic. Subsequently, we give some examples,
demonstrating the influence of rounding errors on preconditioning and solving.

To narrow the gap between exact precision behavior as described in Chapter 1
and finite precision behavior stated in Chapter 2, Chapter 3 introduces several
important techniques which increase the precision and reliability of computer arith-
metic. Namely, we describe high precision arithmetics, interval arithmetic, and the
exact scalar product.

Chapter 4 summarizes important techniques for computing error bounds for
solutions of large linear systems. Introducing the basic concepts of classical verifica-
tion methods, such as interval Gaussian elimination or interval fixed point methods
we pass over into recently developed verification techniques based on perturbation
theory. In particular, we describe a fundamental method to bound error norms via
residual norms and then deduce a more advanced technique improving these bounds
by exploiting the Lanczos-Gauf§ connection.

The next two chapters focus on implementation techniques on a computer.
Chapter 5 gives a broad overview of several powerful programming techniques
for writing high performance object oriented numerical linear algebra routines.

Almost all ideas and concepts presented in this thesis are implemented in the
variable precision krylov solver vk. Chapter 6 describes the structure of the code
and how to use it. Additionally there is a graphical user interface xvk which is also
described in this chapter.

Finally, Chapter 7 exemplifies the techniques and methods, described in this
thesis. Particularly, we show that improved arithmetics are not only capable to de-
liver more accurate results but also can accelerate convergence significantly. More-
over we present highly precise verified solutions for systems with up to 2000 000
unknowns or condition numbers of approximately 1092,






Notation

Notation is everything.

Charles F. van Loan

Throughout this thesis, all matrices are denoted by bold capital letters (A), vectors
by bold lowercase letters (@), and scalar variables by ordinary lowercase letters (a,
or o). Interval variables are enclosed in square brackets ([A], [a], [a], or [a]).

If not mentioned explicitly, all matrices are square with dimension n and the
vectors are n-vectors.

By default the column vectors of a matrix are denoted with the same but low-
ercase letter and the elements are printed with the same letter, too, but in medium
weight. For example we have

A= (ai| - |an) = (aij); ;-
This notational convention is also used in the other direction, i.e., when we have a
sequence of vectors and need them collected in a matrix. Calligraphic letters (K)
denote (affine) vector-spaces or sets.

Some letters have a predefined sense in this thesis. That is the system matrix
A, the right hand side vector b, the exact solution

x*=A'b,
any approximation & to the solution, the residual vector
r=>b— Az,

the standard basis vectors e; = (0,...,0,1,0,...,0)" with the "1’ at the ith place,
and the identity matrix I. The letter ¢ always denotes the machine precision, but
since we deal with different number formats, we also have different values of e.
Therefore the actual size is always given in the context if necessary. Eigenvalues
are always called A and singular values o. Particularly the smallest singular value
is denoted with op;,.



Notation

We tried not to use variable names twice while simultaneously respecting tra-
ditionally used notational conventions. There is only one exception, where we pre-
ferred convention over uniqueness. That are the scalar variables in various Krylov
algorithms (o and ) which conflict with scalar coefficients in the (Bi-)Lanczos al-
gorithm.

Table 1 shows the most important used functions and operators with the accord-
ing definition.

| Symbol | Definition |
(x| y) scalar product of  and y
rly x and y are orthogonal, i.e., (x | y) =0
span{xy,...,x,} linear hull of {@x1,..., 2,}
rank(A) rank of A
p(A) spectral radius of A
cond(A) condition number of A
A(), V(+), ©(+), d(+) | round upwards, downwards, to interval, to nearest
A, A A upward rounded arithmetic operations
vV, V,V¥, downward rounded arithmetic operations
D, 0,8, 0 interval arithmetic operations

Table 1: Functions and operators with the according definition.



Preconditioned
Krylov Subspace Methods

Ich empfehle lhnen diesen Modus zur Nachahmung.

Schwerlich werden Sie je wieder direkt eliminieren,

wenigstens nicht, wenn Sie mehr als zwei Unbekannte haben.

Das indirekte [iterative] Verfahren 1aBt sich halb im Schlaf ausfiihren
oder man kann wahrend desselben an andere Dinge denken.!

Carl Friedrich GauB to Christoph Ludwig Gerling,
December 26, 1823

Krylov subspace methods are used both to solve systems of linear equations Ax = b
and to find eigenvalues of A [21,22]. In this work we focus on linear system solving,
however particularly in investigating theoretical properties of Krylov methods, we
also need some facts from eigenvalue theory [96].

Krylov algorithms assume that A is accessible only via a black-box subroutine
that returns y = Az for any z (and perhaps y = ATz if A is nonsymmetric).
This is an important assumption for several reasons. First, the cheapest non-trivial

14T recommend this method for your imitation. You will hardly ever again eliminate directly,
at least not when you have more than two unknowns. The indirect [iterative] procedure can be
done while half asleep, or while thinking about other things.”

-7-



Chapter 1  Preconditioned Krylov Subspace Methods

operation that one can perform on a sparse matrix is to multiply it by a vector — if
A has nnz nonzero entries, a matrix-vector multiplication costs nnz multiplications
and (at most) nnz additions. Secondly, A may not be represented explicitly as a
matrix but may be available only as a subroutine for computing Az.

This chapter is organized as follows. In Section 1.1 we give some basic facts
about subspace solvers in general. Section 1.2 describes how information about A is
extracted via matrix-vector multiplication. In Krylov subspace methods, this infor-
mation is stored in the so called Krylov subspaces. In Section 1.3 we present some
convergence theory for symmetric and nonsymmetric Lanczos-like algorithms. Since
for real life problems, one will hardly ever solve a linear system of equations without
preconditioning, we describe the basic facts of preconditioning and introduce the
most important generic preconditioners in Section 1.4. Based on these introductory
sections, Section 1.5 gives an overview about several Krylov solvers and describes
some of the most important variants in more detail.

1.1 Subspace Methods

The basic idea of subspace methods is generating a sequence of subspaces V,, with
increasing dimension m and finding a vector x,, within each of these subspaces that
is in some sense an optimal approximation in V,, to the solution x* of the entire
problem. Clearly, this optimality measure has to guarantee that we choose x,, = *
if * € V,, (at the latest if m = n). Therefore, designing a subspace method is
subdivided in two tasks. First we have to define the sequence of subspaces and
secondly we have to decide in which way we select a vector out of each subspace,
i.e., which condition we provide to x,, € V,, in order to get a good approximation
for x* [20].

Let us assume for the moment that we already have chosen these subspaces V,,
and now look for a criterion to select x,, € V,,. From approximation theory we
know that an optimal subspace approximation x,, is characterized by the fact that
the error * — x,, stays orthogonal on the subspace where x,, is chosen from, i.e.,

' —x, LV, (1.1)

must hold. Unfortunately, we do not know x* — @, since we do not know the exact
solution x*. However, we can compute the residual »,, := b — Ax,, which in some
sense also is a measure for the quality of x,,. Thus, a first idea might be simply to
replace #* — @, by 7, in (1.1).

Since we have

z—x,=A"'b— A'Ax,, = A" 'r,,
it might be advantageous to choose x,, € V,, satisfying
Alr, LV, & r,l AV, (1.2)

that is, r,, may not stay orthogonal on V,, but on another subspace, say W,,.
We fix these ideas in the following definition.



1.2 Generating Krylov Spaces

Definition 1.1 A projecting method for solving a linear system Ax = b is a proce-
dure that constructs approrimate solutions x,, € V,, under the constraint

r,=b— Az, LW, (1.3)

where V,, and W, are m-dimensional subspaces of IR".

In the case Wy, = Vp, we have an orthogonal projecting method and (1.8) is
called a Galerkin condition whereas the general case (W, # Vi) is called a skew or
oblique projecting method with a Petrov-Galerkin condition in equation (1.3).

In Figure 1.1 we illustrate the case n = 2, m = 1. Given V; we select x; € V; to
satisfy 1 = b— Ax; L V; or 71 L W, in the case of skew projections.

A A
Wh

1

b/ \"1 b

AV AV,

A:Bl =t IS Vl

A:l)l a > Vl = W1 T

1
(a) orthogonal projection (b) skew projection

Figure 1.1: Projecting methods. Given V; we compute AV, = {Az | ¢ € V,}
and then select &1 € Vy such that r1 = b — Az, 1 Vi, respectively
r1 L W in the case of skew projections.

Another way to characterize an optimal approximation is by its error norm. That
means &,, € V,, is called optimal if ||z* — x,,|| minimizes ||z* — x|| for all € V,,.
Again we have to replace * — x,, by r,, (because we generally do not know x*)
and fix our ideas in the following definition.

Definition 1.2 A norm minimizing method for solving a linear system Ax = b is a
procedure that constructs approrimate solutions x,, € V,, under the constraint

17 mllz = [1b— Azp[lz = min {|[b — Az|l»} (1.4)

where V,, is an m-dimensional subspace of IR"™.

We show the case n = 2, m = 1 in Figure 1.2. Given V; we select ; € V;
minimizing ||b — Ax||, for all ¢ € V.

1.2 Generating Krylov Spaces

In this section we focus on the question of how to select the subspaces V,,. To take
a possibly given initial guess x( into account, we allow V,, to be an affine subspace,



10

Chapter 1  Preconditioned Krylov Subspace Methods

AV

y

Figure 1.2: Norm minimizing methods. Given V; we compute AV, = {Ax |
x € Vi} and then select ; € V) to satisfy ||ri||2 = ||b — Az =
mingey, {[|b — Az|[2}.

ie, V, = xy + V,n. There are various possibilities to choose V,, but it turns out
that using Krylov subspaces has several advantageous properties as we will see later
on.

Definition 1.3 A Krylov subspace method is a projecting or a norm minimizing
method (see Definitions 1.1 and 1.2) to solve a linear system Az = b where the
subspaces V,, are chosen as Krylov subspaces

Vi = Kim(A,ro) := span{rg, Arg,..., A" vy}, m=1,2,... (1.5)
with rg = b-— ACL‘O.

Since we intend to work with vectors out of KC,,,(A, ) we have to find a handy
representation for them. One of the most powerful tricks in linear algebra that often
simplifies problems significantly, is to find a suitable basis of the vector space we
have to work with. Often orthonormal bases are a good choice but it is generally an
enormous amount of work to compute one. The Arnoldi algorithm (Section 1.2.1)
and the Lanczos algorithm (Section 1.2.2) are methods to compute orthonormal
bases of Krylov spaces. In Section 1.2.3 we will see that there is a cheaper way to
get a useful basis, although it is not orthonormal anymore.

1.2.1 Arnoldi Algorithm

The Krylov space K,,(A,rg) is given as the linear hull of {ry, Arg,..., A™ 'ry}
and a well known technique for orthonormalizing a sequence of vectors is the Gram-
Schmidt algorithm. In the case m = 1, we simply have (A, r¢) = span{ry} and
thus vy := 7ry/||ro|| is a orthonormal basis (ONB) for this one dimensional Krylov
space. Now suppose we have already an ONB V,,, := {wvy,...,v,} for K,,(A, 7))
and look for v,, 1 to extend V,, to V,, ;. With Gram-Schmidt we compute v,,,1 as



1.2 Generating Krylov Spaces 11

follows
Vi1 = Av,, (compute a prototype for v,, 1)
m
V1 & Oyl — Z (Dpy1 | v5) v (orthogonalize it against V;,,) (1.6)
=1
Vi1 = Ot (and finally normalize it)
[Om |
——
::hm+1,m

In the context of Krylov spaces this algorithm is called Arnoldi algorithm [6] or
full orthogonalization method (FOM) because we orthogonalize U, against all
previous basis vectors. Collecting the coefficients h; j to vectors h; := (hi 1|+ - |him)”
we get

m
vm+1hm+1,m = Avm - E ’Uihi,m = Avm - thm

i=1

and further arranging® H,, := (hy...h,,) yields
AV, =V, H,, + hppi1m * Vi1 €L, (1.7)

where H,, is the upper Hessenberg matrix of recurrence coefficients

hig hig -+ hima him
hai  hop : :
H, = hs3 2

)

hm,mfl hm,m

Pictorially, this matrix equation looks like

A V| = |V L0

vm+1hm+1,m

Representing x,, € V,, as ©,,, = &y + V,,,§,,, i.€., T, is a shifted linear combina-
tion of vy, ..., v,,, the Galerkin condition b — Ax,, 1 V,, now writes as

Vi (b—Az,) =V, (b— Azy— AV,£,) = 0
s VIAV, ¢, = Virg.
N—_——

A|)Cm(A,ro)

2Here and further on we collect vectors of different dimensions by extending them with trailing
zeros to common length.



12

Chapter 1  Preconditioned Krylov Subspace Methods

This also clarifies the name orthogonal projecting method because the restricted
system matrix A|1<m( A 18 obtained by projection with the orthogonal projector

V.. Multiplying equation (1.7) with V' from left yields

VnTAWn = Vg% H, + hipgim V;nT'vm-l-l '637; =H,.
———r ———’

I 0

Remembering v, = ry/||ro|| we finally get
b— Az, LV, & H,E, = |role:. (1.8)

Hence, the projected system matrix is not only of smaller dimension m but is also
particularly structured (upper Hessenberg).

Note that the Arnoldi algorithm can terminate before m = n if ||9,,+1|| = 0.
Fortunately, in this case K,,(A,ry) is an A-invariant subspace, i.e, K,,(4,7) =
AK,,(A,ry). Therefore we have

ro € Kn(A,ro) = AKX (A, ro)
=4 A_l’l"() € ’C (A, ’l"()) (1 9)
&t —xoeKy(A, 1) '
& x*exy+ Kn(A,rg) = V.

That is, in this break down situation we can already find the solution «* in the
shifted Krylov space computed so far.

Since the Gram-Schmidt algorithm tends to be unstable if angles between Aw,,
and vy, ..., v, are small, we use a computationally more robust variant, the so called
modified Gram-Schmidt algorithm. Here Aw,, is successively orthogonalized. In a
pseudo programming language we can write the Arnoldi procedure with modified
Gram-Schmidt as shown in Algorithm 1.1.

Given x,
’51 =b-— ACL‘O
v =01/
form=1,2,...
Umy1 = Avy,
forj=1,....m
hjm = (Om1 | ;)
Vi1 = Uppg1 — hj,m'Uj
hm+1,m = ||"~)m+1||
Vi1 = Umg1/Pms1m

Algorithm 1.1: Arnoldi algorithm with a modified Gram-Schmidt procedure.

Unfortunately, the Arnoldi algorithm is expensive in memory and computing
time since we need access to all m previous basis vectors and have to perform
O(nnz+ nm) operations in the mth iteration.



1.2 Generating Krylov Spaces

1.2.2 Lanczos Algorithm

If A is symmetric the situation becomes much more favorable. We have
H, =V, AV, = (V,A"V,)" = H,,

that is H,, turns out to be symmetric, too. In this case H,, is a symmetric upper
Hessenberg and therefore a symmetric tridiagonal matrix which is denoted with T5,,,
where

ar B

31 60) 52

Bm—Q ®m—1 Bm—l
Bm—l (670

The recursion of depth m in (1.6) reduces to one of depth three.

Vi1 = AUy — B 1Um 1 (compute a prototype for v,, 1
and orthogonalize it against v, 1)
Ot & Omi1 — (Oma1 | Um) Um (orthogonalize it against v,,) (1.10)
—_——
=:0m
'Bm+1 . .
Vi1 = 7o . (and finally normalize it)
Izt
——
=Bm

This special case of the Arnoldi algorithm for symmetric systems is called Lanczos
algorithm [77]. Similar to the nonsymmetric case we have

AV, =V, T,, + Bnvmir€l (1.11)
& VAV, =VIV, T, + B Vi v, -eh =T,
~— ——
I 0
and thus
b— Az, LV, < T,¢, = |rolle:. (1.12)

That is, the Galerkin condition reduces to a symmetric tridiagonal system of dimen-
sion m.

Algorithm 1.2 shows the Lanczos procedure in a pseudo programming language.

In the Lanczos algorithm we only need access to the last three basis vectors
(no increasing memory requirements per iteration) and the number of operation is
O(nnz). Unfortunately, this three-term-recurrence which makes the Lanczos algo-
rithm so favorable, only exists for symmetric matrices A, at least if we use orthogonal
projecting methods.

1.2.3 Bi-Lanczos Algorithm

Analyzing the Arnoldi and Lanczos algorithm we find that the most important
property was the simple structure of Al 4 ,,- We now try to retain the short
recurrences of the Lanczos algorithm which led to the tridiagonal shape of Al (4 )



Chapter 1  Preconditioned Krylov Subspace Methods

Given x,
’51 =b-— AiL‘O
form=1,2,...
5m71 = ||’Bm||
Um = 6m/6m71
Vi1 = Av,
ifm>1
’5m+1 = ’5m+1 - Bm—lvm—l
= (Vi1 | Um)
Vmil = Umy1l — QU

Algorithm 1.2: Lanczos algorithm for symmetric system matrices A.

but without the necessity of symmetry [112]. To achieve this, we construct a skew
projecting method, that is, we choose x,, € V,, as x,, = xy + V,,§,, to satisfy the
Petrov-Galerkin condition

W, (b— Az,) = W, (b— Azy — AV,€,) = 0
A WrrTA‘/;nsm = Wr07
Here we have to compute two sets of vectors: V,, = (v ...v,,) and simultane-

ously W,, = (w; ... w,,), providing a simple structure of WJAVm. This can be
achieved by defining V;,, and W}, via a pair of coupled three-term-recurrences

am = (Avy, | wiy,) o= (v, | ATw,,)
VUmt1 = AUy — @V — Bi—1Vm—1 W1 = ATw,, — AW, — Y1 W1
Ym = [[Oma| B = (Oms1 | Wint1)/Vm (1.13)
Vi1 = Ot/ Y W1 = Wint1/ B
startin§ x;vith v = ro/||ro]| and w; = r@d/||rdiel]] with (ry | ety # 0, e.g.
Ty =Ty,

In matrix form these recurrences can be written as
_ T
AV, = V. T, + v Uit €,

1.14
A™W,, = W, T + Bpwmiiel, (1.14)

where T, is the m-by-m tridiagonal matrix of recurrence coefficients
ar B
"o B
Tm—2 Qm—1 Bm—l

Ym—1 (670

It turns out that V}, is a basis for C,,(A, o) and W, is a basis for K,,(A”, 7).
Multiplying the upper equation in (1.14) with W' from left yields

WAV, = W'V, T,, + 7. W, v, 1€l . (1.15)



1.2 Generating Krylov Spaces

15

To obtain the desired tridiagonal structure of W, 'AV;, we need the so called bi-
orthogonality condition for V,, and W,,, i.e., VV;,T% = VmTWm =1.

Since it is not clear in advance that this mutual orthogonality between W}, and
V., holds, we prove it in the following theorem (compare [48]).

Theorem 1.1 Suppose vy, ..., V1 and wy, ..., Wy exist, that is, (v; | w;) #0
forj=1,....,m+1. Then V. W,, = W'V, =1.
Proof: Since vj; = v;/v;_1 and w; = w;/B;_1 we have

1

v, w;) = —
<]| ]> f}/j—lﬁj—l

i | W
o)l

ex/d\l

We prove the orthogonality of v; and w; for ¢ # j with 7,5 <m + 1 by induction.

We have (v | wi) = ||rol| 7 ||rd ||~ (v | mdue!) £ 0. Assume that (v; | w;) =0
holds for 7 # j with 4,5 < m. Because of the symmetry of (1.14) we only have to
show (vy,11 | w;) =0 for j < m. Then we get for j =m

1
<vm+1 | wm> = 7_<Avm — Uy — Bm—l'vm—l | 'wm>
m
1
e —(<Avm | wm> — Oy, <vm | wm> _5777,71 <'vm71 | ‘u)m>
T N\ —— %,1—/ -
=Qm = =
1
= 'Y_(am - O[m) = 07

for j =m — 1 we get

1
<vm+1 | wm71> — ’y_<Avm — Oy Uy — Bmfl’vmfl | wm71>

1

- _(<Avm | wm—1> — Oy <vm | wm—1> _Bm—l <vm—1 | wm—1>)
me —/_70 ~ :
1

= (<vm | A W, — 1> ﬁmfl)
Tm
1

= (<vm | wm + Q1 W1 + Ym—2Wp,— 2> 577171)
7m
1

= (ﬁm—l <vm | wm> +am—1 <vm | wm—1> +’7m—2 <'vm | wm—2> _Bm—l)
" =1 =0 =0

- ’yim(ﬁml - 577171) =0

and finally for j <m — 1 we get

1 1
(Ot | )) = (Av,, | w)) = (v, | ATw;) = 2

m m m

(Um | wjs1) = 0.



16

Chapter 1  Preconditioned Krylov Subspace Methods

This means, the Bi-Lanczos algorithm provides a short recurrence formula to
compute bases for Krylov spaces for nonsymmetric matrices A. Although these bases
are not (self) orthonormal, they suffice to obtain Lanczos like short recurrences.

However, we stress that the Bi-Lanczos process can terminate in two different
situations [114]. First, if |9,,11]| = 0 or ||W,,41|| = 0, then the algorithm has found
an A-invariant subspace with * € V,, or an A”-invariant subspace with * € W,,,,
respectively. This is referred to as regular termination because we can find the
solution in the Krylov spaces of the previous step (compare equation (1.9) on page
12).

The second case, called serious breakdown, occurs when (U411 | W) = 0
but neither v,,11 = 0 nor w,,;1 = 0. Hence we have no invariant subspace and
thus cannot guarantee to find x*. However, in some later step, say m + [, there
might exist nonzero vectors @,y € Kpii(A,70) and @y € Kppi(AT, 7y) with
(wi| - |wm|wm)" - (1] |Vm|Vmy) = I. Thus we have to skip these [ — 1
intermediate steps. For practical implementations, it turns out that we also have
to cover near breakdown situations where (D11 | W) is sufficiently small to
cause numerical instabilities. This technique is called look-ahead and is described in
further details in several papers including [14,15, 63,99, 102].

In Algorithm 1.3 we formulate the Bi-Lanczos process without look-ahead in a
pseudo programming language.

Given x,
’51 =b-— ACL‘O
v =w; = 01/[|04]]
form=1,2,...
Umy1 = Avy,
Wi = AT w,,
= (U1 | win)
’5m+1 = ’5m+1 — Uy
’JJm—i—l = 713m+1 — Wy
if m>1
Vi1 = Uil — Bm-1Um1
713m+1 = d"m-i—l — Ym—1Wm—1
TYm = ||’8m+1||
Um+1 = ’5m+1/’7m
Brn = (Vmt1 | Wing1)
W1 = Wint1/Bm

Algorithm 1.3: The Bi-Lanczos algorithm without look-ahead.

1.3 Convergence Properties

The biggest part of convergence theory and error estimates is for Lanczos procedures
used as eigenvalue solvers. Many results are collected under the name Kaniel-Paige-
theory [66,93-95,142] concerning the relations between the eigenvalues of T' and A



1.3 Convergence Properties

17

as well as convergence of the Ritz values (compare Theorem 2.1).

Many of these results are applicable to Lanczos procedures used to solve linear
systems and thus we have a good knowledge about convergence at least for symmetric
systems [51,62,128,132], see Section 1.3.1.

Unfortunately, the situation becomes much less clear for nonsymmetric systems,
because the proofs in the Lanczos theory are principally based on the symmetry of
A. However, there are some error estimates but they are neither as sharp as in the
symmetric case nor practically useful at all [5,47, 50, 64,129, 141], see Section 1.3.2.

Strakos shows that, practically, the behavior of symmetric and nonsymmetric
Krylov solvers is very similar. Unsatisfyingly, up to now nobody managed to prove
this [130].

1.3.1 Symmetric Case

Convergence rates and also the quality of the iterated solutions of iterative linear
system solvers depend strongly on the good nature of the system matrix A. It can
be observed that system matrices, close to the identity, are easier to solve. Closeness
to I in this sense could be expressed, for example by

e A =T+ B with rank(B) is small (small rank perturbation) or
e cond(A) ~ 1.

Theorem 1.2 [17] If A = I + B is an n by n matriz and rank(B) = m, then the
Lanczos algorithm terminates after at most m + 1 steps.

Proof: The dimension of
Ki(A,ry) = span{ry, Ary, ..., Ak’lro} = span{rq, Bry, .. ., Bmin{m’k’l}ro}

cannot exceed m + 1. Therefore at least K,,(A,ro) is an A-invariant subspace of
IR" and thus A™'b € K,,(A,r) (compare Section 1.2.2). |

An error bound of a different manner can be obtained in terms of the A-norm
(I1zlla = /(2| Az)). This norm is well defined if A is s.p.d. Therefore, the
following theorem is restricted to the CG algorithm (see Section 1.5.2).

Theorem 1.3 Suppose A is ann by n s.p.d. matriz and b is an n vector. Then for
the CG-iterates xy, there holds

k
k=1
o~ alla <27 (Vi1 ) llo — ol

for any x € R"™ or

k
* k—1 *
fox = ol < 27 (Y1) oo - 7l

where k = cond(A).

See [83] for a proof. This means, the nearer x is to one, the faster the error will
decrease.



18

Chapter 1  Preconditioned Krylov Subspace Methods

1.3.2 Nonsymmetric Case

If A is a low rank perturbation of the identity then AT has obviously the same
property (since B is square, it has equal column and row rank). Thus, Theorem 1.2
is also applicable to nonsymmetric systems.

Theorem 1.4 If A = I+ B is an n by n matriz and rank(B) = m, then the Arnoldi
and Bi-Lanczos algorithm terminate after at most m + 1 steps.

Proof: The dimensions of

Kr(A,ro) = span{ry, Arg,..., A" 'r}

= span{rq, Bry, .. ., Bmin{m’k’l}ro}
and

le(AT; T9) = span{r, ATTO; ce e (Ak_l)TTU}

= span{r, BTr, ..., (Bmi“{m’k’l})Tro}

cannot exceed m + 1. Therefore, at least K,,(A,7y) or K, (A", r) is an A-
invariant (respectively A”-invariant) subspace of IR"™ and therefore A~'b is either
in KC,n(A, 7o) or in K, (A", 1) (compare Sections 1.2.1 and 1.2.3). |

To illustrate the difficulties with error bounds for nonsymmetric matrices we
present some results for GMRES (see Section 1.5.5). The 2-norm of the kth GMRES-
residual r; satisfies

- i A 1.16
|17%l2 Jmin || (A)7ol|2 (1.16)
#r(0)=1

where P is set set of polynomials of degree & or less [64]. Suppose A is diagonalizable
then there exists an eigen-decomposition A = SAS ' where A = diag(\(,...,\,)
and the columns of S are the eigenvectors of A. From (1.16) we obtain

r — min ||S¢p(A)S 'r < conds (S | A r
Irells = min |S61(A)S  rolls < condo(S) min 6x(A)lalrol
dr(0)=1 dr(0)=1

7|2 : n
& < condsy(S) min { ax Y }
||,’,,0||2 = 2( )¢k€73k it |¢k( )|
$r(0)=1

If A is non-normal, then S does not need not to be unitary and thus condy(S) > 1.
Consequently, convergence of GMRES, or at least this bound of the residual norm
does not solely depend on the eigenvalues of A. Additionally, it can be shown that

Theorem 1.5 Given a non-increasing positive sequence ro > ry > ... > 1,1 > 0
and an arbitrary set of nonzero complex numbers {1, ..., \,}, there exists a matrix
A with eigenvalues Ay, ..., A\, and an initial residual ro with ||ro|la = ro such that

the residual vectors vy, at each step of the GMRES method applied to A and rq satisfy
lrelle =7 fork=1,2,...,n—1.



1.4 Preconditioners

19

See [49] for a proof.

The situation becomes even more difficult, if we have to take rounding errors
into consideration. However, the aim of this work is not to fix the arithmetic and
then try to get the best result, but it is to fix our requirements on accuracy and then
to choose an appropriate arithmetic that enables us to reach this needed accuracy.

1.4 Preconditioners

The idea of preconditioning, i.e., preliminary reduction of the condition number,
simply is to replace the original linear system Az = b by a modified linear system
Ax = b, where this second system has to fulfill two properties [7, 8]:

e Solving Az = b should be (more) easy and

e Az = b and Az = b must have the same solution, i.e., A=A

Here, we demonstrate preconditioning in context of the simplest algorithm for
generating Krylov subspaces — the Lanczos algorithm. Since this algorithm only
works for symmetric systems, we have to retain the symmetry in A. Therefore we
make the ansatz A = L 'AL T with a nonsingular matrix L, where M := LLT
shall in some sense be near to A. To ensure the equivalence of the preconditioned
and non-preconditioned system, we have to define b=L 'band 2= L"z to get

Az =b
& L 'AL L™z =L'b
& Ax =0b.

Simply replacing A by A = L'AL™" and b by b = L~'b and for technical
reasons also renaming v by z in the Lanczos algorithm (compare Algorithm 1.2)
leads to

1 Given xg, &y = LTz,
2 Z,=L"'"0—-L'"AL"L"zy=L7'(b— Ax,)
3 form=1,2,...
4 Bn-1 = ||Zml|
5 Zm = Em/ﬁmfl
6 Zni1 =L 'AL "2z,
7 if m>1
8 Zmil = Zmy1 — Bm-12Zm—1
9 am={(Zmn | Zm)
10 Zm-i-l = Zm—l—l — Q2

From line 2 and 5 we see, comparing with Algorithm 1.2,
v,, = Lz,, and v, =Lz,

To avoid the explicit use of L™ and LT we introduce two auxiliary vectors p,, and
P,,, defined by

p,=M'v,=L "L 'v,, and p,=M "',



20

Chapter 1  Preconditioned Krylov Subspace Methods

Now we substitute the vectors z,, and 2, by expressions with v,,, U, p,,, and p,),.
With line 4 we get

Bt = || Zmll = (L "B | L' 5,)'"?
= (B | LTL ')
= (O | B) /.

Using 2,11 = L_I'Emﬂ and LTz, = p,, we get in line 6

2m+1 = LilApm A= L2m+1 = Apm = 'Bm+1 = Apm

Multiplying lines 8 and 10 with L from left yields v,,,1 = U411 — Bmn_1Vm_1 and
Vil = Uma1 — O U,,. With line 9 we have

U = (Zimy1 | Zm) = <L716m+1 | LTpm> = (Vi1 | D)

We collect our results in Algorithm 1.4 (left)

Given x, Given xg
v, =b— Ax v, =b— Ax,
form=1,2,... form=1,2,...
ﬁm = Mﬁllam
5m—1 = <’5m | ﬁm>1/2 Bm—l = ||’5m||
Um = ﬁm/ﬁmfl Um = ’Bm/ﬁmfl
D, = ﬁm/ﬁmfl
’5m—|—1 = Apm ’l-jm+1 = A’Um
ifm>1 ifm>1
'Bm-i-l = 'Bm-i-l - 5m—1’vm—1 'Bm-i-l = 'Bm-i-l - Bm—l'vm—l
U = (Vi1 | D) U = (Vi1 | V)
Vmil = Uyl — QU Vmil = Uyl — QU

Algorithm 1.4: A (symmetrically) preconditioned Lanczos algorithm with pre-
conditioner M := LL” (left) and its non-preconditioned variant
(right).

As we can see from Algorithm 1.4, the essential modification is the computation
of the solution of Mp,, = v,, with a matrix M similar to A. In other words, we
need an approximate solution of Ap,, = v,,. At a first glance it seems to make no
sense to solve Ax = b by repeatedly solving Ap,, = v,, but the emphasis is on
approximate solution, that is, we only need a fast approximation even though it is
a rough one.

In this sense, every linear system solver can be applied as a preconditioner. Due
to the nature of these solvers, preconditioners can be divided roughly into three
categories:

e Preconditioners based on simple iterative solvers, e.g., Jacobi, Gauf3-Seidel, or
SOR preconditioners.



1.4 Preconditioners

21

e Preconditioners based on direct solvers, modified for fast but approximative
solving, e.g., incomplete Cholesky or incomplete LU (ILU) or modified variants
[11].

e Problem specific preconditioners, either designed for a broad class of underly-
ing problems or even for one specific matrix or problem. For example, there
are preconditioners for elliptic PDE’s, namely multigrid or domain decompo-
sition preconditioners [26], or special preconditioners as the diffusion synthetic
acceleration preconditioner (DSA), solely designed for the transport equation
(see [88]).

In the following two sections, we give an introductory overview about the first
two categories. Since this work focuses on generic linear system solving, we won’t
consider the special preconditioners, described in the last category.

1.4.1 Splitting Techniques

Historically, the first class of iterative solvers for linear systems of equations was
based on so called splitting techniques [55, 127, 135]. There we split the matrix A in
a sum of two matrices, say B and A— B and then write Bz = (B — A)x +b instead
of Az = b. If B is nonsingular, we obtain the following fixed point formulation

x=B'(B-A)x+B'b

Substituting the left hand side & by x;,; and the right hand side by xj, we get
the iteration scheme

zy 1 =B ' (B-A)zy+B 'b=x,— B 'Az, + B'b (1.17)

which is convergent if and only if the spectral radius of B™' (B — A) is less than one.
In the case of convergence, i.e., with * = limy_, () we have B ' Az*+ B 'b=0
or Ax* =b.

To utilize the iteration scheme (1.17) as a preconditioner, we only perform one
iteration step. The main effort is solving the linear system Bz = (B — A)zx for
z, that is, we should chose B to assure that this solution is easily computable.
According to different choices of B we have different algorithms.

e Jacobi Preconditioners

For the Jacobi algorithm, we choose B = diag(A) (see Figure 1.3). This leads to
the simple preconditioner

Qg4

n
1 b;
2 =X — — ;5T 5 + —
Qi

7=1

1 n
— bi— E Q5 55 s fOI'Z:L...,n.
I _]71

al 2 —
JFi



22 Chapter 1  Preconditioned Krylov Subspace Methods

A

Figure 1.3: Splitting scheme for the Jacobi iteration. B = diag(A).

o GauB-Seidel Preconditioners

Here we set B = lowerTriangle(A) (see Figure 1.4), This leads to the GauB-Seidel
algorithm which is related to the solution of a triangular system

i—1 n

1 b;

2 =T; — — E ;25 + E Q; T + —

Qig \ " — Qii
J=1 J=i
i—1 n

1 .
= — bl - E ;525 — E a; ;%5 |, for s = 1, sy, N
;4 i1

j=i+l

A

Figure 1.4: Splitting scheme for the Gauf-Seidel iteration. B = lowerTriangle(A).

e Relaxation Methods

For both, the Jacobi and the Gau3-Seidel algorithm, one can scale the matrix B by a
so called relaxation parameter w. This leads to the Jacobi relaxation preconditioner

n

w bz
2 =X — — E a;jTj + wWw—
Qg5 < ;4

7j=1



1.4 Preconditioners

23

or the GauB-Seidel relaxation preconditioner, also known as SOR (successive over
relaxation) preconditioner

i—1 n
w bz
Zi =Xy — — E amzj + E am-:z:j + w—
Qi i Qi i

7,0

j=1 j=t
i—1 n
w .
=(1—-w)z; — — E ;% + g a;;jx; |, fori=1,...,n.
a. .
B\ j=1 j=i+1

These algorithms can be interpreted as a weighted sum of the non-preconditioned
vector & and the update vector z — x. To ensure positive weights we must choose
w € (0,2). A good relaxation parameter can improve the preconditioner significantly
but in general it is hard to determine an optimal relaxation parameter w. However,
there are several works (see e.g. [2,135]) dealing with this question depending on
special properties of the matrix A.

1.4.2 Incomplete Decompositions

This important class of generic preconditioners is based on direct solvers, i.e., on a
multiplicative decomposition, say L - U of A. Favorably, we deal with triangular
factors L and U as delivered, for example, by the LU-decomposition. Since solving
LU z = x for z is generally neither really fast nor very approximative, we actually
do not compute the entire factors L and U but only incomplete factors Land U.
That means, we compute only a subset of the elements of these triangular matrices.
There are basically two strategies how to decide, whether an element of the complete
triangular factor is to be taken up into the sparse triangular factor or whether it
can be dropped:

e Compute an element [; ; of L (or u; ; of l}, respectively) depending on memory
management considerations. Usually we compute an element at place (i, ) if
and only if a; ; # 0. In this case we can use the storage scheme of A to store
L and U in.

e Compute an element /;; of L (or w;; of ff, respectively) depending on its
importance. Usually this importance is measured in the following sense. The
sparse triangular factors are computed columnwise. An element is dropped if
it is smaller than a given drop-tolerance times the norm of the corresponding
column of A.

There exist various modifications [11], one, for example, tries to save some
of the dropped information by adding the dropped elements to the diagonal
element of the upper diagonal factor to retain the column-norms of A.

The LU-decomposition works for arbitrary nonsingular matrices A. However,
there are some variants exploiting special properties of A such as symmetry or
positive definiteness. Since we make extensive use of these preconditioners (see
Section 4.3.3, we describe some important LU variants here.



24

Chapter 1  Preconditioned Krylov Subspace Methods

e LDM?" Decomposition of General Matrices

For this variant, we actually do not need a special structure in A. In the usual
LU factorization L tends to be well-conditioned whereas the condition number of
A moves into U [41]. Here we factorize A into a three-matrices product LDM7”
where D is diagonal and L and M both are unit lower triangular. Subsequently we
distribute D among L and M, i.e., we define

D, :=./|D|, D,:=sign(D)\/|D|, L:=LD, U:=MD,.

~ AT ~ ~
This leads to a LU factorization and heuristically, L and U have a more or less
equal condition number y/cond(A). This modification is important for verifying an
approximate solution of a linear system as described in Section 4.3.3. There we need

A A

the smallest singular value of A which we estimate by omin(L) - 0min(U). Since these

A AT AT
singular values are the square root of the eigenvalues of LL and UU we have

to compute eigenvalues of matrices with condition numbers (:ond(IAl)2 respectively

cond(T7)2. Without the balancing, i.e. with cond(U) ~ cond(A), this would limit
us to linear systems with moderate condition numbers less than e~'/2.

To obtain sparse or incomplete triangular factors, obviously all modifications
described for the LU-factorization can be applied.

e LDLT Decomposition of Symmetric Matrices

Here we suppose A to be symmetric, then we have redundancy in the LDM7"
algorithm since in this case I = M. This can be seen by multiplying A = LDM"
with M ™" from left and M~" from right. This yields

M7'AM T =M'LDM" M " =M'LD.

The left hand side is symmetric and the right hand side is lower triangular and thus
M 'LD is diagonal. Since D is nonsingular, this implies M 'L is also diagonal.
But M 'L is unit lower triangular and so M 'L = I (see [41]). Thus we can omit
computing M. Again distributing D yields

A~

D, :=./|D|, D,:=sign(D)\/|D|, L:=LD, U:=LD,.

In this symmetric case we even have

cond(L) = cond(L|D|"/?) = cond(L|D|"/?sign(D)) = cond(T).

e Cholesky or LL" Decomposition of S.P.D. Matrices

Moreover, if A is symmetric positive definite (s.p.d.), i.e., if €T Az > 0 for all & # o
then we have

0< (L*Tei)TA(L*Tei) = eiTL*IAL*Tei = elTD e = dzﬂ
Thus all elements of D are positive which enables us to define
D:=vD, L:=LD.

Together we get A = i}i}T, that is L is the Cholesky factor of A.



1.5 Krylov Type Linear System Solver

25

e Pivoting and Reordering Algorithms

Suppose LU is a triangular factorization of A, computed in finite precision. Then
we have LU" = A ~ A. For the error matrix A — A we have (see [104])

[A—A| <3(n—1)e (|A| +|L||U]) + O(e).

Consequently, this error might be very large if we encounter a small pivot during
factorizing A because this leads to large elements in L and U. We stress that small
pivots are not necessarily due to ill-conditioning as the example

A= (o) = (e 1) 6 i) =2
(

demonstrates. To avoid large elements in L and U we must allow some kind of
pivoting [30], i.e., permuting of the rows of A:

pa= (1) (o) = (1) = (1) 3) =2

Usually there are two pivoting strategies: column pivoting and complete pivoting.
Both limit the norm of L and U, but unfortunately, they destroy a possibly given
band structure. In particular we have the following situation. Suppose A to have
lower bandwidth p and upper bandwidth ¢g. Without pivoting, the original band-
widths remain unchanged, with column pivoting, U has bandwidth p + ¢, while L’s
band-structure is completely lost, and finally with complete pivoting we loose the
structure of L and U. Thus, dealing with sparse matrices, we have to trade off
between loosing accuracy and saving memory.

Usually, pivoting is done in each step of an LU factorization. However, there are
some useful strategies how to compute permutation matrices P and @ in advance,
such that an LU factorization of P AQ has advantageous properties [23,31]. Advan-
tageous in this sense means smaller bandwidths or less nonzero elements, for exam-
ple. One of the most successful algorithms is the so called ‘reverse Cuthill-McKee’
algorithm. This powerful graph theoretic algorithm often leads to a dramatical re-
duction of the numbers of nonzeros in L and U and therefore to a large speedup in
solving and particularly in verifying a sparse linear system of equations.

1.5 Krylov Type Linear System Solver

In this section we first give an overview about various Krylov type linear system
solver [44,60]. Since our improvements in convergence, speed, and accuracy as well
as our verification methods do not depend on the particular method, we only describe
some of the most important variants in more detail. These are CG (Section 1.5.2),
BiCG (Section 1.5.3), CGS (Section 1.5.4), and GMRES (Section 1.5.5). Additionally,
we present the basic ideas of residual norm smoothing (BiCGStab, QMRCGStab) and
quasi minimization (QMR, TFQMR), see Section 1.5.6.

For each described method, we give a preconditioned algorithm formulated in a
pseudo programming language, taken from [9]



26

Chapter 1  Preconditioned Krylov Subspace Methods

symm.pos.def.

CG
Hestenes, Stiefel '52 [59]
Lanczos Galerkin
symm.indef. */__K’ arbitrary
SYMMLQ CGNE
Paige, Saunders '75 [97 Paige, Saunders '79 [98]
Lanczos l—/_ Lanczos | Galerkin
MINRES
Paige, Saunders '75 [97]
Lanczos norm.min.
y /
CGNR GMRES BiCG
Paige, Saunders '82 [98] Saad, Schulz '86 [115] Fletcher '75 [35]
Lanczos | norm.min. Arnoldi norm.min. Bi-Lanczos Petrov-Galerkin
/ i
QMR CGS
Freund, Nachtigal '91 [91] Sonnefeld '89 [124]
Bi-Lanczos guasi norm.min. Bi-Lanczos Petrov-Galerkin
/ /
TFQMR BiCGStab
Freund 93 [37] van de Vorst '92 [134]
Bi-Lanczos guasi norm.min. Bi-Lanczos | =
/
QMRCGStab
Chan et al. '94 [18]
Bi-Lanczos | —

Figure 1.5: Krylov type linear system solver

1.5.1 Overview

The oldest and probably best known Krylov type method is the Conjugate Gradient
(CG) method, developed by Hestenes and Stiefel in 1952 [59]. It was designed
for solving systems of linear equations with symmetric positive definite coefficient
matrices. Possibly because matrix dimensions were small at this time and CG was
considered as a direct solver, there was no much attention to this algorithm. This
changed in the middle of the 70’s, where the iterative character of CG was spotted
mainly by Paige and Saunders (see Section 1.5.2).

In 1975, the first remarkable variants of CG were developed: MINRES and
SYMMLQ by Paige and Saunders [97] and BiCG by Fletcher [35]. Since CG is based
on a Lanczos algorithm for generating orthonormal bases of the Krylov spaces and
a subsequent LDL” factorization of the symmetric tridiagonal matrix T, it is po-
tentially unstable if A, and consequently T is indefinite (T is unitarily similar to
A), see Section 1.5.2.



1.5 Krylov Type Linear System Solver

27

MINRES avoids this LDL” factorization switching to the norm minimizing con-
dition for the residual vectors (see Definition 1.2). This yields to a least squares
problem which does not depend on the definiteness of A [32].

SYMMLQ solves the projected system with system matrix T' via an LQ factor-
ization instead of LDLT, but does not minimize anything. However, it keeps the
residuals orthogonal to all previous ones.

While these two variants retained the Lanczos process and were therefore bound
to symmetric matrices A, Fletcher generalized CG by switching to the Bi-Lanczos
algorithm in combination with the Petrov-Galerkin condition. This leads to the
bi-conjugate gradient (BiCG) algorithm, which works for arbitrary square (and non-
singular) matrices A. Unfortunately, BiCG needs matrix-vector products with the
transposed system matrix, which is often a problem for large sparse matrices (com-
pare Section 6.1.2). Due to this lack, the development of Bi-Lanczos based algo-
rithms stagnated for several years.

The next two variants, again based on CG, avoiding the assumption of symmetry
of A. One obvious trick is to apply CG to the normal equations (CGNE) [98], i.e., to
AT Az = A"b. While the convergence rate of CG depends on the condition number
of the system matrix (see Section 1.3) it now depends on the square of cond(A) and
thus might be relatively slow.

Several proposals have been made to improve the numerical stability of this
method. The best known is by Paige and Saunders [98] and is based upon applying
the Lanczos method to the auxiliary 2n by 2n system

(4 0) ()= ()

A clever execution of this scheme delivers the LD L" factorization of the tridiagonal
matrix that would have been computed by carrying out the Lanczos procedure with
A" A but without squaring the condition number.

Applying this ideas to MINRES leads to a CG like algorithm applied to the
normal equations and minimizing the residual norm. The resulting algorithm was
called CGNR [98].

Another important extension of the MINRES algorithm, called GMRES (genera-
lized minimal residuals), was developed in 1986 by Saad and Schulz [115]. They
avoided the need of symmetry by interchanging the underlying Lanczos algorithm
with the Arnoldi algorithm. The disadvantage of this approach is that it needs
increasing time and memory with each iteration due to the Arnoldi method which
orthogonalizes every new Krylov basis vector against all previous ones. Several
proposals have been made to get this mathematically excellent algorithm compu-
tationally more attractive. The best known is the restart technique GMRES(m),
restarting GMRES every m iterations with the best approximation computed so far
as the new starting vector. Beside this computational penalty, however, it is the
only Krylov algorithm for arbitrary matrices with a norm minimizing property of
the generated residuals (see Section 1.5.5).

Three years later, Sonnefeld [124] improved the meanwhile 14 years old BiCG
algorithm to work without access to the transposed of A. Substantially, this im-
provement, was based on replacing scalar products like (Ap | ATp) with (A%p | p)
and therefore was called CGS (conjugate gradients squared). This squaring can be



28

Chapter 1  Preconditioned Krylov Subspace Methods

interpreted as performing two minimization steps at once while computing only one
search direction. Sometimes we can observe a doubled convergence rate but since
the second ‘minimization’ step uses the old (and maybe completely wrong) search
direction, we often have a quite irregular convergence behavior (see Section 1.5.4).

In 1992, van de Vorst [134] introduced an additional parameter into the Petrov-
Galerkin condition and used this parameter to smooth this irregular behavior of
the residual norms in CGS. Due to this stabilizing parameter, he called his al-
gorithm BiCGStab, again reminding on the underlying Bi-Lanczos procedure (see
Section 1.5.6).

Since norm minimizing of the residuals for arbitrary matrices depends strongly
on the Arnoldi algorithm (GMRES), there seemed to be no possibility to develop
a GMRES like algorithm with short recurrences. However, in 1991, Freund and
Nachtigal [91] managed to bound the residual norm with a product of two norms,
where one of them can be minimized even by using a Bi-Lanczos procedure for
generating the needed Krylov spaces and the other can be bound independently of A.
Minimizing only the first of these two norms, they introduced a quasi minimization
of the residual norms (QMR) based on short recurrence formulas (see Section 1.5.6).

Similar to the step from BiCG to CGS, Freund [37] improves this algorithm 1993
to work without transposed matrix-vector products. The resulting procedure was
called transpose free QMR — TFQMR. Compared with QMR, this algorithm again
shows a more irregular behavior in the computed residual norms for the same reason
as the CGS algorithm does. Applying the ideas of van de Vorst, Chan et al. [18]
stabilized TFQMR and developed his so called QMRCGStab algorithm.

1.5.2 Conjugate Gradients (CG)

There are various ways to derive CG. Usually one starts with an obvious steepest
descent approach to minimize the function

o(x) = %a:TA:c —z"b.
Minimizing ¢ is equivalent to finding the zero of its gradient Vo(z) = Az — b if A
is positive definite (note: for the second derivate of ¢ we have V¢ = A).

The resulting algorithm often shows a prohibitively slow convergence rate and
heavy oscillating residuals. Modifying this steepest descent algorithm to get con-
jugate search directions avoids these pitfalls and leads to the Conjugate Gradient
algorithm. Using this approach is fairly intuitive and has a good geometrical inter-
pretation. Unfortunately, this interpretation gets lost for most of the other more
advanced Krylov algorithms. Therefore we try to give a uniform derivation based
on the generating process of the used Krylov spaces (Section 1.2) and based on the
conditions to choose the current iterate from the Krylov space (Section 1.1), com-
pare [41]. The main attention thereby is on deriving the important short update
formulas.

Suppose A to be positive definite. After m steps of the Lanczos algorithm
(compare Section 1.2.2) we obtain the factorization

AVm = ‘/me + Ut hm+1,me£-



1.5 Krylov Type Linear System Solver 29

Representing x,, € V,, as x,, = o + V,,§,,,, the Galerkin condition b — Az, L
V,, now writes as

V.I(b— Az,) = V] (b— Azy — AV,,£,) = 0
& VAV, = Virg
& Tuén = |roller.

With this approach, computing the mth iterated approximation «,, becomes
equivalent to solving a positive definite tridiagonal system with system matrix

ar B
i 65

Bm—Q m—1 Bm—l
Bm—l (670

which may be solved via the LDL" factorization. In particular, by setting

1 0 -+ --- 0 di 0 oo ... 0

I, 1 : 0 dy :
Lno=10 1, . : and D, =

. . 1 0 dm,1 0

0 -+ 0 I, 1 0 -« - 0 d,

we find by comparing entries in T}, = L,,D,,L that d, = ay, [ i1 = Bj-1/d;1,
and d; — Bja1lj—1 for j = 2,...,m. Note that since the computation of I;
and dj depends solely on d;_y, we can update (L,,, D,,) from (L,,—1, Dy,—1) by
computing

lm—l = Bm—l/dm—l

dm = Qyp — Bm—llm—l-

Defining B, € IR™*™ and y,, € IR™ by the equations

B,L" =V,, and L,D,y, =V r (1.18)
we get
T, =xo+ V- T, ' V.Irg = 2o + Vo (L D, L) 7V, g
=zy+ VL, -(L,D,)" - Virg
—— N——
l?n LmDmym
- mO + ‘énym

Due to the simple structure of L, and D,, we get the following short update
formulas for B, and y,,,:

-F-;)n: (-ﬁn’l—1|ﬁm) Wlth ﬁm = vm - lm—lﬁmfl
Y= (ym—1|ym)T with vy, = (U%TO — 1y 1Ym—1)/dm—1



30

Chapter 1  Preconditioned Krylov Subspace Methods

Given x,
rg = b— ACL‘O
Bo = lIroll2
g9, =0
form=1,2,...
Uy = ’I"mfl/ﬁmfl
am = vl Av,
rm = (A - amI)vm - Bm—l'vm—l
Bm = |7 ml|2

ifm=1
di = oy
= BO/CYI
ﬁ1 =
T = Y1V,
else

lmfl = 5m71/dm71

dm = Qy — Bm—llm—l

Ym = _lm—ldm—lym—l/dm
ﬁm =Um — lm—lﬁmfl

Ty = Ty + ymﬁm

Algorithm 1.5: Conjugate Gradient algorithm derived from a Lanczos process
with Petrov condition.

and thus

Doing a lot of algebraic substitutions and transformations (compare [41]) one
can prove that Algorithm 1.5 is equivalent to the CG Algorithm 1.6 (with M = I).
However, we can see that both algorithms require one matrix vector product per
iteration (Aw,, respectively Ap, ) and update their approximate solution both with
a short recurrence.

1.5.3 Bi-Conjugate Gradients (BiCG)

The Conjugate Gradient method is not suitable for nonsymmetric systems because
the residual vectors cannot be made orthogonal with short recurrences (for a proof
of this see Faber and Manteuffel [33]). The GMRES method (see Section 1.5.5)
retains orthogonality of the residuals by using long recurrences, at the cost of a
larger storage demand. The Bi-Conjugate Gradient (BiCG) method takes another
approach, replacing the orthogonal sequence of residuals by two mutually orthogonal
sequences, at the price of no longer providing a minimization.

BiCG is based on a Bi-Lanczos process and a Petrov-Galerkin condition. That
is, two sequences of Krylov subspace basis vectors are generated: V,,, = (vq]---|v,)
and W, = (wq|-- - |wy,).



1.5 Krylov Type Linear System Solver

31

Given x,
rg = b— AiL‘O
form=1,2,...
solve Mz, 1 = rm_1
Pm—1 = (Tm-1 | Zm—1)

ifm=1
D, =2y
else

Bmfl - pmfl/pmf2
Pm = Zm—1+ Bn-1DPm 1
4, = APy,
Om = pm—1/<pm | qm>
Ty = Ty—1 + P,
Tm =Tm-1 — g,

Algorithm 1.6: Preconditioned Conjugate Gradient algorithm (CG).

Representing z,, € V,, as x,, = Ty + V,§,,, the Petrov-Galerkin condition
b— Ax,, L W,, now writes as

WIb— Ax,) = WI(b— Axy— AV,£,) = 0
<~ WmTA‘/mﬁm = WTTO;
& Tu€, = |rolle:
Contrary to the Lanczos algorithm, the matrix
ar b
Mo P
Ym—2 Om—1 Bm-1

TYm—1 Oy

is no more symmetric but still tridiagonal. Thus, instead of LD LT we have to apply
a LU factorization to solve this tridiagonal system:

1 o --- -~ 0 Upg Upo 0 0

ll 1 0 Ug,2 U3
Lo,=10 1, . : and U, =] : 0

: . 1 0 Um—1,m—1 Um—1,m

Similar to CG, we have simple update formulas for L,, and U,,. With B, € IR"*™
and y,, € IR™ defined by

B.U,=V, and L.y, =V r (1.19)



32

Chapter 1  Preconditioned Krylov Subspace Methods

we get

B, Lmym
= Ty + Bnym

Due to the particular structure of L,, and U, we get the following short update
formulas for B, and y,,:

137’71: (-i);n—1|ﬁm) with ﬁm = (vm - um_Lmﬁm,l)/um,m

Y= Ym1lym)" With Yy = 0070 — b 1Ym
and thus
T = Ty + Boyp = o+ Busi Yy + Bt
=Zm 1+ DpYm
and

rm =b— Az, =b— Az, | — Ap,,Ynm
=Tm-1— ymAﬁm

Similar we get the residuals and search directions of the dual problem A" z% = p:

~dual __ ~dual

b, =Wy, — lmpm_l
dual T . .dual

Ym = WpTyH - um*l,m/um,m *Ym—1
dual __ _ dual dual AT ~dual

ro =t —y A p

Together we have short recurrence formulas for all quantities. Again, we do not
present all of the algebraic substitutions (see [89]) but only show the BiCG algorithm
as it is usually formulated in Algorithm 1.7.

1.5.4 Conjugate Gradient Squared (CGS)

Let P,, be the set of polynomials with maximum degree m. Then we can write

P = Om(A)ry, riat =g (AT)pdual
P = Um(A)rg, plal =, (AT)rdudl

with ¢, ¥y € Pp,. To satisfy the definitions in the BiCG algorithm, we have to
define these polynomials via the following recurrence relations (see [89]):

wm()‘) = Qbm()‘) + Bmflwmfl()‘)
Pmi1(A) = dm(A) — @AYy (N)

with 1g(A) = ¢o(A) = 1. The basic idea of the CGS algorithm is exploiting the fact

(m(A)ro | 7(AT)rg) = (7*(A)ry | 7o),



1.5 Krylov Type Linear System Solver

Given x,

ro=rit =b— Az,
_ mdual __

D,=PpP1 " =To

form=1,2,...

solve M z,, 1 = rm_1

solve M T zduel — pdual
_ (pdual

Pm-1 = (TR | Zm-1)

if p,—1 = 0 method fails

ifm=1
D= %0
dual __ . dual
Dby =%
else

Bm—l — pm—l/pm—2
pm — zm—l _'_ Bm—lpmfl
plit = 2l 4

q,, = Ap,%
qg’gal — A pggal

Oy = pm_1/<p7d:al | qm>

Ty = Ty_1 + P,
rm =Tm-1— Onq,,

dual __ ,,dual dual
Ty = Tp-1— Omdqy,

Algorithm 1.7: Preconditioned Bi-Conjugate Gradient algorithm (BiCG).

which holds for all polynomials = € P,,.
Defining #,, := ¢2,(A)ry and p,, := ¢ (A)r, yields

(Pm(A)ro | dm(AT)ro)  (9Z(A)rg | 7o)

" (A (A)ro | Ym(AT)ro) (AU (A)ro | o)
(P | 7o)
(AP, | o)
and
B = (Dms1(A)ry | ¢m+1(AT)?“0> . (Prs1 | 70)

(Gm(A)ro | om(AT)ro) (P [ 7o)
Applying the recurrence relations we get
¢3n(A) = d)iz()‘) + 25m—1¢m()‘)¢m—1()‘) + 53171@/13,171()\),

Gr1(N) = 02, (N) = amA(267,(N) + 2Bm—19m(AN)bm—1(A) — amr, 1 (V)), and
Grmt1(A)m(N) ¢3;()‘) + B 10m (M) m-1(A) — amkwifl(k)-

Now we introduce two auxiliary vectors ¢,, and i, as

G = Omi1 (A)T/)m(A)To



34

Chapter 1  Preconditioned Krylov Subspace Methods

and

Uy 1= ¢m(A)¢m(A)T0
= ¢2,(A)70 + B 10m(A)Pm_1(A)rg
= lf;m + 5m71q’\m—1'

This yields

4, = ¢3n+1(A)7°0 + Bm71¢m(A)wmfl(A)T0 - OémAT/)En—l(A)
= fm + Bm—lqm_lj_amAﬁm-

-~

Um

Using these auxiliary vectors we obtain the desired short recurrences for #,,,; and
Pt
Pt = ¢?n+1(A)TU
Oim(A) = 0 A (267, (A) + 260 10m(A) Y1 (A) — anAY;,_ (A))
T — amA(fm + 5m71ffm75+fm + Bim-1Gy—1 — O{mAﬁnJ

Um am

and

Pmi1 = ¢r2n+1(A)?“0
= ¢3n+1(A) + 25m¢m+1 (A)wm(A) + ﬁiwzn(A),
= Prng1 + 2B + BB

Omitting the hats (*) and doing some algebraic reformulation to save memory
and computing time, we get the CGS algorithm as shown in Algorithm 1.8.

1.5.5 Generalized Minimal Residuals (GMRES)

GMRES is based on the Arnoldi algorithm to generate V,, and a Petrov-Galerkin
condition with W,, = AV,, to choose x,, € V,,. That is ,, = xy + V,§,, has to

satisfy
b—- Az, L W, =AV,,. (1.20)

With this particular W,,, the Petrov-Galerkin condition is equivalent to a norm
minimizing condition. Therefore, &, € IR™ minimizes the function

Om(&m) = [|b— Azpllo = ||b — Azo — AV &,z = [[ro — AV L,
if and only if x,, = ¢y + V,,€,, satisfies (1.20).
With the Arnoldi factorization (equation (1.7) on page 11) we get
Om(&m) = I7o — AV &, |2

= [l Imollovr = (VisHon + hintm - Vmg1€)€ 2
= [I7oll2Vimsr€1 = Vs H o (1.21)
= Vi1 (Iroll-er — Hué,,)llo
= || [I7olloer — Hn&pll2 (1.22)



1.5 Krylov Type Linear System Solver

35

Given x,

ro=rit =b— Az,

choose 7, for example 7 = rg
form=1,2,...

Pm—1 = <7: | /rm71>
if p,,_1 = 0 method fails

ifm=1
Uy =7y
p=u
else

Bmfl = mel/PmJ
Uy = Tm—1 + Bm—lqm—l
Py = Uy + Bm—l(qul + Bm—lpmfl)
solve M z,, = p,,
2., = Az,
O = Pm-1/(Zm | T)
q, =Un — pZ, solve Mz, =u,+q,,
Tym = Tm—1 + OpZn
Z2n, = Az,
Tm =Tm-1 — CVm'%m

Algorithm 1.8: Preconditioned Conjugate Gradient Squared algorithm (CGS).

where
hig hig oo higmor P
hay  hoo : :
~ H h : :
H. — m — 3,2 : : c ]:R(m+1)><m
" (egz : hm+1,m> .. : :
hm,mfl hm,m

0 i 0 Pt 1.m
Thus, minimizing ¢,, is equivalent to solving the least squares problem

. _H .
g,i%lgm | llmol|2€1 m&mll2

A standard method for solving least squares problems is to factorize the m + 1 by
m matrix H,, into an upper triangular m + 1 by m matrix R, (with last row 0)
and an m + 1 by m + 1 unitary matrix Q,,. Exploiting the special structure of H,
this generalized QR factorization can efficiently be computed with Givens rotations.
The solution &,, is then obtained by solving the upper triangular m by m subsystem
of

Ry&,, = [Irol[2Q e (1.23)

Suppose we have such a generalized QR factorization of H,,, ie., we have m



Chapter 1  Preconditioned Krylov Subspace Methods

Givens rotations G; with

i T2 - Tim
0 2.9 :
Gme,1 "Gle:Rm: T
N ~~ 4
Qn Tmm
0

Applying Q,, in the next step to I-Im+1 yields

g T2 0 Tim T1,m+1
0 2,2
Gme—l te Gl ' Hm+1 —
'rm,m 'rm,m-i-l
0 Tm—l—l,m—i—l

0 0 Fmiomn

Thus we just have to apply one more Givens rotation Gy,41 to eliminate 7p, 42 m1:

I 0 . = Trnt1 1 Tm+1 1
G = ~ with G JmbmAl ) mA L
m+1 <0T Gm+1> m+1 <Tm+2,m+1 0
Collecting our results we can update R;,11 from R, by applying Q,, to the last
column of H,, ;, computing G,,, .1, and setting

. ~2 ~2 . ~
Slgn(rerl,erl)\/rm—l—l,m—l—l + Pt 2,mt if Prg1me1 0
'm4+1,m+1 =

'm+2,m+1 if "m+1,m+1 — 0

and

T'm42,m+1 ‘= 0.

The right hand side vector in (1.23) is computed by applying all Givens rotations
to the first unit vector e;. For the residual norm, we have

[Pmll2 = |b = Azplla = || [|7oll2e1 — QB2 = || [I70]2Qre1 — Rkl

The first m elements of ||ro[[.Q". e, — R,,&,, are 0, because the m by m upper trian-
gular subsystem in (1.23) is nonsingular and therefore the least squares problem is
solved with error 0. Therefore, ||7o||2Qre1 — Rin&,, = (0,...,0,[|rolla- €L, QL e)”
and thus [|7p[[s = [[rolls - e @, emq1].

This enables us to check the residual norm quickly and only to compute the
approximate solution @, if ||7,,||2 is sufficiently small.

Since we have to store all Krylov basis vectors anyway, it might be advantageous
to replace the Gram-Schmidt orthogonalization by the robust Householder process
[140]. However, Rozloznik showed, that GMRES with modified Gram-Schmidt is
backward stable [50,105] and thus the higher computational effort is not necessary.



1.5 Krylov Type Linear System Solver

37

Given x,
for j=1,2,...
’51 =b-— AiL‘g

solve Mz, = v,
v1 = 21/ 7|
s1 = ||z1]lex
form=1,....M
’l-jm+1 = A’Um
solve M z,,11 = Uyt
fork=1,....m
Pkem = (Zms1 | Vi)
Zm+1l = fm+1 — hk,mvk
hm-l-l,m = Hzm-i-l”
Um4+1 = zm-l—l/hm—l—l,m
apply Gla R Gmfl to (hl,m R hm+1,m)T
compute G,,
Sm4+1 = Gnsm
if S;4+1,m+1 1s small enough
compute ;41
quit
compute 41
if convergence
quit
else
Ty = Tm+1

Algorithm 1.9: Preconditioned Generalized Minimal Residual algorithm with
restart (GMRES(m)).

1.5.6 Stabilized Variants and Quasi Minimization
e Smoothing Residual Norms

Inspecting the run of the curve of CGS residual norms, we often observe an irregular,
oscillating behavior. This is due to the fact that CGS does two ‘minimization’ steps
at once, but computes only once the search direction. Therefore CGS sometimes
overshoots locally. To smooth these oscillations, van de Vorst [133,134] coupled CGS
with a repeatedly applied GMRES(1) iteration. This leads to a local minimization of
the residual norms and therefore to a considerably smoother convergence behavior.
Chan et. al. applied this idea to TFQMR and developed the so called QMRCGStab
algorithm (see below).

e Quasi Minimization

There are various quasi minimization methods which try to retain the advantages
of GMRES but only need short recurrences from Bi-Lanczos like algorithms. The
most important are QMR (Quasi Minimal Residuals) which combines BiCG with



38

Chapter 1  Preconditioned Krylov Subspace Methods

GMRES, TFQMR (Transpose Free QMR) which is based on CGS and GMRES, and
QMRCGStab (BiCGStab with GMRES).

We illustrate only the basic ideas of quasi minimization at the example of QMR.
For further references see [18,37,91].

As in BiCG the mth iterate has the form x,, = ¢, + V,,§,, and we have

AVm - Vm+1Tm
where T,,, € IR™™™™ is tridiagonal. It follows that if v, = 7¢/||rg||2, then

Om(&m) = [[b— Ao + V&) l2
= [|ro — AV,E,, |l
= |lro = Vi1 T2
= [Ving1(rollzer — Tk, ll2-

Unfortunately, V;,,1 is not orthogonal and thus we cannot conclude ¢,,(§,,) =
Il llro]lze1 — T0n€,,||2 as we did in GMRES. However, introducing the scaling matrix
Sir1 = diag(Vy,41) we have

On(€m) < Vi1 Stallz - 1Smar(Irollzer — Toky)ll2 (1.24)

with ||V,418,,5 1]l < v/m + 1. In the QMR algorithm we simply neglect this first
factor in (1.24) and only minimize the second.

Applying these ideas to CGS/BiCGStab leads to the TFQMR respectively QMR-
CGStab algorithm.



Krylov Methods and
Floating-Point Arithmetic

Accuracy and precision are the same for the scalar computation
¢ = a*b, but accuracy can be much worse than precision in
the solution of a linear system of equations, for example.

Nicholas J. Higham, 1996

It makes me nervous to fly on airplanes since | know
they are designed using floating-point arithmetic

Alston S. Householder

Preconditioned Krylov subspace solvers are frequently used for solving large sparse
linear systems. There are many advantageous properties concerning convergence
rates and error estimates but unfortunately, if we implement such a solver on a
computer, we often observe an unexpected and even contrary behavior (see e.g.
[48,65,128]). The basic reason for this is that standard computer arithmetic is
based on floating-point numbers, i.e., numbers with a finite precision. In Section 2.1
we give a short overview about floating-point arithmetics, Section 2.3.1 describes
possible failures during preconditioning and Section 2.3.2 gives some deeper insight
into the effect of finite precision arithmetic to Krylov methods.

— 30 —



40

Chapter 2 Krylov Methods and Floating-Point Arithmetic

2.1 Floating-Point Arithmetics

2.1.1 Floating-Point Numbers

Nearly all important computer architectures used today are providing so called
floating-point numbers for numerical computations. The floating-point number
space F = F(b,l, €min, €max) is a finite subset of IR, characterized by its base b,
the length of its mantissa [, the minimal exponent enin, and mazimal exponent €pmax.

A floating-point number itself consists of three parts: a sign s (+ or —), a fixed
length mantissa 0.myms ... m; with digits m; € {1,...,b — 1}, and an ezponent e
with emin < e < emayx, given to the base b. These define the floating-point number
sm - b°. To get unique representations, the first mantissa digit m; is required to be
nonzero (otherwise, e.g., we had 0.016¢ = 0.106°"'). Numbers with this property
are called normalized. For e = ey, it is not necessary to require m; # 0 in order to
retain the uniqueness of the representation. That is, we may allow non-normalized
numbers® between 0 and #0.1p%min,

Table 2.1 and Figure 2.1 illustrate the floating-point system F(2,3, —1,2).

normalized mantissas
0.1004 | 0.1015 | 0.1109 | 0.1114
2.0 2.5 3.0 3.5
1.0 1.25 1.5 1.75
0.5 0.625 | 0.75 0.875
0.25 0.3125 | 0.375 | 0.4375

denormalized mantissas
0.0004 | 0.0015 | 0.0104 | 0.0115
-110.0 0.0625 | 0.125 | 0.1875

exponent
= Ol N W

Table 2.1: The floating-point system F(2,3, —1,2) with denormalized numbers

Figure 2.1: The floating-point system F(2,3, —1,2) with denormalized numbers

The two most common floating-point systems are defined in the IEEE-754 stan-
dard [4]. The first is called ‘single precision’ which is a F(2,24, —125, 128) system
and the second is called ‘double precision’ which is F (2,53, —1021,1024)%. Both
systems provide the special numbers —0, +inf (infinity), and nan (not-a-number).

!Having non-normalized numbers also ensures the existence of unique additive inverses in F.
2Note that this definition differs a little from standard due to our definition of normalized
numbers.



2.1 Floating-Point Arithmetics

41

2.1.2 Roundings

Obviously, (F, o) with o € {+, —, %, /} is not closed, i.e., with a,b € F we generally
don’t have a o b € F. Therefore we need a rounding after each operation, to map
a o b back into the floating-point screen F.

Usually, one is interested to obtain the nearest number out of F. In this case we
define J(a0b) =: x € F with? |z — (a 0 b)| = minge#{|€ — (a 0 b)|}. Unfortunately,
with this rounding we neither know the exact size nor the sign of the error we made
by substituting the mathematically correct a o b with the computer representable
[(I(a o b). However, at least for the relative error we have

|O(aob) —aob| < b=t
la o b - 2

=¢€/2 ifaob#0.

This € is called machine precision. It is the smallest possible relative error in F, i.e.,
(1 — minger{z > 1}).
To retain at least the sign of the error, we may use directed roundings:

V(aob):r?gg({fgaob}, A(aob):rgréijrthZaob}

O = T T [T [ 1 >
0 1 2 3

Figure 2.2: Round to nearest in (2,3, —1,2) with denormalized numbers

Figure 2.2 illustrates ‘round to nearest’ in our example floating-point screen
F(2,3,—1,2). Since a rounding can only take values in F, it is completely defined
by its saltus in each of the grey boxes ([75]). That is the smallest possible rounding
is V, with the saltus on the right edge in each box and A is the largest one, with
the saltus on the left edge.

31f a o b lies exactly in the middle between two floating-point numbers, then the one with even
mantissa, i.e. with m; = 0, is chosen (‘round to nearest even’).



42

Chapter 2 Krylov Methods and Floating-Point Arithmetic

2.2 Finite Precision Behavior of Lanczos Procedures

Rounding errors greatly affect the behavior of the Lanczos iteration [12, 64,122, 143].
The basic difficulty with finite precision arithmetic is the loss of orthogonality among
the generated basis vectors of the Krylov subspaces. The central results about
Lanczos error analysis are mostly based on the fundamental and excellent work of
Paige, see e.g. [93,94].

Implementing the Lanczos procedure with modified Gram-Schmidt orthogonal-
ization in finite precision arithmetic we have to take rounding errors into consider-
ation. That is, each value, computed in finite precision, may differ from the exact
one and thus would need a different notation. However, for simplicity we retain
the notation unchanged in this section and explicitly point out where we use exact
quantities.

Paige shows that in finite precision equation (1.11) on page 13 has to be extended
to

AV, =V, Ty, + Vi1 el + Fop, (2.1)

where F',, contains the rounding errors.

We define
€ :=2(n+4)e and € :=2(7+ nnz-|||A|]2/||A|l2)e

where € denotes the machine precision and nnz is the maximum number of nonzero
elements in any row of A. Under the assumptions that

€ < m(360 + 61) <1,

Ea
and ignoring higher order terms in ¢, Paige shows that

[Fomll2 < vme || All2

or, a little bit more sloppy, ||F,||2 is approximately of size €||A||z [100,119]. This
means, the tri-diagonalization holds up to machine precision. Unfortunately, the
situation becomes much more difficult concerning the orthogonality condition. This
fact is stated in the following theorem.

Theorem 2.1 Suppose (Sp, Aw) with Ay, = diag(A\q, ..., \y) is the exact spectral
factorization of the computed T, (see equation. (2.1)), i.e., the (z;,\;) are the
computed Ritz-pairs of A if we define z; := V,8;. Then, we have

e[l Al >
(25, Vmi1) & Arccos ( :
o [1Az; = X;zl> — e[| All2 |

Notice that v, 1 should stay orthogonal to IC,;, = span(vy, ..., v,,) and z; € I,
because it is a linear combination of the columns of V,, — the basis vectors. So
Um+1 should stay orthogonal to z;, too. If (z;, );) is a good approximation to any
eigenpair of A, i.e., [|[Az; —\;z;]|2 is small, then Z(2z;, vp41) &~ Arccos(1) = 0. This
means, ironically, if a Ritz-pair is converging (and this is exactly what we want in
eigenvalue computations) we lose our orthogonality in V,, completely. Nevertheless



2.2 Finite Precision Behavior of Lanczos Procedures

we can easily delay this loss of orthogonality using a higher precision arithmetic,
i.e., a small machine e.
Proof: Separating the last column of (2.1) by multiplying it with e,, from the right
we get

Bm’varl = Avm — Uy — Bmfl'vmfl - fm

Now multiplication with V' from left yields

T T T T T
B Vo, V1 = V, A vy — Vo vy — BV, v — Vo, fo

=dm+1 T%%T+6memv£+1+F£
<~ <~ <~ T
- querl =T, q,, —0mq, — 5m71 g, T 5memvm+1vm
T T
+F, v -V, [,
=G9m
T <> > >

Where, to facilitate additions of vectors with different lengths and the collection of
vectors with different lengths as columns of a matrix, we introduced the <-%—operator
which extends a vector to the appropriate size by adding some zero-elements at the
bottom.

Let now the vectors s;, z;, and the scalars A; be defined in the same way as in
the theorem. Multiplying (2.2) with s;r’ from left and s; from right for any j < m
yields

> > <>
Ty,T T T T T
Bm iV, vmy1€,8,=58; Ty, Q,.5; — 8; Q,.Tns; +8; G..8;

zJT Smj )\jSJT Ajsj

T<—>
- S G..8; 53

& ZjVpp1 = ——. (2.3)

Bmsmj

The numerator of this fraction is approximately of size €||Al|2]|z;|]2. In order to
estimate the denominator we look at the quality of the Ritz-pair (\;, z;):

1Az; = Aizjll: = | AV 85 — A; Vsl
Voo T+ BmVmt1 €8 +Fo,
< 1Bnvms1smillz + [[Full2
2 | B smj| + €[l All2- (2.4)

Collecting our results in (2.3) and (2.4) we finally obtain

|zT’Um+1| ( €| Al )
L(z;v = Arccos | —2——— | ~ Arccos
(%5 oms) <||zj||2||vm+1||2 Az = Azl — AT

An obvious way to retain the orthogonality among the Lanczos vectors is to
orthogonalize each newly computed vector to all its predecessors. In fact, this is



44

Chapter 2 Krylov Methods and Floating-Point Arithmetic

almost equivalent to applying the Arnoldi procedure to a symmetric matrix. With
this approach, the computed Lanczos vectors are orthogonal up to machine precision
but we have to pay a high price concerning computing time and storage demands.

A more carefully inspection of Theorem 2.1 shows that re-orthogonalizing against
all previous Lanczos vectors is not necessary [120]. The bad guys are only the
(almost) converged Ritz vectors z (with Ritz value \), since Z(z,vy) tends to zero
only if ||[Az — Az||2 is sufficiently small. Exploiting this fact leads to so called
selective orthogonalization [101] where only good Ritz vectors are stored and used
for re-orthogonalizing of newly computed Lanczos vectors. In this sense, a Ritz pair
(2, ) is called good if it satisfies

Az — Azl2 < Ve[ Alla.

An even more refined reorthogonalization strategy called partial reorthogonal-
ization can be found in [121].

2.3 Examples

2.3.1 Preconditioning

Preconditioning is very important in solving linear systems because well conditioned
systems are much easier and particularly faster to solve. However, preconditioning
in finite precision can cause a drastically perturbed solution. Thus an important
question is: How does preconditioning affect the solution of a linear system?

Since in modern Krylov subspace solvers preconditioning is no separate step but
an inherent part to the solver itself (see Algorithm 1.2 on page 14), it cannot be
distinguished which part of the deviation between the solutions of a preconditioned
and a non-preconditioned system is caused by the preconditioning itself and which
part is induced by various other error sources.

To give an idea of the magnitude of the perturbation that can be caused by
preconditioning we consider the following example. We use a Jacobi preconditioner,
which is so easy to apply to an entire linear system, that it is often used to transform
A and b in advance. Afterwards a non-preconditioning solver is applied. This means
we scale A to get a unit diagonal (we just perform one division for each element of
A and b). This operation is done in IEEE double-precision. In order to identify
the error caused by this scaling operation, we apply a verifying solver to the scaled
system. Here we solve systems GK4.16(n) which result from a 5-point discretization
of a fourth order ODE, see (6.1) on page 89. The resulting verified solutions of the
scaled systems are shown in Figure 2.3.

For comparison we also plotted the verified solutions of the non-preconditioned
systems (compare [34]). They differ so little that they appear as a single line (x).
Additionally, we drew the solution of the underlying continuous problem. The dis-
cretization errors are so small that this curve is also not distinguishable from the
non-preconditioned solutions (x).

This example demonstrates that preconditioning in this traditional way may
introduce unacceptably large errors which can be significantly larger than the dis-
cretization error of an underlying continuous problem (which is less than 107% in our
examples). It is possible to avoid these problems by doing verified preconditioning



2.3 Examples

45

] ] ] ] ] ] ] ] ]
D X —
0.012 | B
///,f ~\\\\\ b e -
f— // """"" \\\\ _ [T
0.008 |- |
0.004 /& S\ -
0 ’ | | | | | | | | |
0 0.2 0.4 06 08 1

Figure 2.3: The effect of preconditioning on ill-conditioned linear systems. The
curves represent the solutions of the preconditioned systems a:
GK(8191), b: GK(12287), and c: GK(16383) with cond ~ 104, 105,
and 10%6, resp. The exact solutions (compare [34]) of the non-
preconditioned systems differ so little, that they appear as a single
line (x).

but this leads to an interval matrix and therefore to an often unacceptable compu-
tational effort to solve these systems. Another, maybe more practical way is to use
a more accurate arithmetic to avoid significant propagation of the various errors.

2.3.2 Convergence

One well known Krylov subspace method is the Conjugate Gradient algorithm. It
can be interpreted as a Lanczos procedure and a subsequent LD LT -factorization
to solve the tridiagonal system T& = b (see Section 1.5.2) [41]. Then the residuals
turn out to be scaled versions of the Krylov basis vectors and hence should stay
orthogonal to their preceding residuals.

In Figure 2.4 the Euclidean norms of the residual and the error in each step
are plotted during solving a GK(1023) system. Additionally we show the level of
orthogonality of the new residual-vector 7,,,; to the previous ones: max}",{(r |
Pmi1)/(||7e]l2]|Pme1]]2)}. As we can see, there is no convergence at all up to step
m = 1.5n and particularly no convergence at the theoretically guaranteed step
m = n. One reason is easy to identify (see Theorem 2.1 or [51,128,129]): the basis
of the Krylov subspace loses its orthogonality completely at m = 400 and the basis-
vectors may even become linearly dependent. So CG can’t minimize the residual in
the entire IR™ but only in a smaller subspace.

Further we can observe that the error norm runs into saturation at a level of
approximately 107%. This matches with the well known rule of thumb saying that
we may lose up to log(cond(A)) (= 10 in this case) digits from the 16 decimal digits
we have in IEEE double precision.



]_ L —
10—4 L ‘.“ —
: bt
: ‘ R TS
i I ﬁl 1 ',\'\ ,J(\ v llya dgo0e
1 I \ \ \ \
_______ \‘M' '\’"‘"’," Y ’/\‘« /I" ‘vll h}‘ \""r \\wrll el M\r rlv v u‘V‘l i l\ \
8 0 v W ' i
]_07 ‘v‘/“\ s ]
by, |
U'v\,
\}Avv\
10—12 A
ortho-level —
o, —
*
: (B | PR
0 oll 1023(=n) 1534 2047

Figure 2.4: The Euclidean norms of the residual (dashed) and the error (dotted),
and the level of orthogonality (solid) during solving the GK(1023)

system. (ortho-level = max}”  {(rx | rms1)/([|7kll2]lPm+1ll2)})



Improved Arithmetics

Numerical precision is the very soul of science

Sir D'Arcy Wentworth Thompson, 1942

In many numerical algorithms there is a large gap between the theoretical, i.e.,
mathematical, behavior on the one hand and the finite precision behavior on the
other hand. In cases where the accuracy of a result is insufficient or no results can be
obtained at all due to poorly conditioned problems, it is desirable to have a better
arithmetic. Particularly, iterative algorithms sometimes even speed up because a
higher precision arithmetic produces fewer errors that have to be minimized by the
algorithm and therefore often iterations can be saved. In fact, it is nearly always
possible to save iterations, but since the computing time per iteration increases with
higher precision, we only sometimes really save time. However, we should always
take into consideration that the higher computing time per iteration is often due
to missing hardware support. For example the ezact scalar product (Section 3.1),
suitably supported in hardware, can be computed at least as fast as the standard
scalar product (see [74]).

To narrow the gap between exact and finite precision arithmetic, often some
minor arithmetic improvements suffice to get the desired results. One uses a more
precise arithmetic (see Section 3.2). A second possibility is to leave the data type but
control the rounding errors introduced by arithmetic operations performed on these
numbers as described in Section 3.3. Further on we may pick out some frequently

— 47 -



48

Chapter 3 Improved Arithmetics

used operations or functions and improve their accuracy. In particular, we focus on
the scalar product (Section 3.1) which is a fundamental operation in numerical linear
algebra. We start with this exact scalar product because this concept is needed for
one of the higher precision arithmetics we describe in Section 3.2.

3.1 The Exact Scalar Product

Since scalar products occur very frequently and are important basic operations in
numerical linear algebra, it is advantageous to perform this operation with the same
precision as the other basic operations like addition or subtraction. Usually, scalar
products are implemented by use of ordinary multiplication and addition and we
have to beware of a lot of roundoff errors and their amplification due to cancellation.
This is not necessary as has been shown by Kulisch [67, 74, 75].

The basic idea is first to multiply the floating-point vector elements exactly, that
means we have to store the result in a floating-point format with double mantissa
length and doubled exponent range!. Secondly we have to accumulate these products
without any roundoff errors, see Figure 3.1. One possibility to achieve this is by use

vector vector y
m— T m— T

1 52 + 1(hidden bit) [11 L] 52 + 1(hidden bit) (11
exact product with
[T 106 (2 x 53) [ 12 ] doubled mantissa length

and exponent range

fixed point representation ‘1‘ 106 (2 x 53) I
DS approx. 4000 bit (106 + 224 some guard-bits to catch intermediate carries) JEI

fixed point accumulator (approx. 4 Kbit in IEEE double-precision)

Figure 3.1: The basic idea of the exact scalar product, implemented by means of
a long accumulator.

of a fixed point accumulator that covers the doubled floating-point number range
plus some extra bits for intermediate overflows. At a first glance one might think
that this accumulator must be very large, but in fact for the IEEE double-precision
format, a little more than half a kilobyte is sufficient: 106 mantissa bits (for a zero
exponent) plus 2'" binary digits for all possible left shifts and the same for right
shifts plus one sign bit and some guard bits.

In Karlsruhe we built this operation in hardware as a numerical co-
processor called XPA-3233 (eXtended Precision Arithmetic on a 32 bit
PCI bus with 33 MHz clock speed), see [10]. On the XPA-3233 we use
67 x 64 bit words of storage. With this 92 guard bits even a tera-flop
computer would need more than a hundred million years to cause an

!That is a sign bit, 2 x 53 mantissa bits and 11 + 1 bits for the exponent, i.e., a total of 119
bits for the IEEE double-precision format.



3.2 Multiple Precision 49
overflow?. After accumulation of all products we usually have to round the result
into the floating-point format which is symbolized with the Cl-operator. That is, the
entire scalar product operation can be computed with just one rounding at all and
therefore we have the much sharper bound
n n n
Z%‘yz’ -0 (Z fﬂzyz) <e€ Zfﬂzyz
i=1 i=1 i=1
for the relative error than we usually have for scalar products if we use an ordinary
floating-point arithmetic with a rounding after each multiplication and accumulation
(see [61,90])
Tl — i Ly < TiYil,
;zyz Z;l i yz_l_n€;|zyz|
which can be arbitrarily bad if Y, |z;y:] > | >, ziyil.
3.2 Multiple Precision
There are various tools and libraries T
providing numbers with a higher preci- precision
sion than the build-in data types (usu-
ally IEEE double precision) [13, 103, 123].
We can subdivide them- in two funda-
mental types. The first implements ex-
act numbers, i.e., numbers with infinite ] e e
precision while the latter offers higher arithmetic fracgtion staggered man%issa

but finite precision. Because of storage
and computing time requirements, we
only focus on the latter multiple preci-
sion numbers. They are subdivided ac-
cording to different implementation techniques in so called staggered numbers which
are basically a sum of ordinary floating-point numbers (Section 3.2.1) and numbers
with a contiguous mantissa, i.e., long floating point numbers (Section 3.2.2). The
latter are mostly implemented using an integer field for the mantissa and some
additional memory for the exponent and sign.

Figure 3.2: Higher precision data types.

3.2.1 Staggered Precision Numbers

In this section we introduce the basic ideas of the so called staggered arithmetic. We
give the definition of staggered precision numbers and show how the basic arithmetic
operations can be performed by use of the exact scalar product (see Section 3.1).
Instancing the square root as an example, we illustrate how elementary functions
can be realized for staggered precision numbers.

Definition 3.1 Given [ floating-point numbers 1, ... 2" we define a staggered

precision number (or short: staggered number) x with staggered length | by

k=1

2In fact, the XPA3233 only provides 90 guard bits, because 2 bits have a special meaning.




50

Chapter 3 Improved Arithmetics

To ensure maximum precision we are interested in non—overlappmg staggered
numbers, that is, staggered numbers with [#(V| > ... > |2()| and the exponents
of two successive summands z*), z(**+1 differ at least by the mantissa length m of
the floating-point system. In th1s case, the staggered number x represents a high
precision number with at least m - [ mantissa digits but with the same exponent
range as the underlying floating-point system.

Let us assume, for example, we have a floating-point system with 3 decimal
mantissa digits. Then with () = 1.65-10%, 2 =3.94-10°, 20 =5.75-107°, and
™ =2.24.107% the staggered number z of length 4:

x=165-10>4+3.94-10°+5.75-107° + 2.24 - 10 % = 1.6539400575224 - 10?

represents a higher precision floating-point number with a minimum of 12 (14 in
this case) decimal digits

e Basic Arithmetic Operations

Designing the basic arithmetic operations for staggered numbers, we have to decide
which precision, i.e., which staggered length the result should have. Trying always
to represent the exact result soon leads to very large numbers and fails already for
the division where we usually get infinitely many digits. Therefore we define the
staggered length of the resulting staggered number as the maximum of the staggered
lengths of the operands.

Having the exact scalar product available, the algorithms for addition, subtrac-
tion and even multiplication are really simple. We just accumulate the result in
a long accumulator and subsequently we round out the summands of the resulting
staggered number as described in Algorithm 3.1. Further on we refer to this algo-
rithm by the notation z = round_to_staggered(accu) where z is a staggered number
and accu is a long accumulator.

Given a long accumulator accu
[ = staggered_length_of(z)
fork=1,...,1
2®) = round_towards_zero(accu)
accu = accu, — 2%

Algorithm 3.1: Successively rounding out a long accumulator accu into the sum-
mands of a staggered number z.

As an example for a basic arithmetic operation we state the subtraction. Given
two staggered numbers z := Zk Lz®) and y = Zk Ly*®) we compute z :=

Z;nj’f{h’h} 2®) :=  — y as showed in Algorithm 3.2.

e Elementary Functions

Since in this thesis, we only need the square root function in addition to the basic
arithmetic operations, we only describe this function. However, with the basic arith-
metic operations at hand, it is also possible to compute other elementary functions.



3.2 Multiple Precision

51

Given two staggered numbers x and y
Iy = staggered_length_of(x); lo = staggered_length_of(y)

accu =0

fork=1,.... 1
accu = accu + x*F)

fork=1,...,1

accu = accu — y*)
set_length(z, max{ly,ls}) 2 = round_to_staggered(accu)

Algorithm 3.2: Subtraction of staggered numbers z and y. The intermediate
result is stored in the long accumulator accu.

To compute the inverse of a given elementary function it is often helpful to use
a Newton iteration. In the case of square roots y = /= we set f(y) = y?> — x and
approximate the zero y* of f, i.e., the square root of x by a sequence y; defined by

[
f(yi1) 1 Z .
Yo = O (k) ) Yi=Yi1— 7, = 5 +yi1), 1=12,...
(; f'yia) 2

Yi—1

This algorithm is also known as Heron algorithm. Since the Newton iteration con-
verges quadratically in a neighborhood of y*, V1 iterations should suffice to obtain
enough correct digits for y.

The staggered technique is implemented for example in the XSC languages [69]
and is massively based on the availability of the exact scalar product. The special
case where the number of ordinary floating-point numbers used to define a staggered
number is fixed to 2 can also be coded by use of some arithmetic tricks without the
exact scalar product. These tricks are mainly based on ideas by Dekker and Kahan
[25]. A fast implementation of this latter technique in C++ is the doubledouble
library, see [80].

e Vector Operations

Since we use the exact scalar product anyway for computing the products and addi-
tions in scalar products of staggered vectors, we can easily implement a exact scalar
product for staggered vectors. Avoiding the intermediate roundings, the exact stag-
gered scalar product is even faster than the ordinary scalar product. We describe
this exact inner multiplication of staggered vectors in Algorithm 3.3.

3.2.2 Contiguous Mantissas

The contiguous mantissa type numbers can be addressed as long floating-point num-
bers. Usually, there is an integer variable containing the sign and exponent and an
array of integers storing the mantissa. This is illustrated in Figure 3.3

In comparison to the staggered numbers, there is no possibility to exploit gaps,
i.e., zeroes in the mantissa, but we have a more compact representation since we only
store one exponent for the entire number. There exists an excellent implementation
in C/assembler, the Gnu Multi-Precision library (GNU MP or GMP) [46] which



52

Chapter 3 Improved Arithmetics

Given two staggered vectors = (l‘i)?:l and y = (yi)?zl
Iy = staggered_length_of(x)
ly = staggered_length_of(y)
accu =0
fori=1,....,n
forj=1,.... 4
fork=1,...,1,

accu = accu + zyM

z = round-to_staggered(accu)

Algorithm 3.3: Exact scalar product of staggered vectors & and y. The interme-
diate result is stored in the long accumulator accu.

[lexponent | mantissa |

sign

Figure 3.3: A long floating-point number with a contiguous mantissa.

aims to provide the fastest multiple precision library. For this purpose there are
carefully optimized assembler routines for nearly all important architectures and a
generic C formulation for non-standard computers.

This results in a very high performance multiple precision arithmetic. Figure 3.4
shows the computing time for 100 000 evaluations of a typical expression in staggered
precision arithmetic (C-XSC) and in a contiguous mantissa arithmetic (GMP). The
speedup of GMP against staggered arithmetic levels off at approximately 25 which
is mainly due to two reasons: First, the software simulation of the exact scalar
product uses integer arithmetic, i.e., the floating-point summands of a staggered
number have to be decomposed and composed repeatedly. This is avoided for the
contiguous mantissa type numbers, because they use their own number format.
Secondly this software simulation is relatively slow anyway since it is written in C
instead of assembler as is the GMP arithmetic.

Since there was no object oriented interface for gmp, I implemented one with a
complete set of overloaded operators. This interface is called gmp++ and is included
in vk (see Chapter 6). It enables us to use multiple precision numbers for generic
algorithms (compare Section 5.1).

3.3 Interval Arithmetic

In order to get reliable results, e.g., for error bounds of linear systems, it is not suffi-
cient to reduce the rounding errors. We have to control this arithmetic uncertainty
completely [3]. As we have seen in Section 2.1, each basic operation — even if it
has floating-point operands — may have a result which is not representable exactly
in the given floating point format. Thus each basic operation involves a rounding
back into the floating-point screen and therefore causes an error. Clearly, there is no
necessity to use random roundings and if we are interested in reliable bounds to the
exact result, we simply have to return two floating-point numbers: One, which is
guaranteed to be larger than the exact result, e.g., it’s upwardly rounded value and



3.3 Interval Arithmetic

53

| | | | | | | |
. B /, S . ’1/ ~2.
2:00 T A 25
° JPEE R % /X//
Z 130f e g
o0 2 = 4208
& e =
= X g
2, 1:00 | W Jorce 1 2
£ K o
S ; — 15
an L - GMP mpf t ——
0:30 |~ . =S
. e staggered —--x--
ST speedup GMP:staggered --* --
0:00 et T
1 2 3 4 5 6 7 8 9 10

mantissa length [53 bit]

Figure 3.4: Computing time for 100000 evaluations of a typical expression in
staggered precision arithmetic (C-XSC) and in a contiguous mantissa
arithmetic (GMP).

one which is smaller, e.g., it’s downwardly rounded value. This idea automatically
leads to an interval data type as defined in the following definition.

Definition 3.2 Let x < Z, then we call the set [z] := [z, Z] :={{ € R |z < & < 7}
an interval.

Note: even if we have such an interval on a computer, that is, x and T are
floating-point numbers, the interval [z, Z] contains all real numbers between x and
Z and not only floating-point numbers.

Since intervals are elements of the power-set of IR, the basic arithmetic operations
are defined by restriction of the power-set operations

[z, 7)oy, gl :={€on |z <E<TAy <n<y}withoe {+ - x,/}

(and 0 ¢ [y, y] for o = /) (3.1)

Exploiting monotonicity properties, this infinitely many operations needed to com-
pute [z,Z] o [y, 7] in (3.1) reduce to the computation of only a few operations. For
example the addition of intervals can be computed by [z, ] + [y, 7] = [z + y, T + 7).
Unfortunately, the right hand side of this equation, i.e., the bounds of the resulting
interval may not be representable in our floating-point format. To make sure that
we enclose the exact solution interval on the computer, we again have to replace
z +y by a smaller floating-point number and Z + § by a larger one [73,76]. Usually
this lower respectively upper floating-point bounds are obtained by selecting the
correct directed rounding mode (compare Section 2.1). On a computer we define
the addition of intervals via

[z, 2] + [y, 9] := [V(z + ), AT + J)], (3.2)



54

Chapter 3 Improved Arithmetics

where VV and A denotes the downward respectively upward directed rounding. Some-
times we use the shorter notation

[z, 2] + [y, 7] :== Olz + y, T+ 7).

There are various libraries providing interval data types, including the XSC
languages [57,58,69], Profil/BIAS [71,72] and Intlab [111] and newly there are
commercial Fortran/C/C++ compilers from Sun-Microsystems [131] providing an
interval data type. Using other libraries, one must carefully inspect if correct round-
ing modes are used.

There is also a interval-staggered library which provides higher precision intervals
in Pascal-XSC [82].

e Excursion: Enclosing Floating-Point Computations

In particular, the exact scalar product is very useful if we have to compute an
enclosure of a linear expression only with floating-point arguments. For example,
if we have a floating-point matrix A, a floating-point right hand side vector b, and
floating-point approximate solution & and we want to compute an enclosure of the
residual vector, we can either cast all floating-point numbers to intervals (via the
O-operator) and then use standard interval arithmetic (©,©), see Algorithm 3.4a,
or we can use the exact scalar product to compute the exact residual. Finally, this
exact but long number has to be rounded to a (very tight) interval with floating-
point bounds and relative diameter less than or equal to €, see Algorithm 3.4b.

fori=1,....n
accu = b;
for j=1,...,n
accu = accu—a;j-T; [* exact */
r; = Oaccu

fori=1,...,n
’I“Z:Obl
for j=1,...,n
r, = riéai,jQij

a) with interval arithmetic b) with the exact scalar product

Algorithm 3.4: Computation of an enclosure of the residual with two different
techniques.

With approach a), the relative error in component i can only be bounded by
(n+1)e & .
1_ (n+1)6 |rl|+jzl|alza]x]| )

which might be arbitrary bad, if |r;| + >0, [a; ;751 > |ri = Y70, ai; 7).




Error Bounds for Solutions
of Linear Systems

No method of solving a computational problem is really available to a user
until it is completely described in an algebraic computing language
and made completely reliable.

George E. Forsythe, 1967

This chapter gives an overview about the most important verification methods for
linear systems of equations. Section 4.1 shows straight forward extensions of point-
algorithms to interval algorithms, while Section 4.2 focuses on verification algorithms
based on fixed point theorems [76,86,108]. The latter class of algorithms is much
more general than the first one, but suffers in two important ways from the under-
lying interval arithmetic. First, due to the software simulated interval arithmetic,
they are relatively slow and secondly, one has to pay either with a big computational
overhead or a significant loss of accuracy because of the so called wrapping effect
(see [92]).

In Section 4.3 we present a different class of verification algorithms. Instead of
delivering an enclosure of each solution component, they only compute a rigorous
bound for the error norm. This might be disadvantageous if the solution compo-
nents have highly different magnitudes. However, since most of the computation

— K5 —



56

Chapter 4 Error Bounds for Solutions of Linear Systems

can be done approximately (i.e., in ordinary floating-point arithmetic) with only
a subsequent verification procedure, the resulting algorithms often are much faster
than the previous ones.

4.1 Interval Extensions of Point Algorithms

The most obvious way to obtain a verifying algorithm is using a given point-
algorithm and replacing every floating-point operation by the corresponding interval
operation. It has been shown that, for example, the interval version of Gaussian
elimination is executable in this way for diagonally dominant matrices or M-matrices.
For general matrices the intervals tend to grow in diameter rapidly and it may soon
happen that a pivot column solely consists of intervals containing zero. In this case,
the algorithm terminates prematurely without computing an enclosure of the solu-
tion. However, if A has special properties, the Interval Gauf§ algorithm (IGA) may
even be capable to produce optimal enclosures, that is, the interval vector [x] is the
smallest n-dimensional box enclosing the solution set [87]. See Paragraph Solutions
of symmetric tridiagonal systems in Section 4.3.3 for an example with particular
tridiagonal matrices.

4.2 Enclosures via Fixed Point Methods

Suppose we have an approximate inverse R for A then we can define a sequence of
vectors () gew by

Lpi1 — Tk —+ R(b — Aﬂ}k) = Rb —+ (I — RA):Bk

This vector sequence converges for every x if and only if the spectral radius of
I — RA is less than one.

If X is a non-empty, convex, and compact subset of IR" then by Brouwer’s fixed
point theorem

XDOX+R(b—AX) implies dJz e X: R(b— Azx) = o.

Using an interval vector [x] as a special non-empty, convex, and compact subset
of IR", we generally have diam([z] + R(b — A[z])) > diam([z]) and thus [z] will
never be a superset of [x] + R(b — A[x]). Moreover, only if R is nonsingular, then
we guarantee that Ax = b is solvable, i.e., that A is nonsingular, too. These two
problems are solved by the next theorem (compare [106]).

Theorem 4.1 Let A, R € IR™™" and b € IR". Suppose for the interval vector [x]
holds

Rb+ (I — RA)[x] C [z] (4.1)
then A and R are nonsingular and there is exactly one x € [x] satisfying Az = b.

See [106] for a proof.
In a floating-point system (with denormalized mantissas), numbers are much
narrower around zero. Therefore it is always a good idea to work with the error,



4.3 Error Bounds via Perturbation Theory

57

i.e., the difference of the exact solution &* and the approximate solution & since this
is hopefully close to zero. Applying Theorem 4.1 to & + [z], condition (4.1) now
reads

Rb+ (I — RA)(% + [z))
& Rb+%— RA%+ (I — RA)[z]
N R(b— A%)+ (I - RA)[z] C [z]

If condition (4.2) does not hold one may initiate the following iteration process

N 1N
ll
T+
=G
=
=

=" = [a],

[33]( ) = R(b— AZ)+ (I — RA)[z]*V
@ ® == e 1+ [x] for k=1,2,....

Then for some k € IN and [] the inclusion [z]*) C [2]*~! holds. The question is

o (k1)
for which [z] and which & we will obtain [z]®) C [x] . The answer is given by

the following theorem.

Theorem 4.2 Let A, R € R™™ and b € IR". Then the following two statements
are equivalent:

1. For each interval n-vector [x] with

2

diam([2]) > T— a7 —7an

“|R(b— Az)|

there exists a k € IN with [z]® C [z]*~Y
2. p(|I — RA|) < 1

See [107] for a proof.

Obviously, we do not need R explicitly and it is sufficient to have a, e.g., trian-
gular factorization LU of A to compute R(b — A&) and RA[x] via forward and
backward substitution. Note that this will often produve large overestimations for
RA|z| due to the wrapping effect which occurs in solving triangular systems. To
avoid this problem, one can either use a coordinate transformation technique as
described by R. Lohner in [81] or one can substitute intervals by zonotopes which
might cover the shape of the solution more appropriate. However, these triangular
factors may exploit a possible sparsity in A (e.g., banded Cholesky) to make this
algorithm applicable to larger matrices, compare [81].

4.3 Error Bounds via Perturbation Theory

Usually, stopping criteria for iterative solvers of linear systems are based on the norm
of the residual » = b— A&. Since ||Z —x*||s < [|A |2 ||r]|2, this gives a rough idea
about the distance to the exact solution &* = A 'b if we have some information
about ||A™"||; or the condition of A. Sometimes ‘cheap’ condition estimators [56]



58

Chapter 4 Error Bounds for Solutions of Linear Systems

are used to estimate condy(A) but this approach gives only error estimates instead
of bounds. Our first task will be to compute a verified upper bound of ||& — x*||.
Then we try to improve this worst case bound by taking into account some more
knowledge about the spectrum of A.

4.3.1 Basic Error Bounds

This section is essentially based on ideas of S. Rump [109,110]. With [|A|> >
Omin(A) we have ||[A ||y < 0! (A) and therefore

min

12 — 212 < oin(A) - [|7|2-
A well known method to compute the smallest singular value of a matrix A is the
inverse power method (with shift 0) (see [61]). Therefore it is necessary to have a
factorization, say (L,U) of A that enables us to compute (LU)~'z for arbitrary z
easily. Mostly, LU = A doesn’t hold exactly but LU = A ~ A is sufficient and it
is often possible to get ||AA|| = ||A — A]| fairly small. The next theorem clarifies

how ||Z — «*|| depends on the smallest singular value on(A), AA and ||r||.

Theorem 4.3 Let A € IR™™", b € IR" be given as well as a nonsingular A c RV
and & € IR". Define AA:=A— A, r:=b— AZ and suppose

Omin(A) > n'? - [|AA|| s
Then A is nonsingular and for &* := A~'b holds

' - el

O'min(A) - n1/2 ' ||AA||00

2" — 2| <

Proof: Since ||A  AA|ly < omin(A)"" - |AA|ls < 10 - opin(A)"" - [|AA]| < 1 the
matrix I — A_IAA = A_IA and hence A itself is invertible. Now

(I-A'AA)(z* - 3)=A Az —%)=A ' -r
and therefore

.~ ~—1 =1 ~—1 ~—1 _
lz* =& =[(I-A AA)™ A -r)|<[A 7| [I-A AA)TY. (43)

Using ||(I — B) | < (1 —||Bl|s) " for convergent B (i.e., ||Bllo < 1) we get

~—1 ~—1
" — |l < [A ool 1A oo [I7]lo
oo = -1 = -1
1-[[A -AAlls 1-[|A lx-[|AA]

and applying
IBlloo < 0+ [|Bly < 02 01ia(B) (4.4)

yields
1/2

* Omin( |Irlloo

i)
1— 02 opin(A)~1 - |AA|| %

n

2" — 2| <



4.3 Error Bounds via Perturbation Theory

59

Of course for sparse matrices this 2-norm bound (4.4) is a rough overestimation
of the oo-norm. Suppose B to have at most m nonzero elements per row and
let f := max; ;j{|B; |} then both ||B]|; and ||B|/ are bounded by m - 3. Using
IBI3 < [|Blly - [|Blloc we get

IBlla < (I1Bl1 - 1Blx)"* < m - 5.

Theorem 4.4 Let A € IR™", b € IR be given as well as a nonsingular A € IR™"
and & € IR™. Define AA:= A— A, r:=b— A% and suppose opmin(A) > (||AA]|; -
[AA[6)!2.

Then A is nonsingular and for x* = A~'b holds

B |
TminA) = (|AA]l; - [AA]|) 72

o — & < lle* — & <

Proof: Starting with equation (4.3) but using the 2-norm instead of the co-norm we
get

~—1
||£L'* _ 53”2 < ||A ||2 : ||’l"||2 < _ ||’l"||2 ‘
T IA - AAl  owin(A) — (JAA]]L - |AA] )12

In practical computations it is a difficult task to get the smallest singular value
of an arbitrary matrix A or at least a reliable lower bound of o.,;,(A). But if we
have an approximate decomposition, say (L, U) with A = LU we can apply inverse
power iteration to LU to compute amin(fi). Of course, if we can compute a lower

bound of oyin(A) directly then by setting A := A we get AA = 0 and thus

[ = Z||oo < llz* — &2 < omin(A) " - [I7[l2-

4.3.2 Improved Error Bounds

The ideas of this section are mostly due to Dahlquist [24] who stated an interesting
connection between Lanczos procedures and Gaussian quadrature rules. Later on,
these ideas were sophisticated in [43, 45].

We start with the well known relation between the error norm and the residual
norm

lz* — &> = [|[A7'b — 2|, = |A7' (b — AZ)[] = || A7 r[l.. (4.5)
Suppose A to be symmetric positive definite then we have real positive eigenval-
ues Ay, ..., A\, (non-increasingly ordered) and an orthonormal basis of eigenvectors
q,;---,q, Using A :=diag(\,..., \,) and Q := (g, | --- | q,,) yields
lz* — 2> = [|Q" (z" — &)|l> = [|Q" A~ r[|2
=1QTAT'Q - Q"rll, = A" -Q"rl2 (4.6)

<Az 1Q7 2 = Agin - Il

min



Chapter 4 Error Bounds for Solutions of Linear Systems

This estimate is a worst case bound which does not make any use of the extent to
which each of the eigenvectors g, is actually present in r, i.e., of the size of the
elements of p := Q" r. With (4.5) and (4.6) we see

lz* — &3 = A" 'r]3=(A""r | A7)
<A_1QT’I" | A_IQT’I">
={(u|A7p)

— Xn: )\;2 A ,U2
=1

In general the relation (r | A7*r) = 3" A, 2u? holds for any analytic function f
and the sum can be considered as a Riemann-Stieltjes integral, see e.g. [42]:

(1 FAr) = 37004 = [ F0dn (47)

with the piecewise constant, positive, and increasing measure y defined via

K3+ s+ i3 e

0 for A < A\ Wi+ 3 4|

p(A) = 23:1 pi o for A <A< Ay 12
Z?:1 M? for A, <A 1 T >

A1 A2 A3

Note that the interval [a, b] must contain the spectrum of A, in particular a < Ay,
must hold.

Unfortunately we do not know the eigenvalues and eigenvectors of A and hence
we cannot evaluate (4.7) directly. However, one way to obtain bounds for Riemann-
Stieltjes integrals is to use Gaufl and Gaufl-Radau quadrature formulas.

Evaluating (4.7) with a Gaul quadrature rule with m nodes (&,...,&,) and

corresponding weights (wy, . ..,w,) we get
[ o= ijféj /HA &), € (a.).
R Ry

Wlth an integral approximation 7, é "5 and the remainder RGauB Note that for f(-) =
2 we get

m ( 1)2m(2m+1 [)\ (2m+2)
R = @m)! / H(A—@)Qdu > 0

and therefore I, < f;f()\)du



4.3 Error Bounds via Perturbation Theory 61

To obtain an upper bound, we apply a GauB-Radau rule to (4.7) with m + 1

nodes (&1,...,&ms1) with &,11 := a and corresponding weights (wy, ..., wWni1)
o femspy
[ o= 26+ Gt Jo-ollo-gram vew
D) R 0

Radau Radau

In this case we have

m -1 2m+1 om + 2 !)\—(2m+3) b
R%a;—allz = ( ) ((2m + 1))| ' / ()‘ - (L) H()‘ - gj)Qd/l’ < 0

due to the fact that (A—a) is nonnegative because a is a lower bound of the spectrum
of A. Thus I{" 1) > fab f(\)dp and together we have

~ +1
0, < et -z, < I

Let us briefly recall how the nodes and Welghts are obtained in Gauf} like quadra-
ture rules. By use of the scalar product (¢|v), f ¢ -1 du, it is possible to define
an orthonormal sequence of polynomials ¢, ¢2, ... with deg(¢;) = j. This set of
orthonormal polynomials satisfies a three term recurrence relationship:

Bidi(A) = (A —a;j)p;1(A) = Bj1¢52(N), j=1,....,m

4.
6N =0, Go(N)=1 o
if f; du =1 (by scaling r to [|r]|s = 1). In Matrix form this can be written as
(J(m) - )\I)(,‘b()\) = _Bmd)m()‘)em (49)
where ¢(A) = (¢o(A), - .-, ¢n-1(A)) and
o B
b az P

Bmf2 Q-1 5m71
5m—1 670

From (4.8), we can see that these a’s and (’s are exactly the same coefficients as
computed by the Lanczos algorithm (Algorithm 1.2). Multiplying the recurrence
relation with ¢;_1(\) and using the orthogonality constraints we get (¢p;j_1(\) |
(A —a;)p;—1(A)), = 0 and therefore

0 = (i1 (V) | Ajor (A = / AG (N di
=2 Nidf () qu“ i N1 (N

= (¢ 1(A) [ A- ¢j71( )> = (vj-1 | Avj).



62

Chapter 4 Error Bounds for Solutions of Linear Systems

Using ||¢;(A)|l2 = 1, we get 3; = ||(A — ayI)vj 1 — Bj_1vj_2]2 in correspondence
with Algorithm 1.2.

The eigenvalues of J™ (which are the zeroes of ¢,,) are the nodes of the Gauf
quadrature rule. The weights are the squares of the first elements of the normalized
eigenvectors of J™.

In order to obtain the Gauf-Radau rule, we have to extend the matrix J (m) in
such a way that it has one prescribed eigenvalue &, = a, i.e., we wish to construct
Gm+1 such that ¢, 11(a) = 0. From the recurrence relation (4.8), we have

0 ; 5m+1¢m+1(a) = (CL - CVm-l-l)qsm(a) - Bmd)m—l(a)'

This gives
=)
and evaluating (4.9) at A = a yields
(J™ —aD¢(a) = —Bndm(a)-e, < (J™ —al)d= /e, (4.10)
with § = (d1,...,6,,)" and
5; = —%iﬁ:((;;), j=1,...,m.

From these relations we can compute the tridiagonal matrix of the Gauf3-Radau rule
5(

J a by first solving the tridiagonal system (4.10) and then using the last element

of 4 to define j(mH) via
(03] 51
Bi ay o
j(m+1) _ I
Bm—2 7 | Bm—l
Bmfl (8799 ﬁm
Bm | @+ 0m

Note that we need not compute the eigenvalues and eigenvectors of these tridi-
~(m+1
agonal matrices J™ and J e+ ).

Theorem 4.5 Let (&,...,&) and (wy,...,wk) be the nodes and weights of an k-
point Gauf$ like quadrature rule and J = tridiag(f;, o, Bi+1) with a; and (; being
the coefficients from the corresponding three term recurrence. Further let f be an
analytic function, then

S wif(€) = fen | F(Der)

Proof: As shown for example in [126], the weights w; can be computed as

2
= (Y =1
w] <¢0(§])> b .] b 7m7




4.3 Error Bounds via Perturbation Theory

63

where y; ; is the first element of the jth eigenvector of J. Since ¢y(A) =1, we have
= (y15)% = (elTyj)Q. Using Y := (y4]...|y,,) and E = diag(&y,...,&n) we getb

m

Dowif(&) =Y el /() w,) e

= <61 . J(E) ()" - 61>

={(e;| Y/E)Y" -e)
=(e1 [ f(J)e).

Since we had to scale our initial residual vector to have norm 1, i.e., we solved
(Bo'r| A2 Bylr)y =657 - (r | A7) = 657 - [|2* — 2|5,

with fy = ||7||2. We now obtain lower and upper bounds as

~(m+1)

e [T e < ot —dl < Ayle | (") e

It should be remarked again that these bounds are only valid for symmetric
positive definite matrices A. Of course, we can always transfer a linear system
Ax = b into an equivalent system Az = b with A = A" A and b = A”b. Then
A is s.p.d. but cond(A) = cond(A)2. This limits the range of matrices we can
handle to cond(A) < e /2. However, this restriction is not as important as it seems

to be because we have to use a more precise arithmetic anyway, as we will see in
Section 4.3.3.

4.3.3 Verified Computation

Of course, the results of the two preceeding sections 4.3.1 and 4.3.2 assume that all
computations are exact or at least valid bounds of the exact values. Since we cannot
guarantee this by using floating-point arithmetic, we have to bring the tools from
Section 3 into action.

In all subsequent algorithms, the variable accu represents a long accumulator in
the sense of section 3.1. In particular, expressions of the form accu = accu +x -y
denote exact accumulation of x - y in accu.

e Decomposition Error |[LU" — A||
Suppose L, U to be a nonsingular lower triangular matrices. Then Algorithm 4.1
computes a rigorous upper bound for |[LUT — A|,.

e Smallest Singular Value

Due to ideas of Rump [109], we compute the smallest singular value of a matrix
A in two steps. First we factorize A approximately in a product of two triangular



Chapter 4 Error Bounds for Solutions of Linear Systems

e’ i=ey = =" =0
el =Sl = . i= el =0
fori=1,...,n
for j=1,...,1—1
accu = —a; ;
fork=1,...,7
accu = accu + b * ujp
eV = el AA(|accu|)
col _ ,col
e$” = ef” AA(|accul)
accu = —a;;
fork=1,...,1

accu = accu + l;  * u;
erv = el AA(|accul)
es°!l = el AN (|accul)

row . row row row
em?x := max{e] 1 ,621 b ,eTIL
CO. p— CO CO. CO.
e = rﬁnax{e1 yesd el
row col
return 5/elov Aelo

Algorithm 4.1: Compute a verified upper bound for |LUT — A||5 via the inequal-
ity | Bll2 < V/IBl1 - | Boo-

matrices, say T and T (compare Section 1.4.2) and then we compute a lower bound
of Opin(TVTY ) via' omin(TVTY ) > Omin (T1) Oumin (T2)-

Now we have to compute the smallest singular values of these triangular matrices.
The basic idea is first to compute an approximation & & o, (T') and then proving
that TT" — k&I is positive semidefinite, where  is slightly less than one. In case
of success, /x5 is a lower bound of g, (T). To decide whether the shifted TT7
remains positive semidefinite, we try to compute its Cholesky factorization LL”.
Since this decomposition is usually not exact, we have to apply the following theorem
from Wilkinson to guarantee that LL”, if it exists, is not too far from TT" — k52T
so that the positive definiteness of LL" is sufficient for the smallest eigenvalue of
TT" — k51 to be nonnegative.

Theorem 4.6 Let B, B € IR™™ be symmetric and \;(B)},, respectively Ai(B)?:l

i=1
be the eigenvalues ordered by magnitude.
Then from |B — Bl|s < d it follows that |\;(B) — \(B)| < d.

See [142] for a proof.
That is, if [ LL" — (TT" — k6°I)||oc < d then oypin(T)? = Ain(TT") > k6% —d.
Thus, if d is a verified upper bound for ||B — Bl|s and k62 > d we have o, (T') >

VEG? —d.

'In this computation of the smallest singular value hides the O(n?) effort which seems to be
necessary to compute error bounds [27].



4.3 Error Bounds via Perturbation Theory 65

o Verifying Positive Definiteness of TT" — oI

Suppose T to be a nonsingular lower triangular matrix. Then Algorithm 4.2 com-
putes a rigorous lower bound for its smallest singular value.

o = 0.9 x approz_smallest_singular_value(T)

start:
e =ey:=...:.=¢, =0
fori=1,...,n
forj=1,...,i—1
accu =10
fork=1,...,7

accu = acc + b p * tjp
fork=1,...,7—1

accu = accu — b * i
li,j = D(accu)/lj,j
e; = e;AN(laccu —1; ;= 1 ;])
e; = ;AN (|laccu —1; ;% 1 )

accy = —o?
fork=1,...,1

accu = accu + i * t; i
fork=1,...,1

accu = accu — l;  * U g
if accu <0

if iter < max_iter
c=09x%x0c
iter = iter+1
goto start
else
return failed
li; = v/O(accu)
ei = ;AN (|accu — 7))
€max ‘= max{ey, s, ..., e}
if o¥0o > emax
return \/o¥ oV emax
else
return failed

Algorithm 4.2: Compute a verified lower bound o < oyin(T) and a lower trian-
gular matrix L with LLT — (TTT —02I) < emax.

e Recursion Coefficients of the GaulBB Quadrature Rule

Given an approximate solution & we have to compute an enclosure of the residual
vy as described in Section 3.4. We then start a straightforward interval formulation



66

Chapter 4 Error Bounds for Solutions of Linear Systems

of the Lanczos algorithm (see Algorithm 4.3) to get enclosures of the a’s and (s
and thus for J™).
In the next section we will see that it is also possible to get an enclosure for the

solution of equation (4.10) on page 62, i.e., an enclosure for ¢, and therefore we are
m+1)

also able to compute [J]
Given [?],, e.g. [0], = (b — Azy)
[Blo = [I[©]y]2
[v], = 18]y - [@],

form=1,2,...

ifm=1
1[17]m = (A = [a]nI)[v],,_,
[0],, = (A = [o]nD)[v],, | = [Blm-1[v],
[Bm = ||[0],,[]2

[v],, = 18l - [8],

Algorithm 4.3: Interval Lanczos-algorithm.

e Solutions of Symmetric Tridiagonal Systems

A well known technique for computing solutions for interval linear systems is the
interval Gaufl algorithm (IGA). The shape of the solution set of a interval linear
system can be fairly complicated, but since we use interval arithmetic we are only
able to compute a multidimensional box that contains the true solution set. For
general matrices it cannot be guaranteed to get a solution box that is near to the
smallest box containing the true solution but it can be shown (see [38]) that the IGA
produces optimal results, i.e. smallest in diameter, for tridiagonal interval systems
with system matrices [J] (m), [J](m) —al, or [j](mH) respectively. However, we only
sketch the algorithm here (Algorithm 4.4).

[cly = o]y

[e]s = [blx

fori=2,..
i = [al: - [ i1 [Bli-1/[clia
[e]: = [bli — [B]i- 1[6]%1/[(/‘]%1

[Z]m = [e]m/[clm

fori=m-—1,...,1

[z)i = (el = [Blil)isa)/[cli

Algorithm 4.4: Interval Gauf} algorithm for tridiag([5];, [e]s, [B]i+1) - [x] = [b].



High Performance Object Oriented
Numerical Linear Algebra

| always knew C++ templates were the work of the Devil,
and now I'm sure.

Cliff Click, 1994

My desire to inflict pain on the compilers is large.
They've been tormenting me for the last 8 years.
Now is my chance to strike back!

Scott Haney, 1996

An often used prejudice against modern object oriented programming techniques, is
that object orientation is almost equivalent to low performance. At a first glance,
if one compares the speed of a simple routine once written in, e.g., Fortran and
once naively written in C++, this proposition seems to be true. Object oriented
programming is massively based on abstraction, encapsulation of data, access re-
striction, and polymorphism. Most of these features imply a big organizational
overhead because many decisions have to be done at runtime like dereferencing of

- 67 -



68

Chapter 5 High Performance Object Oriented Numerical Linear Algebra

polymorphic types or allocation and deallocation of temporary variables. Besides
these runtime penalties, also the compiler is unable to optimize around virtual func-
tion calls which prevents instruction scheduling, data flow analysis, loop unrolling,
etc.

Thus, the situation — at least at the beginning of object oriented programming
— was that though we had really nice, well readable, and excellent maintainable
code, we had to pay with relatively low performance. Therefore and because most of
the existent programs where coded in old Fortran versions, the scientific computing
community decided to stay in the stone age of software technique.

Meanwhile, started in the middle of the 1990’s, there have been made several
proposals to improve the performance of object oriented programs. Using these
techniques, it is possible to write highly abstract, object oriented programs that
are comparable in speed with Fortran or C and are sometimes even faster [79, 139].
These improvements can be roughly splitted into two categories.

e The first kind tries to use the object orientation itself to remove redundancies,
reduce code size and separate conceptually non-coupled program units. This
isolation of performance critical code sections actually enables writing portable
high performance codes. The key to this kind of structured programming
is called genericity. We describe some of the most important concepts in
Section 5.1.

e The second category aims to reduce the organizational overhead by relocating
performance critical parts from run-time execution to compile-time execution.
This technique can be viewed as a code generation system that removes, e.g.,
virtual function calls which are essentially required by polymorphic types. This
compile-time polymorphism is called static polymorphism and has much more
favorable optimization properties. The key technique is called compile-time
programming and we describe some aspects in Section 5.2.

5.1 Genericity

The traditional approach writing basic linear algebra routines is a combinatorial
affair. There are typically four precision types that need to be handled (single and
double precision real, single and double precision complex), several dense storage
types, a multitude of sparse storage types (the Sparse BLAS Standard Proposal in-
cludes 13 different sparse storage types [125]), as well as row and column orientations
for each matrix type. On top of that, if one wants to parallelize these codes, there
are several data distributions to be supported. To provide a full implementation
one might need to code literally hundreds of versions of the same routine! It is no
wonder the NIST implementation of the Sparse BLAS contains over 10 000 routines
and an automatic code generation system [113].

This combinatorial explosion arises because with most programming languages,
algorithms and data structures are more tightly coupled than is conceptually neces-
sary. That is, one cannot express an algorithm as a subroutine independently from
the type of data that is being operated on. Thus, although abstractly one might
have only a single algorithm to be expressed, it must be realized separately for every



5.1 Genericity

69

data type that is to be supported. As a result, providing a comprehensive linear
algebra library — much less one that also offers high-performance — would seem to
be an impossible task.

Fortunately, certain modern programming languages, such as Ada and C++,
provide support for generic programming, a technique whereby an algorithm can be
expressed independently of the data structure to which it is being applied. One of the
most celebrated examples of generic programming is the C++ Standard Template
Library (STL). Especially for numerical linear algebra, there is a library called the
Matrix Template Library (MTL) which extends this generic programming approach
to cover the needs of scientific computing [118].

The principal idea behind genericity is that many algorithms can be abstracted
away from the particular data structures on which they operate. Algorithms typ-
ically need the abstract functionality of traversing through a data structure and
accessing its elements. If data structures provide a standard interface for traversal
and access, generic algorithms can be freely mixed and matched with data structures
[117].

5.1.1 Data Structures: Containers

In object oriented numerics (OON), data structures like records
in Pascal, TYPEs in Fortran or structs in C together with a set of

functions operating on this data are called containers. In C++, the @
equivalent to a container is called class. Containers basically con-

sist of two parts: an internal representation which is only directl functions
i wo parts: an internal representation which is only directly
accessible by a set of authorized functions and a public interface
which provides functions and methods to access the encapsulated
data.

Let us consider the following example to demonstrate the basic ideas of contain-

ers. Suppose we want to design the concept of matrices. First we have to think
about the storage types we wish to support. Assume we need

e banded matrices, i.e., we only store the diagonals between lower_bandw and
upper_bandw and implicitly define the remaining elements to be zero,

e general sparse matrices, i.e., all nonzero elements are stored in a list with
elements of type (row, col, value), and

e dense matrices.

a) banded b) sparse c) dense

Figure 5.1: The storage types for our matrices



70

Chapter 5 High Performance Object Oriented Numerical Linear Algebra

In this example, the internal representation might be
e a set of vectors storing the used diagonals (banded matrices),

e a list of triples (row, col, value) storing all nonzero elements (general
sparse matrices), or

e a num rows times num cols sized memory block (dense matrices).

However, in the public interface we only need functions like get _num rows () or
get_lower_bandwith() to get informations about the shape of the matrices and
most important we need access to the matrix entries. Traditionally only simple
access functions like get_entry_at ( row, col ) were provided.

With this technique we have two possibilities to write algorithms which need
access to the matrix entries: One is to traverse through all num rows times num cols
elements (although most of them are zero) which is very slow. The other is to provide
special algorithms with exact knowledge of the sparsity pattern for each matrix type
which results in an enormous amount of code and therefore in an enormous amount
of errors. Additionally, if we add a new storage type or modify an existing one, we
have to add/modify a complete set of algorithms (compare Figure 5.2, left).

raw simple . Matrix type 1
data acc?ss algorithm raw
functions
m— : data
atrix type =
_iterators |
: iterators
raw simple . J_C
s acce.ss algorithm
functions
algorithm
Matrix type 2 ‘ s ’
raw simple . raw \ ‘ raw
data acc?ss algorithm data data
functions
Matrix type 3 Matrix type 2

Matrix type 3

Figure 5.2: Separating the raw data structures from algorithms by the use of
generic access and traversal functions — so called iterators.

Fortunately we can do much better by providing generic access via so called
Iterators as will be described in the following section.

5.1.2 Traversing and Accessing Elements: Iterators

Instead of accessing the matrix data element-wise we conceptually design our ma-
trices to be containers of containers (although they are typically not actual imple-
mented in this way). For example we interprete a matrix to be a column vector with
row vectors as element type (or vice versa). These vector containers, which haven’t



5.1 Genericity

71

allocated any storage but only refer to the memory of their parent matrix are called
iterators. Designing these Iterators to have a common public interface, enables us
to use only one routine for each algorithm (see Figure 5.2, right).

Thus, iterators can be used to traverse through a matrix in the following sense.
Each matrix container provides a datatype called, e.g., row_2DIterator (line 3)
and two functions returning special row_2DIterator’s, one is called begin() (line
4) and one is called end () (line 5) returning the first respectively last row vector of
the matrix.

1 class Matrix {

2 public:

3  typedef row_2DIterator my_row_iterator;
4 row_2DIterator begin();

5 row_2DIterator end();
6 ...

7}

The row_2DIterator itself — which in this case is implemented as a my_row_iterator

— provides the datatype 1DIterator (line 10) and again the two functions begin ()
(line 11) and end() (line 12) here returning the first respectively last element of the
according row. Additionally, it provides the function next () (line 13) which returns
the successor of the row from which it is called.

8 class my_row_iterator {

9 public:

10 typedef 1DIterator my_element_iterator;
11 1DIterator begin();

12 1DIterator end();

13 my_row_iterator next();

14 int get_index();

15 cen

16 };

With this concept, we can ask the Matrix for the begin() row_2DIterator to
get its first row-vector. With the next () function we can traverse through all rows
until we end up with end ().

Beside these functions for traversing through the data structure we usually have
functions for accessing the stored information. In this case we have get_index ()
which returns the row number (line 14).

Finally we have the 1DIterator which doesn’t refer to any subsequent itera-
tor. Here we only have one traversal function next() and two access functions
get_index() and get_value().

17 class my_element_iterator {
18 public:

19 my_vector_iterator next();
20 int get_index();

21  double get_value();

22 ce

23 };



72

Chapter 5 High Performance Object Oriented Numerical Linear Algebra

,

-begin

lnext

-row_2DIterator

\\» next
N NV N— T
[ [el [e] le]
[ [ [

begin 1DIterator end

hd

«1-end

Figure 5.3: Traversing and accessing elements via iterators

1 void print( Matrix A )

2 {

3 A::row_2DIterator current_row;

4 current_row::1DIterator current_entry;

5

6 current_row = A.begin();

7 do {

8 current_entry = current_row.begin()

9 do {
10 cout << "[" << current_row.get_index() << " "
11 << current_entry.get_index() << "] ="
12 << current_entry.get_value() << endl;
13 current_entry = current_entry.next();
14 } while( current_entry!=current_row.end() );
15 current_row = current_row.next();
16 } while( current_row!=A.end() );
17 }

Algorithm 5.1: A generic routine for printing arbitrary matrices.

In the same way we iterate through the rows of the matrix. With the 1DIterator
it is now possible to traverse through the elements of each row_2DIterator to access
the row and column number and value of each nonzero entry, compare Figure 5.3.

In Algorithm 5.1 we illustrate this technique with the simple example for print-
ing an arbitrary matrix. In line 3 we declare the variable current_row to be of
type A: :row_2DIterator, that is, A’s row_2DIterator type and in line 4 we declare
current_entry to be a 1DIterator of current_row. In line 6 we set current_row
to be the first row of A and then iterate in the outer do-while-loop until current_row
reaches the last row of A (line 16). For each current_row we set current_entry
to be the first entry and iterate until current_entry reaches the last entry of
current_row. Meanwhile we print current_row.get_index() (line 10) which is
the row index, current_entry.get_index() (line 11): the column index and finally
current_entry.get_value() (line 12): the value of the current entry.



5.2 Two-Stage Programming

73

This print () routine is capable to print all matrix types which provides these
coupled 2D/1D iterator set. That is, each new matrix type only has to provide
iterators with the same interface as row_2DIterator and 1DIterator to be auto-
matically printable via this function. For example, if we provide a matrix container
with a row_2DIterator that actually represents the columns, we immediately can
print the transposed of this matrix.

Similar to this print function, we can provide algorithms to multiply a matrix
with a vector, to multiply two matrices, to add or copy matrices, and so on, only by
writing one function for each algorithm.

5.1.3 A Point of View

Generalizing the above idea of printing a transposed matrix leads to so called views
or adaptors. A view is a special container that actually has no own storage allocated
but only refers to the memory of a legal container. The difference is, that a view
provides a modified set of iterators. For example we could define a transposed view
of a matrix via

1 class transposedMatrix : public Matrix {

2 public:

3  typedef row_2DIterator Matrix::col_2DIterator;
4 .

53;

From line 1 we see that a transposedMatrix is derived from a Matrix but
exports its row_2DIterator as Matrix’s col_2DIterator. Consequently, if we access
the rows of a transposedMatrix we actually get the columns of the original Matrix.

With this technique we can, e.g., also implement sub-matrix views by modifying
the begin() and end() functions or diagonal views by modifying the next () func-
tion to return the next element on a given diagonal. All these operations are O(1),
i.e., they need constant time and (nearly) no storage.

begin
begin
lnext \{ext
end
! ! -tend
begin next end begin end
a) transposed view b) submatrix view C) diagonal view

Figure 5.4: Some views of a matrix

5.2 Two-Stage Programming

In this section we describe some advanced techniques to improve the performance
of object oriented code [138]. Although they are hard to write and maintain and



74

Chapter 5 High Performance Object Oriented Numerical Linear Algebra

increase compile times, they are great for library designers. Many of theses problems
can be hidden from the end user. All ideas presented here, are based on a two-stage
programming process. That is, beside the usual run-time execution, some parts of
the program are evaluated at compile-time and thereby, e.g., generate specialized
problem oriented code without polymorphism and thus without virtual function
calls, or expressions without temporary variables, or even explicitly unrolled loops,
etc. In C++ this technique was enabled by introducing so called templates, which
makes it possible to write programs in a subset of C++ which are interpreted at
compile-time. In this section we first introduce some basic concepts of compile time
programming and then present two very powerful techniques to improve the per-
formance of object oriented programs: namely expression templates and automatic
self optimization.

5.2.1 Compile Time Programming

To demonstrate the power of template meta programming, i.e., routines that are
evaluated completely by the compiler, we start with an example taken from [136].

template<int N_factorial>
class Value {};

template<int N>
class Factorial {
public:
enum { value = N * Factorial<N-1>::value };

};

class Factorial<i> {
public:
enum { value = 1 };

};

void foo()
{
Value<Factorial<6>::value> dummy = Factorial<6>();

}

Using this Factorial-class, the value N! (factorial of N) is available at compile-
time as Factorial<N>::value. How does it work? When Factorial<N> is instan-
tiated, the compiler needs Factorial<N-1> in order to assign the enum value. So
it instantiates Factorial<N-1>, which in turn requires Factorial<N-2>, requiring
Factorial<N-3>, and so on until Factorial<1> is reached, where template special-
ization is used to end the recursion. The compiler effectively performs a for loop to
evaluate N! at compile-time.

Thus compiling the above C++ program with gcc factorial.cc one gets the
compiler error:

factorial.cc:17: conversion from ‘Factorial<6>’ to
non-scalar type ‘Value<720>’ requested



5.2 Two-Stage Programming

75

Although this technique might seem like just a cute C++ trick, it becomes
powerful when combined with normal C++ code. In this hybrid approach, source
code contains two programs: the normal C++ run-time program, and a template
metaprogram which runs at compile-time. Template metaprograms can generate
useful code when interpreted by the compiler, for example massively in-lined al-
gorithm — such as an implementation of an algorithm which works for a specific
input size, and has its loops unrolled. This results in large speed increases for many
applications.

There are template-meta-program equivalents for most C++ flow control struc-
tures like if/else if/else’, 'for’, ’do/while’, 'switch’, or subroutine calls. See
Tables 5.1 and 5.2 for some examples [136]. Of course these compile-time versions
aren’t very handy but we don’t intend to write entire programs in this way. However,
this kind of programming is worth the work in highly critical parts of an algorithm,
e.g., in inner loops. Here we can partially unroll loops or reverse the order of com-
putations to exploit memory caches or pipeline facilities (see Section 5.2.2).

C++ version Template metaprogram version

if (condition) { // Class declarations:
statementli; template<bool C>
} else { class _if {};
statement2;
} class _if<true> {
public:
static inline void _then() {
statementl;
}
};

class _if<false> {
public:
static inline void _then() {
statement2;
}
};

// Replacement for ’if/else’ statement:
_if<condition>: : _then();

Table 5.1: A C++ if/else structure and its template metaprogram equivalent.

Another valuable field for using templates is to avoid run-time polymorphism.
Let us first briefly describe this concept by using again our matrix example from
the beginning of Section 5.1.1. Suppose we want to implement the simple access
function get_entry_at( row, col ).



Chapter 5 High Performance Object Oriented Numerical Linear Algebra

C++ version Template metaprogram version
int i = N; // Class declarations:
template<int I>
do { class _do_from {
statement(1i) ; public:
i--; static inline void _downto_1() {
} while (i>0); statement(I) ;

_do_from<I-1>::_downto_1();
}
}s;

class _do_from<0> {
public:
static inline void _downto_1() {3}

};

// Replacement for ’do/while’ statement:
_do_from<N>::_downto_1();

Table 5.2: A C++ do/while structure and its template metaprogram equivalent.

class Matrix {
public:
virtual double get_entry_at( int row, int col ) = O;

};

class BandedMatrix : public Matrix {
public:
virtual double get_entry_at( int row, int col );

};

class SparseMatrix : public Matrix {
public:
virtual double get_entry_at( int row, int col );

};

class DenseMatrix : public Matrix {
public:
virtual double get_entry_at( int row, int col );

};

Here we defined a polymorphic type Matrix because a Matrix can represent
several specialized matrix types. Writing, e.g., a maximum norm function



5.2 Two-Stage Programming 77

double max_norm( const Matrix* A ) {
double maxnorm = 0.0,
rowsum;
for( int row=0; row<A->num_rows(); ++row ) {
rowsum = 0.0;
for( int col=0; col<A->num_cols(); ++col )
rowsum += abs( A->get_entry_at( row, col ) );
maxnorm = max( maxnorm, rowsum );

}

return maxnorm;

¥

Matrix* B = new SparseMatrix;

max_norm( B );
causes the run-time system to decide which particular get_entry_at( row, col )
is to be called every time when a Matrix: :get_entry_at( row, col ) isrequested.
That is num_rows xnum_cols times it has to be figured out to which particular matrix
type A points to. This will ruin the performance of any matrix algorithm!

One way to replace this run-time polymorphism by a static polymorphism is to

use structure parameters which encapsulate particular storage information:

class BandedMatrix {
// Storage information for banded matrices

};

template<class T_structure>
class Matrix {
private:

T_structure _data;

};

template<class T_structure>
double max_norm( Matrix<T_structure>& A ) { ... }

Matrix<BandedMatrix> B;
max_norm( B );

Here, the Matrix type is quasi polymorphic but only up to compilation. After
interpreting the template metaprogram part, Matrix<BandedMatrix> is a static
type and every call to one of its functions (e.g., max_norm) is non-virtual. The
disadvantages of this solution are

e Matrix has to constantly delegate operations to the structure objects.

e The interface between the Matrix and the T_structure object must be iden-
tical for all structures.

e Interfaces must expand to accommodate every supported matrix structure.
For example if we need banded matrices, every matrix type must provide a
get_lower_bandwith() function.



78

Chapter 5 High Performance Object Oriented Numerical Linear Algebra

Another approach to avoid virtual function calls are so called curiously recur-
sive template patterns. Here we have a base class (Matrix) with a derived class
(e.g., SparseMatrix) as template parameter. Inside the base class we have a func-
tion that explicitly converts the base class itself to be of the derived class type
(lines 4-6). Each function simply delegates its execution to the corresponding
leaf class by changing its type to T_leafType and calling an appropriate func-
tion of this leaf class (compare lines 7-9). Since, e.g., the code for a function
Matrix<T_leafType>::get_lower_bandw() is only generated at compile-time if it
is actually needed in the program, there is no need to write meaningless functions
such as DenseMatrix::get_lower_bandwith() which would be called at runtime by
Matrix<DenseMatrix>::get_lower_bandwith().

1 template<class T_leafType>

2 class Matrix {

3 public:

4 T_leafType& asLeaf() {

5 return static_cast<T_leafType&>( *this );
6 I

7 double get_entry_at( int row, int col ) {
8 return asLeaf().get_entry_at( row, col );
9 }

10 };

11

12 class SparseMatrix : public Matrix<SparseMatrix> {
13  double get_entry_at( int row, int col );

14 3};

15

16 .

17

18 template<class T_leafType>

19 double max_norm( Matrix<T_leafType>& A ) { ... }
20
21 Matrix<SparseMatrix> B;

N
N

max_norm( B );

5.2.2 Self Optimization

The bane of portable high performance numerical linear algebra is the need to tai-
lor key routines to specific execution environments. For example, to obtain high
performance on a modern microprocessor, an algorithm must properly exploit the
associated memory hierarchy and pipeline architecture (typically through careful
loop blocking and structuring). Ideally, one would like to be able to express high
performance algorithms in a portable fashion, but there is not enough expressive-
ness in languages such as C or Fortran to do so. Recent efforts [29] have resorted
to going outside the language, i.e., to code generation systems in order to gain this
kind of flexibility. Another approach is the Basic Linear Algebra Instruction Set
(BLAIS) [116], a library specification that takes advantage of certain features of
the C++ language to express high-performance loop structures that can be easily
reconfigured for a particular architecture.



5.2 Two-Stage Programming

79

To demonstrate the ability of C++ in generating environment dependent code,
we give an example of a scalar product routine with partially unrolled loops. These
blocks of unrolled loops could for example be distributed to different processors in
a multiprocessor environment. In order not to complicate our example more than
necessary, we assume that BlockSize divides Size (the size of the vectors to be
multiplied). Furthermore we do not do anything special with the unrolled blocks
than simply adding the results.

template<int N>
class cnt {};

template<int Size, int BlockSize, class InlIterl, class InIter2,
class Out>
inline Out scalp( InIterl x, InIter2 y, Out,
cnt<Size>, cnt<BlockSize> ) {
return scalp( x, y, Out(), cnt<BlockSize>(), cnt<i>() )
+ scalp( x+BlockSize, y+BlockSize, Out(),
cnt<Size-BlockSize>, cnt<BlockSize> );

© 00 N O O WN -

e
w NN = O
(-]

template<class InIterl, class InIter2, class Out>
inline Out scalp( InIterl x, InIter2 y, Out, cnt<1>, cnt<i> ) {
return *x * xy;

}

L
00 N O O

template<int BlockSize, class InIterl, class InIter2, class Out>
inline Out scalp( InIterl x, InIter2 y, Out,

20 cnt<0>, cnt<BlockSize> ) {

21 return 0.0;

22 }

[
©

The counter class cnt (line 1,2) is used to encapsulate integers. In line 4 the
template parameters Size, BlockSize, InIter1/2 (used to iterate through the input
vectors), and Out (type of the result) are introduced. Then we define the function
scalp with result type Out. This function recursively computes the scalar product
of the first block and that of the remaining blocks (lines 8 and 9). Two template
specializations are used to terminate the recursion. The first actually computes
scalar products with BlockSize=1 (lines 13-16) and the second returns 0.0 if we
are outside the vector range (lines 18-22). All functions are in-lined, i.e., the entire
scalar product finally appears as one block of code without function calls.

Figure 5.5 illustrates what happens at compile-time. Each step represents a
recursion depth when all possible recursion calls are executed. In step 6 we see the
final code, which is generated by the template metaprogram. Note: *(z+1i) denotes
the dereferenciation of the iterator z at position i, i.e., the ith entry of the vector
Z.

5.2.3 Expression Templates

Expression templates are a C++ technique for evaluating vector and matrix ex-
pressions in a single pass without temporaries. This technique can also be used



80

Chapter 5 High Performance Object Oriented Numerical Linear Algebra

double x[6], yl[6];
scalp( x, y, double(), cnt<6>(), cnt<2>() ); step 1

scalp( x, y, double(), cnt<2>(), cnt<1i>() )

step 2
+ scalp( x+2, y+2, double(), cnt<4>(), cnt<2>() );

scalp( x, y, double(), cnt<1>(), cnt<1i>() )

+ scalp( x+1, y+1, double(), cnt<1>(), cnt<i>() )
+ scalp( x+2, y+2, double(), cnt<2>(), cnt<i>() )
+ scalp( x+4, y+4, double(), cnt<2>(), cnt<2>() ); [ -

step 3

*x * xy + k(x+1) * x(y+1)

+ scalp( x+2, y+2, double(), cnt<1>(), cnt<1>()
+ scalp( x+3, y+3, double(), cnt<1>(), cnt<1>()

step 4

+ scalp( x+4, y+4, double(), cnt<2>(), cnt<1>()
+ scalp( x+6, y+6, double(), cnt<0>(), cnt<2>()

Lk

X * xky + k(x+1) * x(y+1)

*(x+2) * x(y+2) + *(x+3) * *(y+3)
+ scalp( x+4, y+4, double(), cnt<1>(), cnt<1>() ) step 5
+ scalp( x+5, y+5, double(), cnt<1>(), cnt<i>() )

+ 0.0;

+

y

*x * xky + k(x+1) * x(y+1)
+ % (x+2) * *x(y+2) + x(x+3) * *x(y+3) step 6
+ % (x+4) * x(y+4) + x(x+5) * *x(y+b);

Figure 5.5: In-lining a recursively defined blocked scalar product.

for passing expressions as function arguments.. The expression can be inlined into
the function body, which results in faster and more convenient code than C-style
callback functions. In benchmark results, one compiler evaluates vector expressions
at 95-99% efficiency of hand-coded C using this technique (for long vectors). The
speed is 2-15 times that of a conventional C++ vector class, see [137].

Expression templates solve the pairwise evaluation problem associated with opera-
tor-overloaded array expressions in C++. A naive implementation of

Vector<double> a, b, ¢, d;
a=b+c+ d;

results in:

double* _tl1 = new double[N];
for (int i=0; i<N; ++i )
_t1[i] = b[i] + c[i]l;
double* _t2 = new doublel[N];
for (int i=0; i<N; ++i )



5.2 Two-Stage Programming

81

_t2[i] = _t1[i] + d[il;
for (int i=0; i<N; ++i )
ali]l = _t2[il;
delete [1 _t2;
delete [1 _t1;

For small arrays, the overhead of new and delete results in very poor performance:
about 1/10th that of C. For medium (in-cache) arrays, the overhead of extra loops
and cache memory accesses hurts (by about 30-50% for small expressions). The
extra data required by temporaries cause the problem to go out-of-cache sooner.

For large arrays, the cost is in the temporaries: all that extra data has to be
shipped between main memory and cache. Typically scientific codes are limited by
memory bandwidth (rather than flops), so this really hurts. For N distinct array
operands and M operators, the performance is about

N+1
3M

that of C/Fortran. This is particularly bad for stencils, which have N = 1 (or
otherwise very small) and M very large. It is not unusual to get 1/9 (5-point stencil
— first order discretization on a 2D mesh), or even 1/24 (second order discretization
on a 2D mesh) the performance of C/Fortran for big stencils.

To avoid these temporary variables we have do delay the evaluation up to the
point where the entire expression is parsed. That is, we have to parse the expression
ourself and afterwards evaluate this parse tree in one pass. Fortunately this can be
done inside C++. Let us shortly introduce the needed tools.

A class can take itself as a template parameter. This makes it possible to build
linear lists or trees in the following sense:

template<class T1, class T2>

class X {};
A—»B—»C—D ///<ii//\\i:>\\\

A B C D
X<A, X<B, X<C, D> > > X<X<A,B>, X<C,D> >

Figure 5.6: Representing lists and trees with recursive template patterns.
The basic idea behind expression templates is to use operator overloading to
build parse trees. For example:

Array A, B, C, D;
D=A+B+ C;



82 Chapter 5 High Performance Object Oriented Numerical Linear Algebra

The expression A+B+C could be represented by a type such as

Op<plus, Op<plus, Array, Array>, Array> //ﬂ{:%i\b

A B
Building such types is not hard:
template<class T>
Op<plus, T, Array> operator+(T, Array)
{
return Op<plus, T, Array>Q);

Then:

D=A+B+ C;
Op<plus, Array, Array>() + C;
Op<plus, Op<plus, Array, Array> ,Array>Q);

Of course to be useful we need to store data in the parse tree (e.g. pointers to the
arrays). Here is a minimal expression templates implementation for 1-D arrays.
First, the plus function object:

class plus {
public:
static double apply( double a, double b ) {
return a+b;
}
};

This class only provides the function apply which will be called to evaluate an object
of type Op<plus, Array, Array>().
The parse tree node:

template<class T_op, class T1l, class T2 >
class Op {
public:

Op( T1 a, T2
leftNode_
rightNode_

}

n o
T P~

double operator[]( int i ) {
return T_op::apply( leftNode_[i]l, rightNode_[i] );
}

private:
T1 leftNode_;
T2 rightNode_;
}s;

Here we have a constructor which simply stores its arguments in the private variables
leftNode_ and rightNode_. Additionally, the class Op provides an index operator
which applies the operator T_op to the node-data and returns its result.

Now a simple array class:



5.2 Two-Stage Programming 83

class Array {
public:
Array( doublex data, int size ) {
data_ = data;
size_ = size;

}

template<class T_op, class T1l, class T2 >
operator=( Op<T_op, T1, T2> expr ) {
for( int i=0; i<size_; ++i )
data_[i] = expr[il;

double operator[]( int i ) {
return data_[i];

}

private:
double* data_;
int size_;

};

The Array constructor stores a pointer to the data and the number of elements.
The operator= assigns the values of an expression (represented by its parse tree) to
data_. Note that calling the index operator of expr actually causes the evaluation
of the entire parse tree in one pass. Additionally Array itself provides an index
operator which behaves traditionally, i.e., it simply returns the array entries.

And finally the operator+ which actually does not add anything but constructs
the parse tree:

template<class T>

Op<plus, T, Array> operator+( T a, Array b ) {
return Op<plus, T, Array>(a,b);

}

Now see it in action:

int main() {

double a.datal]l = { 2, 3, 5, 9 },
b.datal] = {1, 0, 0, 1 },
c.datal] = { 3, 0, 2, 5},
d.datal4];

Array A(a.data,4),
B(b.data,4),
C(c.data,4),
D(d.data,4);

D=A+B+C;

for (int i=0; i < 4; ++i)
cout << D[i] << " ";
cout << endl;



Chapter 5 High Performance Object Oriented Numerical Linear Algebra

return O;

¥

Output: 6 3 7 15
See how operator+ builds up the parse tree step by step:

D

A+B+C;

Op<plus, Array, Array>( A, B ) + C;

Op<plus, Op<plus, Array, Array>, Array>
( Op<plus, Array, Array>( A, B ), C );

Then it matches to template Array: :operator=:
D.operator=( Op<plus, Op<plus, Array, Array>, Array>
( Op<plus, Array, Array>( A, B ), C ) expr )

for (int i=0; i < N.; ++1i)
data_[i] = expr[i];
}

See how expr[i] is evaluated successively by 0p<T_Op, Array, Array>::operator[]
calling T_op: :apply():

data_[1i]

plus::apply( Op<plus, Array, Array>( A, B )[il, C[i] );
plus::apply( A[i], B[i] ) + C[il;
ATil + B[i] + C[il;

... more or less. It’s all clear now, right?

e Excursion: Exact Scalar Product

The exact scalar product, as introduced in Section 3.1, is often useful in critical
computations. Computing residual vectors, for example, highly suffers from can-
cellation errors because many large numbers are added to a (hopefully) small sum.
This error source can be completely avoided using exact scalar products. However,
simulated in software, this routine is relatively slow compared to the execution time
of an ordinary scalar product. Thus it would be advantageous if we could easily
switch between the slower but exact computation and the fast approximative one
(and maybe some precisions in between).

Usually in C++ libraries that provide operator overloading for matrix/vector
expressions, we either have all scalar products evaluated exactly or none. Using
expression templates enables us to introduce a Pascal-XSC [68] like notation for
switching between exact and naive scalar products.

Pascal-XSC version:

r #x( b - Axx );

C++ version (compare [78]):

ExprMode: :beginAccurate( RoundToNearest ) ;
r = b - Axx;
ExprMode: :endAccurate ( RoundToNearest ) ;



vk — A Variable Precision
Krylov Solver

The first American Venus probe was lost

due to a program fault caused by the inadvertent
substitution of a statement of the form

DO 3 I = 1.3 foroneoftheformDO0 31 = 1,3

Jim Horning, 1979

Almost all ideas and concepts presented in this thesis are implemented in the variable
precision krylov solver vk. The program is written in the C++ programming lan-
guage and makes extensive use of generic programming paradigms and compile-time
programming. The main emphasis on writing vk was to produce an easily maintain-
able and extendable code (at least outside the kernel) while simultaneously providing
an acceptable performance.

Several ideas on algorithms and data structures are taken from [28, 36,39, 84]

6.1 Functional Description of vk

Figure 6.1 gives a quick overview over the main units of vk. The central object
of vk is a project. A project stores all information about the problem to solve

- 85—



86

Chapter 6 vk — A Variable Precision Krylov Solver

and manages all necessary steps from reading the data, creating the preconditioner,
solving the linear system, logging some interesting information, verifying the iter-
ated solution, up to finally writing the result. Additionally it provides the data
types for each arithmetic class (see Section 6.1.1) and hosts the multiplicators and
accumulators for computing various scalar products in.

scalar types matrix types

IEEE single | IEEE double dense
extended doubledouble banded
GNU MP compressed

staggered

types

needs
progect
needs calls
Krylov solvers
calls ER T calls
CGS BiCGStab
preconditioners
prescale Jacobi needs
inc.Cholesky | inc. LDLT
mod. ILU external

Figure 6.1: Functional structure of vk.

6.1.1 Variable Precision

In vk, nearly all computations can be performed in almost arbitrary precision rang-
ing from IEEE single up to thousands of mantissa digits. For this purpose all
computations were subdivided into several arithmetic type-classes. All variables of
such classes are of equal data type and all scalar products (or matrix-vector prod-
ucts) inside one class are performed in the same precision (component products and
accumulation). Table 6.1 lists the possible data types (compare Section 3.2), while
Table 6.2 shows the arithmetic type-classes. To realize, e.g., an exact scalar product
for IEEE double vectors in internal computations, one would have to set

INTERNAL_PREC = -1, INTERNAL_PROD = 2, INTERNAL_ACCU = 67.

In fact, INTERNAL_PROD = -3 would suffice, but is significantly slower due to addi-
tional data conversions.



6.1 Functional Description of vk

87

Type Name type_id | Mantissa ‘ Exp. ‘
IEEE single precision single 0 23 bit | 8 bit
TEEE double precision double -1 53 bit | 11 bit
Intel extended precision?® extended -2 64 bit | 15 bit
staggered with length 2 doubledouble -3 106 bit | 11 bit
staggered” with length [ = —id — | staggered</> | —4,—5,... | [ x 53 bit | 11 bit
3

GNU MP floating-point number | multiple</> 1,2,... [ x 64 bit | 31 bit
with length | = id

Table 6.1: Available data types.

2if supported by the used platform
bnot supported by the standard version of vk

Symbol

Description

PRECOND_FACT_PREC
PRECOND_FACT_PROD

PRECOND_FACT_ACCU

Datatype to store the preconditioner in (e.g. Cholesky factors).
Precision to compute products of type
PRECOND_FACT_PREC xPRECOND_FACT_PREC with.

Datatype to accumulate numbers of type PRECOND_FACT_PREC
or PRECOND_FACT_PROD in.

PRECOND_APPL_PREC
PRECOND_APPL_PROD

PRECOND_APPL_ACCU

Datatype to store the preconditioned search directions in.
Precision to compute products of type
PRECOND_APPL_PRECXPRECOND_APPL_PREC or
PRECOND_APPL_PREC X INTERNAL_PREC with.

Datatype to accumulate numbers of type PRECOND_APPL_PREC
or PRECOND_APPL_PROD in.

INTERNAL_PREC

INTERNAL_PROD

INTERNAL_ACCU

Datatype to store internal used quantities in (a’s, ’s,
residuals, auxiliary vectors, ... ).

Precision to compute products of type

INTERNAL_PREC X INTERNAL_PREC with.

Datatype to accumulate numbers of type INTERNAL PREC or
INTERNAL_PROD in.

SOLUTION_PREC
SOLUTION_CALC

Datatype to store the iterated solution in.
Precision to compute the saxpy-operations with, used to
update the solution.

VERIFICATION_PREC

Precision to compute the floating-point part of the verification
step in.

Table 6.2: Adjustable arithmetic type-classes. The PROD and _ACCU types can
be used to realize the exact scalar product (see Section 3.1).



88

Chapter 6 vk — A Variable Precision Krylov Solver

6.1.2 Matrix Types
Currently, vk supports three matrix types: dense, banded, and compressed.

dense A dense matrix is stored in a dim by dim memory block. This matrix type is
mainly implemented for testing purposes since vk aims to solve sparse systems
of equations.

banded A banded matrix actually is a mixture between dense and sparse matrices.
The elements are stored in a dense dim by bandwidth memory block data and
there is a simple mapping from matrix coordinates to memory coordinates and
vice versa (inside the band):

A(i,j) + datali, lower_bw+ j — i
datali,j] +—  A(i,i+j — lower_-bw)

compressed In vk, compressed matrices are stored in a data structure which
mainly consists of a doubly linked list and two vectors to find the first ele-
ment in each row, respectively column. The elements of the list are of type
compressed_element (compare Figure 6.2). With this matrix type, we can
also perform transpose matrix-vector products. Without this feature we could
save up to fifty percent of storage and the internal routines of this matrix
container would be much simpler.

A data A data

(a) banded (b) compressed

Figure 6.2: Storage schemes for banded and compressed matrices.

template<class T>
class compressed_element {
int col;
int row;
T value;
T* next_in_row;
T* next_in_col;
};
The actually used matrix type is automatically selected by construction to get
maximum performance and minimum storage overhead.
There are 3 built-in linear systems for testing purposes and the possibility to
read matrices stored in the MatrixMarket [85] format. The build in types are



6.1 Functional Description of vk

89

Gregory/Karney 4.16 This matrix is out of a collection of matrices, edited by
Gregory and Karney [52]. Tt is defined! via

5 —4 1
4 6 -4 1
1 -4 6 —4 1

GK4.16 = (6.1)

1 -4 6 -4 1
1 -4 6 -4
1 -4 5

This matrix is s.p.d. and its condition number is approximately n*.

Hilbert Hilbert matrices are good examples for extremely high condition numbers
at small dimensions. Usually these matrices are defined as A; ; :=1/(i+j—1),
with 7,7 = 1,...,n. Scaling with the least common multiple of the numbers
1,...,2n — 1 yields an integer matrix which can be stored exactly in IEEE
double precision up to n = 21. Hilbert matrices are also s.p.d.

Gregory/Karney 4.20 This matrix again is out of Gregory/Karney’s matrix col-
lection. There, we have a parameter a which we set to 1. The matrix is
symmetric but indefinite and is defined as

-1 2 1
2 0 2 1
1 2 0 2 1
GK4.20 = . (6.2)
1 0 2 1
1 2 0 2
1 2 -1

6.1.3 Preconditioners

In vk we have several built-in preconditioners. Additionally, there is the possibility
to import externally computed preconditioners from a file. To gain maximal perfor-
mance, the preconditioner type must be selected at compile-time in order to enable
the compiler to produce highly specialized code for preconditioned Krylov solvers.
In particular we have the following types:

prescale is a Jacobi (see below) preconditioner but applied in advance to the linear
system instead of applying it in each iteration.

Jacobi This preconditioner is realized by doing one step of the Jacobi iteration
(compare Section 1.4.1).

Cholesky decomposition. This preconditioner is only applicable to s.p.d. systems
(for this and the next two compare Section 1.4.2).

I The matrix results from a centered difference discretization of a fourth order differential equa-
tion, describing the bending line of weighted beam fixed at both ends [19].



90

Chapter 6 vk — A Variable Precision Krylov Solver

LDL" A generalized Cholesky preconditioner that works for arbitrary symmetric
matrices.

LDM? A modified (in the sense of Section 1.4.2) LU preconditioner.

external This kind of ‘preconditioner’ allows us to read a Cholesky factor (L) or
lower and upper triangular matrices (L and U) and a permutation matrix (P).
These matrices are supposed to fulfill LL” ~ A or LU" ~ P A, respectively.
That is any kind of approximate triangular factorization (with pivoting) can
be used.

Actually, only the prescale, Jacobi and Cholesky preconditioners can be com-
puted in variable precision, i.e., with PRECOND_CALC_* # double.

6.1.4 Krylov Solvers

The implemented Krylov solvers are CG, BiCG, CGS, and BiCGStab. All solvers sup-
port preconditioning, variable precision, and verification of their iterated solution.
Due to generic programming, the latter two features are completely separated from
the solver. Variable precision is a feature of the underlying matrix-vector arithmetic
and the verification step can be considered as a separate post processing of the so-
lution. Thus it is easy to transform any given Krylov solver to a verified Krylov
solver with variable precision.

6.1.5 Verification

As mentioned in the section above, verification of iterated solutions with vk is com-
pletely separated from the solver itself. Both implemented verification algorithms
only need the system matrix A, the right hand side vector b, an approximate trian-
gular decomposition and obviously the approximate solution to be verified.

The supported verification algorithms are

sigma_min This is a verification method via basic error bounds, see Section 4.3.1.

gauss This verification method uses improved error bounds described in Section 4.3.2.

6.1.6 Output

Usually, there are two ASCII output files written by vk. One contains the iterated
solution vector and the other is used for logging all important information about
the system itself and the solving and verification process. The log-files are designed
to be directly usable as gnuplot [40] input data files.

vk-log-file
filename : gk416_0000128_cg_Cholesky-none_[...].vk
date : Wed May 17 10:55:15 2000

53 Bit (double)
53 Bit (double)
53 Bit (double)
53 Bit (double)

4288 Bit (multiple<67>)
128 Bit (multiple< 2>)
53 Bit (double)

precond calc precision
precond calc accu length
precond calc prod length
precond apply precision
precond apply accu length
precond apply prod length
internal precision

H OH H H HEH HEHHEH



6.2 Usi

H OHE B H H HHHEHHEHHEHHEHRHEHEHR

H H B

H OH H HH

6.2

ng vk 91
internal accu length = 4288 Bit (multiple<67>)

internal prod length = 128 Bit (multiple< 2>)

solution precision = 53 Bit (double)

solution calc prec = 128 Bit (multiple< 2>)

maxCount = 128

max. residual norm = 2.46204e-12

max. error norm = 1le-05

algorithm :cg

preconditioning : Cholesky (none) (0 0:00:00.00 sec)
matrix : gk416_0000128

exact solution : none

dimension = 128

nnz = 634 (3.87%)

lower bandwidth =2

upper bandwidth =2

min. singular value = 2.46204e-07 (0 0:00:00.00 sec)
decomposition error = ---

| 1A*x-b| | (x=exact) = ---

iter time res.norm abs.error ub of res.nrm.
1 0 1.1456e-08 - 1.5628e-08
2 0.01 2.2175e-19 -—- 1.6908e-09
verification failed ( upper error bound \in [0.0068674,0.00686741)
3 0.02 5.6131e-31 -—- 3.3959e-09

verification failed ( upper error bound \in [0.013793,0.013793])
STAGNATION after 3 steps.

needed 3 iterations to reach ||r||: 5.61e-31 (updated)
verified upper error bound : 0.0069

EOF (0 0:00:00.02 sec)

Using vk

Since vk makes extensive use of the two stage programming paradigm (see Sec-
tion 5.2), several quantities have already to be known at compile-time. This enables
the compiler to produce highly specialized code, e.g., for the particular data types
we want to use. Therefore, using vk consists of two steps. First we have to com-
pile an appropriate executable (see Section 6.2.1) and secondly we need to run the
executable with proper command line options (Section 6.2.2).

6.2.1

Compiling vk

Before compiling vk, one have to choose the precision for each arithmetic class
(compare Section 6.1.1) as well as the preconditioner. A preconditioner is selected
by setting PRECOND_TYPE to an appropriate prec_id, i.e., by adding the definition -D
PRECOND_TYPE=prec_id to the compile command line. Table 6.3 shows all supported
preconditioners with according prec_ids. Similarly, the data type (Table 6.1) has to

‘ Name ‘ prec_id H Name ‘ prec_id ‘
none 0 LDL" 4
prescale 1 LDMT )
Jacobi 2 external 6
Cholesky 3

Table 6.3: All preconditioners supported by vk.



92

Chapter 6 vk — A Variable Precision Krylov Solver

be selected for each arithmetic type-class, by adding -D class_name = type_id to the
compiler options. The default precision for any class is IEEE double (type_id=-1).

If one arithmetic class is adjusted to have the data type doubledouble you need
to link the doubledouble library [16] and add the options:

-L path/to/doubledouble/library/

-1 doubledouble

-1 path/to/doubledouble/includes/

-D DD_INLINE -D x86 -m 486 -D VK_USE_DOUBLEDOUBLE

You always need to link the Profil and Bias libraries? [70]:

-L path/to/profil_bias/library/
-1 Profil -1 Bias
-1 path/to/profil_bias/includes/

Finally you need

-L path/to/gmp/library/

-1 gmp

-1 path/to/gmp/includes/
-1 path/to/gmp++/source/

to tell the compiler where to find the gmp++ library® which provides the multiple<N>
data type.
All together the command line for compiling vk should look as follows:

g++ -o my_vk vk.cc -I ..
options for doubledouble
options for profil/bias
options for gmp/gmp++
define for the preconditioner
defines for the data types

Assume we need a Krylov solver with Cholesky preconditioner. The Cholesky
factorization shall be computed in a higher precision, say in doubledouble, but
stored in the IEEE double format. Additionally we need all internal scalar products
to be exact ones. Then we may compile vk via

g++ -o my_vk vk.cc -I ..
-L “/1ib/doubledouble -1 doubledouble
-I “/include/doubledouble
-D DD_INLINE -D x86 -m 486 -D VK_USE_DOUBLEDOUBLE
-L “/lib/profil_bias -1 Profil -1 Bias
-I “/include/profil_bias
-L /usr/lib -1 gmp
-I /usr/include/gmp
-I “/source/gmp++

2Note that the original versions produces oodles of warnings, but should compile anyhow.
3This library is obtainable from the author of this thesis.



6.2 Using vk

93

-D PRECOND_TYPE

]
w

-D PRECOND_FACT_PROD = -3
-D PRECOND_FACT_ACCU = -3

-D INTERNAL_PROD
-D INTERNAL_ACCU

n o
(e}
~N N

6.2.2 Command Line Options

Table 6.4 shows all currently supported command line options

‘ Switch ‘ Arg. type ‘ Description

-h, --help none prints a short help message (similar to
this table).

-V, --version none prints a description of the executable.

-m, --matrix string filename of the matrix or ‘gk416.n,
‘ek420_n, or ‘hilbert_n.

-r, --rhs string filename of the right hand side vector
or ‘set’ to set b = Ax, where x is the
comparative solution.

-c, —-compsol string file-name of the comparative solution.

-a, ——algorithm string ‘CG’, ‘BiCG, ‘CGS’, or ‘BiCGStab’.

-p, —-preconditioner string option for the preconditioner (e.g., the
file-name for ‘external’).

-n, ——maxcount int maximum number of iterations.

-e, —-eps float maximum residual norm (or maximum
error norm, if verification is enabled).

-v, —--verify none enable verification

-w, —-write string name of the file to store the iterated
solution in.

-1, —-logfile string name of the file to store the logging
messages in (may be ‘auto’ for auto-
matically creating a file name).

-q, —-query string Used for communication between vk
and xvk

Table 6.4: Command line options for vk



04

Chapter 6 vk — A Variable Precision Krylov Solver

6.3 xvk — A Graphical User Interface

Because there are a lot of compile-time and run-time options, include paths, libraries,
and so on, it might be a little difficult to get vk running. To assist you with that,
there is a graphical user interface (GUI) for vk called xvk. It is written in C and
uses the X-toolkit GTK [53].

The GUI of xvk is organized as a notebook with 4 pages: ‘Compile-Time Con-
stants’, ‘Compiler Options’, ‘Run-Time Parameters’, and ‘Browse Logfiles’ (the lat-
ter actually is in progress).

The page ‘Compile-Time Constants’ (see Figure 6.3) allows you to set all compile-
time constants to appropriate values. The arithmetic type-classes (compare Ta-
ble 6.2) are subdivided into 5 categories. For each type-class, there is a little
menu that lets you choose a numerical data type (compare Table 6.1). If you select
multiple<N>, the ‘Precision’ entry becomes sensitive. You may adjust N here.

Additionally, you can select the preconditioner type, by simply clicking on its
radio button.

vk - B varsille preciios kryliny sehoer

CFFH, University ol Fadsubs = E
Cowpk-THE l:-:-'lm.rﬂlcnrpm Opersi | Mun-Tins Parsrmstan | Browas Lagias |

Curbrypes Frecond bonem
Precordlioning - AR
Facisrirssan . .
[Craiabvpe doukla _|| Pracison |_ = . Jesptl
Pibdaity dnubls _|| Peachion: [& 2 - o, Chplesty
« ®xl g, LDLT
A eurnulialion Adi b _I| P EidBn I_-"ll
“ mod . 1L
Appication o Eim
Cutatypi inutls _|| Paciion: [1 &
Prechis drustle _|| Praciion: [& 4
Accunulslion

nleT] ] _|| Pracidon | -"l,

Infemel Compulsione

Culate Ernibla _|| Frapion. [ A

Frodicts LU HE S E _|| Praction: [2 4

et tumulakon widlipheshia _|| Pratiuon It_#

Geklion

SARPY exdardar | Procision. [

il Cadba i

Cisbabpe BoaibH __|| Pracition |_-'- Lansd Famrerers han

L] |

Figure 6.3: xvk: Compile-time constants.

On the page ‘Compiler Options’ (see Figure 6.4) all remaining options of the
compiler command line can be adjusted. Since it shouldn’t be necessary to change



6.3 xvk — A Graphical User Interface 95

these settings after installation, it is possible to save them on disk in order to get
them preloaded every time you start xvk.

Additionally, at the bottom of this page, there is a window displaying the output
of all compiler calls initiated by xvk. This output is also written into a logfile.

avh - B vArEE prec o oyl sshoer AN, University of Eardsruks  [[EE]
Campik-Tine Cosglask |im-1'|r-| I-muulimwu LthnI
Conpiee
Y e T

Cos pptiwation: [0 2
Copatrmar [0 2

Compiler oglion: |-1- ABE -0 DO PMLINE -0 =86
bin diseclzry |l'|'||'|n'.-|.-n.-l.'|‘lr\-"'.'l Arzens
Iicidas
Lo Samlinegs
“h [ B
Eave Sodngy
Binps+ |.1||.r|li.l-.-\£'|.l.-.'ul: digrad Birisriai |
B Do i |.1||:r|lil-'.-\i'|.' e B e L I Biiastad
piodilmias |.1||:r|li.l-'.-\.i'|.' e e pealli_mias Erisaria |
Librarss
gz a I-'|.|-|-1I-|1 bejrp & Miead |
Rdacbdrdaubie & |-1r|1'|-'.'-|.-.ilu1 hlbsrubladacble & Hicesid |
W I-1!.|1'|n'i.u|.1 bl & Hioesisd
0 U |-1u-n.-.'-.-.-|.1 B aEias Birisaisi | il |
Lo
Fibaran i |-i ] Elr\-:mr| HHI:-I.I'-l Ciga

Figure 6.4: xvk: Compiler options.

The notebook page ‘Run-Time Parameters’ (see Figure 6.5) allows you to adjust
all options understood by vk and beyond it you can choose some additional options
only provided by xvk. The latter are computed by calling MATLAB preliminary to
vk.

In particular you may

e select the system matrix either as one of the built-in types or by specifying a
file in the MatrixMarket format (see [85]) or

e select the right-hand-side vector either by setting all its components to one,
by computing it according to the comparative solution (must be given in this
case), or by specifying a file in the MatrixMarket format and

e select a comparative solution,



96

Chapter 6 vk — A Variable Precision Krylov Solver

pass some options to the compiled-in preconditioner,
select a reordering algorithm,

choose a Krylov algorithm,

specify the stopping criteria(s),

set the verification mode, and finally

adjust some project properties

avh - B sl preciion krylrs sehoer Aol 1 iex SHE

Compike-Tins Cosstusts | Cangiber Opvers Aun-Troe Pararveiars | Browas Lagies |

pt ]
St BAalvin:
- Grogoykamey 416 [S02 3 v HiiR i [z &
e e orwamiy 4 20 IT-} o HilDs ||._-}

CFFH, University ol Fadsubs = E

= WATAARTLE] 1D TE: [T o e e i P W
Figitl- hvanel- s wacinr:

Btk |
= gpim A, 1) o DAL o Bl e B TG O DRp aralhee § olellon
w A from B | Bimwr |
Comparafve inuon: [P |
Frac pidilising
Estmimial Freoidtonir: [ Bikwrin
In; ol Faciaristion: logidmp- olemns e |-|:. 2 Jneil-m
= rploi aymmstny Faardedrg Algerthm  BONE _,]
At Harshon: Weriiication
- O o CHTES W giEp Ekang I_':' _"n' - AT
= LG5 w A& Reration: [0 4| - sgra_nin
w BICG o TFOLE count singe fealons 4| | . Guss
w BICG 50
Leggng
Pea ol [Ieptastoptieca Bitskia |
Lisg=Fiki [asta Bitwria |
Rarmind sodubion. |r\:|l-.1'md | Higaria |

Starl Covpstaben | Load Paraweters bom |

Figure 6.5: xvk

: Run-time parameters.




Computational Results

Numerical subroutines should deliver results that satisfy simple,
useful mathematical laws whenever possible.

Donald E. Knuth, 1981

7.1 Level of Orthogonality

As a first example of the effectiveness of higher precision arithmetic, we solved again
the system GK4.16(1023) (compare Section 2.3.2, Figure 2.4). The residual norms
and error norms, achieved by using a staggered precision arithmetic, are plotted in
Figure 7.1. The letter [ denotes the staggered length, i.e., the number of floating-point
numbers defining a staggered number (see Section 3.2.1). The case [ = 1 corresponds
with Figure 2.4. Since the staggered arithmetic is simulated in software, it cannot
compete with the built-in double arithmetic (I = 1) in computing time. However,
despite getting more accurate solutions, (which might be unnecessary for practical
problems) we observe a significant saving in the number of iterations.

In Figure 7.2 we show the level of orthogonality of the new residual-vector 7,
to the previous ones: maxj {(ry | Pmi1)/(||7k||2||Pmi1]]2)}. Beside the expectedly
better orthogonality at the beginning, the loss of orthogonality is not delayed very
much. However, this little improvement is sufficient to give a significantly better
convergence.

- 97 -



98 Chapter 7 Computational Results

10710

10—20

= QoD —

10730 -

T T

| b | % |
0 511 1023(= n) 1534 2047

Figure 7.1: The Euclidean norms of the residuals (oscillating) and errors (more
or less piecewise constant) during solving the GK(1023) system with
staggered length [ from 1 to 4.

| | T T T
1 —
W T
10730 - TT T TTTT T T TT T TTTTTTT ’ :" :I _
1060 e |
S =t
[—4 -
........................................................................ 1= 6
10*90 | | | | I
1 255 511 55

Figure 7.2: The level of orthogonality during solving the GK(1023) system with
staggered length [ € {1,2,4,6}.



7.2 High Precision and Exact Scalar Products 99

7.2 High Precision and Exact Scalar Products

In this example, we demonstrate the effect of high precision and exact scalar prod-
ucts. The used linear system is called £idap009 and is described in the appendix as
Matrix A.5. We solved this linear system with a preconditioned Conjugate Gradient
solver. For the preconditioner we used an incomplete Cholesky factorization with
drop-tolerance 10 !°. For several larger droptolerances, i.e. more sparse precondi-
tioners, we got no convergence, neither with double, nor with extended arithmetic.
The used arithmetics were:

double IEEE double precision,

doubleX IEEE double precision with exact scalar products,

extended Intel’s extended precision format, and

extendedX Intel’s extended precision format with exact scalar products®

2This accumulator needs approximately 32 kbyte. Since vk provides a central accu management,
only one accumulator of this size is allocated.

Figure 7.3 shows the relative error norms vs. number of iterations. As we can
see, the higher precision used for accumulation, results in faster convergence and
increased accuracy.

T
double

]_ —

extended - -—--- .

doubleX ------ g

extendedX - .

10 5

10—8 —

10-12 “""""""""""":

10-16 i ! L T LT L 1
0 100 200 300 400 500

Figure 7.3: Solving a fidap009 system (Matrix A.5) with an incomplete
Cholesky preconditioned CG solver. The curves represent the relative
error norms vs. number of iterations achieved by computing with dif-
ferently precise arithmetics (IEEE double resp. Intel’s extended with
standard scalar products (double/extended) and with exact scalar
products (doubleX/extendedX.)

Taking into consideration, that exact scalar products, sufficiently supported in
hardware, need not to be slower than ordinary scalar products, there it is simply
no reason not to utilize this technique. However, presently, this operation is sim-
ulated in software only and therefore is relatively slow compared to the built-in



100 Chapter 7 Computational Results

arithmetic. Figure 7.4 shows the same experiments as Figure 7.3 but now plotted
against computing time (on a Pentium II, 400 Mhz).

| T T T
1 double —
extended ----- -
doubleX ------ -
extendedX - i
1074 b
10-8 =
10712 - \-___________________________‘.;‘7:’____*-??:““_:
10716 | L ] | | ]
0:00 1:00 2:00 3:00 4:00 5:00

Figure 7.4: This figure shows the same experiments as Figure 7.3 but now plotted
against computing time (in sec) instead of iteration counts.

Of course, for practical problems, the exact scalar product often provides much
more precision than is actually needed. To get an idea on how many precision would
suffice, we solved the £idap009 system with basic data type double and different
accumulator precisions.

T T T T

1 double -

double/extended ----- -

double/multiple<2> and doubleX ------ -

1074 = =

10-8 - \\ pl

L N \\ -

i \ i

10—12 -_ ‘\\ Tt _-

10716 i ] L L . ]
0 100 200 300 400 500

Figure 7.5: This figure shows the same experiments as Figure 7.3 but now we
used different scalar products while leaving the basic data type fixed
at double.



7.3 Beyond Ordinary Floating-Point Arithmetic

101

Namely, we used accumulation in double, extended, multiple<2> (128 bit man-
tissa length, see Section 3.2.2), and exact accumulation. The results are shown in
Figure 7.5. The curves that corresponds with exact accumulation and multiple<2>-
accumulation differ so little that they appear as a single line. That is, in this partic-
ular case, 128 bit mantissa length was sufficient for almost error free accumulation.

7.3 Beyond Ordinary Floating-Point Arithmetic

While in the latter section we only saved iterations by using a more precise arith-
metic, we now show that there are examples that are not solvable in standard
floating-point arithmetics at all or at least speed up by using higher precision.

For this purpose, we solved a linear system with the Hilbert matrix of dimension
13. To get a simple stopping criterion, we first computed a verified solution that
is guaranteed to have at least 16 correct decimal digits and then stopped each of
the following iterations, when the approximated solutions coincide with the verified
solution within the first five digits.

Each experiment was carried out twice, once with a (complete) Cholesky precon-
ditioner and once without preconditioning. The results for various arithmetics are
displayed in Table 7.1. If there are two entries in the ‘Arithmetic’ column (separated
by a slash), then the first denotes the data-type and the second is the accumulation
precision. If there is only one arithmetic data type given, then all computations are
performed with this type.

Arithmetic No Precond. | Cholesky
iter ‘ time iter ‘ time
double >130 | (—) | >130| (—)
double/extended >130 | (—) | >130 (—)
extended >130 | (—) | >130 (—)
double/multiple<2> | 89 | (0.13) 3 | (<0.01)
double/exact 89 | (0.13) 3 | (<0.01)
extended/exact 37 | (0.04) 3 | (<0.01)
multiple<2> 23 | (0.04) 3 (0.01)
multiple<4> 16 | (0.02) 3 (0.01)
multiple<5> 13 | (0.02) 3 (0.01)

Table 7.1: This table shows the number of iterations and the computing time,
needed to obtain at least 5 correct decimal digits in the iterated solu-
tion. We stopped the process at a maximum of 130 steps (displayed
in gray letters).

As we can see, the smallest arithmetic enabling convergence, is IEEE double
with 128 bit accumulation (double/mutiple<2>). Using extended precision (with
mutiple<2> accumulation), significantly speeds up the computation in the non-
preconditioned case and further increasing the precision saves up to 85% computing
time. With 320 bit mantissa length mutiple<56>, we match the ezact precision
property of convergence after at most n steps.



102

Chapter 7 Computational Results

Though we used a (complete) Cholesky preconditioner in the right column, i.e.
a direct solver in each iteration, we also got convergence only with at least 128 bit
accumulation. Further increasing the precision does not save more iterations and
consequently does not save computing time. However, even with this direct solver
in each step, we need 3 iterations to get 5 correct digits.

7.4 Does Higher Precision Increase the Computational Effort?

Inspecting, for example, the MATLAB implementations of Krylov subspace solvers,
we can see that the residual norm which is used for evaluating the stopping criterion,
is always computed as normr = norm(b - A * x); instead of using the norm of the
updated residual. This effort is often necessary because in finite precision these two
theoretically equal values tend to differ significantly after sometimes only a few
iterations (see Figure 7.6).

10730 = ]
extended ——
multiple<2> ------
1060 ' | |

Figure 7.6: This figure compares the norm of the iteratively updated residual
(thin lines) and the exact residual ||b — Ax||2 (thick lines) computed
with differently precise arithmetics (extended: solid, multiple<2>:
dashed).

However, there is one extra matrix-vector multiplication at each step and this
information is solely used to decide whether the iteration should be stopped or not.
Fortunately, we can do much better. Assume we have the internal precision adjusted
to doubledouble (staggered with length 2). For generating the Krylov spaces, we
need

Ar = A(rV) 4+ 7@y = Ar® 4 Ar®),

That means, increasing the precision by one is comparable with doing one extra
matrix-vector product. However, with this approach, we do not only improve the
stopping criterion, but also significantly improve the accuracy of the iterated so-



7.5 Solving lll-Conditioned Test-Matrices

lution, see Figure 7.6. This effect is demonstrated with the mcca matrix which is

described in Matrix A.7.

7.5 Solving lll-Conditioned Test-Matrices

Here we solved some GK4.16(n) (see (6.1) on page 89) systems with a preconditioned

CG algorithm with Cholesky preconditioner (see Table 7.2).

| Matrix | | double | doubleX | extended | multiple<2> |

n = 100 error | 1.3-1079 | 1.6-107'° | 2.0-107'2 1.4-10723

Omin = 8.4:1077 | bound | 7.5:10 % | 2.0-10 % | 4.2.10°6 4.9.10°1°

vtime < 0.01sec | iter 3* 3* 2 2
time < 0.01 < 0.01 <0.01 0.01

n = 1000 error | 9.6-107° | 5.3.107'° | 9.0-1078 6.9-1072°

Omin = 9.7-1071 | bound > 1 > 1 > 1 1.0-10~ 11

vtime = 0.04sec | iter 3* 3* 3* 3
time < 0.01 0.13% 0.02 0.15

n = 10000 error > 1 3.2.107" | 2.7.1073 4.8.10%

Omin = 9.7-1071% | bound > 1 > 1 > 1 2.5:1076

vtime = 0.47sec | iter 3* 5* 3* 5
time 0.08 2.33% 0.10 3.06

n = 50000 error > 1 2.5-10~13 > 1 1.9-10~14

Omin = 2.2:1077 | bound > 1 > 1 > 1 3.3-10°7

vtime = 3.01sec | iter 3* 12* 13* 9
time 0.45 28.66% 2.83 28.73

n = 100000 error > 1 2.8.10~13 > 1 4.7-10714

Omin = 4.1:10718 | bound > 1 > 1 > 1 7.0-1077

vtime = 4.83sec | iter 3* 11* * 12
time 0.93 52.55% 2.96 77.31

Table 7.2: Solving some GK4.16(n) systems with an incomplete Cholesky precon-
ditioned CG solver. The iteration was stopped after 5 correct digits
were guaranteed (by the verification procedure) or after stagnation
(gray). The cases where we have 5 digits accuracy, compared to the
previously computed highly precise verified solution (but not verified),
are displayed in dark gray.

*Note that this loss of convergence speed is caused by the slow software simulation of the exact
scalar product. Sufficiently supported in hardware, doubleX should need the same time as double.

In this and all following examples, we stopped the iteration as soon as five
correct, digits of the solution could be guaranteed or after stagnation of the residual
norm (marked by an *). With error we denote the actual relative error of the
approximate solution. Usually, we have no exact solution available and therefore
we cannot compute the error. However, for these examples we use a very tight
enclosure of the exact solution, computed with a high precision arithmetic. With
bound we denote the computed upper bound of the error and iter and time are the



104

Chapter 7 Computational Results

number of iterations and the time needed for these iterations (in sec, measured on a
PentiumII/400). The quantity vtime denotes the time needed to compute a rigorous
bound for the smallest singular value of A.

As we can see, verification with the techniques described in Section 4, is only
possible in conjunction with higher precision arithmetic. Even if we are only inter-
ested in a non-verified solution, we cannot trust in standard floating-point (double)
arithmetic. However, simply replacing all floating-point scalar products by exact
scalar products suffices to deliver always enough correct digits in the approximate
solution, although not verified. Using a 128 bit arithmetic we always achieved fast
convergence and highly accurate verified solutions.

In the next example we solve some Hilbert systems, again with a Cholesky pre-
conditioned CG solver, see Table 7.3. With a standard double or extended arith-
metic for the solver, we can only handle very small dimensions, while a mantissa
length of 128 bit always is sufficient to get fast convergence and good approxima-
tions to the solution. At dimension 14, the Cholesky decomposition (computed in
double) fails.

double extended multiple<2> | Chol.
dim Omin iter time iter time | iter time prec.
8 | 3.60-1079° 3 < 0.01 1 <0.01] 1 | <0.01
10 [ 22910°% | > 10| — 2 [ <00l| 2 | <00l | &
12 [ 51110 7 | > 12| — |>12| — 3 | <001 | &
13 | 3.05:107%® | > 13 — > 13 — 4 | <0.01
15 | 4.92.1079 | > 15 — > 15 — 1 0.01 &
17 [ 2.83.107 10 | > 17 — > 17 — 1 0.02 2
191962102 ~10] — [ -10] — [ 1] 002 | &
21 | 3.60-10 13 | > 21 — | >21 — 1 0.0z |&

Table 7.3: Here we aimed to verify 5 correct digits in the solution of various
Hilbert systems. For dimensions up to 13, the Cholesky precondi-
tioner was computed in double while the higher dimensional Hilbert
matrices were factorized with a multiple<2> arithmetic.

Increasing the precision used to compute the Cholesky decomposition enables us
to handle larger Hilbert matrices. In Table 7.3, rows 15-21 we used the data type
multiple<2> for computing the preconditioner. Now the Cholesky decomposition
is sufficient to solve the linear system in one step.

We stop at dimension 21, because it is not possible to store higher dimensional
Hilbert matrices in IEEE double exactly (compare Section 6.1.2).

This high precision preconditioning also allows us to handle larger dimensions for
the GK4.16 matrices. Table 7.4 shows the results of the GK4.16(2 000 000) system.

Just to see how far we can go with Hilbert matrices, I extended vk to allow
multiple precision system matrices (in the standard version, system matrices are
always stored in double). With this extension we can even solve Hilbert matrices
of dimension 42 [1] and higher!.

'In fact, vk solved the Hilbert 42 system in less than 8 seconds with 113 guaranteed decimals
(using a data type with 2560 bits mantissa length, i.e. approximately 770 decimal digits).



7.6 Verified Solutions for ‘Real-Life’ Problems 105

‘ Matrix ‘ ‘ doubleX ‘ extended | multiple<2> | multiple<3>
n = 2000000 error — — — —
Omin = 4.2:1072* | bound > 1 > 1 1.8:1072 6.7-10~7
vtime = 123.27sec | iter 8* 2° 2% 2
time 903.34¢ 18.15 261.42 306.54

Table 7.4: This table shows the same experiment as Table 7.2 but now with
dimension 2000000 (this was the largest possible dimension solvable
on my PC due to storage limitations). See Table 7.2 for explanation
of footnote®.

Our final ‘test’ example is matrix GK4.20 (see (6.2) on page 89). This matrix is
symmetric and indefinite but it nevertheless turns out that CG works fine. Here we
used a modified LDLT preconditioner, Table 7.5.

| Matrix | | double | doubleX | extended | multiple<2> |
n = 100000 error | 2.7-1077 | 1.5:107% | 1.3-107'0 3.5-10~ 1
Omin = 9.8:107"" | bound | 5.6-10~* | 3.1.10~* | 2.9-10~7 1.7-10713
vtime = 15.44sec iter 3* 3* 2 2
time 2.43 13.87¢ 0.74 10.61
n = 500000 error | 1.5-107% | 1.4.1077 | 7.3-10710 8.6-10~ 14
Omin = 2.9-10712 | bound | 4.6-1072 | 2.2.1072 | 2.9-107° 2.2.1079
vtime = 78.11sec iter 3* 3* 3* 2
time 12.08 68.7% 16.78 53.67
n = 1000000 error | 7.3-107% | 1.6-1076 | 3.6-107° 1.1-10713
Omin = 8.1-:10713 | bound 0.39 > 1 2.4-10~* 8.2-10~9
vtime = 157.03sec | iter 3* 3* 3* 2
time 24.58 141.4¢ 33.55 1:48.3

Table 7.5: This table shows the results of our experiments with the GK4.20 matri-
ces. See Table 7.2 for explanation of the used notations. See Table 7.2
for explanation of footnote®.

7.6 Verified Solutions for ‘Real-Life’ Problems

In this section we investigate some example systems taken from various application
areas such as fluid dynamics, structural engineering, computer component design,
and chemical engineering (see Appendix A).

Symmetric positive definite systems we always solved with a Cholesky precon-
ditioned Conjugate Gradient solver. In the nonsymmetric case we show only the
results of the fastest ILU preconditioned Krylov solver.

Particularly we utilized various solvers (BiCG, CGS, and BiCGStab) and incom-
plete preconditioners. In this context of high precision arithmetics, the GMRES
algorithm couldn’t compete with the short recurrence solvers. Since GMRES needs



106

Chapter 7 Computational Results

most arithmetic operations and storage anyway, this lack is even reinforced by the
increased requirements in memory and computing time for the high precision arith-
metic operations.

In Table 7.6 we compare the results achieved by using several arithmetics (see
Table 7.2 for explanation). Table 7.7 gives a quick overview over some systems we

solved with vk.

| Matrix | double | doubleX | extended | multiple<2> |

fidap009 error | 1.9-107* | 1.1.107"% | 1.6-107° 6.2.10~ "1
n = 4683 bound 0.33 6.6-10~% | 2.0-10~* 1.1.1078
Omin = 2.9-1074 iter 3* 4* 3* 2
vtime = 22.55sec time 0.53 6.72% 0.68 2.82
s3rmt3ml error | 3.4-107° | 8.6:10'* | 2.5.1078 4.3-10~ 1
n = 5489 bound > 1 > 1 9.7-1072 5.2-10~7
Omin = 3.5:1077 iter 3* 3* 3* 2
vtime = 507.6sec time 1.14 18.40% 1.37 12.42
e30r5000 error | 1.1.107 11 | 1.5.1071* | 5.4.10 12 1.2-10738
n = 9661 bound > 1 > 1 0.7 1.4-10732
Omin = 3.7-10712 iter 3* 3* 3* 2
vtime = 2h09.47min | time 3.86 69.4% 5.45 70.41
e40r5000 error | 2.8-107'1 | 1.9.10° ™ | 2.3.10° ™ 1.6-1032
n = 17281 bound > 1 > 1 > 1 1.3-.107%
Omin = 1.5:10713 iter 3* 3* 3* 2
vtime = 6h48.09min | time 9.04 232.3¢ 13.00 848.0

Table 7.6: Solving some ‘real-life’ problems with different arithmetics. See Ta-
ble 7.2 for explanation of footnote® and the used notations.

Again, we often have enough correct digits in the approximate solution but
usually we are not aware of this fact. Particularly, we are only able to prove this by
using a higher precision arithmetic.

7.7 \Verification via Normal Equations
In the nonsymmetric case, we have to meet the assumption

Omin(LU) > ||LU — Al|5 (7.1)
which is sometimes a problem if either oy,;, (LU) is very small or A is ill-conditioned
and its elements are large. In such cases it is often advantageous to switch to the
normal equations. We stress that we actually do not have to compute AT A and
ATb [98]. Although we have squared the smallest singular value (which possibly
makes it more difficult to find a verified lower bound if o.,;,(LU) < 1), we now do
not have to fulfill (7.1) anymore.

Using this technique, we solved, e.g., the mcca system (see Matrix A.7). For this
matrix, vk computes a lower bound for the smallest singular value as 2.4-1072 (this



7.8 Performance Tuning

107

‘ Name ‘ dim ‘ nnz cond bound time
fs 680 1 680 2646 2.1-10* | 3.56-1038 21.75 sec
west2021 2021 7353 | 7.5-10™ | 9.43-107%° | 705.93 sec
mvmt1s4000 | 4000 8784 2.7-107 | 3.62-1073° | 1h03.55 min
pores2 1224 9613 | 3.31-10% | 4.87-107'7 | 292.68 sec
bcsstk08 1074 | 12960 4.7-107 | 9.49-10728 82.72 sec
pde2961 2961 | 14585 | 9.49-10% | 1.77-10~ ™ 7.22 sec
add32 4960 | 23884 | 2.14-10% | 6.89-10~'° | 1h08.28 min
fidap009 4683 | 95053 | 1.04-107 1.1.1078 25.37 sec
s3rmt3mi 5489 | 112505 | 1.33-10%° 5.2-1077 | 520.02 sec
e30r5000 9661 | 306356 | 1.27-10'1 | 1.2.1073® | 2h10.57 min
e40r5000 17281 | 553956 | 1.4-10'6 | 1.3-1072° | 7h02.09 min

Table 7.7: A quick overview over some systems we solved with vk. The objective
was to get 5 correct digits in the iterated solution. Since convergence
sometimes was very fast, we overshot at times.We only display the
results of the smalles arithmetic that delivers these 5 digits (almost
always multiple<2>).Note that ‘time’ denotes the overall time for
solving and verification.

seems to be roughly underestimated due to the very high condition number) and
an upper bound for |[LU — A||z as 2.31-10°. That is we cannot apply Theorem 4.4
directly. Switching to the normal equations, vk finds 7.67-10° as a lower bound
for omin (A" A). Applying a Cholesky preconditioned CG algorithm, we are able to
verify five decimal digits in less than three seconds.

7.8 Performance Tuning

The verification time depends strongly on the number of nonzero elements and the
bandwidth of L and U. Therefore, it is advantageous to reduce these quantities. We
discuss two possibilities to achieve this reduction: column/row reordering algorithms
and incomplete factorizations (see Section 1.4.2).

‘ Drop-Tol. ‘ nnz ‘ Omin(LU) ‘ |ILU — A|2 ‘ total time ‘ bound ‘

complete | 54058 (6.67%) | 4.2284-10°2 | 4.50-10°% | 9.95 sec | 1.23-10 26
1-107% | 32083 (3.96%) | 4.2456-10~2 | 2.43-1073 7.05 sec | 1.60-10°8
110 % | 26843 (3.31%) | 4.4330-10 2 | 7.68-10 failed -

Table 7.8: Here we demonstrate the possible speed up by using incomplete LU
factorizations at the example of Matrix pde900 (A.8).

The problem with incomplete factorizations is that we have to bear inequality
(7.1) in mind. Particularly for ill-conditioned systems || LU — A||y grows heavily
with increasing sparsity in L and U. However, if the smallest singular value of A is
not too small, we can achieve a significant improvement, as shown in Table 7.8 at



108

Chapter 7 Computational Results

the example of Matrix pde900 (A.8). Switching from a complete LU preconditioner
to incomplete LU with drop-tolerance 10~* saves nearly 30% computing time

Applying reordering algorithms can sometimes dramatically speed up the ver-
ification process. We illustrate the effect of reordering with the bcsstk08 and
t0l1s4000 matrix (see Matrices A.2 and A.12). Because bcsstk08 is symmetric,
we applied the symmetric minimum degree reordering algorithm. This algorithm
computes a permutation matrix P to a given matrix A, such that the Cholesky
factors of PAPT have less nonzero elements, see Figure 7.7.

(b) chol(A) (c) PAPT (d) chol(PAPT)

Figure 7.7: spy

Matrix tols4000 is nonsymmetric and therefore we applied a reverse Cuthill-
McKee algorithm, especially designed to deliver smaller bandwidths in the LU fac-
tors.

Table 7.9 shows some experiments with and without reordering.

Reordering Precond. Preconditioner total

Algorithm (droptol) nnz | lo/up bandw. time bound
none Chol(10=°) | 115645 591/1 158.62 sec | 9.01-10~7
SymmMinDeg | Chol(10~°) | 23688 1054/1 59.35 sec | 5.35-10°8
none ILU(10 %) | 13584 | 2401/3218 63.55 min | 3.62:10 30
Cuthill-McKee | ILU(107%) | 14820 89/90 34.84 sec | 6.10-10-28

Table 7.9: Reordering algorithms can significantly speed up convergence. This
table shows a symmetric and a nonsymmetric example. The first aims
to reduce the number of nonzero elements while the second tries to
reduce the bandwidth.



Conclusion

Calvin: I think we've got enough information now, don't you?
Hobbes: All we have is one “fact” you made up.

Calvin: That's plenty. By the time we add an introduction,

a few illustrations, and a conclusion,

it will look like a graduate thesis.

Calvin and Hobbes (by Bill Watterson), 1991

So eine Arbeit wird eigentlich nie fertig, man muB sie fiir fertig erklaren, wenn man
nach Zeit und Umstanden das Moglichste getan hat.?

Johann Wolfgang von Goethe, Italienische Reise I, 16.3.1787

As the main result of our investigations, we conclude that traditionally used arith-
metics (mostly IEEE double precision) are often not the best choice for solving linear
systems of equations.

Both, theoretically and by examples, we showed that iterative solvers — par-
ticularly Krylov subspace methods — heavily suffer from rounding errors. Usually,
computationally expensive reorthogonalization strategies (or even full orthogonaliz-
ing methods) are utilized to work against arithmetic insufficiencies.

In this thesis, we showed that using improved arithmetics can lead to much better
results, compared to those obtained from ordinary floating-point arithmetic. Par-
ticularly, exchanging the classically used floating-point scalar product by the exact
scalar product often suffices to obtain significantly more accuracy in the computed
solutions, at least for not too ill-conditioned matrices. For symmetric systems we
mostly obtained nearly maximum accuracy (13 to 15 correct decimal digits), al-
though not verified.

Sufficiently supported in hardware, the exact scalar product can be computed
as fast as an ordinary scalar product. Thus, we urgently postulate this technique to
be implemented in future processors in hardware.

However, if we need to guarantee the computed solutions, this arithmetical im-
provement does often not benefit to obtain small error bounds. For this purpose,

24A work of this kind actually never finishes. You have to declare it finished when you did all
in your power, dependent on time and circumstances.”

- 109 -



110

Chapter 7 Computational Results

or when the condition number is too large, we have to switch to higher precision
numbers. This enables us to solve practically arbitrary ill-conditioned systems with
almost any accuracy and guaranteed error bounds (if needed).

Considering the results of this work, it should be discussed whether hardware
manufacturers should be asked to develop hardware support for multiple precision
arithmetics, maybe solely based on integer arithmetic. The number type might
consist of a few bytes for the sign, exponent, and some status information, and
a, propably variable, number of bytes for the mantissa. Alternatively, we could
utilize staggered precision numbers, which would greatly suffice from a hardware
supported exact scalar product. With this approach, we only had to extend modern
computer architectures by one operation to get a high performance multiple precision
arithmetic.

Combining these techniques, it should easily be possible, not only to save iter-
ations (as we always did in our tests) but also to save real computing time, while
simultaneously getting more accurate solutions. Additionally, the verification pro-
cess will speed up significantly due to its extensive usage of exact scalar products.



Used Matrices

Here we list several test matrices used throughout this thesis. The matrices are
taken from the Matrix-Market [85] and are alphabetically ordered.

Matrix A.1: add32 !
Computer component design, 32-bit adder

S. Hamm, Motorola Inc. Semicond. Systems Design Technology

Size Type
dim = 4960 real,
nnz = 23884 unsymmetric

bandw = 4030/4030

Matrix A.2: bcsstk08 |

Properties
|-[lr=16

cond = 2.14 - 10?
Omin = 2.99 - 107

Structural engineering

John Lewis, Boeing Computer Services

Size Type
dim = 1074 real,
nnz = 7017 symmetric

bandw = 591/591

- 111 -

Properties
||l =1.0-10"
cond = 4.7 - 107

Omin = 2.1+ 103



112 Appendix A Used Matrices

Matrix A.3: e30r5000 |
Driven cavity , 30x30 elements, Re=5000

Andrew Chapman, University of Minnesota

Size Type Properties
dim = 9661 real, |-l =220-10°
nnz = 306356 unsymmetric cond = 1.27 - 10"

bandw = 342/342 Omin = 3.7+ 10712

Matrix A.4: e40r5000 |
Driven cavity , 40x40 elements, Re=5000

Andrew Chapman, University of Minnesota

Size Type Properties
dim = 17281 real, ||l =2.10-10%
nnz = 553956 unsymmetric cond = 7.68 - 10*°

bandw = 452 /452 Omin = 1.5-10713

Matrix A.5: fidap009 |
Finite element modeling of fluid dynamics

Isaac Hasbani, Fluid Dynamics International

Size Type Properties
dim = 3363 real, |- ||z = 3.00-10'°
nnz = 99397 symmetric cond = 4.05 - 103

bandw = 86/86 Omin = 2.27- 1074

Matrix A.6: £s680 1 |
Chemical kinetics problems

Alan Curtis, Computer Science and Systems Division

Size Type Properties
dim = 680 real, |-|lr=1.2-10"
nnz = 2646 unsymmetric cond = 2.1 -10*

bandw = 561/281 Omin = 7.44 - 108

Matrix A.7: mcca !
Nonlinear radiative transfer and statistical equilibrum in astro-
physics

Mats Carlson, Institute of Theoretical Astrophysics

Size Type Properties
dim = 180 real, |-l =23-10%
nnz = 2659 unsymmetric cond = 3.6 - 107

bandw = 43/66

Omin =




113

Matrix A.8: pde900 |
Elliptic partial differential equation

H. Elman, University of Maryland

Size Type Properties
dim = 900 real, -l =22-10?
nnz = 4380 unsymmetric cond = 8.73 - 10?

bandw = 31/31 Omin = 4.43 -

Matrix A.9: pde2961 |
Elliptic partial differential equation

H. Elman, University of Maryland

Size Type Properties
dim = 2961 real, Il =22-10?
nnz = 14585 unsymmetric cond = 9.49 - 102

bandw = 48/48 Omin = 4.23 -

Matrix A.10: pores2 |
Reservoir modeling

John Appleyard, Harwell Laboratory

Size Type Properties
dim = 1224 real, ||| =15-10%
nnz = 9613 unsymmetric cond = 3.31 - 108

bandw = 472/471 Omin = 2.63 -

Matrix A.11: s3rmt3mi |
Finite element analysis of cylindrical shells

Reijo Kouhia, Helsinki University of Technology

Size Type Properties
dim = 5489 real, |- ||r=17-10°
nnz = 112505 symmetric cond = 1.33 - 10*°

bandw = 192/192 Omin = 3.50 -

Matrix A.12: to01s4000 |
Aeroelasticity, stability analysis of an airplane in flight

S. Godet-Thobie, CERFACS and C. Bés, Aerospatiale

Size Type Properties
dim = 4000 real, |||z =3-108
nnz = 8784 unsymmetric cond = 2.7 - 107

bandw = 2401/2418 Omin = 3.03 - 10712




114

Appendix A Used Matrices

Matrix A.13: west2021 |

Chemical engineering plant models

Art Westerberg, University of Pittsburgh

Size Type
dim = 2021 real,
nnz = 7353 unsymmetric

bandw = 1888/1309

Properties

|||z =1.8-10°
cond = 7.50 - 1012
Opmin = 2.90-10°8




Free and Open Source Software

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

GNU General Public License (Version 2), 1991

At this place, T wish to thank the hundreds of programmers that spend their
time, energy and knowledge in producing free and open source software. This thesis
would basically be impossible in this form without these programs. In the following,
[ enumerate the most important of them, used for writing this thesis and coding the
programs.

First of all, I want to mention the operating system itself: LINUX. All text
editing was done with XEmacs combined with auctex-mode. For formatting the
thesis I used TEX/ETEX together with a couple of packages and my own document
style ‘dissbook’. The graphics where created using XFig, The Gimp and gnuplot.
Besides the dozens of really helpful little (and large) utilities, my programming
environment consisted of the GNU C compiler, egcs, xxgdb and again XEmacs with
cc-mode. Additionally I used several libraries, like gmp (GNU multiple precision),
doubledouble, profil, BIAS and gtk (GNU toolkit).

- 115 -






Name

Address

Date of Birth/
Birthplace

Nationality

School Education

University

Diploma

Thesis

1976 - 1980
1980 - 1989
1991 - 1997
1995
1996-1997
11/1997
since 1998

Curriculum Vitae

Axel Facius

Jenaer Strasse 8,
76139 Karlsruhe

June 21, 1969 in Schwabisch Gmiind

German

Grundschule (primary school)
Gymnasium (high school)

study of Mathematics, Computer Science and
Electrical Engineering at the University of
Karlsruhe

project on "Simulation of Dynamical Oscillators in
Neural Networks on Parallel Computers”
Diploma-Thesis at the Institute of Logic,
Complexity, and Deduction Systems, Prof. Menzel,
subject: " Reconstruction and Analysis of
Independent Components with Neuronal Networks”
graduation to ‘Diplom Technomathematiker’

work on Ph.D. at the Institute of Applied

Mathematics, advisors Prof. Kulisch and
Dr. Lohner

- 117 -






[1]
2]

3]

[4]

[10]

[11]

[12]

Bibliography

D. Adams. Life, the Universe and Everything. Ballantine Books, 1995.

L. Adams and H. Jordan. Is SOR color-blind? STAM .J. Sci. Statist. Comput.,
7:490-506, 1986.

G. Alefeld and J. Herzberger. Introduction to Interval Computations. Aca-
demic Press, 1983.

American National Standards Institute / Institute of Electrical and Electronic
Engineers, New York. A Standard for Binary Floating-Point Arithmetic, 1985.
ANSI/IEEE Std. 754-1985.

M. Arioli and C. Fassino. Roundoff error analysis of algorithms based on
Krylov subspace methods. BIT, 36:189-205, 1996.

W. Arnoldi. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Quart. Appl. Math., 9:17-29, 1951.

O. Axelson. Bounds of eigenvalues of preconditioned matrices. SIAM J. Matrix
Anal. Appl., 13:847-862, 1992.

O. Axelson and G. Lindskog. On the eigenvalue distribution of a class of
precondition matrices. Numer. Math., 48:479-498, 1986.

R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods. STAM, Philadelphia,
PA, 1993.

C. Baumbhof. Fin Vektorarithmetik-Koprozessor in VLSI-Technik zur Un-
terstitzung des Wissenschaftlichen Rechnens. PhD thesis, Universitat Karl-
sruhe, Karlsruhe, Germany, 1996.

R. Beauwens. Modified incomplete factorization strategies. In O. Axelson and
L. Kolotilina, editors, Preconditioned Conjugate Gradient Methods, Lecture
Notes in Mathematics 1457, pages 1-16. Springer Verlag, Berlin, New York,
1990.

J. A. Bollen. Round-off error analysis of descent methods for solving linear
equations. Master’s thesis, Technische Hogeschool Eindhofen, 1980.

- 119 -



120

Bibliography

[13] R. P. Brent. A Fortran multiple-precision arithmetic package. ACM Trans.
Math. Softw., 4:57-70, 1978.

[14] C. Brezinsky, M. Zagila, and H. Sadok. Avoiding breakdown in the CGS
algorithm. Numer. Alg., 1:261-284, 1991.

[15] C. Brezinsky, M. Zagila, and H. Sadok. A breakdown free Lanczos type algo-
rithm for solving linear systems. Numer. Math., 63:29-38, 1992.

[16] K. Briggs. The doubledouble homepage.
www—-epidem.plantsci.cam.ac.uk/“kbriggs/doubledouble.html

[17] J. R. Bunch and D. J. Rose. Sparse Matriz Computations. Academic Press
Inc., New York, San Francisco, London, 1976.

[18] T. Chan, E. Gallopoulos, V. Smoncini, T. Szeto, and C. Tong. A quasi mini-
mal residual variant of the Bi-CGSTAB algorithm for non-symmetric systems.
SIAM J. Sci. Comp., 15:338-347, 1994.

[19] L. Collatz. Differentialgleichungen. 6. Aufl. Teubner, Stuttgart, 1981.

[20] J. K. Cullum and A. Greenbaum. Relations between Galerkin and norm-

minimizing iterative methods for solving linear systems. SIAM J. Matriz
Anal. Appl., 17:223-247, 1996.

21] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmet-
ric Figenvalue Computations, volume I Theory. Birkhauser, Boston, Basel,
Stuttgart, 1985.

[22] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric
Figenvalue Computations, volume II Programs. Birkhauser, Boston, Basel,
Stuttgart, 1985.

(23] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric ma-
trices. In ACM Proc. 2/th Nat. Conf., 1969.

[24] G. Dahlquist, S. C. Eisenstat, and G. H. Golub. Bounds for the error of linear
systems of equations using the theory of moments. J. Math. Anal. Appl.,
37:151-166, 1972.

[25] T. J. Dekker. A floating-point technique for extending the available precision.
Numer. Math., 18:224-242, 1971.

[26] J. Demmel. Applied Numerical Linear Algebra. STAM, Philadelphia, PA, 1997.

[27] J. Demmel, B. Diament, and G. Malajovich. On the complexity of computing
error bounds. www.cs.berkeley.edu/"demmel/, 1999.

(28] J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorst. Numerical Linear
Algebra on High-Performance Computers. STAM, Philadelphia, PA, 1998.



Bibliography

121

[29]

[30]

[31]

32]

J. Dongarra and R. C. Whaley. Automatically tuned linear algebra software
(ATLAS). Technical report, University of Tennessee and Oak Ridge National
Laboratory, 1997.

J. J. Du Croz and N. J. Higham. Stability of methods for matrix inversion.
IMA J. Numer. Anal., 12:1-19, 1992.

[. Duff and G. Meurant. The effect of ordering on preconditioned conjugate
gradients. BIT, 29:635-657, 1989.

V. Faber, W. Joubert, M. Knill, and T. Manteuffel. Minimal residual method
stronger than polynomial preconditioning. SIAM J. Matriz Anal. Appl.,
17:707-729, 1996.

V. Faber and T. Manteuffel. Necessary and sufficient conditions for the exis-
tence of a conjugate gradient method. SIAM J. Numer. Anal. Appl., 21:315—
339, 1984.

A. Facius. Influences of rounding errors in solving large sparse linear sys-
tems. In T. Csendes, editor, Developments in Reliable Computing, pages 17—
30. Kluwer Academics, 1999.

R. Fletcher. Conjugate gradient methods for indefinite systems. In G. Watson,
editor, Numerical Analysis Dundee 1975. Springer, Berlin, New York, 1976.

G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for
Mathematical Computations. Prentice-Hall, Englewood Cliffs, 1977.

R. W. Freund. A transpose-free quasi-minimum residual algorithm for non-
Hermitian linear systems. SIAM J. Sci. Comput., 14:470-482, 1993.

A. Frommer and A. Weinberg. Verified error bounds for linear systems through
the Lanczos process. Reliable Computing, 5(3):255-267, 1999.

K. Gallivan, M. Heath, E. Ng, J. Orthega, B. Peyton, R. Plemmons,
C. Romine, A. Sameh, and R. Voigt. Parallel Algorithms for Matriz Com-
putations. STAM, Philadelphia, PA, 1990.

gnuplot. www.gnuplot.org, 1999. Version 3.7.1.

G. Golub and C. van Loan. Matrixz Computations. Johns Hopkins, third
edition, 1996.

G. H. Golub and G. Meurant. Matrices, moments and quadrature. BIT, 1994.

G. H. Golub and G. Meurant. Matrices, moments and quadratures II or how
to compute the norm of the error in iterative methods. BIT, 1997.

G. H. Golub and D. O’Leary. Some history of the conjugate gradient and
Lanczos methods. STAM Rev., 31:50-102, 1989.

G. H. Golub and Z. Strakos. Estimates in quadratic formulas. Numerical
Algorithms, 8:241-268, 1994.



122

Bibliography

[46] T. Granlund. The GNU Multiple Precision Arithmetic Library.
www.csd.uu.se/documentation/ programming/gmp/

[47] A. Greenbaum. Estimating the attainable accuracy of recursively computed
residual methods. SIAM J. Matriz Anal. Appl., 18:535-551, 1997.

(48] A. Greenbaum. Iterative Methods for Solving Linear Systems. STAM, Philadel-
phia, 1997.

[49] A. Greenbaum, V. Ptdk, and Z. Strako§. Any nonincreasing convergence curve
is possible for GMRES. STAM J. Matrix Anal. Appl., 17:465-469, 1996.

[50] A. Greenbaum, M. Rozloznik, and Z. Strakos. Numerical behavior of the
modified Gram-Schmidt GMRES implementation. BIT, 37:706-719, 1997.

[51] A. Greenbaum and Z. Strakos. Predicting the behavior of finite precision
Lanczos and conjugate gradient computations. SIAM J. Matriz Anal. Appl.,
13:121-137, 1992.

[52] R. Gregory and D. Karney. A Collection of Matrices for Testing Computational
Algorithms. Wiley Interscience, 1969.

53] GTK — A X-Window GUI toolkit. www.gtk.org, 1999. Version 3.7.1.

[54] J. Gustafson. Computational verifyability and feasibility of the ASCI pro-
gramm. [EEE Comput. Sci. Eng., 5:36-45, 1998.

[55] W. Hackbusch. Iterative Lésung grofier schwachbesetzter Gleichungssysteme.
B. G. Teubner, Stuttgart, 1993.

[56] W. Hager. Condition estimators. SIAM J. Seci. Statist. Comput., 5:311-316,
1984.

[57] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. Toolboz for Verified Com-
puting. Springer, Berlin Heidelberg, 1993.

[58] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. C++ Toolboz for Verified
Computing. Springer, Berlin Heidelberg, 1995.

[59] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49:409-436,
1952.

[60] M. R. Hestenes. Conjugacy and gradients. In A History of Scientific Comput-
ing, pages 167-179. Addison-Wesley, Reading, MA, 1990.

[61] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 1996.

[62] N. J. Higham and P. A. Knight. Finite precision behavior of stationary itera-
tion for solving linear singular systems. Lin. Alg. Appl., 192:165-186, 1993.



Bibliography

123

[63] M. Hochbruck. Lanczos- und Krylov-Verfahren fir nicht-hermitesche lineare

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

Systeme. PhD thesis, Universitdt Karlsruhe, Fakultit fiir Mathematik, 1992.

M. Hochbruck and C. Lubich. Error analysis of Krylov methods in a nutshell.
SIAM J. Sci. Comput., 19:695-701, 1998.

W. Kahan and B. N. Parlett. How far should you go with the Lanczos process.
In Sparse Matriz Computations, 1974.

S. Kaniel. Estimates for some computational techniques in linear algebra.
Math. Comput., 20:369-378, 1966.

R. Kirchner and U. Kulisch. Accurate arithmetic for vector processors. .J.
Parallel Distrib. Comput., 5:250-270, 1988.

R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and C. Ullrich. PASCAL-XSC.
Springer Verlag, 1991.

R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch. C-XSC. Springer
Verlag, 1992.

O. Kniippel. PROFIL (Programmer’s Runtime Optimized Fast Interval Li-
brary) and BIAS (Basic Interval Arithmetic Subroutines).
www.ti3.tu-harburg.de/Software/PROFIL.html

O. Kniippel. BIAS — basic interval arithmetic subroutines. Technical report,
Universitat Hamburg-Harburg, Hamburg, Germany, 1993.

O. Kniippel. PROFIL — Programmer’s Runtime Optimized Fast Interval
Library. Technical report, Universitat Hamburg-Harburg, Hamburg, Germany,
1993.

U. Kulisch, editor. Wissenschaftliches Rechnen mit Ergebnisverifikation — Eine
Einfihrung. Akademie Verlag, Ost-Berlin, Vieweg, Wiesbaden, 19809.

U. Kulisch. Advanced arithmetic for digital computer design of arithmetic
units. Electronic Notes in Theoretical Computer Science, 24, 1999.

U. Kulisch and W. L. Miranker. Computer Arithmetic in Theory and Practice.
Academic Press, 1981.

U. Kulisch and W. L. Miranker, editors. A New Approach to Scientific Com-
putation. Academic Press, New York, 1983.

C. Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. Journal of Research of the National
Bureau of Standards, 45:255-282, 1950.

M. Lerch. Expression templates for dot product expressions. personal com-
munication, 1998.

M. Lerch. Expression concepts in scientific computing. In T. Csendes, editor,
Developments in Reliable Computing, pages 119-130. Kluwer Academics, 1999.



124

Bibliography

[80] S. Linnainmaa. Software for doubled precision floating-point computations.
ACM Trans. Math. Software, 7:272-283, 1981.

[81] R. Lohner. A verified solver for linear systems with band structure. to be
included in: Toolbox for Verified Computing II.

[82] R. Lohner. Interval arithmetic in staggered correction format. Scientific Com-
puting with Automatic Result Verification, 8:301-321, 1993.

[83] G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison
Wesley, Reading, New York, 1973.

[84] M. Mascagni and W. L. Miranker. Arithmetically improved algorithmic per-
formance. Computing, 35:153-175, 1985.

[85] The matrix market: a visual web database for numerical matrix data.
math.nist.gov/MatrixMarket/

[86] G. Mayer. Enclosing the solutions of systems of linear equations by interval it-
erative processes. In U. Kulisch and H. Stetter, editors, Scientific Computation
with Automatic Result Verification, number 6 in Computing Supplementum,
pages 47-58. Springer Verlag, 1988.

[87] G. Mayer and J. Rohn. On the applicability of the interval Gaussian algorithm.
Reliable Computing, 4:205-222, 1998.

[88] D. R. McCoy and E. W. Larsen. Unconditionally stable diffusion-synthetic ac-
celeration methods for the slab geometry discrete ordinates equations. Nuclear
Sci. Engrg., 82:47-70, 1982. Parts I and II.

[89] A. Meister. Numerische Lineare Algebra. Skriptum, Institut fiir Angewandte
Mathematik, Universitat Hamburg, WS 1997/98.

[90] S. G. Mikhlin. Error Analysis in Numerical Processes. John Wiley & Sons,
Chichester, New York, Brisbane, Toronto, Singapore, 1991.

[91] N. Nachtigal. A look-ahead variant of the Lanczos algorithm and its application
to the quasi minimal residual method for non-Hermitian linear systems. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1991.

[92] A. Neumaier. The wrapping effect, ellipsoid arithmetic, stability and confi-
dence regions. In R. Albrecht, G. Alefeld, and H. J. Stetter, editors, Validation
Numerics, Comput. Suppl., pages 175-190. Springer, 1993.

93] C. Paige. The Computation of Eigenvalues and FEigenvectors of Very Large
Sparse Matrices. PhD thesis, University of London, 1971.

[94] C. Paige. Error analysis of the Lanczos algorithm for tridiagonalizing a sym-
metric matrix. J. Inst. Maths. Appl., 18:341-349, 1976.

[95] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the sym-
metric eigenproblem. Lin. Alg. Appl., 34:235-258, 1980.



Bibliography

125

[96] C. Paige, B. Parlett, and H. van der Vorst. Approximate solutions and eigen-
value bounds from Krylov subspaces. Numer. Lin. Alg. Appl., 29:115-134,
1995.

[97] C. Paige and M. Saunders. Solutions of sparse indefinite systems of linear
equations. STAM J. Numer. Anal., 12:617-629, 1975.

(98] C. Paige and M. Saunders. LSQR: An algorithm for sparse linear equations
and sparse least squares. ACM Trans. Math. Soft., 8:43-71, 1982.

[99] B. N. Parlett. A new look at the Lanczos algorithm for solving symmetric
systems of linear equations. Lin. Alg. Appl., 29:323-346, 1980.

[100] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood
Cliffs, NJ., 1980.

[101] B. N. Parlett and D. S. Scott. The Lanczos algorithm with selective orthogo-
nalization. Math. Comput., 33:217-238, 1979.

[102] B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lanczos algorithm
for unsymmetric matrices. Math. Comput., 44:105-124, 1985.

[103] D. A. Pope and M. L. Stein. Multiple-precision arithmetic. Comm. ACM,
13:809-813, 1970.

[104] J. K. Reid. A note on the stability of Gaussian elimination. J. Inst. Math.
Applic., 8:374-375, 1971.

[105] M. Rozloznik. Numerical Stability of the GMRES Method. PhD thesis,
Akademie véd Ceské Republiky, 1997.

[106] S. M. Rump. Kleine Fehlerschranken bei Matrizproblemen. PhD thesis, Uni-
versitat Karlsruhe, Karlsruhe, Germany, 1980.

[107] S. M. Rump. Solving non-linear systems with least significant bit accuracy.
Computing, 29:183-200, 1982.

[108] S. M. Rump. Solving algebraic problems with high accuracy. In U. Kulisch
and W. Miranker, editors, A New Approach to Scientific Computation, pages
53-120. Academic Press, 1983.

[109] S. M. Rump. Validated solution of large linear systems. In R. Albrecht, G. Ale-
feld, and H. J. Stetter, editors, Validation Numerics, number 9 in Computing
Supplementum, pages 191-212. Springer Verlag, 1993.

[110] S. M. Rump. Verification methods for dense and sparse systems of equations.
Technical report, Universitat Hamburg-Harburg, 1993.

[111] S. M. Rump. INTLAB — interval laboratory. Technical report, Universitét
Hamburg-Harburg, 1998.



126

Bibliography

[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Y. Saad. The Lanczos biorthogonalization algorithm and other oblique projec-
tion methods for solving large unsymmetric systems. SIAM J. Numer. Anal.,
19:485-506, 1982.

Y. Saad. SPARSEKIT: A basic tool kit for sparse matrix computations. Tech-
nical report, NASA Ames Research Center, 1990.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Com-
pany, Boston, MA, 1996.

Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput.,
7:856-869, 1986.

J. Siek. The basic linear algebra instruction set: Building blocks for portable
high performance. In SciTools, 1998.

J. G. Siek. Generic programming for high performance numerical linear alge-
bra. In SIAM Workshop on Inter-operable Object-Oriented Scientific Comput-
ing, 1998.

J. G. Siek. The matrix template library: A generic programming approach
to high performance numerical linear algebra. In International Symposium on
Computing in Object-Oriented Parallel Environments, 1998.

H. D. Simon. The Lanczos Algorithm for Solving Symmetric Linear Systems.
PhD thesis, University of California, Berkeley, 1982.

H. D. Simon. Analysis of the Lanczos algorithm with reorthogonalization
methods. Lin. Alg. Appl., 61:101-131, 1984.

H. D. Simon. The Lanczos algorithm with partial reorthogonalization. Math.
Comput., 42:115-142, 1984.

G. L. G. Sleijpen, H. A. van der Vorst, and J. Modersitzki. The Main Effects of
Rounding Errors in Krylov Solvers for Symmetric Linear Systems. Universiteit
Utrecht, The Netherlands, 1997. Preprint 1006.

D. M. Smith. A Fortran package for floating-point multiple-precision arith-
metic. ACM Trans. Math. Softw., 17:273-283, 1991.

P. Sonnefeld. CGS, a fast Lanczos-type solver for unsymmetric linear systems.
SIAM J. Sci. Statist. Comput., 10:36-52, 1989.

BLAS standard draft chapter 3: Sparse BLAS, 1997. Technical report Basic
Linear Algebra Subprograms Technical Forum.

J. Stoer. Numerische Mathematik. Springer Verlag, New York, Heidelberg,
Berlin, 1993.

J. Stoer and R. Bulirsch. Numerische Mathematik. Springer Verlag, New York,
Heidelberg, Berlin, 1990.



Bibliography

127

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

137]
[138]

[139)]

[140]

[141]

142]

[143]

Z. Strakos. On the real convergence rate of the conjugate gradient method.
Linear Algebra Appl., 154/156:535-549, 1991.

7. Strakos. Convergence and numerical behavior of the Krylov space methods.
In NATO ASI. Kluwer Academics, 1998.

7. Strakos. Rounding errors in the symmetric and nonsymmetric Krylov space
methods: Do they behave differently? to appear in: Iterative Methods in
Scientific Computations II, 2000.

Sun FORTE tools. www.sun.com/forte/developer/.
L. N. Trefethen. Numerical Linear Algebra. STAM, Philadelphia, 1997.

H. A. van de Vorst. The convergence behavior of preconditioned CG and CG-S
in the presence of rounding errors. In O. Axelson and L. Kolotilina, editors,
Preconditioned Conjugate Gradient Methods, Lecture Notes in Mathematics
1457, pages 47-69. Springer Verlag, Berlin, New York, 1990.

H. A. van de Vorst. Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist.
Comput., 13:631-644, 1992.

R. Varga. Matriz Iterative Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ,
1962.

T. Veldhuizen. Algorithm specialization in C++.
extreme.indiana.edu/ tveldhui/papers/, 1995.

T. Veldhuizen. Expression templates. C++ Report, 7:26-31, 1995.

T. Veldhuizen. Techniques for scientific C++.
extreme.indiana.edu/~tveldhui/papers/techniques/, 1999.

T. Veldhuizen and M. E. Jernigan. Will C++ be faster than Fortran? In
Proc. ISCOPE. Springer, 1997.

H. F. Walker. Implementation of the GMRES method using Householder
transformations. STAM J. Sci. Statist. Comput., 9:152—-163, 1988.

R. Weiss. Convergence Behavior of Generalized Conjugate Gradient Methods.
PhD thesis, Universitat Karlsruhe, Karlsruhe, Germany, 1990.

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford,
1988.

H. Wozniakowski. Roundoff error analysis of a new class of conjugate gradient
algorithms. Lin. Alg. Appl., 29:507-529, 1980.






