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Introduction

“ Calvin: You can't just turn on creativity like a faucet.

You have to be in the right mood.

Hobbes: What mood is that?

Calvin: Last-minute panic.”
Calvin and Hobbes (by Bill Watterson), 1991

During the last decades, we have had an exponential growth of processor speed and

storage capacity. Due to Moore's law, these quantities increase by a factor of two

every 18 months. This means, we have about one thousand times the computing

power today than we had in 1985, the year when the IEEE 
oating point standard

754 [4] was released. This standard proposes a 64 bit arithmetic for 
oating-point

operations and up to now there are hardly any improvements innovated by hardware

manufactures. The complete computing power is still utilized to increase the size of

problems that can be handled.

\There will still be people who say not all the relevant physics is in the models,

but that's still a much smaller criticism than not being able to establish �rm results

for the physics that is being modeled." (John Gustafson, 1998 [54])

One of the largest consumers of 
oating-point arithmetics are iterative solvers

for linear systems of equations. Most of todays big problems in scienti�c computing,

e.g, in structural engineering or 
uid dynamics are modeled by di�erential equations

which lead to large linear systems after discretization. Therefore it is an important

task to develop accurate and reliable algorithms for this purpose.

Frequently, preconditioned Krylov subspace methods are used to solve these

large and often sparse linear systems. Theoretically, Krylov methods have many

favorable properties concerning convergence rates, accuracy, computing time, and

storage requirements. Unfortunately, these properties prevalently do not hold in

the presence of roundo� errors. Computing time increases due to unnecessarily

many iterations and expensively computed stopping criteria and more storage is

needed, e.g, because of reorthogonalization strategies. Moreover, convergence does

sometimes not happen at all or stagnates without delivering the desired accuracy.

There are many investigations which try to quantize the attainable accuracy

or convergence rates in �nite precision arithmetic. However, the purpose of this

work is not to try to get the best result with the given arithmetic. We aim to �x

{ 1 {



2 Introduction

our requirements on �nal accuracy and then choose an appropriate arithmetic that

enables us to meet these requirements.

After identifying the critical parts which mostly su�er from �nite precision arith-

metic, we selectively introduce arithmetical improvements to reduce the propagated

errors and thereby reducing the number of needed iterations.

The work in this thesis is based on recent developments on state of the art linear

system solvers, on arithmetical tools for veri�cation and highly accurate computing,

as well as on high performance object oriented programming. Starting from there,

we develop powerful algorithms which are capable to deliver almost any desired

accuracy. Additionally, if the system is not too large, we are often able to prove

the correctness of our results, i.e., we can give a rigorous upper bound for the error

norm.



Introduction 3

The thesis is structured as follows.

Chapter 1 gives an introduction into the theory of preconditioned Krylov sub-

space methods. We start with a uni�ed description of subspace methods in general

and various Krylov subspace generation techniques. After summarizing the most im-

portant results of in�nite precision convergence theory, we give a detailed introduc-

tion into generic preconditioners. Particularly, we focus on splitting techniques and

incomplete factorizations with a special emphasis on suitable modi�cations made

for the requirements of our veri�cation methods. Based on these fundamentals,

we give a broad overview over Krylov subspace solvers and describe some of the

most important variants in more details. For each method we prove the important

short recurrence properties and give pseudo-programming language formulation of

the preconditioned algorithm.

In Chapter 2, we investigate the behavior of preconditioned Krylov Methods in

the presence of �nite precision arithmetic. After introducing the basic concepts of


oating-point numbers and arithmetic with these numbers, we present the central

results of �nite precision theory of Krylov methods. Based on the error analysis of

C. Paige, we proved the direct dependency of the level of orthogonality among the

Krylov basis vectors on the used arithmetic. Subsequently, we give some examples,

demonstrating the in
uence of rounding errors on preconditioning and solving.

To narrow the gap between exact precision behavior as described in Chapter 1

and �nite precision behavior stated in Chapter 2, Chapter 3 introduces several

important techniques which increase the precision and reliability of computer arith-

metic. Namely, we describe high precision arithmetics, interval arithmetic, and the

exact scalar product.

Chapter 4 summarizes important techniques for computing error bounds for

solutions of large linear systems. Introducing the basic concepts of classical veri�ca-

tion methods, such as interval Gaussian elimination or interval �xed point methods

we pass over into recently developed veri�cation techniques based on perturbation

theory. In particular, we describe a fundamental method to bound error norms via

residual norms and then deduce a more advanced technique improving these bounds

by exploiting the Lanczos-Gau� connection.

The next two chapters focus on implementation techniques on a computer.

Chapter 5 gives a broad overview of several powerful programming techniques

for writing high performance object oriented numerical linear algebra routines.

Almost all ideas and concepts presented in this thesis are implemented in the

variable precision krylov solver vk. Chapter 6 describes the structure of the code

and how to use it. Additionally there is a graphical user interface xvk which is also

described in this chapter.

Finally, Chapter 7 exempli�es the techniques and methods, described in this

thesis. Particularly, we show that improved arithmetics are not only capable to de-

liver more accurate results but also can accelerate convergence signi�cantly. More-

over we present highly precise veri�ed solutions for systems with up to 2 000 000

unknowns or condition numbers of approximately 1062.





Notation

“ Notation is everything.”
Charles F. van Loan

Throughout this thesis, all matrices are denoted by bold capital letters (A), vectors

by bold lowercase letters (a), and scalar variables by ordinary lowercase letters (a,

or �). Interval variables are enclosed in square brackets ([A], [a], [a], or [�]).

If not mentioned explicitly, all matrices are square with dimension n and the

vectors are n-vectors.

By default the column vectors of a matrix are denoted with the same but low-

ercase letter and the elements are printed with the same letter, too, but in medium

weight. For example we have

A = (a1j � � � jan) = (ai;j)
n

i;j=1
:

This notational convention is also used in the other direction, i.e., when we have a

sequence of vectors and need them collected in a matrix. Calligraphic letters (K)
denote (aÆne) vector-spaces or sets.

Some letters have a prede�ned sense in this thesis. That is the system matrix

A, the right hand side vector b, the exact solution

x� = A�1b;

any approximation ~x to the solution, the residual vector

r = b�A~x;

the standard basis vectors ei = (0; : : : ; 0; 1; 0; : : : ; 0)T with the '1' at the ith place,

and the identity matrix I. The letter � always denotes the machine precision, but

since we deal with di�erent number formats, we also have di�erent values of �.

Therefore the actual size is always given in the context if necessary. Eigenvalues

are always called � and singular values �. Particularly the smallest singular value

is denoted with �min.
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6 Notation

We tried not to use variable names twice while simultaneously respecting tra-

ditionally used notational conventions. There is only one exception, where we pre-

ferred convention over uniqueness. That are the scalar variables in various Krylov

algorithms (� and �) which con
ict with scalar coeÆcients in the (Bi-)Lanczos al-

gorithm.

Table 1 shows the most important used functions and operators with the accord-

ing de�nition.

Symbol De�nition

hx j yi scalar product of x and y

x ? y x and y are orthogonal, i.e., hx j yi = 0

spanfx1; : : : ;xng linear hull of fx1; : : : ;xng
rank(A) rank of A

�(A) spectral radius of A

cond(A) condition number of A

(�), (�), (�), �(�) round upwards, downwards, to interval, to nearest

, , , upward rounded arithmetic operations

, , , downward rounded arithmetic operations

, , , interval arithmetic operations

Table 1: Functions and operators with the according de�nition.



cHAPTER

1
Preconditioned

Krylov Subspace Methods

“ Ich empfehle Ihnen diesen Modus zur Nachahmung.

Schwerlich werden Sie je wieder direkt eliminieren,

wenigstens nicht, wenn Sie mehr als zwei Unbekannte haben.

Das indirekte [iterative] Verfahren l�a�t sich halb im Schlaf ausf�uhren

oder man kann w�ahrend desselben an andere Dinge denken.1 ”
Carl Friedrich Gau� to Christoph Ludwig Gerling,

December 26, 1823

Krylov subspace methods are used both to solve systems of linear equations Ax = b

and to �nd eigenvalues of A [21, 22]. In this work we focus on linear system solving,

however particularly in investigating theoretical properties of Krylov methods, we

also need some facts from eigenvalue theory [96].

Krylov algorithms assume that A is accessible only via a black-box subroutine

that returns y = Az for any z (and perhaps y = ATz if A is nonsymmetric).

This is an important assumption for several reasons. First, the cheapest non-trivial

1\I recommend this method for your imitation. You will hardly ever again eliminate directly,

at least not when you have more than two unknowns. The indirect [iterative] procedure can be

done while half asleep, or while thinking about other things."

{ 7 {



8 Chapter 1 Preconditioned Krylov Subspace Methods

operation that one can perform on a sparse matrix is to multiply it by a vector | if

A has nnz nonzero entries, a matrix-vector multiplication costs nnz multiplications

and (at most) nnz additions. Secondly, A may not be represented explicitly as a

matrix but may be available only as a subroutine for computing Az.

This chapter is organized as follows. In Section 1.1 we give some basic facts

about subspace solvers in general. Section 1.2 describes how information about A is

extracted via matrix-vector multiplication. In Krylov subspace methods, this infor-

mation is stored in the so called Krylov subspaces. In Section 1.3 we present some

convergence theory for symmetric and nonsymmetric Lanczos-like algorithms. Since

for real life problems, one will hardly ever solve a linear system of equations without

preconditioning, we describe the basic facts of preconditioning and introduce the

most important generic preconditioners in Section 1.4. Based on these introductory

sections, Section 1.5 gives an overview about several Krylov solvers and describes

some of the most important variants in more detail.

1.1 Subspace Methods

The basic idea of subspace methods is generating a sequence of subspaces Vm with

increasing dimension m and �nding a vector xm within each of these subspaces that

is in some sense an optimal approximation in Vm to the solution x� of the entire

problem. Clearly, this optimality measure has to guarantee that we choose xm = x�

if x� 2 Vm (at the latest if m = n). Therefore, designing a subspace method is

subdivided in two tasks. First we have to de�ne the sequence of subspaces and

secondly we have to decide in which way we select a vector out of each subspace,

i.e., which condition we provide to xm 2 Vm in order to get a good approximation

for x� [20].

Let us assume for the moment that we already have chosen these subspaces Vm
and now look for a criterion to select xm 2 Vm. From approximation theory we

know that an optimal subspace approximation xm is characterized by the fact that

the error x� � xm stays orthogonal on the subspace where xm is chosen from, i.e.,

x� � xm ? Vm (1.1)

must hold. Unfortunately, we do not know x��xm since we do not know the exact

solution x�. However, we can compute the residual rm := b�Axm which in some

sense also is a measure for the quality of xm. Thus, a �rst idea might be simply to

replace x� � xm by rm in (1.1).

Since we have

x� � xm = A�1b�A�1Axm = A�1rm

it might be advantageous to choose xm 2 Vm satisfying

A�1rm ? Vm , rm ? AVm; (1.2)

that is, rm may not stay orthogonal on Vm but on another subspace, say Wm.

We �x these ideas in the following de�nition.
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De�nition 1.1 A projecting method for solving a linear system Ax = b is a proce-

dure that constructs approximate solutions xm 2 Vm under the constraint

rm = b�Axm ? Wm (1.3)

where Vm and Wm are m-dimensional subspaces of IRn.

In the case Wm = Vm we have an orthogonal projecting method and (1.3) is

called a Galerkin condition whereas the general case (Wm 6= Vm) is called a skew or

oblique projecting method with a Petrov-Galerkin condition in equation (1.3).

In Figure 1.1 we illustrate the case n = 2, m = 1. Given V1 we select x1 2 V1 to
satisfy r1 = b�Ax1 ? V1 or r1 ? W1 in the case of skew projections.

x1

AV1

Ax1

r1b

V1 =W1

(a) orthogonal projection

b
r1

V1Ax1

x1

W1

AV1

(b) skew projection

Figure 1.1: Projecting methods. Given V1 we compute AV1 = fAx j x 2 V1g

and then select x1 2 V1 such that r1 = b �Ax1 ? V1, respectively

r1 ? W1 in the case of skew projections.

Another way to characterize an optimal approximation is by its error norm. That

means xm 2 Vm is called optimal if kx� � xmk minimizes kx� � xk for all x 2 Vm.
Again we have to replace x� � xm by rm (because we generally do not know x�)

and �x our ideas in the following de�nition.

De�nition 1.2 A norm minimizing method for solving a linear system Ax = b is a

procedure that constructs approximate solutions xm 2 Vm under the constraint

krmk2 = kb�Axmk2 = min
x2Vm

fkb�Axk2g (1.4)

where Vm is an m-dimensional subspace of IRn.

We show the case n = 2, m = 1 in Figure 1.2. Given V1 we select x1 2 V1
minimizing kb�Axk2 for all x 2 V1.

1.2 Generating Krylov Spaces

In this section we focus on the question of how to select the subspaces Vm. To take
a possibly given initial guess x0 into account, we allow Vm to be an aÆne subspace,
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b
AV1

r1

Ax1

x1

V1

Figure 1.2: Norm minimizing methods. Given V1 we compute AV1 = fAx j

x 2 V1g and then select x1 2 V1 to satisfy kr1k2 = kb �Ax1k2 =

minx2V1fkb �Axk2g.

i.e., Vm = x0 + ~Vm. There are various possibilities to choose ~Vm but it turns out

that using Krylov subspaces has several advantageous properties as we will see later

on.

De�nition 1.3 A Krylov subspace method is a projecting or a norm minimizing

method (see De�nitions 1.1 and 1.2) to solve a linear system Ax = b where the

subspaces ~Vm are chosen as Krylov subspaces

~Vm = Km(A; r0) := spanfr0;Ar0; : : : ;Am�1r0g; m = 1; 2; : : : (1.5)

with r0 = b�Ax0.

Since we intend to work with vectors out of Km(A; r0) we have to �nd a handy

representation for them. One of the most powerful tricks in linear algebra that often

simpli�es problems signi�cantly, is to �nd a suitable basis of the vector space we

have to work with. Often orthonormal bases are a good choice but it is generally an

enormous amount of work to compute one. The Arnoldi algorithm (Section 1.2.1)

and the Lanczos algorithm (Section 1.2.2) are methods to compute orthonormal

bases of Krylov spaces. In Section 1.2.3 we will see that there is a cheaper way to

get a useful basis, although it is not orthonormal anymore.

1.2.1 Arnoldi Algorithm

The Krylov space Km(A; r0) is given as the linear hull of fr0;Ar0; : : : ;Am�1r0g
and a well known technique for orthonormalizing a sequence of vectors is the Gram-

Schmidt algorithm. In the case m = 1, we simply have K1(A; r0) = spanfr0g and
thus v1 := r0=kr0k is a orthonormal basis (ONB) for this one dimensional Krylov

space. Now suppose we have already an ONB Vm := fv1; : : : ; vmg for Km(A; r0)

and look for vm+1 to extend Vm to Vm+1. With Gram-Schmidt we compute vm+1 as
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follows

~vm+1 = Avm (compute a prototype for vm+1)

~vm+1  ~vm+1 �
mX
i=1

h~vm+1 j vii| {z }
=:him

vi (orthogonalize it against Vm) (1.6)

vm+1 =
~vm+1

k~vm+1k| {z }
=:hm+1;m

: (and �nally normalize it)

In the context of Krylov spaces this algorithm is called Arnoldi algorithm [6] or

full orthogonalization method (FOM) because we orthogonalize ~vm+1 against all

previous basis vectors. Collecting the coeÆcients hi;j to vectors hi := (hi;1j � � � jhi;m)T
we get

vm+1hm+1;m = Avm �
mX
i=1

vihi;m = Avm � Vmhm

and further arranging2 Hm := (h1 : : :hm) yields

AVm = VmHm + hm+1;m � vm+1e
T

m
; (1.7)

where Hm is the upper Hessenberg matrix of recurrence coeÆcients

Hm =

0BBBBBB@

h1;1 h1;2 � � � h1;m�1 h1;m

h2;1 h2;2
...

...

h3;2
...

...
. . .

...
...

hm;m�1 hm;m

1CCCCCCA :

Pictorially, this matrix equation looks like

A +=Vm Vm

Hm

0

v
m

+
1
h
m

+
1
;m

Representing xm 2 Vm as xm = x0 +Vm�m, i.e., xm is a shifted linear combina-

tion of v1; : : : ; vm, the Galerkin condition b�Axm ? Vm now writes as

V T

m
(b�Axm) = V T

m
(b�Ax0 �AVm�m) = 0

, V T

m
AVm| {z }

A
Km(A;ro)

�m = V T

m
r0:

2Here and further on we collect vectors of di�erent dimensions by extending them with trailing

zeros to common length.
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This also clari�es the name orthogonal projecting method because the restricted

system matrix A
Km(A;r0)

is obtained by projection with the orthogonal projector

Vm. Multiplying equation (1.7) with V T

m
from left yields

V T

m
AVm = V T

m
Vm| {z }
I

Hm + hm+1;m � V T

m
vm+1| {z }
0

�eT
m
=Hm:

Remembering v1 = r0=kr0k we �nally get

b�Axm ? Vm , Hm�m = kr0ke1: (1.8)

Hence, the projected system matrix is not only of smaller dimension m but is also

particularly structured (upper Hessenberg).

Note that the Arnoldi algorithm can terminate before m = n if k~vm+1k = 0.

Fortunately, in this case Km(A; r0) is an A-invariant subspace, i.e, Km(A; r0) =

AKm(A; r0). Therefore we have

r0 2Km(A; r0) = AKm(A; r0)

, A�1r0 2Km(A; r0)

, x� � x0 2Km(A; r0)

, x� 2x0 +Km(A; r0) = Vm:
(1.9)

That is, in this break down situation we can already �nd the solution x� in the

shifted Krylov space computed so far.

Since the Gram-Schmidt algorithm tends to be unstable if angles between Avm
and v1; : : : ; vm are small, we use a computationally more robust variant, the so called

modi�ed Gram-Schmidt algorithm. Here Avm is successively orthogonalized. In a

pseudo programming language we can write the Arnoldi procedure with modi�ed

Gram-Schmidt as shown in Algorithm 1.1.

Given x0

~v1 = b�Ax0

v1 = ~v1=k~v1k
for m = 1; 2; : : :

~vm+1 = Avm
for j = 1; : : : ; m

hj;m = h~vm+1 j vji
~vm+1 = ~vm+1 � hj;mvj

hm+1;m = k~vm+1k
vm+1 = ~vm+1=hm+1;m

Algorithm 1.1: Arnoldi algorithm with a modi�ed Gram-Schmidt procedure.

Unfortunately, the Arnoldi algorithm is expensive in memory and computing

time since we need access to all m previous basis vectors and have to perform

O(nnz+ nm) operations in the mth iteration.
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1.2.2 Lanczos Algorithm

If A is symmetric the situation becomes much more favorable. We have

Hm = V T

m
AVm = (V T

m
ATVm)

T =HT

m
;

that is Hm turns out to be symmetric, too. In this case Hm is a symmetric upper

Hessenberg and therefore a symmetric tridiagonal matrix which is denoted with Tm,

where

Tm =

0BBBBB@
�1 �1

�1 �2 �2

. . .
. . .

. . .

�m�2 �m�1 �m�1

�m�1 �m

1CCCCCA :

The recursion of depth m in (1.6) reduces to one of depth three.

~vm+1 = Avm � �m�1vm�1 (compute a prototype for vm+1

and orthogonalize it against vm�1)

~vm+1  ~vm+1 � h~vm+1 j vmi| {z }
=:�m

vm (orthogonalize it against vm) (1.10)

vm+1 =
~vm+1

k~vm+1k| {z }
=:�m

: (and �nally normalize it)

This special case of the Arnoldi algorithm for symmetric systems is called Lanczos

algorithm [77]. Similar to the nonsymmetric case we have

AVm = VmTm + �mvm+1e
T

m
(1.11)

, V T

m
AVm = V T

m
Vm| {z }
I

Tm + �m � V T

m
vm+1| {z }
0

�eT
m
= Tm:

and thus

b�Axm ? Vm , Tm�m = kr0ke1: (1.12)

That is, the Galerkin condition reduces to a symmetric tridiagonal system of dimen-

sion m.

Algorithm 1.2 shows the Lanczos procedure in a pseudo programming language.

In the Lanczos algorithm we only need access to the last three basis vectors

(no increasing memory requirements per iteration) and the number of operation is

O(nnz). Unfortunately, this three-term-recurrence which makes the Lanczos algo-

rithm so favorable, only exists for symmetric matricesA, at least if we use orthogonal

projecting methods.

1.2.3 Bi-Lanczos Algorithm

Analyzing the Arnoldi and Lanczos algorithm we �nd that the most important

property was the simple structure of A
Km(A;r0)

. We now try to retain the short

recurrences of the Lanczos algorithm which led to the tridiagonal shape ofA
Km(A;r0)
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Given x0

~v1 = b�Ax0

for m = 1; 2; : : :

�m�1 = k~vmk
vm = ~vm=�m�1
~vm+1 = Avm
if m > 1

~vm+1 = ~vm+1 � �m�1vm�1
�m = h~vm+1 j vmi
~vm+1 = ~vm+1 � �mvm

Algorithm 1.2: Lanczos algorithm for symmetric system matrices A.

but without the necessity of symmetry [112]. To achieve this, we construct a skew

projecting method, that is, we choose xm 2 Vm as xm = x0 + Vm�m to satisfy the

Petrov-Galerkin condition

W T

m
(b�Axm) = W T

m
(b�Ax0 �AVm�m) = 0

, W T

m
AVm�m = W T

m
r0;

Here we have to compute two sets of vectors: Vm = (v1 : : :vm) and simultane-

ously Wm = (w1 : : :wm), providing a simple structure of W T

m
AVm. This can be

achieved by de�ning Vm and Wm via a pair of coupled three-term-recurrences

�m = hAvm j wmi : : : = hvm j ATwmi
~vm+1 = Avm � �mvm � �m�1vm�1 ~wm+1 = ATwm � �mwm � 
m�1wm�1


m = k~vm+1k �m = h~vm+1 j ~wm+1i=
m (1.13)

vm+1 = ~vm+1=
m wm+1 = ~wm+1=�m ;

starting with v1 = r0=kr0k and w1 = rdual0 =krdual0 k with hr0 j rdual0 i 6= 0, e.g.

r0 = rdual0 .

In matrix form these recurrences can be written as

AVm = VmTm

ATWm = WmT
T

m

+ 
m vm+1

+ �mwm+1

eT
m

eT
m
;

(1.14)

where Tm is the m-by-m tridiagonal matrix of recurrence coeÆcients

Tm =

0BBBBB@
�1 �1


1 �2 �2

. . .
. . .

. . .


m�2 �m�1 �m�1


m�1 �m

1CCCCCA :

It turns out that Vm is a basis for Km(A; r0) and Wm is a basis for Km(A
T
; r0).

Multiplying the upper equation in (1.14) with W T

m
from left yields

W T

m
AVm =W T

m
VmTm + 
mW

T

m
vm+1e

T

m
: (1.15)
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To obtain the desired tridiagonal structure of W T

m
AVm we need the so called bi-

orthogonality condition for Vm and Wm, i.e., W
T

m
Vm = V T

m
Wm = I.

Since it is not clear in advance that this mutual orthogonality between Wm and

Vm holds, we prove it in the following theorem (compare [48]).

Theorem 1.1 Suppose v1; : : : ; vm+1 and w1; : : : ;wm+1 exist, that is, hvj j wji 6= 0

for j = 1; : : : ; m+ 1. Then V T

m
Wm =W T

m
Vm = I.

Proof: Since vj = ~vj=
j�1 and wj = ~wj=�j�1 we have

hvj j wji = 1


j�1�j�1
h~vj j ~wji = h~vj j ~wji

kh~vj j ~wjik = 1:

We prove the orthogonality of vi and wj for i 6= j with i; j � m+ 1 by induction.

We have hv1 j w1i = kr0k�1krdual0 k�1hr0 j rdual0 i 6= 0. Assume that hvi j wji = 0

holds for i 6= j with i; j � m. Because of the symmetry of (1.14) we only have to

show hvm+1 j wji = 0 for j � m. Then we get for j = m

hvm+1 j wmi = 1


m
hAvm � �mvm � �m�1vm�1 j wmi

=
1


m

�hAvm j wmi| {z }
=�m

��m hvm j wmi| {z }
=1

��m�1 hvm�1 j wmi| {z }
=0

�
=

1


m
(�m � �m) = 0;

for j = m� 1 we get

hvm+1 j wm�1i = 1


m
hAvm � �mvm � �m�1vm�1 j wm�1i

=
1


m

�hAvm j wm�1i � �m hvm j wm�1i| {z }
=0

��m�1 hvm�1 j wm�1i| {z }
=1

�
=

1


m

�hvm j ATwm�1i � �m�1
�

=
1


m

�hvm j ~wm + �m�1wm�1 + 
m�2wm�2i � �m�1
�

=
1


m

�
�m�1 hvm j wmi| {z }

=1

+�m�1 hvm j wm�1i| {z }
=0

+
m�2 hvm j wm�2i| {z }
=0

��m�1
�

=
1


m
(�m�1 � �m�1) = 0;

and �nally for j < m� 1 we get

hvm+1 j wji = 1


m
hAvm j wji = 1


m
hvm j ATwji = �j


m
hvm j wj+1i = 0:

�
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This means, the Bi-Lanczos algorithm provides a short recurrence formula to

compute bases for Krylov spaces for nonsymmetric matricesA. Although these bases

are not (self) orthonormal, they suÆce to obtain Lanczos like short recurrences.

However, we stress that the Bi-Lanczos process can terminate in two di�erent

situations [114]. First, if k~vm+1k = 0 or k ~wm+1k = 0, then the algorithm has found

an A-invariant subspace with x� 2 Vm or an AT -invariant subspace with x� 2 Wm,

respectively. This is referred to as regular termination because we can �nd the

solution in the Krylov spaces of the previous step (compare equation (1.9) on page

12).

The second case, called serious breakdown, occurs when h~vm+1 j ~wm+1i = 0

but neither ~vm+1 = 0 nor ~wm+1 = 0. Hence we have no invariant subspace and

thus cannot guarantee to �nd x�. However, in some later step, say m + l, there

might exist nonzero vectors ~vm+l 2 Km+l(A; r0) and ~wm+l 2 Km+l(A
T
; r0) with

(w1j � � � jwmjwm+l)
T � (v1j � � � jvmjvm+l) = I. Thus we have to skip these l � 1

intermediate steps. For practical implementations, it turns out that we also have

to cover near breakdown situations where h~vm+1 j ~wm+1i is suÆciently small to

cause numerical instabilities. This technique is called look-ahead and is described in

further details in several papers including [14, 15, 63, 99, 102].

In Algorithm 1.3 we formulate the Bi-Lanczos process without look-ahead in a

pseudo programming language.

Given x0

~v1 = b�Ax0

v1 = w1 = ~v1=k~v1k
for m = 1; 2; : : :

~vm+1 = Avm
~wm+1 = ATwm

�m = h~vm+1 j wmi
~vm+1 = ~vm+1 � �mvm
~wm+1 = ~wm+1 � �mwm

if m > 1

~vm+1 = ~vm+1 � �m�1vm�1
~wm+1 = ~wm+1 � 
m�1wm�1


m = k~vm+1k
vm+1 = ~vm+1=
m

�m = hvm+1 j ~wm+1i
wm+1 = ~wm+1=�m

Algorithm 1.3: The Bi-Lanczos algorithm without look-ahead.

1.3 Convergence Properties

The biggest part of convergence theory and error estimates is for Lanczos procedures

used as eigenvalue solvers. Many results are collected under the name Kaniel-Paige-

theory [66, 93{95, 142] concerning the relations between the eigenvalues of T and A
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as well as convergence of the Ritz values (compare Theorem 2.1).

Many of these results are applicable to Lanczos procedures used to solve linear

systems and thus we have a good knowledge about convergence at least for symmetric

systems [51, 62, 128, 132], see Section 1.3.1.

Unfortunately, the situation becomes much less clear for nonsymmetric systems,

because the proofs in the Lanczos theory are principally based on the symmetry of

A. However, there are some error estimates but they are neither as sharp as in the

symmetric case nor practically useful at all [5, 47, 50, 64, 129, 141], see Section 1.3.2.

Strakos shows that, practically, the behavior of symmetric and nonsymmetric

Krylov solvers is very similar. Unsatisfyingly, up to now nobody managed to prove

this [130].

1.3.1 Symmetric Case

Convergence rates and also the quality of the iterated solutions of iterative linear

system solvers depend strongly on the good nature of the system matrix A. It can

be observed that system matrices, close to the identity, are easier to solve. Closeness

to I in this sense could be expressed, for example by

� A = I +B with rank(B) is small (small rank perturbation) or

� cond(A) � 1.

Theorem 1.2 [17] If A = I +B is an n by n matrix and rank(B) = m, then the

Lanczos algorithm terminates after at most m + 1 steps.

Proof: The dimension of

Kk(A; r0) = spanfr0;Ar0; : : : ;Ak�1r0g = spanfr0;Br0; : : : ;Bminfm;k�1gr0g
cannot exceed m + 1. Therefore at least Km(A; r0) is an A-invariant subspace of

IRn and thus A�1b 2 Km(A; r0) (compare Section 1.2.2). �

An error bound of a di�erent manner can be obtained in terms of the A-norm

(kzkA =
phz j Azi). This norm is well de�ned if A is s.p.d. Therefore, the

following theorem is restricted to the CG algorithm (see Section 1.5.2).

Theorem 1.3 Suppose A is an n by n s.p.d. matrix and b is an n vector. Then for

the CG-iterates xk there holds

kx� xkkA � 2
p
�

�p
�� 1p
� + 1

�k

kx� x0kA

for any x 2 IRn or

kxk � x�k2 � 2
p
�

�p
�� 1p
�+ 1

�k

kx0 � x�k2;

where � = cond(A).

See [83] for a proof. This means, the nearer � is to one, the faster the error will

decrease.
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1.3.2 Nonsymmetric Case

If A is a low rank perturbation of the identity then AT has obviously the same

property (since B is square, it has equal column and row rank). Thus, Theorem 1.2

is also applicable to nonsymmetric systems.

Theorem 1.4 If A = I+B is an n by n matrix and rank(B) = m, then the Arnoldi

and Bi-Lanczos algorithm terminate after at most m+ 1 steps.

Proof: The dimensions of

Kk(A; r0) = spanfr0;Ar0; : : : ;Ak�1r0g
= spanfr0;Br0; : : : ;Bminfm;k�1gr0g

and

Kk(A
T
; r0) = spanfr0;ATr0; : : : ; (A

k�1)Tr0g
= spanfr0;BTr0; : : : ; (B

minfm;k�1g)Tr0g

cannot exceed m + 1. Therefore, at least Km(A; r0) or Km(A
T
; r0) is an A-

invariant (respectively AT -invariant) subspace of IRn and therefore A�1b is either

in Km(A; r0) or in Km(A
T
; r0) (compare Sections 1.2.1 and 1.2.3). �

To illustrate the diÆculties with error bounds for nonsymmetric matrices we

present some results for GMRES (see Section 1.5.5). The 2-norm of the kth GMRES-

residual rk satis�es

krkk2 = min
�k2Pk

�k(0)=1

k�k(A)r0k2 (1.16)

where Pk is set set of polynomials of degree k or less [64]. SupposeA is diagonalizable

then there exists an eigen-decomposition A = S�S�1 where � = diag(�1; : : : ; �n)

and the columns of S are the eigenvectors of A. From (1.16) we obtain

krkk2 = min
�k2Pk
�k(0)=1

kS�k(�)S�1r0k2 � cond2(S) min
�k2Pk
�k(0)=1

k�k(�)k2kr0k2

, krkk2
kr0k2 � cond2(S) min

�k2Pk
�k(0)=1

n
n

max
i=1
j�k(�i)j

o

If A is non-normal, then S does not need not to be unitary and thus cond2(S) > 1.

Consequently, convergence of GMRES, or at least this bound of the residual norm

does not solely depend on the eigenvalues of A. Additionally, it can be shown that

Theorem 1.5 Given a non-increasing positive sequence r0 � r1 � : : : � rn�1 > 0

and an arbitrary set of nonzero complex numbers f�1; : : : ; �ng, there exists a matrix

A with eigenvalues �1; : : : ; �n and an initial residual r0 with kr0k2 = r0 such that

the residual vectors rk at each step of the GMRES method applied to A and r0 satisfy

krkk2 = rk for k = 1; 2; : : : ; n� 1.
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See [49] for a proof.

The situation becomes even more diÆcult, if we have to take rounding errors

into consideration. However, the aim of this work is not to �x the arithmetic and

then try to get the best result, but it is to �x our requirements on accuracy and then

to choose an appropriate arithmetic that enables us to reach this needed accuracy.

1.4 Preconditioners

The idea of preconditioning, i.e., preliminary reduction of the condition number,

simply is to replace the original linear system Ax = b by a modi�ed linear system
~Ax = ~b, where this second system has to ful�ll two properties [7, 8]:

� Solving ~Ax = ~b should be (more) easy and

� ~Ax = ~b and Ax = b must have the same solution, i.e., ~A
�1~b = A�1b.

Here, we demonstrate preconditioning in context of the simplest algorithm for

generating Krylov subspaces | the Lanczos algorithm. Since this algorithm only

works for symmetric systems, we have to retain the symmetry in ~A. Therefore we

make the ansatz ~A = L�1AL�T with a nonsingular matrix L, where M := LLT

shall in some sense be near to A. To ensure the equivalence of the preconditioned

and non-preconditioned system, we have to de�ne ~b = L�1b and ~x = LTx to get

~A~x = ~b

, L�1AL�TLTx = L�1b

, Ax = b:

Simply replacing A by ~A = L�1AL�T and b by ~b = L�1b and for technical

reasons also renaming v by z in the Lanczos algorithm (compare Algorithm 1.2)

leads to

1 Given x0, ~x0 = LTx0

2 ~z1 = L�1b�L�1AL�TLTx0 = L�1(b�Ax0)

3 for m = 1; 2; : : :

4 �m�1 = k~zmk
5 zm = ~zm=�m�1
6 ~zm+1 = L�1AL�Tzm
7 if m > 1

8 ~zm+1 = ~zm+1 � �m�1zm�1
9 �m = h~zm+1 j zmi
10 ~zm+1 = ~zm+1 � �mzm

From line 2 and 5 we see, comparing with Algorithm 1.2,

vm = Lzm; and ~vm = L~zm:

To avoid the explicit use of L�1 and L�T we introduce two auxiliary vectors pm and

~p
m
, de�ned by

pm =M�1vm = L�TL�1vm; and ~pm =M�1~vm:
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Now we substitute the vectors zm and ~zm by expressions with vm, ~vm, pm, and ~p
m
.

With line 4 we get

�m�1 = k~zmk = hL�1~vm j L�1~vmi1=2
= h~vm j L�TL�1~vmi1=2
= h~vm j ~pmi1=2:

Using ~zm+1 = L�1~vm+1 and L
�Tzm = p

m
we get in line 6

~zm+1 = L�1Apm , L~zm+1 = Apm , ~vm+1 = Apm:

Multiplying lines 8 and 10 with L from left yields ~vm+1 = ~vm+1 � �m�1vm�1 and

~vm+1 = ~vm+1 � �mvm. With line 9 we have

�m = h~zm+1 j zmi = hL�1~vm+1 j LTpmi = h~vm+1 j pmi:

We collect our results in Algorithm 1.4 (left)

Given x0

~v1 = b�Ax0

for m = 1; 2; : : :

~p
m
=M�1~vm

�m�1 = h~vm j ~pmi1=2
vm = ~vm=�m�1
p
m
= ~p

m
=�m�1

~vm+1 = Apm
if m > 1

~vm+1 = ~vm+1 � �m�1vm�1
�m = h~vm+1 j pmi
~vm+1 = ~vm+1 � �mvm

Given x0

~v1 = b�Ax0

for m = 1; 2; : : :

�m�1 = k~vmk
vm = ~vm=�m�1

~vm+1 = Avm
if m > 1

~vm+1 = ~vm+1 � �m�1vm�1
�m = h~vm+1 j vmi
~vm+1 = ~vm+1 � �mvm

Algorithm 1.4: A (symmetrically) preconditioned Lanczos algorithm with pre-

conditionerM := LLT
(left) and its non-preconditioned variant

(right).

As we can see from Algorithm 1.4, the essential modi�cation is the computation

of the solution of M ~pm = ~vm with a matrix M similar to A. In other words, we

need an approximate solution of A~p
m
= ~vm. At a �rst glance it seems to make no

sense to solve Ax = b by repeatedly solving A~p
m

= ~vm but the emphasis is on

approximate solution, that is, we only need a fast approximation even though it is

a rough one.

In this sense, every linear system solver can be applied as a preconditioner. Due

to the nature of these solvers, preconditioners can be divided roughly into three

categories:

� Preconditioners based on simple iterative solvers, e.g., Jacobi, Gau�-Seidel, or

SOR preconditioners.
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� Preconditioners based on direct solvers, modi�ed for fast but approximative

solving, e.g., incomplete Cholesky or incomplete LU (ILU) or modi�ed variants

[11].

� Problem speci�c preconditioners, either designed for a broad class of underly-

ing problems or even for one speci�c matrix or problem. For example, there

are preconditioners for elliptic PDE's, namely multigrid or domain decompo-

sition preconditioners [26], or special preconditioners as the di�usion synthetic

acceleration preconditioner (DSA), solely designed for the transport equation

(see [88]).

In the following two sections, we give an introductory overview about the �rst

two categories. Since this work focuses on generic linear system solving, we won't

consider the special preconditioners, described in the last category.

1.4.1 Splitting Techniques

Historically, the �rst class of iterative solvers for linear systems of equations was

based on so called splitting techniques [55, 127, 135]. There we split the matrix A in

a sum of two matrices, say B andA�B and then writeBx = (B�A)x+b instead

of Ax = b. If B is nonsingular, we obtain the following �xed point formulation

x = B�1(B �A)x+B�1b:

Substituting the left hand side x by xk+1 and the right hand side x by xk, we get

the iteration scheme

xk+1 = B�1(B �A)xk +B
�1b = xk �B�1Axk +B

�1b (1.17)

which is convergent if and only if the spectral radius of B�1(B�A) is less than one.

In the case of convergence, i.e., with x� = limk!1(xk) we have B
�1Ax�+B�1b = 0

or Ax� = b.

To utilize the iteration scheme (1.17) as a preconditioner, we only perform one

iteration step. The main e�ort is solving the linear system Bz = (B � A)x for

z, that is, we should chose B to assure that this solution is easily computable.

According to di�erent choices of B we have di�erent algorithms.

� Jacobi Preconditioners
For the Jacobi algorithm, we choose B = diag(A) (see Figure 1.3). This leads to

the simple preconditioner

zi = xi � 1

ai;i

nX
j=1

ai;jxj +
bi

ai;i

=
1

ai;i

0BB@bi � nX
j=1
j 6=i

ai;jxj

1CCA ; for i = 1; : : : ; n:
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B

A

Figure 1.3: Splitting scheme for the Jacobi iteration. B = diag(A).

� Gau�-Seidel Preconditioners
Here we set B = lowerTriangle(A) (see Figure 1.4), This leads to the Gau�-Seidel

algorithm which is related to the solution of a triangular system

zi = xi � 1

ai;i

 
i�1X
j=1

ai;jzj +

nX
j=i

ai;jxj

!
+

bi

ai;i

=
1

ai;i

 
bi �

i�1X
j=1

ai;jzj �
nX

j=i+1

ai;jxj

!
; for i = 1; : : : ; n:

B

A

Figure 1.4: Splitting scheme for the Gau�-Seidel iteration. B = lowerTriangle(A).

� Relaxation Methods

For both, the Jacobi and the Gau�-Seidel algorithm, one can scale the matrixB by a

so called relaxation parameter !. This leads to the Jacobi relaxation preconditioner

zi = xi � !

ai;i

nX
j=1

ai;jxj + !
bi

ai;i

= (1� !)xi � !

ai;i

0BB@bi � nX
j=1
j 6=i

ai;jxj

1CCA ; for i = 1; : : : ; n:
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or the Gau�-Seidel relaxation preconditioner, also known as SOR (successive over

relaxation) preconditioner

zi = xi � !

ai;i

 
i�1X
j=1

ai;jzj +

nX
j=i

ai;jxj

!
+ !

bi

ai;i

= (1� !)xi � !

ai;i

 
i�1X
j=1

ai;jzj +

nX
j=i+1

ai;jxj

!
; for i = 1; : : : ; n:

These algorithms can be interpreted as a weighted sum of the non-preconditioned

vector x and the update vector z � x. To ensure positive weights we must choose

! 2 (0; 2). A good relaxation parameter can improve the preconditioner signi�cantly

but in general it is hard to determine an optimal relaxation parameter !. However,

there are several works (see e.g. [2, 135]) dealing with this question depending on

special properties of the matrix A.

1.4.2 Incomplete Decompositions

This important class of generic preconditioners is based on direct solvers, i.e., on a

multiplicative decomposition, say L � U of A. Favorably, we deal with triangular

factors L and U as delivered, for example, by the LU-decomposition. Since solving

LUz = x for z is generally neither really fast nor very approximative, we actually

do not compute the entire factors L and U but only incomplete factors ~L and ~U .

That means, we compute only a subset of the elements of these triangular matrices.

There are basically two strategies how to decide, whether an element of the complete

triangular factor is to be taken up into the sparse triangular factor or whether it

can be dropped:

� Compute an element li;j of ~L (or ui;j of ~U , respectively) depending on memory

management considerations. Usually we compute an element at place (i; j) if

and only if ai;j 6= 0. In this case we can use the storage scheme of A to store
~L and ~U in.

� Compute an element li;j of ~L (or ui;j of ~U , respectively) depending on its

importance. Usually this importance is measured in the following sense. The

sparse triangular factors are computed columnwise. An element is dropped if

it is smaller than a given drop-tolerance times the norm of the corresponding

column of A.

There exist various modi�cations [11], one, for example, tries to save some

of the dropped information by adding the dropped elements to the diagonal

element of the upper diagonal factor to retain the column-norms of A.

The LU-decomposition works for arbitrary nonsingular matrices A. However,

there are some variants exploiting special properties of A such as symmetry or

positive de�niteness. Since we make extensive use of these preconditioners (see

Section 4.3.3, we describe some important LU variants here.
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� LDM T Decomposition of General Matrices

For this variant, we actually do not need a special structure in A. In the usual

LU factorization L tends to be well-conditioned whereas the condition number of

A moves into U [41]. Here we factorize A into a three-matrices product LDMT

where D is diagonal and L andM both are unit lower triangular. Subsequently we

distribute D among L and M , i.e., we de�ne

D1 :=
p
jDj; D2 := sign(D)

p
jDj; L̂ := LD1; Û :=MD2:

This leads to a L̂Û
T

factorization and heuristically, L̂ and Û have a more or less

equal condition number
p
cond(A). This modi�cation is important for verifying an

approximate solution of a linear system as described in Section 4.3.3. There we need

the smallest singular value ofA which we estimate by �min(L̂) ��min(Û ). Since these

singular values are the square root of the eigenvalues of L̂L̂
T

and ÛÛ
T

we have

to compute eigenvalues of matrices with condition numbers cond(L̂)2 respectively

cond(Û)2. Without the balancing, i.e. with cond(U) � cond(A), this would limit

us to linear systems with moderate condition numbers less than ��1=2.

To obtain sparse or incomplete triangular factors, obviously all modi�cations

described for the LU-factorization can be applied.

� LDLT Decomposition of Symmetric Matrices

Here we suppose A to be symmetric, then we have redundancy in the LDMT

algorithm since in this case L =M . This can be seen by multiplying A = LDMT

with M�1 from left and M�T from right. This yields

M�1AM�T =M�1LDMTM�T =M�1LD:

The left hand side is symmetric and the right hand side is lower triangular and thus

M�1LD is diagonal. Since D is nonsingular, this implies M�1L is also diagonal.

ButM�1L is unit lower triangular and soM�1L = I (see [41]). Thus we can omit

computingM . Again distributing D yields

D1 :=
p
jDj; D2 := sign(D)

p
jDj; L̂ := LD1; Û := LD2:

In this symmetric case we even have

cond(L̂) = cond(LjDj1=2) = cond(LjDj1=2 sign(D)) = cond(Û):

� Cholesky or LLT Decomposition of S.P.D. Matrices

Moreover, if A is symmetric positive de�nite (s.p.d.), i.e., if xTAx > 0 for all x 6= o

then we have

0 < (L�Tei)
TA(L�Tei) = eT

i
L�1AL�Tei = eT

i
Dei = di;i:

Thus all elements of D are positive which enables us to de�ne

D̂ :=
p
D; L̂ := LD:

Together we get A = L̂L̂
T

, that is L̂ is the Cholesky factor of A.
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� Pivoting and Reordering Algorithms

Suppose LUT is a triangular factorization of A, computed in �nite precision. Then

we have LUT = ~A � A. For the error matrix ~A�A we have (see [104])

j ~A�Aj � 3(n� 1)� � (jAj+ jLjjU j) +O(�2):

Consequently, this error might be very large if we encounter a small pivot during

factorizing A because this leads to large elements in L and U . We stress that small

pivots are not necessarily due to ill-conditioning as the example

A =

�
� 1

1 0

�
=

�
1 0

1=� 1

��
� 1

0 �1=�
�
= LUT

demonstrates. To avoid large elements in L and U we must allow some kind of

pivoting [30], i.e., permuting of the rows of A:

PA =

�
0 1

1 0

��
� 1

1 0

�
=

�
1 0

� 1

�
=

�
1 0

� 1

��
1 0

0 1

�
= LUT

:

Usually there are two pivoting strategies: column pivoting and complete pivoting.

Both limit the norm of L and U , but unfortunately, they destroy a possibly given

band structure. In particular we have the following situation. Suppose A to have

lower bandwidth p and upper bandwidth q. Without pivoting, the original band-

widths remain unchanged, with column pivoting, U has bandwidth p+ q, while L's

band-structure is completely lost, and �nally with complete pivoting we loose the

structure of L and U . Thus, dealing with sparse matrices, we have to trade o�

between loosing accuracy and saving memory.

Usually, pivoting is done in each step of an LU factorization. However, there are

some useful strategies how to compute permutation matrices P and Q in advance,

such that an LU factorization of PAQ has advantageous properties [23, 31]. Advan-

tageous in this sense means smaller bandwidths or less nonzero elements, for exam-

ple. One of the most successful algorithms is the so called `reverse Cuthill-McKee'

algorithm. This powerful graph theoretic algorithm often leads to a dramatical re-

duction of the numbers of nonzeros in L and U and therefore to a large speedup in

solving and particularly in verifying a sparse linear system of equations.

1.5 Krylov Type Linear System Solver

In this section we �rst give an overview about various Krylov type linear system

solver [44, 60]. Since our improvements in convergence, speed, and accuracy as well

as our veri�cation methods do not depend on the particular method, we only describe

some of the most important variants in more detail. These are CG (Section 1.5.2),

BiCG (Section 1.5.3), CGS (Section 1.5.4), and GMRES (Section 1.5.5). Additionally,

we present the basic ideas of residual norm smoothing (BiCGStab, QMRCGStab) and

quasi minimization (QMR, TFQMR), see Section 1.5.6.

For each described method, we give a preconditioned algorithm formulated in a

pseudo programming language, taken from [9]
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symm.pos.def.

Arnoldi norm.min.

symm.indef.

Lanczos |

Lanczos norm.min.

Lanczos norm.min.

Bi-Lanczos quasi norm.min.

Bi-Lanczos Petrov-Galerkin

Bi-Lanczos quasi norm.min. Bi-Lanczos |

Bi-Lanczos

Lanczos Galerkin

Lanczos Galerkin

Bi-Lanczos |

Petrov-Galerkin

arbitrary

Saad, Schulz '86 [115]
GMRES

Paige, Saunders '75 [97]
SYMMLQ

Paige, Saunders '75 [97]
MINRES

Paige, Saunders '82 [98]
CGNR

Freund, Nachtigal '91 [91]
QMR

Fletcher '75 [35]
BiCG

Freund '93 [37]
TFQMR

van de Vorst '92 [134]
BiCGStab

CGS
Sonnefeld '89 [124]

Paige, Saunders '79 [98]
CGNE

CG
Hestenes, Stiefel '52 [59]

Chan et al. '94 [18]
QMRCGStab

Figure 1.5: Krylov type linear system solver

1.5.1 Overview

The oldest and probably best known Krylov type method is the Conjugate Gradient

(CG) method, developed by Hestenes and Stiefel in 1952 [59]. It was designed

for solving systems of linear equations with symmetric positive de�nite coeÆcient

matrices. Possibly because matrix dimensions were small at this time and CG was

considered as a direct solver, there was no much attention to this algorithm. This

changed in the middle of the 70's, where the iterative character of CG was spotted

mainly by Paige and Saunders (see Section 1.5.2).

In 1975, the �rst remarkable variants of CG were developed: MINRES and

SYMMLQ by Paige and Saunders [97] and BiCG by Fletcher [35]. Since CG is based

on a Lanczos algorithm for generating orthonormal bases of the Krylov spaces and

a subsequent LDLT factorization of the symmetric tridiagonal matrix T , it is po-

tentially unstable if A, and consequently T is inde�nite (T is unitarily similar to

A), see Section 1.5.2.
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MINRES avoids this LDLT factorization switching to the norm minimizing con-

dition for the residual vectors (see De�nition 1.2). This yields to a least squares

problem which does not depend on the de�niteness of A [32].

SYMMLQ solves the projected system with system matrix T via an LQ factor-

ization instead of LDLT , but does not minimize anything. However, it keeps the

residuals orthogonal to all previous ones.

While these two variants retained the Lanczos process and were therefore bound

to symmetric matrices A, Fletcher generalized CG by switching to the Bi-Lanczos

algorithm in combination with the Petrov-Galerkin condition. This leads to the

bi-conjugate gradient (BiCG) algorithm, which works for arbitrary square (and non-

singular) matrices A. Unfortunately, BiCG needs matrix-vector products with the

transposed system matrix, which is often a problem for large sparse matrices (com-

pare Section 6.1.2). Due to this lack, the development of Bi-Lanczos based algo-

rithms stagnated for several years.

The next two variants, again based on CG, avoiding the assumption of symmetry

of A. One obvious trick is to apply CG to the normal equations (CGNE) [98], i.e., to

ATAx = ATb. While the convergence rate of CG depends on the condition number

of the system matrix (see Section 1.3) it now depends on the square of cond(A) and

thus might be relatively slow.

Several proposals have been made to improve the numerical stability of this

method. The best known is by Paige and Saunders [98] and is based upon applying

the Lanczos method to the auxiliary 2n by 2n system�
I A

AT 0

��
r

x

�
=

�
b

o

�
:

A clever execution of this scheme delivers the LDLT factorization of the tridiagonal

matrix that would have been computed by carrying out the Lanczos procedure with

ATA but without squaring the condition number.

Applying this ideas to MINRES leads to a CG like algorithm applied to the

normal equations and minimizing the residual norm. The resulting algorithm was

called CGNR [98].

Another important extension of the MINRES algorithm, called GMRES (genera-

lized minimal residuals), was developed in 1986 by Saad and Schulz [115]. They

avoided the need of symmetry by interchanging the underlying Lanczos algorithm

with the Arnoldi algorithm. The disadvantage of this approach is that it needs

increasing time and memory with each iteration due to the Arnoldi method which

orthogonalizes every new Krylov basis vector against all previous ones. Several

proposals have been made to get this mathematically excellent algorithm compu-

tationally more attractive. The best known is the restart technique GMRES(m),

restarting GMRES every m iterations with the best approximation computed so far

as the new starting vector. Beside this computational penalty, however, it is the

only Krylov algorithm for arbitrary matrices with a norm minimizing property of

the generated residuals (see Section 1.5.5).

Three years later, Sonnefeld [124] improved the meanwhile 14 years old BiCG

algorithm to work without access to the transposed of A. Substantially, this im-

provement was based on replacing scalar products like hAp j ATpi with hA2p j pi
and therefore was called CGS (conjugate gradients squared). This squaring can be
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interpreted as performing two minimization steps at once while computing only one

search direction. Sometimes we can observe a doubled convergence rate but since

the second `minimization' step uses the old (and maybe completely wrong) search

direction, we often have a quite irregular convergence behavior (see Section 1.5.4).

In 1992, van de Vorst [134] introduced an additional parameter into the Petrov-

Galerkin condition and used this parameter to smooth this irregular behavior of

the residual norms in CGS. Due to this stabilizing parameter, he called his al-

gorithm BiCGStab, again reminding on the underlying Bi-Lanczos procedure (see

Section 1.5.6).

Since norm minimizing of the residuals for arbitrary matrices depends strongly

on the Arnoldi algorithm (GMRES), there seemed to be no possibility to develop

a GMRES like algorithm with short recurrences. However, in 1991, Freund and

Nachtigal [91] managed to bound the residual norm with a product of two norms,

where one of them can be minimized even by using a Bi-Lanczos procedure for

generating the needed Krylov spaces and the other can be bound independently ofA.

Minimizing only the �rst of these two norms, they introduced a quasi minimization

of the residual norms (QMR) based on short recurrence formulas (see Section 1.5.6).

Similar to the step from BiCG to CGS, Freund [37] improves this algorithm 1993

to work without transposed matrix-vector products. The resulting procedure was

called transpose free QMR | TFQMR. Compared with QMR, this algorithm again

shows a more irregular behavior in the computed residual norms for the same reason

as the CGS algorithm does. Applying the ideas of van de Vorst, Chan et al. [18]

stabilized TFQMR and developed his so called QMRCGStab algorithm.

1.5.2 Conjugate Gradients (CG)

There are various ways to derive CG. Usually one starts with an obvious steepest

descent approach to minimize the function

�(x) =
1

2
xTAx� xTb:

Minimizing � is equivalent to �nding the zero of its gradient r�(x) = Ax� b if A
is positive de�nite (note: for the second derivate of � we have r2� � A).

The resulting algorithm often shows a prohibitively slow convergence rate and

heavy oscillating residuals. Modifying this steepest descent algorithm to get con-

jugate search directions avoids these pitfalls and leads to the Conjugate Gradient

algorithm. Using this approach is fairly intuitive and has a good geometrical inter-

pretation. Unfortunately, this interpretation gets lost for most of the other more

advanced Krylov algorithms. Therefore we try to give a uniform derivation based

on the generating process of the used Krylov spaces (Section 1.2) and based on the

conditions to choose the current iterate from the Krylov space (Section 1.1), com-

pare [41]. The main attention thereby is on deriving the important short update

formulas.

Suppose A to be positive de�nite. After m steps of the Lanczos algorithm

(compare Section 1.2.2) we obtain the factorization

AVm = VmTm + vm+1 � hm+1;me
T

m
:
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Representing xm 2 Vm as xm = x0 + Vm�m, the Galerkin condition b�Axm ?
Vm now writes as

V T

m
(b�Axm) = V T

m
(b�Ax0 �AVm�m) = 0

, V T

m
AVm�m = V T

m
r0

, Tm�m = kr0ke1:
With this approach, computing the mth iterated approximation xm becomes

equivalent to solving a positive de�nite tridiagonal system with system matrix

Tm =

0BBBBB@
�1 �1

�1 �2 �2

. . .
. . .

. . .

�m�2 �m�1 �m�1

�m�1 �m

1CCCCCA ;

which may be solved via the LDLT factorization. In particular, by setting

Lm =

0BBBBBB@

1 0 � � � � � � 0

l1 1
...

0 l2
. . .

...
...

. . . 1 0

0 � � � 0 lm�1 1

1CCCCCCA and Dm =

0BBBBBB@

d1 0 � � � � � � 0

0 d2
...

...
. . .

...
... dm�1 0

0 � � � � � � 0 dm

1CCCCCCA
we �nd by comparing entries in Tm = LmDmL

T

m
that d1 = �1, lj�1 = �j�1=dj�1,

and dj = �j � �j�1lj�1 for j = 2; : : : ; m. Note that since the computation of lj�1
and dj depends solely on dj�1, we can update (Lm;Dm) from (Lm�1;Dm�1) by

computing

lm�1 = �m�1=dm�1

dm = �m � �m�1lm�1:

De�ning ~Pm 2 IRn�m and y
m
2 IRm by the equations

~PmL
T

m
= Vm and LmDmym = V T

m
r0 (1.18)

we get

xm = x0 + Vm � T�1
m
V T

m
r0 = x0 + Vm(LmDmL

T

m
)�1V T

m
r0

= x0 + VmL
�T

m| {z }
~Pm

�(LmDm)
�1 � V T

m
r0| {z }

LmDmym

= x0 + ~Pmym:

Due to the simple structure of Lm and Dm we get the following short update

formulas for ~Pm and y
m
:

~Pm= ( ~Pm�1j~pm) with ~p
m
= vm � lm�1~pm�1

y
m
= (y

m�1jym)T with ym = (vT
m
r0 � lm�1dm�1ym�1)=dm�1
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Given x0

r0 = b�Ax0

�0 = kr0k2
q0 = 0

for m = 1; 2; : : :

vm = rm�1=�m�1
�m = vT

m
Avm

rm = (A� �mI)vm � �m�1vm�1
�m = krmk2
if m = 1

d1 = �1

y1 = �0=�1

~p1 = v1
x1 = y1v1

else

lm�1 = �m�1=dm�1

dm = �m � �m�1lm�1
ym = �lm�1dm�1ym�1=dm
~p
m
= vm � lm�1~pm�1

xm = xm�1 + ym~pm

Algorithm 1.5: Conjugate Gradient algorithm derived from a Lanczos process

with Petrov condition.

and thus

xm = x0 + ~Pmym = x0 + ~Pm�1ym�1 + ~p
m
ym = xm�1 + ~p

m
ym:

Doing a lot of algebraic substitutions and transformations (compare [41]) one

can prove that Algorithm 1.5 is equivalent to the CG Algorithm 1.6 (withM = I).

However, we can see that both algorithms require one matrix vector product per

iteration (Avm respectively Ap
m
) and update their approximate solution both with

a short recurrence.

1.5.3 Bi-Conjugate Gradients (BiCG)

The Conjugate Gradient method is not suitable for nonsymmetric systems because

the residual vectors cannot be made orthogonal with short recurrences (for a proof

of this see Faber and Manteu�el [33]). The GMRES method (see Section 1.5.5)

retains orthogonality of the residuals by using long recurrences, at the cost of a

larger storage demand. The Bi-Conjugate Gradient (BiCG) method takes another

approach, replacing the orthogonal sequence of residuals by two mutually orthogonal

sequences, at the price of no longer providing a minimization.

BiCG is based on a Bi-Lanczos process and a Petrov-Galerkin condition. That

is, two sequences of Krylov subspace basis vectors are generated: Vm = (v1j � � � jvm)
and Wm = (w1j � � � jwm).
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Given x0

r0 = b�Ax0

for m = 1; 2; : : :

solve Mzm�1 = rm�1
�m�1 = hrm�1 j zm�1i
if m = 1

p1 = z0
else

�m�1 = �m�1=�m�2

pm = zm�1 + �m�1pm�1
q
m
= Ap

m

�m = �m�1=hpm j qmi
xm = xm�1 + �mpm
rm = rm�1 � �mqm

Algorithm 1.6: Preconditioned Conjugate Gradient algorithm (CG).

Representing xm 2 Vm as xm = x0 + Vm�m, the Petrov-Galerkin condition

b�Axm ? Wm now writes as

W T

m
(b�Axm) = W T

m
(b�Ax0 �AVm�m) = 0

, W T

m
AVm�m = W T

m
r0;

, Tm�m = kr0ke1

Contrary to the Lanczos algorithm, the matrix

Tm =W T

m
AVm =

0BBBBB@
�1 �1


1 �2 �2

. . .
. . .

. . .


m�2 �m�1 �m�1


m�1 �m

1CCCCCA
is no more symmetric but still tridiagonal. Thus, instead of LDLT we have to apply

a LU factorization to solve this tridiagonal system:

Lm =

0BBBBBB@

1 0 � � � � � � 0

l1 1
...

0 l2
. . .

...
...

. . . 1 0

0 � � � 0 lm�1 1

1CCCCCCA and Um =

0BBBBBB@

u1;1 u1;2 0 � � � 0

0 u2;2 u2;3
...

...
. . .

. . . 0
... um�1;m�1 um�1;m

0 � � � � � � 0 um;m

1CCCCCCA
Similar to CG, we have simple update formulas for Lm andUm. With ~Pm 2 IRn�m

and y
m
2 IRm de�ned by

~PmUm = Vm and Lmym = V T

m
r0 (1.19)
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we get

xm = x0 + Vm � T�1
m
V T

m
r0 = x0 + Vm(LmUm)

�1V T

m
r0

= x0 + VmU
�1
m| {z }

~Pm

�L�1
m
� V T

m
r0| {z }

Lmym

= x0 + ~Pmym:

Due to the particular structure of Lm and Um we get the following short update

formulas for ~Pm and y
m
:

~Pm= ( ~Pm�1j~pm) with ~p
m
= (vm � um�1;m~pm�1)=um;m

ym= (ym�1jym)T with ym = vT
m
r0 � lm�1ym�1

and thus

xm = x0 + ~Pmym = x0 + ~Pm�1ym�1 + ~pmym

= xm�1 + ~p
m
ym

and

rm = b�Axm = b�Axm�1 �A~p
m
ym

= rm�1 � ymA~pm:

Similar we get the residuals and search directions of the dual problem ATxdual = b:

~pdual
m

= wm � lm~pdualm�1

y
dual

m
= wT

m
rdual0 � um�1;m=um;m � ym�1

rdual
m

= rdual
m�1 � ydualm

AT ~pdual
m

:

Together we have short recurrence formulas for all quantities. Again, we do not

present all of the algebraic substitutions (see [89]) but only show the BiCG algorithm

as it is usually formulated in Algorithm 1.7.

1.5.4 Conjugate Gradient Squared (CGS)

Let Pm be the set of polynomials with maximum degree m. Then we can write

rm = �m(A)r0; rdual
m

= �m(A
T )rdual0

p
m
=  m(A)r0; pdual

m
=  m(A

T )rdual0

with �m;  m 2 Pm. To satisfy the de�nitions in the BiCG algorithm, we have to

de�ne these polynomials via the following recurrence relations (see [89]):

 m(�) = �m(�) + �m�1 m�1(�)

�m+1(�) = �m(�)� �m� m(�)

with  0(�) = �0(�) � 1. The basic idea of the CGS algorithm is exploiting the fact

h�(A)r0 j �(AT )r0i = h�2(A)r0 j r0i;
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Given x0

r0 = rdual0 = b�Ax0

p1 = pdual1 = r0
for m = 1; 2; : : :

solve Mzm�1 = rm�1
solve MTzdual

m�1 = rdual
m�1

�m�1 = hrdualm�1 j zm�1i
if �m�1 = 0 method fails

if m = 1

p1 = z0
pdual1 = zdual0

else

�m�1 = �m�1=�m�2

p
m
= zm�1 + �m�1pm�1

pdual
m

= zdual
m�1 + �m�1p

dual

m�1

q
m
= Ap

m

qdual
m

= ATpdual
m

�m = �m�1=hpdualm
j qmi

xm = xm�1 + �mpm
rm = rm�1 � �mqm
rdual
m

= rdual
m�1 � �mqdualm

Algorithm 1.7: Preconditioned Bi-Conjugate Gradient algorithm (BiCG).

which holds for all polynomials � 2 Pm.
De�ning r̂m := �

2
m
(A)r0 and p̂m :=  

2
m
(A)r0 yields

�m =
h�m(A)r0 j �m(AT )r0i
hA m(A)r0 j  m(A

T )r0i
=
h�2

m
(A)r0 j r0i

hA 2
m
(A)r0 j r0i

=
hr̂m j r0i
hAp̂

m
j r0i

and

�m =
h�m+1(A)r0 j �m+1(A

T )r0i
h�m(A)r0 j �m(AT )r0i

=
hr̂m+1 j r0i
hr̂m j r0i

Applying the recurrence relations we get

 
2
m
(�) = �

2
m
(�) + 2�m�1�m(�) m�1(�) + �

2
m�1 

2
m�1(�);

�
2
m+1(�) = �

2
m
(�)� �m�

�
2�2

m
(�) + 2�m�1�m(�) m�1(�)� �m� 2

m�1(�)
�
; and

�m+1(�) m(�) = �
2
m
(�) + �m�1�m(�) m�1(�)� �m� 2

m�1(�):

Now we introduce two auxiliary vectors q̂
m
and ûm as

q̂m := �m+1(A) m(A)r0
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and

ûm := �m(A) m(A)r0

= �
2
m
(A)r0 + �m�1�m(A) m�1(A)r0

= r̂m + �m�1q̂m�1:

This yields

q̂m := �
2
m+1(A)r0 + �m�1�m(A) m�1(A)r0 � �mA 2

m�1(A)

= r̂m + �m�1q̂m�1| {z }
ûm

��mAp̂m:

Using these auxiliary vectors we obtain the desired short recurrences for r̂m+1 and

p̂m+1:

r̂m+1 = �
2
m+1(A)r0

= �
2
m
(A)� �mA

�
2�2

m
(A) + 2�m�1�m(A) m�1(A)� �mA 2

m�1(A)
�

= r̂m � �mA
�
r̂m + �m�1q̂m�1| {z }

ûm

+ r̂m + �m�1q̂m�1 � �mAp̂m| {z }
q̂
m

�
and

p̂m+1 =  
2
m+1(A)r0

= �
2
m+1(A) + 2�m�m+1(A) m(A) + �

2
m
 
2
m
(A);

= r̂m+1 + 2�mq̂m + �
2
m
p̂
m
:

Omitting the hats (̂ ) and doing some algebraic reformulation to save memory

and computing time, we get the CGS algorithm as shown in Algorithm 1.8.

1.5.5 Generalized Minimal Residuals (GMRES)

GMRES is based on the Arnoldi algorithm to generate Vm and a Petrov-Galerkin

condition with Wm = AVm to choose xm 2 Vm. That is xm = x0 + Vm�m has to

satisfy

b�Axm ?Wm = AV m: (1.20)

With this particular Wm, the Petrov-Galerkin condition is equivalent to a norm

minimizing condition. Therefore, �m 2 IRm minimizes the function

�m(�m) := kb�Axmk2 = kb�Ax0 �AV m�mk2 = kr0 �AV m�mk2
if and only if xm = x0 + Vm�m satis�es (1.20).

With the Arnoldi factorization (equation (1.7) on page 11) we get

�m(�m) = kr0 �AV m�mk2
= k kr0k2v1 � (VmHm + hm+1;m � vm+1e

T

m
)�mk2

= k kr0k2V m+1e1 � V m+1
~Hm�mk2 (1.21)

= kV m+1(kr0k2e1 � ~Hm�m)k2
= k kr0k2e1 � ~Hm�mk2 (1.22)
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Given x0

r0 = rdual0 = b�Ax0

choose ~r, for example ~r = r0
for m = 1; 2; : : :

�m�1 = h~r j rm�1i
if �m�1 = 0 method fails

if m = 1

u1 = r0
p1 = u1

else

�m�1 = �m�1=�m�2

um = rm�1 + �m�1qm�1
p
m
= um + �m�1(qm�1 + �m�1pm�1)

solve Mzm = p
m

ẑm = Azm
�m = �m�1=hẑm j ~ri
qm = um � �mẑm solve Mzm = um + qm
xm = xm�1 + �mzm
ẑm = Azm
rm = rm�1 � �mẑm

Algorithm 1.8: Preconditioned Conjugate Gradient Squared algorithm (CGS).

where

~Hm =

�
Hm

eT
m
� hm+1;m

�
=

0BBBBBBBB@

h1;1 h1;2 � � � h1;m�1 h1;m

h2;1 h2;2
...

...

h3;2
...

...
. . .

...
...

hm;m�1 hm;m

0 � � � 0 hm+1;m

1CCCCCCCCA
2 IR(m+1)�m

Thus, minimizing �m is equivalent to solving the least squares problem

min
�
m
2IRm
k kr0k2e1 � ~Hm�mk2:

A standard method for solving least squares problems is to factorize the m + 1 by

m matrix ~Hm into an upper triangular m + 1 by m matrix Rm (with last row 0)

and an m+ 1 by m+ 1 unitary matrix Qm. Exploiting the special structure of
~Hm

this generalized QR factorization can eÆciently be computed with Givens rotations.

The solution �
m
is then obtained by solving the upper triangularm by m subsystem

of

Rm�m = kr0k2Qme1: (1.23)

Suppose we have such a generalized QR factorization of ~Hm, i.e., we have m
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Givens rotations Gi with

GmGm�1 � � �G1| {z }
Q
m

~Hm = Rm =

0BBBBBB@

r1;1 r1;2 � � � r1;m

0 r2;2
...

. . .
. . .

...
. . . rm;m

0

1CCCCCCA :

Applying Q
m
in the next step to ~Hm+1 yields

GmGm�1 � � �G1 � ~Hm+1 =

0BBBBBBBB@

r1;1 r1;2 � � � r1;m r1;m+1

0 r2;2
...

...
. . .

. . .
...

...
. . . rm;m rm;m+1

0 ~rm+1;m+1

0 � � � 0 ~rm+2;m+1

1CCCCCCCCA
:

Thus we just have to apply one more Givens rotation Gm+1 to eliminate ~rm+2;m+1:

Gm+1 :=

�
I 0

0T ~Gm+1

�
with ~Gm+1

�
~rm+1;m+1

~rm+2;m+1

�
=

�
rm+1;m+1

0

�
Collecting our results we can update Rm+1 from Rm by applying Q

m
to the last

column of ~Hm+1, computing Gm+1, and setting

rm+1;m+1 :=

(
sign(rm+1;m+1)

q
~r2
m+1;m+1 + ~r2

m+2;m+1 if ~rm+1;m+1 6= 0

~rm+2;m+1 if ~rm+1;m+1 = 0

and

rm+2;m+1 := 0:

The right hand side vector in (1.23) is computed by applying all Givens rotations

to the �rst unit vector e1. For the residual norm, we have

krmk2 = kb�Axmk2 = k kr0k2e1 �QmRm�mk2 = k kr0k2QT

m
e1 �Rm�mk2:

The �rst m elements of kr0k2QT

m
e1�Rm�m are 0, because the m by m upper trian-

gular subsystem in (1.23) is nonsingular and therefore the least squares problem is

solved with error 0. Therefore, kr0k2QT

m
e1�Rm�m = (0; : : : ; 0; kr0k2 �eTm+1Q

T

m
e1)

T

and thus krmk2 = kr0k2 � jeT1Qm
em+1j.

This enables us to check the residual norm quickly and only to compute the

approximate solution xm if krmk2 is suÆciently small.

Since we have to store all Krylov basis vectors anyway, it might be advantageous

to replace the Gram-Schmidt orthogonalization by the robust Householder process

[140]. However, Rozlo�zn��k showed, that GMRES with modi�ed Gram-Schmidt is

backward stable [50, 105] and thus the higher computational e�ort is not necessary.
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Given x0

for j = 1; 2; : : :

~v1 = b�Ax0

solve Mz1 = ~v1
v1 = z1=kz1k
s1 = kz1ke1
for m = 1; : : : ;M

~vm+1 = Avm
solve Mzm+1 = ~vm+1

for k = 1; : : : ; m

hk;m = hzm+1 j vki
zm+1 = zm+1 � hk;mvk

hm+1;m = kzm+1k
vm+1 = zm+1=hm+1;m

apply G1; : : : ;Gm�1 to (h1;m : : : hm+1;m)
T

compute Gm

sm+1 = Gmsm
if sm+1;m+1 is small enough

compute xm+1

quit

compute xm+1

if convergence

quit

else

x0 = xm+1

Algorithm 1.9: Preconditioned Generalized Minimal Residual algorithm with

restart (GMRES(m)).

1.5.6 Stabilized Variants and Quasi Minimization

� Smoothing Residual Norms

Inspecting the run of the curve of CGS residual norms, we often observe an irregular,

oscillating behavior. This is due to the fact that CGS does two `minimization' steps

at once, but computes only once the search direction. Therefore CGS sometimes

overshoots locally. To smooth these oscillations, van de Vorst [133, 134] coupled CGS

with a repeatedly applied GMRES(1) iteration. This leads to a local minimization of

the residual norms and therefore to a considerably smoother convergence behavior.

Chan et. al. applied this idea to TFQMR and developed the so called QMRCGStab

algorithm (see below).

� Quasi Minimization

There are various quasi minimization methods which try to retain the advantages

of GMRES but only need short recurrences from Bi-Lanczos like algorithms. The

most important are QMR (Quasi Minimal Residuals) which combines BiCG with
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GMRES, TFQMR (Transpose Free QMR) which is based on CGS and GMRES, and

QMRCGStab (BiCGStab with GMRES).

We illustrate only the basic ideas of quasi minimization at the example of QMR.

For further references see [18, 37, 91].

As in BiCG the mth iterate has the form xm = x0 + Vm�m and we have

AVm = Vm+1
~Tm

where ~Tm 2 IRm+1�m is tridiagonal. It follows that if v1 = r0=kr0k2, then

�m(�m) := kb�A(x0 + Vm�m)k2
= kr0 �AVm�mk2
= kr0 � Vm+1

~Tm�mk2
= kVm+1(kr0k2e1 � ~Tm�m)k2:

Unfortunately, Vm+1 is not orthogonal and thus we cannot conclude �m(�m) =

k kr0k2e1 � ~Tm�mk2 as we did in GMRES. However, introducing the scaling matrix

Sm+1 = diag(Vm+1) we have

�m(�m) � kVm+1S
�1
m+1k2 � kSm+1(kr0k2e1 � ~Tm�m)k2 (1.24)

with kVm+1S
�1
m+1k2 �

p
m + 1. In the QMR algorithm we simply neglect this �rst

factor in (1.24) and only minimize the second.

Applying these ideas to CGS/BiCGStab leads to the TFQMR respectively QMR-

CGStab algorithm.



cHAPTER

2
Krylov Methods and

Floating-Point Arithmetic

“ Accuracy and precision are the same for the scalar computation

c = a � b, but accuracy can be much worse than precision in

the solution of a linear system of equations, for example.”
Nicholas J. Higham, 1996

“ It makes me nervous to 
y on airplanes since I know

they are designed using 
oating-point arithmetic”
Alston S. Householder

Preconditioned Krylov subspace solvers are frequently used for solving large sparse

linear systems. There are many advantageous properties concerning convergence

rates and error estimates but unfortunately, if we implement such a solver on a

computer, we often observe an unexpected and even contrary behavior (see e.g.

[48, 65, 128]). The basic reason for this is that standard computer arithmetic is

based on 
oating-point numbers, i.e., numbers with a �nite precision. In Section 2.1

we give a short overview about 
oating-point arithmetics, Section 2.3.1 describes

possible failures during preconditioning and Section 2.3.2 gives some deeper insight

into the e�ect of �nite precision arithmetic to Krylov methods.

{ 39 {
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2.1 Floating-Point Arithmetics

2.1.1 Floating-Point Numbers

Nearly all important computer architectures used today are providing so called


oating-point numbers for numerical computations. The 
oating-point number

space F = F(b; l; emin; emax) is a �nite subset of IR, characterized by its base b,

the length of its mantissa l, the minimal exponent emin, and maximal exponent emax.

A 
oating-point number itself consists of three parts: a sign s (+ or �), a �xed
length mantissa 0:m1m2 : : :ml with digits mi 2 f1; : : : ; b � 1g, and an exponent e

with emin � e � emax, given to the base b. These de�ne the 
oating-point number

sm � be. To get unique representations, the �rst mantissa digit m1 is required to be

nonzero (otherwise, e.g., we had 0:01be = 0:10be�1). Numbers with this property

are called normalized. For e = emin it is not necessary to require m1 6= 0 in order to

retain the uniqueness of the representation. That is, we may allow non-normalized

numbers1 between 0 and �0:1bemin.

Table 2.1 and Figure 2.1 illustrate the 
oating-point system F(2; 3;�1; 2).

normalized mantissas

0:1002 0:1012 0:1102 0:1112

ex
p
o
n
en
t 3 2:0 2:5 3:0 3:5

2 1:0 1:25 1:5 1:75

0 0:5 0:625 0:75 0:875

-1 0:25 0:3125 0:375 0:4375

denormalized mantissas

0:0002 0:0012 0:0102 0:0112
-1 0:0 0:0625 0:125 0:1875

Table 2.1: The 
oating-point system F(2; 3;�1; 2) with denormalized numbers

0-1-3 1 2 3
IR

-2

Figure 2.1: The 
oating-point system F(2; 3;�1; 2) with denormalized numbers

The two most common 
oating-point systems are de�ned in the IEEE-754 stan-

dard [4]. The �rst is called `single precision' which is a F(2; 24;�125; 128) system
and the second is called `double precision' which is F(2; 53;�1021; 1024)2. Both

systems provide the special numbers �0, �inf (in�nity), and nan (not-a-number).

1Having non-normalized numbers also ensures the existence of unique additive inverses in F .
2Note that this de�nition di�ers a little from standard due to our de�nition of normalized

numbers.
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2.1.2 Roundings

Obviously, (F ; Æ) with Æ 2 f+;�; �; =g is not closed, i.e., with a; b 2 F we generally

don't have a Æ b 2 F . Therefore we need a rounding after each operation, to map

a Æ b back into the 
oating-point screen F .
Usually, one is interested to obtain the nearest number out of F . In this case we

de�ne �(a Æ b) =: x 2 F with3 jx� (a Æ b)j = min�2Ffj� � (a Æ b)jg. Unfortunately,
with this rounding we neither know the exact size nor the sign of the error we made

by substituting the mathematically correct a Æ b with the computer representable

�(a Æ b). However, at least for the relative error we have

j�(a Æ b)� a Æ bj
ja Æ bj � b

�l�1

2
:= �=2 if a Æ b 6= 0:

This � is called machine precision. It is the smallest possible relative error in F , i.e.,
(1�minx2Ffx > 1g).

To retain at least the sign of the error, we may use directed roundings:

(a Æ b) = max
�2F

f� � a Æ bg; (a Æ b) = min
�2F

f� � a Æ bg

0 1 2 3
IR

0

1

2

3

F

Figure 2.2: Round to nearest in F(2; 3;�1; 2) with denormalized numbers

Figure 2.2 illustrates `round to nearest' in our example 
oating-point screen

F(2; 3;�1; 2). Since a rounding can only take values in F , it is completely de�ned

by its saltus in each of the grey boxes ([75]). That is the smallest possible rounding

is , with the saltus on the right edge in each box and is the largest one, with

the saltus on the left edge.

3If a Æ b lies exactly in the middle between two 
oating-point numbers, then the one with even

mantissa, i.e. with ml = 0, is chosen (`round to nearest even').
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2.2 Finite Precision Behavior of Lanczos Procedures

Rounding errors greatly a�ect the behavior of the Lanczos iteration [12, 64, 122, 143].

The basic diÆculty with �nite precision arithmetic is the loss of orthogonality among

the generated basis vectors of the Krylov subspaces. The central results about

Lanczos error analysis are mostly based on the fundamental and excellent work of

Paige, see e.g. [93, 94].

Implementing the Lanczos procedure with modi�ed Gram-Schmidt orthogonal-

ization in �nite precision arithmetic we have to take rounding errors into consider-

ation. That is, each value, computed in �nite precision, may di�er from the exact

one and thus would need a di�erent notation. However, for simplicity we retain

the notation unchanged in this section and explicitly point out where we use exact

quantities.

Paige shows that in �nite precision equation (1.11) on page 13 has to be extended

to

AV m = VmTm + vm+1�me
T

m
+ Fm; (2.1)

where Fm contains the rounding errors.

We de�ne

�0 := 2(n+ 4)� and �1 := 2(7 + nnz � k jAj k2=kAk2)�

where � denotes the machine precision and nnz is the maximum number of nonzero

elements in any row of A. Under the assumptions that

�0 <
1

12
; m(3�0 + �1) < 1;

and ignoring higher order terms in �, Paige shows that

kFmk2 �
p
m�1kAk2

or, a little bit more sloppy, kFmk2 is approximately of size �kAk2 [100, 119]. This
means, the tri-diagonalization holds up to machine precision. Unfortunately, the

situation becomes much more diÆcult concerning the orthogonality condition. This

fact is stated in the following theorem.

Theorem 2.1 Suppose (Sm;�m) with �m := diag(�1; : : : ; �m) is the exact spectral

factorization of the computed Tm (see equation. (2.1)), i.e., the (zj; �j) are the

computed Ritz-pairs of A if we de�ne zj := Vmsj. Then, we have

\(zj; vm+1) � Arccos

�
�kAk2

j kAzj � �jzjk2 � �kAk2 j
�
:

Notice that vm+1 should stay orthogonal toKm = span(v1; : : : ; vm) and zj 2 Km,

because it is a linear combination of the columns of Vm | the basis vectors. So

vm+1 should stay orthogonal to zj, too. If (zj; �j) is a good approximation to any

eigenpair ofA, i.e., kAzj��jzjk2 is small, then \(zj; vm+1) � Arccos(1) = 0. This

means, ironically, if a Ritz-pair is converging (and this is exactly what we want in

eigenvalue computations) we lose our orthogonality in Vm completely. Nevertheless
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we can easily delay this loss of orthogonality using a higher precision arithmetic,

i.e., a small machine �.

Proof: Separating the last column of (2.1) by multiplying it with em from the right

we get

�mvm+1 = Avm � �mvm � �m�1vm�1 � fm
:

Now multiplication with V T

m
from left yields

�m V
T

m
vm+1| {z }

=:q
m+1

= V T

m
A| {z }

T
T

m
V

T

m
+�memvTm+1+F

T

m

vm � �mV T

m
vm � �m�1V T

m
vm�1 � V T

m
f
m

, �mqm+1 = Tm

$

qm � �m
$

qm � �m�1
$

qm�1 + �memv
T

m+1vm

+ F T

m
vm � V T

m
f
m| {z }

=:g
m

, �mqm+1e
T

m
= Tm

$

Qm �
$

QmTm +
$

Gm: (2.2)

Where, to facilitate additions of vectors with di�erent lengths and the collection of

vectors with di�erent lengths as columns of a matrix, we introduced the
$� -operator

which extends a vector to the appropriate size by adding some zero-elements at the

bottom.

Let now the vectors sj, zj, and the scalars �j be de�ned in the same way as in

the theorem. Multiplying (2.2) with sT
j
from left and sj from right for any j � m

yields

�m s
T

j
V T

m| {z }
zT
j

vm+1 e
T

m
sj| {z }

smj

= sT
j
Tm| {z }

�js
T

j

$

Qmsj � sTj
$

Qm Tmsj| {z }
�jsj

+sT
j

$

Gmsj

, zT
j
vm+1 =

sT
j

$

Gmsj

�msmj

: (2.3)

The numerator of this fraction is approximately of size �kAk2kzjk2. In order to

estimate the denominator we look at the quality of the Ritz-pair (�j; zj):

kAzj � �jzjk2 = kAV m| {z }
VmTm+�mvm+1e

T
m
+Fm

sj � �jVmsjk2

� k�mvm+1smjk2 + kFmk2
� j�msmjj+ �kAk2: (2.4)

Collecting our results in (2.3) and (2.4) we �nally obtain

\(zj; vm+1) = Arccos

 
jzT

j
vm+1j

kzjk2kvm+1k2

!
� Arccos

�
�kAk2

j kAzj � �jzjk2 � �kAk2j
�
�

An obvious way to retain the orthogonality among the Lanczos vectors is to

orthogonalize each newly computed vector to all its predecessors. In fact, this is
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almost equivalent to applying the Arnoldi procedure to a symmetric matrix. With

this approach, the computed Lanczos vectors are orthogonal up to machine precision

but we have to pay a high price concerning computing time and storage demands.

A more carefully inspection of Theorem 2.1 shows that re-orthogonalizing against

all previous Lanczos vectors is not necessary [120]. The bad guys are only the

(almost) converged Ritz vectors z (with Ritz value �), since \(z; vk) tends to zero

only if kAz � �zk2 is suÆciently small. Exploiting this fact leads to so called

selective orthogonalization [101] where only good Ritz vectors are stored and used

for re-orthogonalizing of newly computed Lanczos vectors. In this sense, a Ritz pair

(z; �) is called good if it satis�es

kAz � �zk2 �
p
�kAk2:

An even more re�ned reorthogonalization strategy called partial reorthogonal-

ization can be found in [121].

2.3 Examples

2.3.1 Preconditioning

Preconditioning is very important in solving linear systems because well conditioned

systems are much easier and particularly faster to solve. However, preconditioning

in �nite precision can cause a drastically perturbed solution. Thus an important

question is: How does preconditioning a�ect the solution of a linear system?

Since in modern Krylov subspace solvers preconditioning is no separate step but

an inherent part to the solver itself (see Algorithm 1.2 on page 14), it cannot be

distinguished which part of the deviation between the solutions of a preconditioned

and a non-preconditioned system is caused by the preconditioning itself and which

part is induced by various other error sources.

To give an idea of the magnitude of the perturbation that can be caused by

preconditioning we consider the following example. We use a Jacobi preconditioner,

which is so easy to apply to an entire linear system, that it is often used to transform

A and b in advance. Afterwards a non-preconditioning solver is applied. This means

we scale A to get a unit diagonal (we just perform one division for each element of

A and b). This operation is done in IEEE double-precision. In order to identify

the error caused by this scaling operation, we apply a verifying solver to the scaled

system. Here we solve systems GK4.16(n) which result from a 5-point discretization

of a fourth order ODE, see (6.1) on page 89. The resulting veri�ed solutions of the

scaled systems are shown in Figure 2.3.

For comparison we also plotted the veri�ed solutions of the non-preconditioned

systems (compare [34]). They di�er so little that they appear as a single line (x).

Additionally, we drew the solution of the underlying continuous problem. The dis-

cretization errors are so small that this curve is also not distinguishable from the

non-preconditioned solutions (x).

This example demonstrates that preconditioning in this traditional way may

introduce unacceptably large errors which can be signi�cantly larger than the dis-

cretization error of an underlying continuous problem (which is less than 10�6 in our

examples). It is possible to avoid these problems by doing veri�ed preconditioning
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c
b
a
x

10.80.60.40.20

0.012

0.008

0.004

0

Figure 2.3: The e�ect of preconditioning on ill-conditioned linear systems. The

curves represent the solutions of the preconditioned systems a:

GK(8191), b: GK(12287), and c: GK(16383) with cond � 10
14
, 10

15
,

and 10
16
, resp. The exact solutions (compare [34]) of the non-

preconditioned systems di�er so little, that they appear as a single

line (x).

but this leads to an interval matrix and therefore to an often unacceptable compu-

tational e�ort to solve these systems. Another, maybe more practical way is to use

a more accurate arithmetic to avoid signi�cant propagation of the various errors.

2.3.2 Convergence

One well known Krylov subspace method is the Conjugate Gradient algorithm. It

can be interpreted as a Lanczos procedure and a subsequent LDLT -factorization

to solve the tridiagonal system T ~x = ~b (see Section 1.5.2) [41]. Then the residuals

turn out to be scaled versions of the Krylov basis vectors and hence should stay

orthogonal to their preceding residuals.

In Figure 2.4 the Euclidean norms of the residual and the error in each step

are plotted during solving a GK(1023) system. Additionally we show the level of

orthogonality of the new residual-vector rm+1 to the previous ones: maxm
k=1fhrk j

rm+1i=(jjrkjj2jjrm+1jj2)g. As we can see, there is no convergence at all up to step

m = 1:5n and particularly no convergence at the theoretically guaranteed step

m = n. One reason is easy to identify (see Theorem 2.1 or [51, 128, 129]): the basis

of the Krylov subspace loses its orthogonality completely at m � 400 and the basis-

vectors may even become linearly dependent. So CG can't minimize the residual in

the entire IRm but only in a smaller subspace.

Further we can observe that the error norm runs into saturation at a level of

approximately 10�6. This matches with the well known rule of thumb saying that

we may lose up to log(cond(A)) (� 10 in this case) digits from the 16 decimal digits

we have in IEEE double precision.
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Figure 2.4: The Euclidean norms of the residual (dashed) and the error (dotted),

and the level of orthogonality (solid) during solving the GK(1023)

system. (ortho-level = max
m

k=1fhrk j rm+1i=(jjrkjj2jjrm+1jj2)g)
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3
Improved Arithmetics

“ Numerical precision is the very soul of science”
Sir D'Arcy Wentworth Thompson, 1942

In many numerical algorithms there is a large gap between the theoretical, i.e.,

mathematical, behavior on the one hand and the �nite precision behavior on the

other hand. In cases where the accuracy of a result is insuÆcient or no results can be

obtained at all due to poorly conditioned problems, it is desirable to have a better

arithmetic. Particularly, iterative algorithms sometimes even speed up because a

higher precision arithmetic produces fewer errors that have to be minimized by the

algorithm and therefore often iterations can be saved. In fact, it is nearly always

possible to save iterations, but since the computing time per iteration increases with

higher precision, we only sometimes really save time. However, we should always

take into consideration that the higher computing time per iteration is often due

to missing hardware support. For example the exact scalar product (Section 3.1),

suitably supported in hardware, can be computed at least as fast as the standard

scalar product (see [74]).

To narrow the gap between exact and �nite precision arithmetic, often some

minor arithmetic improvements suÆce to get the desired results. One uses a more

precise arithmetic (see Section 3.2). A second possibility is to leave the data type but

control the rounding errors introduced by arithmetic operations performed on these

numbers as described in Section 3.3. Further on we may pick out some frequently

{ 47 {
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used operations or functions and improve their accuracy. In particular, we focus on

the scalar product (Section 3.1) which is a fundamental operation in numerical linear

algebra. We start with this exact scalar product because this concept is needed for

one of the higher precision arithmetics we describe in Section 3.2.

3.1 The Exact Scalar Product

Since scalar products occur very frequently and are important basic operations in

numerical linear algebra, it is advantageous to perform this operation with the same

precision as the other basic operations like addition or subtraction. Usually, scalar

products are implemented by use of ordinary multiplication and addition and we

have to beware of a lot of roundo� errors and their ampli�cation due to cancellation.

This is not necessary as has been shown by Kulisch [67, 74, 75].

The basic idea is �rst to multiply the 
oating-point vector elements exactly, that

means we have to store the result in a 
oating-point format with double mantissa

length and doubled exponent range1. Secondly we have to accumulate these products

without any roundo� errors, see Figure 3.1. One possibility to achieve this is by use

1 52 + 1(hidden bit) 11 52 + 1(hidden bit) 111

1 106 (2� 53)

1 106 (2 � 53)

and exponent range

doubled mantissa length

exact product with

approx. 4000 bit (106 + 212+ some guard-bits to catch intermediate carries)

12

�xed point representation

�xed point accumulator (approx. 4 Kbit in IEEE double-precision)

accumulate

multiply

shift

vector x vector y

Figure 3.1: The basic idea of the exact scalar product, implemented by means of

a long accumulator.

of a �xed point accumulator that covers the doubled 
oating-point number range

plus some extra bits for intermediate over
ows. At a �rst glance one might think

that this accumulator must be very large, but in fact for the IEEE double-precision

format, a little more than half a kilobyte is suÆcient: 106 mantissa bits (for a zero

exponent) plus 211 binary digits for all possible left shifts and the same for right

shifts plus one sign bit and some guard bits.

In Karlsruhe we built this operation in hardware as a numerical co-

processor called XPA-3233 (eXtended Precision Arithmetic on a 32 bit

PCI bus with 33 MHz clock speed), see [10]. On the XPA-3233 we use

67 � 64 bit words of storage. With this 92 guard bits even a tera-
op

computer would need more than a hundred million years to cause an

1That is a sign bit, 2 � 53 mantissa bits and 11 + 1 bits for the exponent, i.e., a total of 119

bits for the IEEE double-precision format.
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over
ow2. After accumulation of all products we usually have to round the result

into the 
oating-point format which is symbolized with the �-operator. That is, the

entire scalar product operation can be computed with just one rounding at all and

therefore we have the much sharper bound�����
nX
i=1

xiyi ��
 

nX
i=1

xiyi

!����� � �

�����
nX
i=1

xiyi

�����
for the relative error than we usually have for scalar products if we use an ordinary


oating-point arithmetic with a rounding after each multiplication and accumulation

(see [61, 90]) �����
nX
i=1

xiyi �
nP
i=1

xi � yi

����� � n�

1� n�
nX
i=1

jxiyij;

which can be arbitrarily bad if
P

i
jxiyij � j

P
i
xiyij.

3.2 Multiple Precision

There are various tools and libraries

rational contiguous
arithmetic fraction mantissa

staggered

precision
higher

exact inexact

contiguous

Figure 3.2: Higher precision data types.

providing numbers with a higher preci-

sion than the build-in data types (usu-

ally IEEE double precision) [13, 103, 123].

We can subdivide them in two funda-

mental types. The �rst implements ex-

act numbers, i.e., numbers with in�nite

precision while the latter o�ers higher

but �nite precision. Because of storage

and computing time requirements, we

only focus on the latter multiple preci-

sion numbers. They are subdivided ac-

cording to di�erent implementation techniques in so called staggered numbers which

are basically a sum of ordinary 
oating-point numbers (Section 3.2.1) and numbers

with a contiguous mantissa, i.e., long 
oating point numbers (Section 3.2.2). The

latter are mostly implemented using an integer �eld for the mantissa and some

additional memory for the exponent and sign.

3.2.1 Staggered Precision Numbers

In this section we introduce the basic ideas of the so called staggered arithmetic. We

give the de�nition of staggered precision numbers and show how the basic arithmetic

operations can be performed by use of the exact scalar product (see Section 3.1).

Instancing the square root as an example, we illustrate how elementary functions

can be realized for staggered precision numbers.

De�nition 3.1 Given l 
oating-point numbers x(1); : : : ; x(l) we de�ne a staggered

precision number (or short: staggered number) x with staggered length l by

x :=

lX
k=1

x
(k)
:

2In fact, the XPA3233 only provides 90 guard bits, because 2 bits have a special meaning.
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To ensure maximum precision we are interested in non-overlapping staggered

numbers, that is, staggered numbers with jx(1)j > : : : > jx(l)j and the exponents

of two successive summands x(k), x(k+1) di�er at least by the mantissa length m of

the 
oating-point system. In this case, the staggered number x represents a high

precision number with at least m � l mantissa digits but with the same exponent

range as the underlying 
oating-point system.

Let us assume, for example, we have a 
oating-point system with 3 decimal

mantissa digits. Then with x(1) = 1:65 � 103, x(2) = 3:94 � 100, x(3) = 5:75 � 10�5, and
x
(4) = 2:24 � 10�8 the staggered number x of length 4:

x = 1:65 � 103 + 3:94 � 100 + 5:75 � 10�5 + 2:24 � 10�8 = 1:6539400575224 � 103

represents a higher precision 
oating-point number with a minimum of 12 (14 in

this case) decimal digits

� Basic Arithmetic Operations

Designing the basic arithmetic operations for staggered numbers, we have to decide

which precision, i.e., which staggered length the result should have. Trying always

to represent the exact result soon leads to very large numbers and fails already for

the division where we usually get in�nitely many digits. Therefore we de�ne the

staggered length of the resulting staggered number as the maximum of the staggered

lengths of the operands.

Having the exact scalar product available, the algorithms for addition, subtrac-

tion and even multiplication are really simple. We just accumulate the result in

a long accumulator and subsequently we round out the summands of the resulting

staggered number as described in Algorithm 3.1. Further on we refer to this algo-

rithm by the notation z = round to staggered(accu) where z is a staggered number

and accu is a long accumulator.

Given a long accumulator accu

l = staggered length of(z)

for k = 1; : : : ; l

z
(k) = round towards zero(accu)

accu = accu� z(k)

Algorithm 3.1: Successively rounding out a long accumulator accu into the sum-

mands of a staggered number z.

As an example for a basic arithmetic operation we state the subtraction. Given

two staggered numbers x :=
P

l1

k=1 x
(k) and y :=

P
l2

k=1 y
(k) we compute z :=Pmaxfl1;l2g

k=1 z
(k) := x� y as showed in Algorithm 3.2.

� Elementary Functions

Since in this thesis, we only need the square root function in addition to the basic

arithmetic operations, we only describe this function. However, with the basic arith-

metic operations at hand, it is also possible to compute other elementary functions.
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Given two staggered numbers x and y

l1 = staggered length of(x); l2 = staggered length of(y)

accu = 0

for k = 1; : : : ; l1
accu = accu+ x

(k)

for k = 1; : : : ; l2
accu = accu� y(k)

set length(z;maxfl1; l2g) z = round to staggered(accu)

Algorithm 3.2: Subtraction of staggered numbers x and y. The intermediate

result is stored in the long accumulator accu.

To compute the inverse of a given elementary function it is often helpful to use

a Newton iteration. In the case of square roots y =
p
x we set f(y) = y

2 � x and

approximate the zero y� of f , i.e., the square root of x by a sequence yi de�ned by

y0 =

vuut
�

 
lX

k=1

x(k)

!
; yi = yi�1 � f(yi�1)

f 0(yi�1)
=

1

2

�
x

yi�1
+ yi�1

�
; i = 1; 2; : : :

This algorithm is also known as Heron algorithm. Since the Newton iteration con-

verges quadratically in a neighborhood of y�,
p
l iterations should suÆce to obtain

enough correct digits for y.

The staggered technique is implemented for example in the XSC languages [69]

and is massively based on the availability of the exact scalar product. The special

case where the number of ordinary 
oating-point numbers used to de�ne a staggered

number is �xed to 2 can also be coded by use of some arithmetic tricks without the

exact scalar product. These tricks are mainly based on ideas by Dekker and Kahan

[25]. A fast implementation of this latter technique in C++ is the doubledouble

library, see [80].

� Vector Operations
Since we use the exact scalar product anyway for computing the products and addi-

tions in scalar products of staggered vectors, we can easily implement a exact scalar

product for staggered vectors. Avoiding the intermediate roundings, the exact stag-

gered scalar product is even faster than the ordinary scalar product. We describe

this exact inner multiplication of staggered vectors in Algorithm 3.3.

3.2.2 Contiguous Mantissas

The contiguous mantissa type numbers can be addressed as long 
oating-point num-

bers. Usually, there is an integer variable containing the sign and exponent and an

array of integers storing the mantissa. This is illustrated in Figure 3.3

In comparison to the staggered numbers, there is no possibility to exploit gaps,

i.e., zeroes in the mantissa, but we have a more compact representation since we only

store one exponent for the entire number. There exists an excellent implementation

in C/assembler, the Gnu Multi-Precision library (GNU MP or GMP) [46] which
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Given two staggered vectors x =
�
xi

�n
i=1

and y =
�
yi

�n
i=1

l1 = staggered length of(x)

l2 = staggered length of(y)

accu = 0

for i = 1; : : : ; n

for j = 1; : : : ; l1
for k = 1; : : : ; l2
accu = accu+ x

(j)

i
y
(k)

i

z = round to staggered(accu)

Algorithm 3.3: Exact scalar product of staggered vectors x and y. The interme-

diate result is stored in the long accumulator accu.

mantissaexponent

sign

Figure 3.3: A long 
oating-point number with a contiguous mantissa.

aims to provide the fastest multiple precision library. For this purpose there are

carefully optimized assembler routines for nearly all important architectures and a

generic C formulation for non-standard computers.

This results in a very high performance multiple precision arithmetic. Figure 3.4

shows the computing time for 100 000 evaluations of a typical expression in staggered

precision arithmetic (C-XSC) and in a contiguous mantissa arithmetic (GMP). The

speedup of GMP against staggered arithmetic levels o� at approximately 25 which

is mainly due to two reasons: First, the software simulation of the exact scalar

product uses integer arithmetic, i.e., the 
oating-point summands of a staggered

number have to be decomposed and composed repeatedly. This is avoided for the

contiguous mantissa type numbers, because they use their own number format.

Secondly this software simulation is relatively slow anyway since it is written in C

instead of assembler as is the GMP arithmetic.

Since there was no object oriented interface for gmp, I implemented one with a

complete set of overloaded operators. This interface is called gmp++ and is included

in vk (see Chapter 6). It enables us to use multiple precision numbers for generic

algorithms (compare Section 5.1).

3.3 Interval Arithmetic

In order to get reliable results, e.g., for error bounds of linear systems, it is not suÆ-

cient to reduce the rounding errors. We have to control this arithmetic uncertainty

completely [3]. As we have seen in Section 2.1, each basic operation | even if it

has 
oating-point operands | may have a result which is not representable exactly

in the given 
oating point format. Thus each basic operation involves a rounding

back into the 
oating-point screen and therefore causes an error. Clearly, there is no

necessity to use random roundings and if we are interested in reliable bounds to the

exact result, we simply have to return two 
oating-point numbers: One, which is

guaranteed to be larger than the exact result, e.g., it's upwardly rounded value and
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speedup GMP:staggered
staggered

GMP mpf t

mantissa length [53 bit]
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Figure 3.4: Computing time for 100 000 evaluations of a typical expression in

staggered precision arithmetic (C-XSC) and in a contiguous mantissa

arithmetic (GMP).

one which is smaller, e.g., it's downwardly rounded value. This idea automatically

leads to an interval data type as de�ned in the following de�nition.

De�nition 3.2 Let x
�
� �x, then we call the set [x] := [x

�
; �x] := f� 2 IR j x

�
� � � �xg

an interval.

Note: even if we have such an interval on a computer, that is, x
�
and �x are


oating-point numbers, the interval [x
�
; �x] contains all real numbers between x

�
and

�x and not only 
oating-point numbers.

Since intervals are elements of the power-set of IR, the basic arithmetic operations

are de�ned by restriction of the power-set operations

[x
�
; �x] Æ [y

�
; �y] := f� Æ � j x

�
� � � �x ^ y

�
� � � �yg with Æ 2 f+;�;�; =g

(and 0 62 [y
�
; �y] for Æ = =)

(3.1)

Exploiting monotonicity properties, this in�nitely many operations needed to com-

pute [x
�
; �x] Æ [y

�
; �y] in (3.1) reduce to the computation of only a few operations. For

example the addition of intervals can be computed by [x
�
; �x] + [y

�
; �y] = [x

�
+ y
�
; �x+ �y].

Unfortunately, the right hand side of this equation, i.e., the bounds of the resulting

interval may not be representable in our 
oating-point format. To make sure that

we enclose the exact solution interval on the computer, we again have to replace

x
�
+ y
�
by a smaller 
oating-point number and �x+ �y by a larger one [73, 76]. Usually

this lower respectively upper 
oating-point bounds are obtained by selecting the

correct directed rounding mode (compare Section 2.1). On a computer we de�ne

the addition of intervals via

[x
�
; �x] + [y

�
; �y] := [ (x

�
+ y
�
); (�x+ �y)]; (3.2)
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where and denotes the downward respectively upward directed rounding. Some-

times we use the shorter notation

[x
�
; �x] + [y

�
; �y] := ([x

�
+ y
�
; �x+ �y]):

There are various libraries providing interval data types, including the XSC

languages [57, 58, 69], Profil/BIAS [71, 72] and Intlab [111] and newly there are

commercial Fortran/C/C++ compilers from Sun-Microsystems [131] providing an

interval data type. Using other libraries, one must carefully inspect if correct round-

ing modes are used.

There is also a interval-staggered library which provides higher precision intervals

in Pascal-XSC [82].

� Excursion: Enclosing Floating-Point Computations

In particular, the exact scalar product is very useful if we have to compute an

enclosure of a linear expression only with 
oating-point arguments. For example,

if we have a 
oating-point matrix A, a 
oating-point right hand side vector b, and


oating-point approximate solution ~x and we want to compute an enclosure of the

residual vector, we can either cast all 
oating-point numbers to intervals (via the

-operator) and then use standard interval arithmetic ( ; ), see Algorithm 3.4a,

or we can use the exact scalar product to compute the exact residual. Finally, this

exact but long number has to be rounded to a (very tight) interval with 
oating-

point bounds and relative diameter less than or equal to �, see Algorithm 3.4b.

for i = 1; : : : ; n

ri = bi

for j = 1; : : : ; n

ri = ri ai;j ~xj

a) with interval arithmetic

for i = 1; : : : ; n

accu = bi

for j = 1; : : : ; n

accu = accu�ai;j � ~xj /* exact */

ri = accu

b) with the exact scalar product

Algorithm 3.4: Computation of an enclosure of the residual with two di�erent

techniques.

With approach a), the relative error in component i can only be bounded by

(n + 1)�

1� (n+ 1)�
�
 
jrij+

nX
j=1

jai;j~xjj
!
;

which might be arbitrary bad, if jrij+
P

n

j=1 jai;j~xjj �
���ri �Pn

j=1 ai;j~xj

���.
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4
Error Bounds for Solutions

of Linear Systems

“ No method of solving a computational problem is really available to a user

until it is completely described in an algebraic computing language

and made completely reliable.”
George E. Forsythe, 1967

This chapter gives an overview about the most important veri�cation methods for

linear systems of equations. Section 4.1 shows straight forward extensions of point-

algorithms to interval algorithms, while Section 4.2 focuses on veri�cation algorithms

based on �xed point theorems [76, 86, 108]. The latter class of algorithms is much

more general than the �rst one, but su�ers in two important ways from the under-

lying interval arithmetic. First, due to the software simulated interval arithmetic,

they are relatively slow and secondly, one has to pay either with a big computational

overhead or a signi�cant loss of accuracy because of the so called wrapping e�ect

(see [92]).

In Section 4.3 we present a di�erent class of veri�cation algorithms. Instead of

delivering an enclosure of each solution component, they only compute a rigorous

bound for the error norm. This might be disadvantageous if the solution compo-

nents have highly di�erent magnitudes. However, since most of the computation

{ 55 {
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can be done approximately (i.e., in ordinary 
oating-point arithmetic) with only

a subsequent veri�cation procedure, the resulting algorithms often are much faster

than the previous ones.

4.1 Interval Extensions of Point Algorithms

The most obvious way to obtain a verifying algorithm is using a given point-

algorithm and replacing every 
oating-point operation by the corresponding interval

operation. It has been shown that, for example, the interval version of Gaussian

elimination is executable in this way for diagonally dominant matrices or M-matrices.

For general matrices the intervals tend to grow in diameter rapidly and it may soon

happen that a pivot column solely consists of intervals containing zero. In this case,

the algorithm terminates prematurely without computing an enclosure of the solu-

tion. However, if A has special properties, the Interval Gau� algorithm (IGA) may

even be capable to produce optimal enclosures, that is, the interval vector [x] is the

smallest n-dimensional box enclosing the solution set [87]. See Paragraph Solutions

of symmetric tridiagonal systems in Section 4.3.3 for an example with particular

tridiagonal matrices.

4.2 Enclosures via Fixed Point Methods

Suppose we have an approximate inverse R for A then we can de�ne a sequence of

vectors (xk)k2IN by

xk+1 = xk +R(b�Axk) = Rb+ (I �RA)xk:

This vector sequence converges for every x if and only if the spectral radius of

I �RA is less than one.

If X is a non-empty, convex, and compact subset of IRn then by Brouwer's �xed

point theorem

X � X +R(b�AX ) implies 9x 2 X : R(b�Ax) = o:

Using an interval vector [x] as a special non-empty, convex, and compact subset

of IRn, we generally have diam([x] + R(b � A[x])) > diam([x]) and thus [x] will

never be a superset of [x] +R(b�A[x]). Moreover, only if R is nonsingular, then

we guarantee that Ax = b is solvable, i.e., that A is nonsingular, too. These two

problems are solved by the next theorem (compare [106]).

Theorem 4.1 Let A, R 2 IRn�n and b 2 IRn. Suppose for the interval vector [x]

holds

Rb+ (I �RA)[x] �
Æ

[x] (4.1)

then A and R are nonsingular and there is exactly one x 2 [x] satisfying Ax = b.

See [106] for a proof.

In a 
oating-point system (with denormalized mantissas), numbers are much

narrower around zero. Therefore it is always a good idea to work with the error,
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i.e., the di�erence of the exact solution x� and the approximate solution ~x since this

is hopefully close to zero. Applying Theorem 4.1 to ~x + [x], condition (4.1) now

reads

Rb+ (I �RA)(~x+ [x]) �
Æ

(~x+ [x])

, Rb+ ~x�RA~x+ (I �RA)[x] � ~x+
Æ

[x]

, R(b�A~x) + (I �RA)[x] �
Æ

[x]

(4.2)

If condition (4.2) does not hold one may initiate the following iteration process

[x](0) := [x];f[x](k) := R(b�A~x) + (I �RA)[x](k�1)

[x](k) := [1� �; 1 + �] � f[x](k) for k=1,2,. . . .

Then for some k 2 IN and [x] the inclusion [x](k) �
Æ

[x](k�1) holds. The question is

for which [x] and which k we will obtain [x](k) �
Æ

[x]
(k�1)

. The answer is given by

the following theorem.

Theorem 4.2 Let A, R 2 IRn�n and b 2 IRn. Then the following two statements

are equivalent:

1. For each interval n-vector [x] with

diam([x]) >
2

1� �(jI �RAj) � jR(b�A~x)j

there exists a k 2 IN with [x](k) �
Æ

[x](k�1)

2. �(jI �RAj) < 1

See [107] for a proof.

Obviously, we do not need R explicitly and it is suÆcient to have a, e.g., trian-

gular factorization LU of A to compute R(b �A~x) and RA[x] via forward and

backward substitution. Note that this will often produve large overestimations for

RA[x] due to the wrapping e�ect which occurs in solving triangular systems. To

avoid this problem, one can either use a coordinate transformation technique as

described by R. Lohner in [81] or one can substitute intervals by zonotopes which

might cover the shape of the solution more appropriate. However, these triangular

factors may exploit a possible sparsity in A (e.g., banded Cholesky) to make this

algorithm applicable to larger matrices, compare [81].

4.3 Error Bounds via Perturbation Theory

Usually, stopping criteria for iterative solvers of linear systems are based on the norm

of the residual r = b�A~x. Since k~x�x�k2 � kA�1k2 � krk2, this gives a rough idea
about the distance to the exact solution x� = A�1b if we have some information

about kA�1k2 or the condition of A. Sometimes `cheap' condition estimators [56]
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are used to estimate cond2(A) but this approach gives only error estimates instead

of bounds. Our �rst task will be to compute a veri�ed upper bound of k~x� x�k2.
Then we try to improve this worst case bound by taking into account some more

knowledge about the spectrum of A.

4.3.1 Basic Error Bounds

This section is essentially based on ideas of S. Rump [109, 110]. With kAk2 �
�min(A) we have kA�1k2 � �

�1
min(A) and therefore

k~x� x�k2 � �
�1
min(A) � krk2:

A well known method to compute the smallest singular value of a matrix A is the

inverse power method (with shift 0) (see [61]). Therefore it is necessary to have a

factorization, say (L;U) of A that enables us to compute (LU)�1z for arbitrary z

easily. Mostly, LU = A doesn't hold exactly but LU = ~A � A is suÆcient and it

is often possible to get k�Ak = k ~A �Ak fairly small. The next theorem clari�es

how k~x� x�k depends on the smallest singular value �min( ~A), �A and krk.

Theorem 4.3 Let A 2 IRn�n, b 2 IRn be given as well as a nonsingular ~A 2 IRn�n

and ~x 2 IRn. De�ne �A := ~A�A, r := b�A~x and suppose

�min( ~A) > n
1=2 � k�Ak1:

Then A is nonsingular and for x� := A�1b holds

kx� � ~xk1 � n
1=2 � krk1

�min( ~A)� n1=2 � k�Ak1
:

Proof: Since k ~A�1
�Ak2 � �min( ~A)�1 � k�Ak2 � n

1=2 � �min( ~A)�1 � k�Ak1 < 1 the

matrix I � ~A
�1
�A = ~A

�1
A and hence A itself is invertible. Now

(I � ~A
�1
�A)(x� � ~x) = ~A

�1
A(x� � ~x) = ~A

�1 � r

and therefore

kx� � ~xk = k((I � ~A
�1
�A)�1 � ~A�1 � r)k � k ~A�1 � rk � k(I � ~A

�1
�A)�1k: (4.3)

Using k(I �B)�1k1 � (1� kBk1)�1 for convergent B (i.e., kBk1 < 1) we get

kx� � ~xk1 � k ~A�1k1 � krk1
1� k ~A�1 ��Ak1

� k ~A�1k1 � krk1
1� k ~A�1k1 � k�Ak1

and applying

kBk1 � n
1=2 � kBk2 � n

1=2 � �min(B) (4.4)

yields

kx� � ~xk1 � n
1=2 � �min( ~A)�1 � krk1

1� n1=2 � �min( ~A)�1 � k�Ak1
:
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�

Of course for sparse matrices this 2-norm bound (4.4) is a rough overestimation

of the 1-norm. Suppose B to have at most m nonzero elements per row and

let � := maxi;jfjBi;jjg then both kBk1 and kBk1 are bounded by m � �. Using

kBk22 � kBk1 � kBk1 we get

kBk2 � (kBk1 � kBk1)1=2 � m � �:

Theorem 4.4 Let A 2 IRn�n, b 2 IRn be given as well as a nonsingular ~A 2 IRn�n

and ~x 2 IRn. De�ne �A := ~A�A, r := b�A~x and suppose �min( ~A) > (k�Ak1 �
k�Ak1)1=2.

Then A is nonsingular and for x� := A�1b holds

kx� � ~xk1 � kx� � ~xk2 � krk2
�min( ~A)� (k�Ak1 � k�Ak1)1=2

:

Proof: Starting with equation (4.3) but using the 2-norm instead of the1-norm we

get

kx� � ~xk2 � k ~A�1k2 � krk2
1� k ~A�1k2 � k�Ak2

� krk2
�min( ~A)� (k�Ak1 � k�Ak1)1=2

:

�

In practical computations it is a diÆcult task to get the smallest singular value

of an arbitrary matrix A or at least a reliable lower bound of �min(A). But if we

have an approximate decomposition, say (L;U) with ~A = LU we can apply inverse

power iteration to LU to compute �min( ~A). Of course, if we can compute a lower

bound of �min(A) directly then by setting ~A := A we get �A = 0 and thus

kx� � ~xk1 � kx� � ~xk2 � �min(A)�1 � krk2:

4.3.2 Improved Error Bounds

The ideas of this section are mostly due to Dahlquist [24] who stated an interesting

connection between Lanczos procedures and Gaussian quadrature rules. Later on,

these ideas were sophisticated in [43, 45].

We start with the well known relation between the error norm and the residual

norm

kx� � ~xk2 = kA�1b� ~xk2 = kA�1(b�A~x)k2 = kA�1rk2: (4.5)

Suppose A to be symmetric positive de�nite then we have real positive eigenval-

ues �1; : : : ; �n (non-increasingly ordered) and an orthonormal basis of eigenvectors

q1; : : : ; qn. Using � := diag(�1; : : : ; �n) and Q := (q1 j � � � j qn) yields

kx� � ~xk2 = kQT (x� � ~x)k2 = kQTA�1rk2
= kQTA�1Q �QTrk2 = k��1 �QTrk2 (4.6)

� k��1k2 � kQTrk2 = �
�1
min � krk2:
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This estimate is a worst case bound which does not make any use of the extent to

which each of the eigenvectors q
i
is actually present in r, i.e., of the size of the

elements of � := QTr. With (4.5) and (4.6) we see

kx� � ~xk22 = kA�1rk22 = hA�1r j A�1ri
= h��1QTr j ��1QTri
= h� j ��2�i

=

nX
i=1

�
�2
i
� �2

i
:

In general the relation hr j A�2ri = Pn

i=1 �
�2
i
�
2
i
holds for any analytic function f

and the sum can be considered as a Riemann-Stieltjes integral, see e.g. [42]:

hr j f(A)ri =
nX
i=1

f(�i) � �2i =
Z

b

a

f(�)d� (4.7)

with the piecewise constant, positive, and increasing measure � de�ned via

�(�) =

8><>:
0 for � < �1P

i

j=1 �
2
j

for �i � � < �i+1P
n

j=1 �
2
j

for �n � �

: �
2

1

�
2

1
+ �

2

2

�
2

1
+ �

2

2
+ �

2

3

�1 �2 �3

Note that the interval [a; b] must contain the spectrum of A, in particular a � �min

must hold.

Unfortunately we do not know the eigenvalues and eigenvectors of A and hence

we cannot evaluate (4.7) directly. However, one way to obtain bounds for Riemann-

Stieltjes integrals is to use Gau� and Gau�-Radau quadrature formulas.

Evaluating (4.7) with a Gau� quadrature rule with m nodes (�1; : : : ; �m) and

corresponding weights (!1; : : : ; !m) we getZ
b

a

f(�)d� =

mX
j=1

!jf(�j)| {z }
I
(m)

Gau�

+
f
(2m)(�)

(2m)!
�
Z

b

a

mY
j=1

(�� �j)2d�| {z }
R
(m)

Gau�

; � 2 (a; b):

with an integral approximation I
(m)

Gau� and the remainder R
(m)

Gau�. Note that for f(�) =
��2 we get

R
(m)

Gau� =
(�1)2m(2m+ 1)!��(2m+2)

(2m)!
�
Z

b

a

mY
j=1

(�� �j)2d� � 0

and therefore I
(m)

Gau� �
R
b

a
f(�)d�.
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To obtain an upper bound, we apply a Gau�-Radau rule to (4.7) with m + 1

nodes (�1; : : : ; �m+1) with �m+1 := a and corresponding weights (!1; : : : ; !m+1)Z
b

a

f(�)d� =

m+1X
j=1

!jf(�j)| {z }
I
(m+1)

Radau

+
f
(2m+1)(�)

(2m+ 1)!
�
Z

b

a

(�� a)
mY
j=1

(�� �j)2d�| {z }
R
(m+1)

Radau

; � 2 (a; b):

In this case we have

R
(m+1)

Radau =
(�1)2m+1(2m+ 2)!��(2m+3)

(2m + 1)!
�
Z

b

a

(�� a)
mY
j=1

(�� �j)2d� � 0

due to the fact that (��a) is nonnegative because a is a lower bound of the spectrum
of A. Thus I

(m+1)

Radau �
R
b

a
f(�)d� and together we have

I
(m)

Gau� � kx� � ~xk2 � I
(m+1)

Radau :

Let us brie
y recall how the nodes and weights are obtained in Gau� like quadra-

ture rules. By use of the scalar product h�j i� :=
R
b

a
� � d�, it is possible to de�ne

an orthonormal sequence of polynomials �1; �2; : : : with deg(�j) = j. This set of

orthonormal polynomials satis�es a three term recurrence relationship:

�j�j(�) = (�� �j)�j�1(�)� �j�1�j�2(�); j = 1; : : : ; m

��1(�) � 0; �0(�) � 1
(4.8)

if
R
b

a
d� = 1 (by scaling r to krk2 = 1). In Matrix form this can be written as

(J (m) � �I)�(�) = ��m�m(�)em (4.9)

where �(�) = (�0(�); : : : ; �n�1(�)) and

J (m) =

0BBBBB@
�1 �1

�1 �2 �2

. . .
. . .

. . .

�m�2 �m�1 �m�1

�m�1 �m

1CCCCCA :

From (4.8), we can see that these �'s and �'s are exactly the same coeÆcients as

computed by the Lanczos algorithm (Algorithm 1.2). Multiplying the recurrence

relation with �j�1(�) and using the orthogonality constraints we get h�j�1(�) j
(�� �j)�j�1(�)i� = 0 and therefore

�j = h�j�1(�) j ��j�1(�)i� =
Z

b

a

��
2
j�1(�) d�

=

nX
i=1

�i�
2
j�1(�i)�

2
i
=

nX
i=1

�j�1(�i)�i � �i�j�1(�i)�i

= h�j�1(A) j A � �j�1(A)i = hvj�1 j Avj�1i:
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Using k�j(A)k2 = 1, we get �j = k(A� �mI)vj�1 � �j�1vj�2k2 in correspondence

with Algorithm 1.2.

The eigenvalues of J (m) (which are the zeroes of �m) are the nodes of the Gau�

quadrature rule. The weights are the squares of the �rst elements of the normalized

eigenvectors of J (m).

In order to obtain the Gau�-Radau rule, we have to extend the matrix J (m) in

such a way that it has one prescribed eigenvalue �m+1 = a, i.e., we wish to construct

�m+1 such that �m+1(a) = 0. From the recurrence relation (4.8), we have

0
!
= �m+1�m+1(a) = (a� �m+1)�m(a)� �m�m�1(a):

This gives

�m+1 = a� �m�m�1(a)
�m(a)

and evaluating (4.9) at � = a yields

(J (m) � aI)�(a) = ��m�m(a) � em , (J (m) � aI)Æ = �
2
m
em (4.10)

with Æ = (Æ1; : : : ; Æm)
T and

Æj = ��m�j�1(a)
�m(a)

; j = 1; : : : ; m:

From these relations we can compute the tridiagonal matrix of the Gau�-Radau rule

Ĵ
(m+1)

by �rst solving the tridiagonal system (4.10) and then using the last element

of Æ to de�ne Ĵ
(m+1)

via

Ĵ
(m+1)

=

0BBBBBBB@

�1 �1

�1 �2 �2

. . .
. . .

. . .

�m�2 �m�1 �m�1

�m�1 �m �m

�m a + Æm

1CCCCCCCA
Note that we need not compute the eigenvalues and eigenvectors of these tridi-

agonal matrices J (m) and Ĵ
(m+1)

.

Theorem 4.5 Let (�1; : : : ; �k) and (!1; : : : ; !k) be the nodes and weights of an k-

point Gau� like quadrature rule and J = tridiag(�j; �j; �j+1) with �j and �j being

the coeÆcients from the corresponding three term recurrence. Further let f be an

analytic function, then
mX
j=1

!jf(�j) = he1 j f(J)e1i:

Proof: As shown for example in [126], the weights !j can be computed as

!j =

�
y1;j

�0(�j)

�2

; j = 1; : : : ; m;
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where y1;j is the �rst element of the jth eigenvector of J . Since �0(�) � 1, we have

!j = (y1;j)
2 = (eT1 yj)

2. Using Y := (y1j : : : jym) and � = diag(�1; : : : ; �m) we get

mX
j=1

!jf(�j) =

mX
j=1

eT1 yjf(�j)(yj)
Te1

=

*
e1

�����
mX
j=1

y
j
f(�j)(yj)

T � e1
+

=


e1
�� Y f(�)Y T � e1

�
= he1 j f(J) e1i:

�

Since we had to scale our initial residual vector to have norm 1, i.e., we solved

�
�1
0 r

�� A�2 � ��10 r
�
= �

�2
0 � hr j A�2ri = �

�2
0 � kx� � ~xk22;

with �0 = krk2. We now obtain lower and upper bounds as

�0

q
he1 j (J (m))�2 e1i � kx� � ~xk2 � �0

q
he1 j (Ĵ (m+1)

)�2 e1i

It should be remarked again that these bounds are only valid for symmetric

positive de�nite matrices A. Of course, we can always transfer a linear system

Ax = b into an equivalent system Âx = b̂ with Â = ATA and b̂ = ATb. Then

Â is s.p.d. but cond(Â) = cond(A)2. This limits the range of matrices we can

handle to cond(A) � �
�1=2. However, this restriction is not as important as it seems

to be because we have to use a more precise arithmetic anyway, as we will see in

Section 4.3.3.

4.3.3 Veri�ed Computation

Of course, the results of the two preceeding sections 4.3.1 and 4.3.2 assume that all

computations are exact or at least valid bounds of the exact values. Since we cannot

guarantee this by using 
oating-point arithmetic, we have to bring the tools from

Section 3 into action.

In all subsequent algorithms, the variable accu represents a long accumulator in

the sense of section 3.1. In particular, expressions of the form accu = accu � x � y
denote exact accumulation of x � y in accu.

� Decomposition Error kLUT �Ak2
Suppose L, U to be a nonsingular lower triangular matrices. Then Algorithm 4.1

computes a rigorous upper bound for kLUT �Ak2.

� Smallest Singular Value

Due to ideas of Rump [109], we compute the smallest singular value of a matrix

A in two steps. First we factorize A approximately in a product of two triangular
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e
row
1 := e

row
2 := : : : := e

row
n

:= 0

e
col
1 := e

col
2 := : : : := e

col
n

:= 0

for i = 1; : : : ; n

for j = 1; : : : ; i� 1

accu := �ai;j
for k = 1; : : : ; j

accu = accu+ li;k � uj;k
e
row
i

= e
row
i

(jaccuj)
e
col
j

= e
col
j

(jaccuj)
accu := �ai;i
for k = 1; : : : ; i

accu = accu+ li;k � ui;k
e
row
i

= e
row
i

(jaccuj)
e
col
i

= e
col
i

(jaccuj)
e
row
max := maxferow1 ; e

row
2 ; : : : ; e

row
n
g

e
col
max := maxfecol1 ; e

col
2 ; : : : ; e

col
n
g

return
p
erowmax ecolmax

Algorithm 4.1: Compute a veri�ed upper bound for kLUT�Ak2 via the inequal-

ity kBk2 �
p
kBk1 � kBk1.

matrices, say T1 and T2 (compare Section 1.4.2) and then we compute a lower bound

of �min(T1T
T

2 ) via
1
�min(T1T

T

2 ) � �min(T1)�min(T2).

Now we have to compute the smallest singular values of these triangular matrices.

The basic idea is �rst to compute an approximation ~� � �min(T ) and then proving

that TT T � �~�2I is positive semide�nite, where � is slightly less than one. In case

of success,
p
�~� is a lower bound of �min(T ). To decide whether the shifted TT T

remains positive semide�nite, we try to compute its Cholesky factorization LLT .

Since this decomposition is usually not exact, we have to apply the following theorem

from Wilkinson to guarantee that LLT , if it exists, is not too far from TT T � �~�2I
so that the positive de�niteness of LLT is suÆcient for the smallest eigenvalue of

TT T � �~�2I to be nonnegative.

Theorem 4.6 Let B, ~B 2 IRn�n be symmetric and �i(B)
n

i=1, respectively �i(
~B)

n

i=1

be the eigenvalues ordered by magnitude.

Then from kB � ~Bk1 � d it follows that j�i(B)� �i( ~B)j � d.

See [142] for a proof.

That is, if kLLT � (TT T ��~�2I)k1 � d then �min(T )
2 = �min(TT

T ) � �~�2�d.
Thus, if d is a veri�ed upper bound for kB� ~Bk1 and �~�2 � d we have �min(T ) �p
�~�2 � d.

1In this computation of the smallest singular value hides the O(n3) e�ort which seems to be

necessary to compute error bounds [27].
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� Verifying Positive De�niteness of TT T � �2I
Suppose T to be a nonsingular lower triangular matrix. Then Algorithm 4.2 com-

putes a rigorous lower bound for its smallest singular value.

� = 0:9 � approx smallest singular value(T )
start:

e1 := e2 := : : : := en := 0

for i = 1; : : : ; n

for j = 1; : : : ; i� 1

accu := 0

for k = 1; : : : ; j

accu = accu+ ti;k � tj;k
for k = 1; : : : ; j � 1

accu = accu� li;k � lj;k
li;j = �(accu)=lj;j
ei = ei (jaccu� li;j � lj;jj)
ej = ej (jaccu� li;j � lj;jj)

accu := ��2
for k = 1; : : : ; i

accu = accu+ ti;k � ti;k
for k = 1; : : : ; i

accu = accu� li;k � li;k
if accu < 0

if iter < max iter

� = 0:9 � �
iter = iter+ 1

goto start

else

return failed

li;i =
p
�(accu)

ei = ei (jaccu� l2
i;i
j)

emax := maxfe1; e2; : : : ; eng
if � � � emax

return
p
� � emax

else

return failed

Algorithm 4.2: Compute a veri�ed lower bound � � �min(T ) and a lower trian-

gular matrix L with LLT � (TT T � �2I) � emax.

� Recursion CoeÆcients of the Gau� Quadrature Rule

Given an approximate solution x we have to compute an enclosure of the residual

~v0 as described in Section 3.4. We then start a straightforward interval formulation
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of the Lanczos algorithm (see Algorithm 4.3) to get enclosures of the �'s and �'s

and thus for J (m).

In the next section we will see that it is also possible to get an enclosure for the

solution of equation (4.10) on page 62, i.e., an enclosure for Æm and therefore we are

also able to compute [Ĵ ]
(m+1)

.

Given [~v]0, e.g. [~v]0 = (b�Ax0)

[�]0 = k[~v]0k2
[v]0 = [�]�10 � [~v]0
for m = 1; 2; : : :

[�]m = h[v]
m�1 j A[v]m�1i

if m = 1

[~v]
m
= (A� [�]mI)[v]m�1

else

[~v]
m
= (A� [�]mI)[v]m�1 � [�]m�1[v]m�2

[�]m = k[~v]
m
k2

[v]
m
= [�]�1

m
� [~v]

m

Algorithm 4.3: Interval Lanczos-algorithm.

� Solutions of Symmetric Tridiagonal Systems

A well known technique for computing solutions for interval linear systems is the

interval Gau� algorithm (IGA). The shape of the solution set of a interval linear

system can be fairly complicated, but since we use interval arithmetic we are only

able to compute a multidimensional box that contains the true solution set. For

general matrices it cannot be guaranteed to get a solution box that is near to the

smallest box containing the true solution but it can be shown (see [38]) that the IGA

produces optimal results, i.e. smallest in diameter, for tridiagonal interval systems

with system matrices [J ]
(m)

, [J ]
(m)�aI , or [Ĵ ](m+1)

respectively. However, we only

sketch the algorithm here (Algorithm 4.4).

[c]1 = [�]1
[e]1 = [b]1
for i = 2; : : : ; m

[c]i = [�]i � [�]i�1[�]i�1=[c]i�1
[e]i = [b]i � [�]i�1[e]i�1=[c]i�1

[x]m = [e]m=[c]m
for i = m� 1; : : : ; 1

[x]i = ([e]i � [�]i[x]i+1)=[c]i

Algorithm 4.4: Interval Gau� algorithm for tridiag([�]i; [�]i; [�]i+1) � [x] = [b].
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High Performance Object Oriented

Numerical Linear Algebra

“ I always knew C++ templates were the work of the Devil,

and now I'm sure.”
Cli� Click, 1994

“My desire to in
ict pain on the compilers is large.

They've been tormenting me for the last 8 years.

Now is my chance to strike back!”
Scott Haney, 1996

An often used prejudice against modern object oriented programming techniques, is

that object orientation is almost equivalent to low performance. At a �rst glance,

if one compares the speed of a simple routine once written in, e.g., Fortran and

once naively written in C++, this proposition seems to be true. Object oriented

programming is massively based on abstraction, encapsulation of data, access re-

striction, and polymorphism. Most of these features imply a big organizational

overhead because many decisions have to be done at runtime like dereferencing of

{ 67 {
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polymorphic types or allocation and deallocation of temporary variables. Besides

these runtime penalties, also the compiler is unable to optimize around virtual func-

tion calls which prevents instruction scheduling, data 
ow analysis, loop unrolling,

etc.

Thus, the situation | at least at the beginning of object oriented programming

| was that though we had really nice, well readable, and excellent maintainable

code, we had to pay with relatively low performance. Therefore and because most of

the existent programs where coded in old Fortran versions, the scienti�c computing

community decided to stay in the stone age of software technique.

Meanwhile, started in the middle of the 1990's, there have been made several

proposals to improve the performance of object oriented programs. Using these

techniques, it is possible to write highly abstract, object oriented programs that

are comparable in speed with Fortran or C and are sometimes even faster [79, 139].

These improvements can be roughly splitted into two categories.

� The �rst kind tries to use the object orientation itself to remove redundancies,

reduce code size and separate conceptually non-coupled program units. This

isolation of performance critical code sections actually enables writing portable

high performance codes. The key to this kind of structured programming

is called genericity. We describe some of the most important concepts in

Section 5.1.

� The second category aims to reduce the organizational overhead by relocating

performance critical parts from run-time execution to compile-time execution.

This technique can be viewed as a code generation system that removes, e.g.,

virtual function calls which are essentially required by polymorphic types. This

compile-time polymorphism is called static polymorphism and has much more

favorable optimization properties. The key technique is called compile-time

programming and we describe some aspects in Section 5.2.

5.1 Genericity

The traditional approach writing basic linear algebra routines is a combinatorial

a�air. There are typically four precision types that need to be handled (single and

double precision real, single and double precision complex), several dense storage

types, a multitude of sparse storage types (the Sparse BLAS Standard Proposal in-

cludes 13 di�erent sparse storage types [125]), as well as row and column orientations

for each matrix type. On top of that, if one wants to parallelize these codes, there

are several data distributions to be supported. To provide a full implementation

one might need to code literally hundreds of versions of the same routine! It is no

wonder the NIST implementation of the Sparse BLAS contains over 10 000 routines

and an automatic code generation system [113].

This combinatorial explosion arises because with most programming languages,

algorithms and data structures are more tightly coupled than is conceptually neces-

sary. That is, one cannot express an algorithm as a subroutine independently from

the type of data that is being operated on. Thus, although abstractly one might

have only a single algorithm to be expressed, it must be realized separately for every
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data type that is to be supported. As a result, providing a comprehensive linear

algebra library | much less one that also o�ers high-performance | would seem to

be an impossible task.

Fortunately, certain modern programming languages, such as Ada and C++,

provide support for generic programming, a technique whereby an algorithm can be

expressed independently of the data structure to which it is being applied. One of the

most celebrated examples of generic programming is the C++ Standard Template

Library (STL). Especially for numerical linear algebra, there is a library called the

Matrix Template Library (MTL) which extends this generic programming approach

to cover the needs of scienti�c computing [118].

The principal idea behind genericity is that many algorithms can be abstracted

away from the particular data structures on which they operate. Algorithms typ-

ically need the abstract functionality of traversing through a data structure and

accessing its elements. If data structures provide a standard interface for traversal

and access, generic algorithms can be freely mixed and matched with data structures

[117].

5.1.1 Data Structures: Containers

functions

data

In object oriented numerics (OON), data structures like records

in Pascal, TYPEs in Fortran or structs in C together with a set of

functions operating on this data are called containers. In C++, the

equivalent to a container is called class. Containers basically con-

sist of two parts: an internal representation which is only directly

accessible by a set of authorized functions and a public interface

which provides functions and methods to access the encapsulated

data.

Let us consider the following example to demonstrate the basic ideas of contain-

ers. Suppose we want to design the concept of matrices. First we have to think

about the storage types we wish to support. Assume we need

� banded matrices, i.e., we only store the diagonals between lower bandw and

upper bandw and implicitly de�ne the remaining elements to be zero,

� general sparse matrices, i.e., all nonzero elements are stored in a list with

elements of type (row, col, value), and

� dense matrices.

a) banded c) denseb) sparse

Figure 5.1: The storage types for our matrices
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In this example, the internal representation might be

� a set of vectors storing the used diagonals (banded matrices),

� a list of triples (row, col, value) storing all nonzero elements (general

sparse matrices), or

� a num rows times num cols sized memory block (dense matrices).

However, in the public interface we only need functions like get num rows() or

get lower bandwith() to get informations about the shape of the matrices and

most important we need access to the matrix entries. Traditionally only simple

access functions like get entry at( row, col ) were provided.

With this technique we have two possibilities to write algorithms which need

access to the matrix entries: One is to traverse through all num rows times num cols

elements (although most of them are zero) which is very slow. The other is to provide

special algorithms with exact knowledge of the sparsity pattern for each matrix type

which results in an enormous amount of code and therefore in an enormous amount

of errors. Additionally, if we add a new storage type or modify an existing one, we

have to add/modify a complete set of algorithms (compare Figure 5.2, left).

raw

data
functions

simple

access

functions

simple

access
raw

data

raw

data
functions

simple

access

algorithm

algorithm

algorithm
Matrix type 1

Matrix type 3 Matrix type 2

Matrix type 1

Matrix type 2

Matrix type 3

raw

data

raw

data
raw

data

algorithm

iterators

it
er
at
or
s

iterators

Figure 5.2: Separating the raw data structures from algorithms by the use of

generic access and traversal functions | so called iterators.

Fortunately we can do much better by providing generic access via so called

Iterators as will be described in the following section.

5.1.2 Traversing and Accessing Elements: Iterators

Instead of accessing the matrix data element-wise we conceptually design our ma-

trices to be containers of containers (although they are typically not actual imple-

mented in this way). For example we interprete a matrix to be a column vector with

row vectors as element type (or vice versa). These vector containers, which haven't
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allocated any storage but only refer to the memory of their parent matrix are called

iterators. Designing these Iterators to have a common public interface, enables us

to use only one routine for each algorithm (see Figure 5.2, right).

Thus, iterators can be used to traverse through a matrix in the following sense.

Each matrix container provides a datatype called, e.g., row 2DIterator (line 3)

and two functions returning special row 2DIterator's, one is called begin() (line

4) and one is called end() (line 5) returning the �rst respectively last row vector of

the matrix.

1 class Matrix {

2 public:

3 typedef row_2DIterator my_row_iterator;

4 row_2DIterator begin();

5 row_2DIterator end();

6 ...

7 };

The row 2DIterator itself | which in this case is implemented as a my row iterator

| provides the datatype 1DIterator (line 10) and again the two functions begin()

(line 11) and end() (line 12) here returning the �rst respectively last element of the

according row. Additionally, it provides the function next() (line 13) which returns

the successor of the row from which it is called.

8 class my_row_iterator {

9 public:

10 typedef 1DIterator my_element_iterator;

11 1DIterator begin();

12 1DIterator end();

13 my_row_iterator next();

14 int get_index();

15 ...

16 };

With this concept, we can ask the Matrix for the begin() row 2DIterator to

get its �rst row-vector. With the next() function we can traverse through all rows

until we end up with end().

Beside these functions for traversing through the data structure we usually have

functions for accessing the stored information. In this case we have get index()

which returns the row number (line 14).

Finally we have the 1DIterator which doesn't refer to any subsequent itera-

tor. Here we only have one traversal function next() and two access functions

get index() and get value().

17 class my_element_iterator {

18 public:

19 my_vector_iterator next();

20 int get_index();

21 double get_value();

22 ...

23 };
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row 2DIterator

next

begin 1DIterator end

end

begin

next

Figure 5.3: Traversing and accessing elements via iterators

1 void print( Matrix A )

2 {

3 A::row_2DIterator current_row;

4 current_row::1DIterator current_entry;

5

6 current_row = A.begin();

7 do {

8 current_entry = current_row.begin()

9 do {

10 cout << "[" << current_row.get_index() << ","

11 << current_entry.get_index() << "] = "

12 << current_entry.get_value() << endl;

13 current_entry = current_entry.next();

14 } while( current_entry!=current_row.end() );

15 current_row = current_row.next();

16 } while( current_row!=A.end() );

17 }

Algorithm 5.1: A generic routine for printing arbitrary matrices.

In the same way we iterate through the rows of the matrix. With the 1DIterator

it is now possible to traverse through the elements of each row 2DIterator to access

the row and column number and value of each nonzero entry, compare Figure 5.3.

In Algorithm 5.1 we illustrate this technique with the simple example for print-

ing an arbitrary matrix. In line 3 we declare the variable current row to be of

type A::row 2DIterator, that is, A's row 2DIterator type and in line 4 we declare

current entry to be a 1DIterator of current row. In line 6 we set current row

to be the �rst row of A and then iterate in the outer do-while-loop until current row

reaches the last row of A (line 16). For each current row we set current entry

to be the �rst entry and iterate until current entry reaches the last entry of

current row. Meanwhile we print current row.get index() (line 10) which is

the row index, current entry.get index() (line 11): the column index and �nally

current entry.get value() (line 12): the value of the current entry.
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This print() routine is capable to print all matrix types which provides these

coupled 2D/1D iterator set. That is, each new matrix type only has to provide

iterators with the same interface as row 2DIterator and 1DIterator to be auto-

matically printable via this function. For example, if we provide a matrix container

with a row 2DIterator that actually represents the columns, we immediately can

print the transposed of this matrix.

Similar to this print function, we can provide algorithms to multiply a matrix

with a vector, to multiply two matrices, to add or copy matrices, and so on, only by

writing one function for each algorithm.

5.1.3 A Point of View

Generalizing the above idea of printing a transposed matrix leads to so called views

or adaptors. A view is a special container that actually has no own storage allocated

but only refers to the memory of a legal container. The di�erence is, that a view

provides a modi�ed set of iterators. For example we could de�ne a transposed view

of a matrix via

1 class transposedMatrix : public Matrix {

2 public:

3 typedef row_2DIterator Matrix::col_2DIterator;

4 ...

5 };

From line 1 we see that a transposedMatrix is derived from a Matrix but

exports its row 2DIterator as Matrix's col 2DIterator. Consequently, if we access

the rows of a transposedMatrix we actually get the columns of the original Matrix.

With this technique we can, e.g., also implement sub-matrix views by modifying

the begin() and end() functions or diagonal views by modifying the next() func-

tion to return the next element on a given diagonal. All these operations are O(1),

i.e., they need constant time and (nearly) no storage.

begin

end

next
next

begin

end

begin endbegin end
next

a) transposed view b) submatrix view c) diagonal view

Figure 5.4: Some views of a matrix

5.2 Two-Stage Programming

In this section we describe some advanced techniques to improve the performance

of object oriented code [138]. Although they are hard to write and maintain and
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increase compile times, they are great for library designers. Many of theses problems

can be hidden from the end user. All ideas presented here, are based on a two-stage

programming process. That is, beside the usual run-time execution, some parts of

the program are evaluated at compile-time and thereby, e.g., generate specialized

problem oriented code without polymorphism and thus without virtual function

calls, or expressions without temporary variables, or even explicitly unrolled loops,

etc. In C++ this technique was enabled by introducing so called templates, which

makes it possible to write programs in a subset of C++ which are interpreted at

compile-time. In this section we �rst introduce some basic concepts of compile time

programming and then present two very powerful techniques to improve the per-

formance of object oriented programs: namely expression templates and automatic

self optimization.

5.2.1 Compile Time Programming

To demonstrate the power of template meta programming, i.e., routines that are

evaluated completely by the compiler, we start with an example taken from [136].

template<int N_factorial>

class Value {};

template<int N>

class Factorial {

public:

enum { value = N * Factorial<N-1>::value };

};

class Factorial<1> {

public:

enum { value = 1 };

};

void foo()

{

Value<Factorial<6>::value> dummy = Factorial<6>();

}

Using this Factorial-class, the value N! (factorial of N) is available at compile-

time as Factorial<N>::value. How does it work? When Factorial<N> is instan-

tiated, the compiler needs Factorial<N-1> in order to assign the enum value. So

it instantiates Factorial<N-1>, which in turn requires Factorial<N-2>, requiring

Factorial<N-3>, and so on until Factorial<1> is reached, where template special-

ization is used to end the recursion. The compiler e�ectively performs a for loop to

evaluate N! at compile-time.

Thus compiling the above C++ program with gcc factorial.cc one gets the
compiler error:

factorial.cc:17: conversion from `Factorial<6>' to

non-scalar type `Value<720>' requested



5.2 Two-Stage Programming 75

Although this technique might seem like just a cute C++ trick, it becomes

powerful when combined with normal C++ code. In this hybrid approach, source

code contains two programs: the normal C++ run-time program, and a template

metaprogram which runs at compile-time. Template metaprograms can generate

useful code when interpreted by the compiler, for example massively in-lined al-

gorithm | such as an implementation of an algorithm which works for a speci�c

input size, and has its loops unrolled. This results in large speed increases for many

applications.

There are template-meta-program equivalents for most C++ 
ow control struc-

tures like 'if/else if/else', 'for', 'do/while', 'switch', or subroutine calls. See

Tables 5.1 and 5.2 for some examples [136]. Of course these compile-time versions

aren't very handy but we don't intend to write entire programs in this way. However,

this kind of programming is worth the work in highly critical parts of an algorithm,

e.g., in inner loops. Here we can partially unroll loops or reverse the order of com-

putations to exploit memory caches or pipeline facilities (see Section 5.2.2).

C++ version Template metaprogram version

if (condition) {

statement1;

} else {

statement2;

}

// Class declarations:

template<bool C>

class _if {};

class _if<true> {

public:

static inline void _then() {

statement1;

}

};

class _if<false> {

public:

static inline void _then() {

statement2;

}

};

// Replacement for 'if/else' statement:

_if<condition>::_then();

Table 5.1: A C++ if/else structure and its template metaprogram equivalent.

Another valuable �eld for using templates is to avoid run-time polymorphism.

Let us �rst brie
y describe this concept by using again our matrix example from

the beginning of Section 5.1.1. Suppose we want to implement the simple access

function get entry at( row, col ).
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C++ version Template metaprogram version

int i = N;

do {

statement(i);

i--;

} while (i>0);

// Class declarations:

template<int I>

class _do_from {

public:

static inline void _downto_1() {

statement(I);

_do_from<I-1>::_downto_1();

}

};

class _do_from<0> {

public:

static inline void _downto_1() {}

};

// Replacement for 'do/while' statement:

_do_from<N>::_downto_1();

Table 5.2: A C++ do/while structure and its template metaprogram equivalent.

class Matrix {

public:

virtual double get_entry_at( int row, int col ) = 0;

};

class BandedMatrix : public Matrix {

public:

virtual double get_entry_at( int row, int col );

};

class SparseMatrix : public Matrix {

public:

virtual double get_entry_at( int row, int col );

};

class DenseMatrix : public Matrix {

public:

virtual double get_entry_at( int row, int col );

};

Here we de�ned a polymorphic type Matrix because a Matrix can represent

several specialized matrix types. Writing, e.g., a maximum norm function
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double max_norm( const Matrix* A ) {

double maxnorm = 0.0,

rowsum;

for( int row=0; row<A->num_rows(); ++row ) {

rowsum = 0.0;

for( int col=0; col<A->num_cols(); ++col )

rowsum += abs( A->get_entry_at( row, col ) );

maxnorm = max( maxnorm, rowsum );

}

return maxnorm;

}

Matrix* B = new SparseMatrix;

max_norm( B );

causes the run-time system to decide which particular get entry at( row, col )

is to be called every time when a Matrix::get entry at( row, col ) is requested.

That is num rows�num cols times it has to be �gured out to which particular matrix

type A points to. This will ruin the performance of any matrix algorithm!

One way to replace this run-time polymorphism by a static polymorphism is to

use structure parameters which encapsulate particular storage information:

class BandedMatrix {

// Storage information for banded matrices

};

...

template<class T_structure>

class Matrix {

private:

T_structure _data;

};

template<class T_structure>

double max_norm( Matrix<T_structure>& A ) { ... }

Matrix<BandedMatrix> B;

max_norm( B );

Here, the Matrix type is quasi polymorphic but only up to compilation. After

interpreting the template metaprogram part, Matrix<BandedMatrix> is a static

type and every call to one of its functions (e.g., max_norm) is non-virtual. The

disadvantages of this solution are

� Matrix has to constantly delegate operations to the structure objects.

� The interface between the Matrix and the T structure object must be iden-

tical for all structures.

� Interfaces must expand to accommodate every supported matrix structure.

For example if we need banded matrices, every matrix type must provide a

get lower bandwith() function.
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Another approach to avoid virtual function calls are so called curiously recur-

sive template patterns. Here we have a base class (Matrix) with a derived class

(e.g., SparseMatrix) as template parameter. Inside the base class we have a func-

tion that explicitly converts the base class itself to be of the derived class type

(lines 4-6). Each function simply delegates its execution to the corresponding

leaf class by changing its type to T leafType and calling an appropriate func-

tion of this leaf class (compare lines 7-9). Since, e.g., the code for a function

Matrix<T leafType>::get lower bandw() is only generated at compile-time if it

is actually needed in the program, there is no need to write meaningless functions

such as DenseMatrix::get lower bandwith() which would be called at runtime by

Matrix<DenseMatrix>::get lower bandwith().

1 template<class T_leafType>

2 class Matrix {

3 public:

4 T_leafType& asLeaf() {

5 return static_cast<T_leafType&>( *this );

6 }

7 double get_entry_at( int row, int col ) {

8 return asLeaf().get_entry_at( row, col );

9 }

10 };

11

12 class SparseMatrix : public Matrix<SparseMatrix> {

13 double get_entry_at( int row, int col );

14 };

15

16 ...

17

18 template<class T_leafType>

19 double max_norm( Matrix<T_leafType>& A ) { ... }

20

21 Matrix<SparseMatrix> B;

22 max_norm( B );

5.2.2 Self Optimization

The bane of portable high performance numerical linear algebra is the need to tai-

lor key routines to speci�c execution environments. For example, to obtain high

performance on a modern microprocessor, an algorithm must properly exploit the

associated memory hierarchy and pipeline architecture (typically through careful

loop blocking and structuring). Ideally, one would like to be able to express high

performance algorithms in a portable fashion, but there is not enough expressive-

ness in languages such as C or Fortran to do so. Recent e�orts [29] have resorted

to going outside the language, i.e., to code generation systems in order to gain this

kind of 
exibility. Another approach is the Basic Linear Algebra Instruction Set

(BLAIS) [116], a library speci�cation that takes advantage of certain features of

the C++ language to express high-performance loop structures that can be easily

recon�gured for a particular architecture.
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To demonstrate the ability of C++ in generating environment dependent code,

we give an example of a scalar product routine with partially unrolled loops. These

blocks of unrolled loops could for example be distributed to di�erent processors in

a multiprocessor environment. In order not to complicate our example more than

necessary, we assume that BlockSize divides Size (the size of the vectors to be

multiplied). Furthermore we do not do anything special with the unrolled blocks

than simply adding the results.

1 template<int N>

2 class cnt {};

3

4 template<int Size, int BlockSize, class InIter1, class InIter2,

5 class Out>

6 inline Out scalp( InIter1 x, InIter2 y, Out,

7 cnt<Size>, cnt<BlockSize> ) {

8 return scalp( x, y, Out(), cnt<BlockSize>(), cnt<1>() )

9 + scalp( x+BlockSize, y+BlockSize, Out(),

10 cnt<Size-BlockSize>, cnt<BlockSize> );

11 }

12

13 template<class InIter1, class InIter2, class Out>

14 inline Out scalp( InIter1 x, InIter2 y, Out, cnt<1>, cnt<1> ) {

15 return *x * *y;

16 }

17

18 template<int BlockSize, class InIter1, class InIter2, class Out>

19 inline Out scalp( InIter1 x, InIter2 y, Out,

20 cnt<0>, cnt<BlockSize> ) {

21 return 0.0;

22 }

The counter class cnt (line 1,2) is used to encapsulate integers. In line 4 the

template parameters Size, BlockSize, InIter1/2 (used to iterate through the input

vectors), and Out (type of the result) are introduced. Then we de�ne the function

scalp with result type Out. This function recursively computes the scalar product

of the �rst block and that of the remaining blocks (lines 8 and 9). Two template

specializations are used to terminate the recursion. The �rst actually computes

scalar products with BlockSize=1 (lines 13-16) and the second returns 0.0 if we

are outside the vector range (lines 18-22). All functions are in-lined, i.e., the entire

scalar product �nally appears as one block of code without function calls.

Figure 5.5 illustrates what happens at compile-time. Each step represents a

recursion depth when all possible recursion calls are executed. In step 6 we see the

�nal code, which is generated by the template metaprogram. Note: *(z+i) denotes

the dereferenciation of the iterator z at position i, i.e., the ith entry of the vector

z.

5.2.3 Expression Templates

Expression templates are a C++ technique for evaluating vector and matrix ex-

pressions in a single pass without temporaries. This technique can also be used
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step 1

step 2

step 3

step 4

step 5

step 6

double x[6], y[6];

scalp( x, y, double(), cnt<6>(), cnt<2>() );

+ scalp( x+2, y+2, double(), cnt<4>(), cnt<2>() );

scalp( x, y, double(), cnt<2>(), cnt<1>() )

scalp( x, y, double(), cnt<1>(), cnt<1>() )

+ scalp( x+1, y+1, double(), cnt<1>(), cnt<1>() )

+ scalp( x+2, y+2, double(), cnt<2>(), cnt<1>() )

*x * *y + *(x+1) * *(y+1)

+ scalp( x+4, y+4, double(), cnt<2>(), cnt<2>() );

+ scalp( x+3, y+3, double(), cnt<1>(), cnt<1>() )

+ scalp( x+2, y+2, double(), cnt<1>(), cnt<1>() )

+ scalp( x+4, y+4, double(), cnt<2>(), cnt<1>() )

+ scalp( x+6, y+6, double(), cnt<0>(), cnt<2>() );

+ scalp( x+4, y+4, double(), cnt<1>(), cnt<1>() )

+ scalp( x+5, y+5, double(), cnt<1>(), cnt<1>() )

+ 0.0;

*x * *y + *(x+1) * *(y+1)

+ *(x+2) * *(y+2) + *(x+3) * *(y+3)

*x * *y + *(x+1) * *(y+1)

+ *(x+2) * *(y+2) + *(x+3) * *(y+3)

+ *(x+4) * *(y+4) + *(x+5) * *(y+5);

Figure 5.5: In-lining a recursively de�ned blocked scalar product.

for passing expressions as function arguments.. The expression can be inlined into

the function body, which results in faster and more convenient code than C-style

callback functions. In benchmark results, one compiler evaluates vector expressions

at 95-99% eÆciency of hand-coded C using this technique (for long vectors). The

speed is 2-15 times that of a conventional C++ vector class, see [137].

Expression templates solve the pairwise evaluation problem associated with opera-

tor-overloaded array expressions in C++. A naive implementation of

Vector<double> a, b, c, d;

a = b + c + d;

results in:

double* _t1 = new double[N];

for (int i=0; i<N; ++i )

_t1[i] = b[i] + c[i];

double* _t2 = new double[N];

for (int i=0; i<N; ++i )
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_t2[i] = _t1[i] + d[i];

for (int i=0; i<N; ++i )

a[i] = _t2[i];

delete [] _t2;

delete [] _t1;

For small arrays, the overhead of new and delete results in very poor performance:

about 1/10th that of C. For medium (in-cache) arrays, the overhead of extra loops

and cache memory accesses hurts (by about 30-50% for small expressions). The

extra data required by temporaries cause the problem to go out-of-cache sooner.

For large arrays, the cost is in the temporaries: all that extra data has to be

shipped between main memory and cache. Typically scienti�c codes are limited by

memory bandwidth (rather than 
ops), so this really hurts. For N distinct array

operands and M operators, the performance is about

N + 1

3M

that of C/Fortran. This is particularly bad for stencils, which have N = 1 (or

otherwise very small) andM very large. It is not unusual to get 1=9 (5-point stencil

| �rst order discretization on a 2D mesh), or even 1=24 (second order discretization

on a 2D mesh) the performance of C/Fortran for big stencils.

To avoid these temporary variables we have do delay the evaluation up to the

point where the entire expression is parsed. That is, we have to parse the expression

ourself and afterwards evaluate this parse tree in one pass. Fortunately this can be

done inside C++. Let us shortly introduce the needed tools.

A class can take itself as a template parameter. This makes it possible to build

linear lists or trees in the following sense:

template<class T1, class T2>

class X {};

B C DA
A B DC

X<A, X<B, X<C, D> > > X<X<A,B>, X<C,D> >

Figure 5.6: Representing lists and trees with recursive template patterns.

The basic idea behind expression templates is to use operator overloading to

build parse trees. For example:

Array A, B, C, D;

D = A + B + C;
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A B

C

The expression A+B+C could be represented by a type such as

Op<plus, Op<plus, Array, Array>, Array>

Building such types is not hard:

template<class T>

Op<plus, T, Array> operator+(T, Array)

{

return Op<plus, T, Array>();

}

Then:

D = A + B + C;

= Op<plus, Array, Array>() + C;

= Op<plus, Op<plus, Array, Array> ,Array>();

Of course to be useful we need to store data in the parse tree (e.g. pointers to the

arrays). Here is a minimal expression templates implementation for 1-D arrays.

First, the plus function object:

class plus {

public:

static double apply( double a, double b ) {

return a+b;

}

};

This class only provides the function apply which will be called to evaluate an object

of type Op<plus, Array, Array>().

The parse tree node:

template<class T_op, class T1, class T2 >

class Op {

public:

Op( T1 a, T2 b ) {

leftNode_ = a;

rightNode_ = b;

}

double operator[]( int i ) {

return T_op::apply( leftNode_[i], rightNode_[i] );

}

private:

T1 leftNode_;

T2 rightNode_;

};

Here we have a constructor which simply stores its arguments in the private variables

leftNode and rightNode . Additionally, the class Op provides an index operator

which applies the operator T op to the node-data and returns its result.

Now a simple array class:



5.2 Two-Stage Programming 83

class Array {

public:

Array( double* data, int size ) {

data_ = data;

size_ = size;

}

template<class T_op, class T1, class T2 >

operator=( Op<T_op, T1, T2> expr ) {

for( int i=0; i<size_; ++i )

data_[i] = expr[i];

}

double operator[]( int i ) {

return data_[i];

}

private:

double* data_;

int size_;

};

The Array constructor stores a pointer to the data and the number of elements.

The operator= assigns the values of an expression (represented by its parse tree) to

data . Note that calling the index operator of expr actually causes the evaluation

of the entire parse tree in one pass. Additionally Array itself provides an index

operator which behaves traditionally, i.e., it simply returns the array entries.

And �nally the operator+ which actually does not add anything but constructs

the parse tree:

template<class T>

Op<plus, T, Array> operator+( T a, Array b ) {

return Op<plus, T, Array>(a,b);

}

Now see it in action:

int main() {

double a.data[] = { 2, 3, 5, 9 },

b.data[] = { 1, 0, 0, 1 },

c.data[] = { 3, 0, 2, 5 },

d.data[4];

Array A(a.data,4),

B(b.data,4),

C(c.data,4),

D(d.data,4);

D = A + B + C;

for (int i=0; i < 4; ++i)

cout << D[i] << " ";

cout << endl;
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return 0;

}

Output: 6 3 7 15

See how operator+ builds up the parse tree step by step:

D = A + B + C;

= Op<plus, Array, Array>( A, B ) + C;

= Op<plus, Op<plus, Array, Array>, Array>

( Op<plus, Array, Array>( A, B ), C );

Then it matches to template Array::operator=:

D.operator=( Op<plus, Op<plus, Array, Array>, Array>

( Op<plus, Array, Array>( A, B ), C ) expr )

{

for (int i=0; i < N.; ++i)

data_[i] = expr[i];

}

See how expr[i] is evaluated successively by Op<T Op, Array, Array>::operator[]

calling T op::apply():

data_[i] = plus::apply( Op<plus, Array, Array>( A, B )[i], C[i] );

= plus::apply( A[i], B[i] ) + C[i];

= A[i] + B[i] + C[i];

. . .more or less. It's all clear now, right?

� Excursion: Exact Scalar Product
The exact scalar product, as introduced in Section 3.1, is often useful in critical

computations. Computing residual vectors, for example, highly su�ers from can-

cellation errors because many large numbers are added to a (hopefully) small sum.

This error source can be completely avoided using exact scalar products. However,

simulated in software, this routine is relatively slow compared to the execution time

of an ordinary scalar product. Thus it would be advantageous if we could easily

switch between the slower but exact computation and the fast approximative one

(and maybe some precisions in between).

Usually in C++ libraries that provide operator overloading for matrix/vector

expressions, we either have all scalar products evaluated exactly or none. Using

expression templates enables us to introduce a Pascal-XSC [68] like notation for

switching between exact and naive scalar products.

Pascal-XSC version:

r #*( b - A*x );

C++ version (compare [78]):

ExprMode::beginAccurate( RoundToNearest );

r = b - A*x;

ExprMode::endAccurate( RoundToNearest );
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6
vk | A Variable Precision

Krylov Solver

“ The �rst American Venus probe was lost

due to a program fault caused by the inadvertent

substitution of a statement of the form

DO 3 I = 1.3 for one of the form DO 3 I = 1,3”
Jim Horning, 1979

Almost all ideas and concepts presented in this thesis are implemented in the variable

precision krylov solver vk. The program is written in the C++ programming lan-

guage and makes extensive use of generic programming paradigms and compile-time

programming. The main emphasis on writing vk was to produce an easily maintain-

able and extendable code (at least outside the kernel) while simultaneously providing

an acceptable performance.

Several ideas on algorithms and data structures are taken from [28, 36, 39, 84]

6.1 Functional Description of vk

Figure 6.1 gives a quick overview over the main units of vk. The central object

of vk is a project. A project stores all information about the problem to solve

{ 85 {
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and manages all necessary steps from reading the data, creating the preconditioner,

solving the linear system, logging some interesting information, verifying the iter-

ated solution, up to �nally writing the result. Additionally it provides the data

types for each arithmetic class (see Section 6.1.1) and hosts the multiplicators and

accumulators for computing various scalar products in.

calls calls

needs

callsneeds

needs

inc. LDLT
prescale Jacobi

mod. ILU external
inc.Cholesky

project

scalar types matrix types

types

accus

Krylov solvers

gauss

verify
preconditioners

sigma min

CG
CGS

BiCG
BiCGStab

IEEE single

staggered
extended

GNU MP
doubledouble
IEEE double dense

banded
compressed

Figure 6.1: Functional structure of vk.

6.1.1 Variable Precision

In vk, nearly all computations can be performed in almost arbitrary precision rang-

ing from IEEE single up to thousands of mantissa digits. For this purpose all

computations were subdivided into several arithmetic type-classes. All variables of

such classes are of equal data type and all scalar products (or matrix-vector prod-

ucts) inside one class are performed in the same precision (component products and

accumulation). Table 6.1 lists the possible data types (compare Section 3.2), while

Table 6.2 shows the arithmetic type-classes. To realize, e.g., an exact scalar product

for IEEE double vectors in internal computations, one would have to set

INTERNAL PREC = -1, INTERNAL PROD = 2, INTERNAL ACCU = 67.

In fact, INTERNAL PROD = -3 would suÆce, but is signi�cantly slower due to addi-

tional data conversions.
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Type Name type id Mantissa Exp.

IEEE single precision single 0 23 bit 8 bit

IEEE double precision double �1 53 bit 11 bit

Intel extended precision
a extended �2 64 bit 15 bit

staggered with length 2 doubledouble �3 106 bit 11 bit

staggered
b
with length l = �id�

3

staggered<l> �4;�5; : : : l � 53 bit 11 bit

GNU MP 
oating-point number

with length l = id

multiple<l> 1; 2; : : : l � 64 bit 31 bit

Table 6.1: Available data types.

aif supported by the used platform
bnot supported by the standard version of vk

Symbol Description

PRECOND FACT PREC Datatype to store the preconditioner in (e.g. Cholesky factors).

PRECOND FACT PROD Precision to compute products of type

PRECOND FACT PREC�PRECOND FACT PREC with.

PRECOND FACT ACCU Datatype to accumulate numbers of type PRECOND FACT PREC

or PRECOND FACT PROD in.

PRECOND APPL PREC Datatype to store the preconditioned search directions in.

PRECOND APPL PROD Precision to compute products of type

PRECOND APPL PREC�PRECOND APPL PREC or

PRECOND APPL PREC�INTERNAL PREC with.

PRECOND APPL ACCU Datatype to accumulate numbers of type PRECOND APPL PREC

or PRECOND APPL PROD in.

INTERNAL PREC Datatype to store internal used quantities in (�'s, �'s,

residuals, auxiliary vectors, . . . ).

INTERNAL PROD Precision to compute products of type

INTERNAL PREC�INTERNAL PREC with.

INTERNAL ACCU Datatype to accumulate numbers of type INTERNAL PREC or

INTERNAL PROD in.

SOLUTION PREC Datatype to store the iterated solution in.

SOLUTION CALC Precision to compute the saxpy-operations with, used to

update the solution.

VERIFICATION PREC Precision to compute the 
oating-point part of the veri�cation

step in.

Table 6.2: Adjustable arithmetic type-classes. The PROD and ACCU types can

be used to realize the exact scalar product (see Section 3.1).
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6.1.2 Matrix Types

Currently, vk supports three matrix types: dense, banded, and compressed.

dense A dense matrix is stored in a dim by dim memory block. This matrix type is

mainly implemented for testing purposes since vk aims to solve sparse systems

of equations.

banded A banded matrix actually is a mixture between dense and sparse matrices.

The elements are stored in a dense dim by bandwidth memory block data and

there is a simple mapping from matrix coordinates to memory coordinates and

vice versa (inside the band):

A(i; j) 7! data[i; lower bw+ j � i]
data[i; j] 7! A(i; i + j � lower bw)

compressed In vk, compressed matrices are stored in a data structure which

mainly consists of a doubly linked list and two vectors to �nd the �rst ele-

ment in each row, respectively column. The elements of the list are of type

compressed element (compare Figure 6.2). With this matrix type, we can

also perform transpose matrix-vector products. Without this feature we could

save up to �fty percent of storage and the internal routines of this matrix

container would be much simpler.

A data

(a) banded

A data

(b) compressed

Figure 6.2: Storage schemes for banded and compressed matrices.

template<class T>

class compressed_element {

int col;

int row;

T value;

T* next_in_row;

T* next_in_col;

};

The actually used matrix type is automatically selected by construction to get

maximum performance and minimum storage overhead.

There are 3 built-in linear systems for testing purposes and the possibility to

read matrices stored in the MatrixMarket [85] format. The build in types are
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Gregory/Karney 4.16 This matrix is out of a collection of matrices, edited by

Gregory and Karney [52]. It is de�ned1 via

GK4.16 =

0BBBBBBBBB@

5 �4 1

�4 6 �4 1

1 �4 6 �4 1
. . .

. . .
. . .

. . .
. . .

1 �4 6 �4 1

1 �4 6 �4
1 �4 5

1CCCCCCCCCA
(6.1)

This matrix is s.p.d. and its condition number is approximately n4.

Hilbert Hilbert matrices are good examples for extremely high condition numbers

at small dimensions. Usually these matrices are de�ned asAi;j := 1=(i+j�1),
with i; j = 1; : : : ; n. Scaling with the least common multiple of the numbers

1; : : : ; 2n � 1 yields an integer matrix which can be stored exactly in IEEE

double precision up to n = 21. Hilbert matrices are also s.p.d.

Gregory/Karney 4.20 This matrix again is out of Gregory/Karney's matrix col-

lection. There, we have a parameter a which we set to 1. The matrix is

symmetric but inde�nite and is de�ned as

GK4.20 =

0BBBBBBBBB@

�1 2 1

2 0 2 1

1 2 0 2 1
. . .

. . .
. . .

. . .
. . .

1 2 0 2 1

1 2 0 2

1 2 �1

1CCCCCCCCCA
: (6.2)

6.1.3 Preconditioners

In vk we have several built-in preconditioners. Additionally, there is the possibility

to import externally computed preconditioners from a �le. To gain maximal perfor-

mance, the preconditioner type must be selected at compile-time in order to enable

the compiler to produce highly specialized code for preconditioned Krylov solvers.

In particular we have the following types:

prescale is a Jacobi (see below) preconditioner but applied in advance to the linear

system instead of applying it in each iteration.

Jacobi This preconditioner is realized by doing one step of the Jacobi iteration

(compare Section 1.4.1).

Cholesky decomposition. This preconditioner is only applicable to s.p.d. systems

(for this and the next two compare Section 1.4.2).

1The matrix results from a centered di�erence discretization of a fourth order di�erential equa-

tion, describing the bending line of weighted beam �xed at both ends [19].
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LDLT A generalized Cholesky preconditioner that works for arbitrary symmetric

matrices.

LDMT A modi�ed (in the sense of Section 1.4.2) LU preconditioner.

external This kind of `preconditioner' allows us to read a Cholesky factor (L) or

lower and upper triangular matrices (L andU) and a permutation matrix (P ).

These matrices are supposed to ful�ll LLT � A or LUT � PA, respectively.

That is any kind of approximate triangular factorization (with pivoting) can

be used.

Actually, only the prescale, Jacobi and Cholesky preconditioners can be com-

puted in variable precision, i.e., with PRECOND CALC * 6= double.

6.1.4 Krylov Solvers

The implemented Krylov solvers are CG, BiCG, CGS, and BiCGStab. All solvers sup-

port preconditioning, variable precision, and veri�cation of their iterated solution.

Due to generic programming, the latter two features are completely separated from

the solver. Variable precision is a feature of the underlying matrix-vector arithmetic

and the veri�cation step can be considered as a separate post processing of the so-

lution. Thus it is easy to transform any given Krylov solver to a veri�ed Krylov

solver with variable precision.

6.1.5 Veri�cation

As mentioned in the section above, veri�cation of iterated solutions with vk is com-

pletely separated from the solver itself. Both implemented veri�cation algorithms

only need the system matrix A, the right hand side vector b, an approximate trian-

gular decomposition and obviously the approximate solution to be veri�ed.

The supported veri�cation algorithms are

sigma min This is a veri�cation method via basic error bounds, see Section 4.3.1.

gauss This veri�cation method uses improved error bounds described in Section 4.3.2.

6.1.6 Output

Usually, there are two ASCII output �les written by vk. One contains the iterated

solution vector and the other is used for logging all important information about

the system itself and the solving and veri�cation process. The log-�les are designed

to be directly usable as gnuplot [40] input data �les.

# vk-log-file

# filename : gk416_0000128_cg_Cholesky-none_[...].vk

# date : Wed May 17 10:55:15 2000

# precond calc precision = 53 Bit (double)

# precond calc accu length = 53 Bit (double)

# precond calc prod length = 53 Bit (double)

# precond apply precision = 53 Bit (double)

# precond apply accu length = 4288 Bit (multiple<67>)

# precond apply prod length = 128 Bit (multiple< 2>)

# internal precision = 53 Bit (double)
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# internal accu length = 4288 Bit (multiple<67>)

# internal prod length = 128 Bit (multiple< 2>)

# solution precision = 53 Bit (double)

# solution calc prec = 128 Bit (multiple< 2>)

# maxCount = 128

# max. residual norm = 2.46204e-12

# max. error norm = 1e-05

# algorithm : cg

# preconditioning : Cholesky (none) (0 0:00:00.00 sec)

# matrix : gk416_0000128

# exact solution : none

# dimension = 128

# nnz = 634 (3.87%)

# lower bandwidth = 2

# upper bandwidth = 2

# min. singular value = 2.46204e-07 (0 0:00:00.00 sec)

# decomposition error = ---

# ||A*x-b|| (x=exact) = ---

#-------------------------------------------------------------------

# iter time res.norm abs.error ub of res.nrm.

#-------------------------------------------------------------------

1 0 1.1456e-08 --- 1.5628e-08

2 0.01 2.2175e-19 --- 1.6908e-09

# verification failed ( upper error bound \in [0.0068674,0.0068674])

3 0.02 5.6131e-31 --- 3.3959e-09

# verification failed ( upper error bound \in [0.013793,0.013793])

# STAGNATION after 3 steps.

# needed 3 iterations to reach ||r||: 5.61e-31 (updated)

# verified upper error bound : 0.0069

# EOF (0 0:00:00.02 sec)

6.2 Using vk

Since vk makes extensive use of the two stage programming paradigm (see Sec-

tion 5.2), several quantities have already to be known at compile-time. This enables

the compiler to produce highly specialized code, e.g., for the particular data types

we want to use. Therefore, using vk consists of two steps. First we have to com-

pile an appropriate executable (see Section 6.2.1) and secondly we need to run the

executable with proper command line options (Section 6.2.2).

6.2.1 Compiling vk

Before compiling vk, one have to choose the precision for each arithmetic class

(compare Section 6.1.1) as well as the preconditioner. A preconditioner is selected

by setting PRECOND TYPE to an appropriate prec id, i.e., by adding the de�nition -D

PRECOND TYPE=prec id to the compile command line. Table 6.3 shows all supported

preconditioners with according prec ids. Similarly, the data type (Table 6.1) has to

Name prec id

none 0

prescale 1

Jacobi 2

Cholesky 3

Name prec id

LDLT 4

LDMT 5

external 6

Table 6.3: All preconditioners supported by vk.
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be selected for each arithmetic type-class, by adding -D class name = type id to the

compiler options. The default precision for any class is IEEE double (type id=-1).

If one arithmetic class is adjusted to have the data type doubledouble you need

to link the doubledouble library [16] and add the options:

-L path/to/doubledouble/library/

-l doubledouble

-I path/to/doubledouble/includes/

-D DD INLINE -D x86 -m 486 -D VK USE DOUBLEDOUBLE

You always need to link the Profil and Bias libraries2 [70]:

-L path/to/pro�l bias/library/

-l Profil -l Bias

-I path/to/pro�l bias/includes/

Finally you need

-L path/to/gmp/library/

-l gmp

-I path/to/gmp/includes/

-I path/to/gmp++/source/

to tell the compiler where to �nd the gmp++ library3 which provides the multiple<N>

data type.

All together the command line for compiling vk should look as follows:

g++ -o my vk vk.cc -I ..

options for doubledouble

options for profil/bias

options for gmp/gmp++

de�ne for the preconditioner

de�nes for the data types

Assume we need a Krylov solver with Cholesky preconditioner. The Cholesky

factorization shall be computed in a higher precision, say in doubledouble, but

stored in the IEEE double format. Additionally we need all internal scalar products

to be exact ones. Then we may compile vk via

g++ -o my_vk vk.cc -I ..

-L ~/lib/doubledouble -l doubledouble

-I ~/include/doubledouble

-D DD_INLINE -D x86 -m 486 -D VK_USE_DOUBLEDOUBLE

-L ~/lib/profil_bias -l Profil -l Bias

-I ~/include/profil_bias

-L /usr/lib -l gmp

-I /usr/include/gmp

-I ~/source/gmp++

2Note that the original versions produces oodles of warnings, but should compile anyhow.
3This library is obtainable from the author of this thesis.
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-D PRECOND_TYPE = 3

-D PRECOND_FACT_PROD = -3

-D PRECOND_FACT_ACCU = -3

-D INTERNAL_PROD = 2

-D INTERNAL_ACCU = 67

6.2.2 Command Line Options

Table 6.4 shows all currently supported command line options

Switch Arg. type Description

-h, --help none prints a short help message (similar to

this table).

-V, --version none prints a description of the executable.

-m, --matrix string �lename of the matrix or `gk416 n,

`gk420 n, or `hilbert n.

-r, --rhs string �lename of the right hand side vector

or `set' to set b = Ax, where x is the

comparative solution.

-c, --compsol string �le-name of the comparative solution.

-a, --algorithm string `CG', `BiCG', `CGS', or `BiCGStab'.

-p, --preconditioner string option for the preconditioner (e.g., the

�le-name for `external').

-n, --maxcount int maximum number of iterations.

-e, --eps 
oat maximum residual norm (or maximum

error norm, if veri�cation is enabled).

-v, --verify none enable veri�cation

-w, --write string name of the �le to store the iterated

solution in.

-l, --logfile string name of the �le to store the logging

messages in (may be `auto' for auto-

matically creating a �le name).

-q, --query string Used for communication between vk

and xvk

Table 6.4: Command line options for vk
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6.3 xvk | A Graphical User Interface

Because there are a lot of compile-time and run-time options, include paths, libraries,

and so on, it might be a little diÆcult to get vk running. To assist you with that,

there is a graphical user interface (GUI) for vk called xvk. It is written in C and

uses the X-toolkit GTK [53].

The GUI of xvk is organized as a notebook with 4 pages: `Compile-Time Con-

stants', `Compiler Options', `Run-Time Parameters', and `Browse Log�les' (the lat-

ter actually is in progress).

The page `Compile-Time Constants' (see Figure 6.3) allows you to set all compile-

time constants to appropriate values. The arithmetic type-classes (compare Ta-

ble 6.2) are subdivided into 5 categories. For each type-class, there is a little

menu that lets you choose a numerical data type (compare Table 6.1). If you select

multiple<N>, the `Precision' entry becomes sensitive. You may adjust N here.

Additionally, you can select the preconditioner type, by simply clicking on its

radio button.

Figure 6.3: xvk: Compile-time constants.

On the page `Compiler Options' (see Figure 6.4) all remaining options of the

compiler command line can be adjusted. Since it shouldn't be necessary to change
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these settings after installation, it is possible to save them on disk in order to get

them preloaded every time you start xvk.

Additionally, at the bottom of this page, there is a window displaying the output

of all compiler calls initiated by xvk. This output is also written into a log�le.

Figure 6.4: xvk: Compiler options.

The notebook page `Run-Time Parameters' (see Figure 6.5) allows you to adjust

all options understood by vk and beyond it you can choose some additional options

only provided by xvk. The latter are computed by calling MATLAB preliminary to

vk.

In particular you may

� select the system matrix either as one of the built-in types or by specifying a

�le in the MatrixMarket format (see [85]) or

� select the right-hand-side vector either by setting all its components to one,

by computing it according to the comparative solution (must be given in this

case), or by specifying a �le in the MatrixMarket format and

� select a comparative solution,
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� pass some options to the compiled-in preconditioner,

� select a reordering algorithm,

� choose a Krylov algorithm,

� specify the stopping criteria(s),

� set the veri�cation mode, and �nally

� adjust some project properties

Figure 6.5: xvk: Run-time parameters.
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7
Computational Results

“ Numerical subroutines should deliver results that satisfy simple,

useful mathematical laws whenever possible.”
Donald E. Knuth, 1981

7.1 Level of Orthogonality

As a �rst example of the e�ectiveness of higher precision arithmetic, we solved again

the system GK4.16(1023) (compare Section 2.3.2, Figure 2.4). The residual norms

and error norms, achieved by using a staggered precision arithmetic, are plotted in

Figure 7.1. The letter l denotes the staggered length, i.e., the number of 
oating-point

numbers de�ning a staggered number (see Section 3.2.1). The case l = 1 corresponds

with Figure 2.4. Since the staggered arithmetic is simulated in software, it cannot

compete with the built-in double arithmetic (l = 1) in computing time. However,

despite getting more accurate solutions, (which might be unnecessary for practical

problems) we observe a signi�cant saving in the number of iterations.

In Figure 7.2 we show the level of orthogonality of the new residual-vector rm+1

to the previous ones: maxm
k=1fhrk j rm+1i=(jjrkjj2jjrm+1jj2)g. Beside the expectedly

better orthogonality at the beginning, the loss of orthogonality is not delayed very

much. However, this little improvement is suÆcient to give a signi�cantly better

convergence.

{ 97 {
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l = 4
l = 3
l = 2
l = 1

204715341023(= n)5110

1

10�10

10�20

10�30

Figure 7.1: The Euclidean norms of the residuals (oscillating) and errors (more

or less piecewise constant) during solving the GK(1023) system with

staggered length l from 1 to 4.

l = 6
l = 4
l = 2
l = 1

7555112551
10�90

10�60

10�30

1

Figure 7.2: The level of orthogonality during solving the GK(1023) system with

staggered length l 2 f1; 2; 4; 6g.
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7.2 High Precision and Exact Scalar Products

In this example, we demonstrate the e�ect of high precision and exact scalar prod-

ucts. The used linear system is called fidap009 and is described in the appendix as

Matrix A.5. We solved this linear system with a preconditioned Conjugate Gradient

solver. For the preconditioner we used an incomplete Cholesky factorization with

drop-tolerance 10�10. For several larger droptolerances, i.e. more sparse precondi-

tioners, we got no convergence, neither with double, nor with extended arithmetic.

The used arithmetics were:
double IEEE double precision,

doubleX IEEE double precision with exact scalar products,

extended Intel's extended precision format, and

extendedX Intel's extended precision format with exact scalar productsa

aThis accumulator needs approximately 32 kbyte. Since vk provides a central accu management,

only one accumulator of this size is allocated.

Figure 7.3 shows the relative error norms vs. number of iterations. As we can

see, the higher precision used for accumulation, results in faster convergence and

increased accuracy.

extendedX
doubleX

extended
double

5004003002001000

1

10�4

10�8

10�12

10�16

Figure 7.3: Solving a fidap009 system (Matrix A.5) with an incomplete

Cholesky preconditioned CG solver. The curves represent the relative

error norms vs. number of iterations achieved by computing with dif-

ferently precise arithmetics (IEEE double resp. Intel's extended with

standard scalar products (double/extended) and with exact scalar

products (doubleX/extendedX.)

Taking into consideration, that exact scalar products, suÆciently supported in

hardware, need not to be slower than ordinary scalar products, there it is simply

no reason not to utilize this technique. However, presently, this operation is sim-

ulated in software only and therefore is relatively slow compared to the built-in
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arithmetic. Figure 7.4 shows the same experiments as Figure 7.3 but now plotted

against computing time (on a Pentium II, 400 Mhz).

extendedX
doubleX

extended
double

5:004:003:002:001:000:00

1

10�4

10�8

10�12

10�16

Figure 7.4: This �gure shows the same experiments as Figure 7.3 but now plotted

against computing time (in sec) instead of iteration counts.

Of course, for practical problems, the exact scalar product often provides much

more precision than is actually needed. To get an idea on how many precision would

suÆce, we solved the fidap009 system with basic data type double and di�erent

accumulator precisions.

double/multiple<2> and doubleX
double/extended

double

5004003002001000

1

10�4

10�8

10�12

10�16

Figure 7.5: This �gure shows the same experiments as Figure 7.3 but now we

used di�erent scalar products while leaving the basic data type �xed

at double.
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Namely, we used accumulation in double, extended, multiple<2> (128 bit man-

tissa length, see Section 3.2.2), and exact accumulation. The results are shown in

Figure 7.5. The curves that corresponds with exact accumulation and multiple<2>-

accumulation di�er so little that they appear as a single line. That is, in this partic-

ular case, 128 bit mantissa length was suÆcient for almost error free accumulation.

7.3 Beyond Ordinary Floating-Point Arithmetic

While in the latter section we only saved iterations by using a more precise arith-

metic, we now show that there are examples that are not solvable in standard


oating-point arithmetics at all or at least speed up by using higher precision.

For this purpose, we solved a linear system with the Hilbert matrix of dimension

13. To get a simple stopping criterion, we �rst computed a veri�ed solution that

is guaranteed to have at least 16 correct decimal digits and then stopped each of

the following iterations, when the approximated solutions coincide with the veri�ed

solution within the �rst �ve digits.

Each experiment was carried out twice, once with a (complete) Cholesky precon-

ditioner and once without preconditioning. The results for various arithmetics are

displayed in Table 7.1. If there are two entries in the `Arithmetic' column (separated

by a slash), then the �rst denotes the data-type and the second is the accumulation

precision. If there is only one arithmetic data type given, then all computations are

performed with this type.

Arithmetic
No Precond. Cholesky

iter time iter time

double >130 (|) >130 (|)

double/extended >130 (|) >130 (|)

extended >130 (|) >130 (|)

double/multiple<2> 89 (0.13) 3 (<0.01)

double/exact 89 (0.13) 3 (<0.01)

extended/exact 37 (0.04) 3 (<0.01)

multiple<2> 23 (0.04) 3 (0.01)

multiple<4> 16 (0.02) 3 (0.01)

multiple<5> 13 (0.02) 3 (0.01)

Table 7.1: This table shows the number of iterations and the computing time,

needed to obtain at least 5 correct decimal digits in the iterated solu-

tion. We stopped the process at a maximum of 130 steps (displayed

in gray letters).

As we can see, the smallest arithmetic enabling convergence, is IEEE double

with 128 bit accumulation (double/mutiple<2>). Using extended precision (with

mutiple<2> accumulation), signi�cantly speeds up the computation in the non-

preconditioned case and further increasing the precision saves up to 85% computing

time. With 320 bit mantissa length mutiple<5>, we match the exact precision

property of convergence after at most n steps.
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Though we used a (complete) Cholesky preconditioner in the right column, i.e.

a direct solver in each iteration, we also got convergence only with at least 128 bit

accumulation. Further increasing the precision does not save more iterations and

consequently does not save computing time. However, even with this direct solver

in each step, we need 3 iterations to get 5 correct digits.

7.4 Does Higher Precision Increase the Computational E�ort?

Inspecting, for example, the MATLAB implementations of Krylov subspace solvers,

we can see that the residual norm which is used for evaluating the stopping criterion,

is always computed as normr = norm(b - A * x); instead of using the norm of the

updated residual. This e�ort is often necessary because in �nite precision these two

theoretically equal values tend to di�er signi�cantly after sometimes only a few

iterations (see Figure 7.6).

multiple<2>
extended

2015105

1

10�30

10�60

Figure 7.6: This �gure compares the norm of the iteratively updated residual

(thin lines) and the exact residual kb�Axk2 (thick lines) computed

with di�erently precise arithmetics (extended: solid, multiple<2>:

dashed).

However, there is one extra matrix-vector multiplication at each step and this

information is solely used to decide whether the iteration should be stopped or not.

Fortunately, we can do much better. Assume we have the internal precision adjusted

to doubledouble (staggered with length 2). For generating the Krylov spaces, we

need

Ar = A(r(1) + r(2)) = Ar(1) +Ar(2):

That means, increasing the precision by one is comparable with doing one extra

matrix-vector product. However, with this approach, we do not only improve the

stopping criterion, but also signi�cantly improve the accuracy of the iterated so-
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lution, see Figure 7.6. This e�ect is demonstrated with the mcca matrix which is

described in Matrix A.7.

7.5 Solving Ill-Conditioned Test-Matrices

Here we solved some GK4.16(n) (see (6.1) on page 89) systems with a preconditioned

CG algorithm with Cholesky preconditioner (see Table 7.2).

Matrix double doubleX extended multiple<2>

n = 100 error 1.3�10�9 1.6�10�15 2.0�10�12 1.4�10�23

�min = 8.4�10�7 bound 7.5�10�3 2.0�10�3 4.2�10�6 4.9�10�15

vtime < 0.01sec iter 3
�

3
�

2 2

time < 0:01 < 0:01 < 0:01 0.01

n = 1000 error 9.6�10�5 5.3�10�15 9.0�10�8 6.9�10�25

�min = 9.7�10�11 bound > 1 > 1 > 1 1.0�10�11

vtime = 0.04sec iter 3
�

3
�

3
�

3

time < 0:01 0:13a 0.02 0.15

n = 10 000 error > 1 3.2�10�14 2.7�10�3 4.8�10�25

�min = 9.7�10�15 bound > 1 > 1 > 1 2.5�10�6

vtime = 0.47sec iter 3
�

5
�

3
�

5

time 0.08 2:33a 0.10 3.06

n = 50 000 error > 1 2.5�10�13 > 1 1.9�10�14

�min = 2.2�10�17 bound > 1 > 1 > 1 3.3�10�7

vtime = 3.01sec iter 3
�

12
�

13
�

9

time 0.45 28:66a 2.83 28.73

n = 100 000 error > 1 2.8�10�13 > 1 4.7�10�14

�min = 4.1�10�18 bound > 1 > 1 > 1 7.0�10�7

vtime = 4.83sec iter 3
�

11
�

7
�

12

time 0.93 52.55
a

2.96 77.31

Table 7.2: Solving some GK4.16(n) systems with an incomplete Cholesky precon-

ditioned CG solver. The iteration was stopped after 5 correct digits

were guaranteed (by the veri�cation procedure) or after stagnation

(gray). The cases where we have 5 digits accuracy, compared to the

previously computed highly precise veri�ed solution (but not veri�ed),

are displayed in dark gray.

aNote that this loss of convergence speed is caused by the slow software simulation of the exact

scalar product. SuÆciently supported in hardware, doubleX should need the same time as double.

In this and all following examples, we stopped the iteration as soon as �ve

correct digits of the solution could be guaranteed or after stagnation of the residual

norm (marked by an *). With error we denote the actual relative error of the

approximate solution. Usually, we have no exact solution available and therefore

we cannot compute the error. However, for these examples we use a very tight

enclosure of the exact solution, computed with a high precision arithmetic. With

bound we denote the computed upper bound of the error and iter and time are the
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number of iterations and the time needed for these iterations (in sec, measured on a

PentiumII/400). The quantity vtime denotes the time needed to compute a rigorous

bound for the smallest singular value of A.

As we can see, veri�cation with the techniques described in Section 4, is only

possible in conjunction with higher precision arithmetic. Even if we are only inter-

ested in a non-veri�ed solution, we cannot trust in standard 
oating-point (double)

arithmetic. However, simply replacing all 
oating-point scalar products by exact

scalar products suÆces to deliver always enough correct digits in the approximate

solution, although not veri�ed. Using a 128 bit arithmetic we always achieved fast

convergence and highly accurate veri�ed solutions.

In the next example we solve some Hilbert systems, again with a Cholesky pre-

conditioned CG solver, see Table 7.3. With a standard double or extended arith-

metic for the solver, we can only handle very small dimensions, while a mantissa

length of 128 bit always is suÆcient to get fast convergence and good approxima-

tions to the solution. At dimension 14, the Cholesky decomposition (computed in

double) fails.

double extended multiple<2> Chol.

dim �min iter time iter time iter time prec.

8 3.60�10�05 3 < 0:01 1 < 0:01 1 < 0:01

d
o
u
b
l
e

10 2.29�10�05 > 10 | 2 < 0:01 2 < 0:01

12 5.11�10�07 > 12 | > 12 | 3 < 0:01

13 3.05�10�08 > 13 | > 13 | 4 < 0:01

15 4.92�10�09 > 15 | > 15 | 1 0.01

m
u
l
t
i
p
l
e
<
2
>

17 2.83�10�10 > 17 | > 17 | 1 0.02

19 9.62�10�12 > 19 | > 19 | 1 0.02

21 3.60�10�13 > 21 | > 21 | 1 0.02

Table 7.3: Here we aimed to verify 5 correct digits in the solution of various

Hilbert systems. For dimensions up to 13, the Cholesky precondi-

tioner was computed in double while the higher dimensional Hilbert

matrices were factorized with a multiple<2> arithmetic.

Increasing the precision used to compute the Cholesky decomposition enables us

to handle larger Hilbert matrices. In Table 7.3, rows 15-21 we used the data type

multiple<2> for computing the preconditioner. Now the Cholesky decomposition

is suÆcient to solve the linear system in one step.

We stop at dimension 21, because it is not possible to store higher dimensional

Hilbert matrices in IEEE double exactly (compare Section 6.1.2).

This high precision preconditioning also allows us to handle larger dimensions for

the GK4.16 matrices. Table 7.4 shows the results of the GK4.16(2 000 000) system.

Just to see how far we can go with Hilbert matrices, I extended vk to allow

multiple precision system matrices (in the standard version, system matrices are

always stored in double). With this extension we can even solve Hilbert matrices

of dimension 42 [1] and higher1.

1In fact, vk solved the Hilbert 42 system in less than 8 seconds with 113 guaranteed decimals

(using a data type with 2560 bits mantissa length, i.e. approximately 770 decimal digits).
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Matrix doubleX extended multiple<2> multiple<3>

n = 2000 000 error | | | |

�min = 4.2�10�24 bound > 1 > 1 1.8�10�2 6.7�10�7

vtime = 123.27sec iter 8
�

2
�

2
�

2

time 903:34a 18.15 261.42 306.54

Table 7.4: This table shows the same experiment as Table 7.2 but now with

dimension 2 000 000 (this was the largest possible dimension solvable

on my PC due to storage limitations). See Table 7.2 for explanation

of footnote
a
.

Our �nal `test' example is matrix GK4.20 (see (6.2) on page 89). This matrix is

symmetric and inde�nite but it nevertheless turns out that CG works �ne. Here we

used a modi�ed LDLT preconditioner, Table 7.5.

Matrix double doubleX extended multiple<2>

n = 100000 error 2.7�10�7 1.5�10�8 1.3�10�10 3.5�10�14

�min = 9.8�10�11 bound 5.6�10�4 3.1�10�4 2.9�10�7 1.7�10�13

vtime = 15.44sec iter 3
�

3
�

2 2

time 2.43 13:87a 0.74 10.61

n = 500000 error 1.5�10�6 1.4�10�7 7.3�10�10 8.6�10�14

�min = 2.9�10�12 bound 4.6�10�2 2.2�10�2 2.9�10�5 2.2�10�9

vtime = 78.11sec iter 3
�

3
�

3
�

2

time 12.08 68:7a 16.78 53.67

n = 1000000 error 7.3�10�6 1.6�10�6 3.6�10�9 1.1�10�13

�min = 8.1�10�13 bound 0.39 > 1 2.4�10�4 8.2�10�9

vtime = 157.03sec iter 3
�

3
�

3
�

2

time 24.58 141:4a 33.55 1:48.3

Table 7.5: This table shows the results of our experiments with the GK4.20 matri-

ces. See Table 7.2 for explanation of the used notations. See Table 7.2

for explanation of footnote
a
.

7.6 Veri�ed Solutions for `Real-Life' Problems

In this section we investigate some example systems taken from various application

areas such as 
uid dynamics, structural engineering, computer component design,

and chemical engineering (see Appendix A).

Symmetric positive de�nite systems we always solved with a Cholesky precon-

ditioned Conjugate Gradient solver. In the nonsymmetric case we show only the

results of the fastest ILU preconditioned Krylov solver.

Particularly we utilized various solvers (BiCG, CGS, and BiCGStab) and incom-

plete preconditioners. In this context of high precision arithmetics, the GMRES

algorithm couldn't compete with the short recurrence solvers. Since GMRES needs
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most arithmetic operations and storage anyway, this lack is even reinforced by the

increased requirements in memory and computing time for the high precision arith-

metic operations.

In Table 7.6 we compare the results achieved by using several arithmetics (see

Table 7.2 for explanation). Table 7.7 gives a quick overview over some systems we

solved with vk.

Matrix double doubleX extended multiple<2>

�dap009 error 1.9�10�4 1.1�10�13 1.6�10�6 6.2�10�11

n = 4683 bound 0.33 6.6�10�2 2.0�10�4 1.1�10�8

�min = 2.9�10�4 iter 3
�

4
�

3
�

2

vtime = 22.55sec time 0.53 6:72a 0.68 2.82

s3rmt3m1 error 3.4�10�5 8.6�10�14 2.5�10�8 4.3�10�11

n = 5489 bound > 1 > 1 9.7�10�2 5.2�10�7

�min = 3.5�10�7 iter 3
�

3
�

3
�

2

vtime = 507.6sec time 1.14 18:40a 1.37 12.42

e30r5000 error 1.1�10�11 1.5�10�14 5.4�10�12 1.2�10�38

n = 9661 bound > 1 > 1 0.7 1.4�10�32

�min = 3.7�10�12 iter 3
�

3
�

3
�

2

vtime = 2h09.47min time 3.86 69:4a 5.45 70.41

e40r5000 error 2.8�10�11 1.9�10�14 2.3�10�14 1.6�10�32

n = 17281 bound > 1 > 1 > 1 1.3�10�29

�min = 1.5�10�13 iter 3
�

3
�

3
�

2

vtime = 6h48.09min time 9.04 232:3a 13.00 848.0

Table 7.6: Solving some `real-life' problems with di�erent arithmetics. See Ta-

ble 7.2 for explanation of footnote
a
and the used notations.

Again, we often have enough correct digits in the approximate solution but

usually we are not aware of this fact. Particularly, we are only able to prove this by

using a higher precision arithmetic.

7.7 Veri�cation via Normal Equations

In the nonsymmetric case, we have to meet the assumption

�min(LU) > kLU �Ak2 (7.1)

which is sometimes a problem if either �min(LU) is very small orA is ill-conditioned

and its elements are large. In such cases it is often advantageous to switch to the

normal equations. We stress that we actually do not have to compute ATA and

ATb [98]. Although we have squared the smallest singular value (which possibly

makes it more diÆcult to �nd a veri�ed lower bound if �min(LU ) < 1), we now do

not have to ful�ll (7.1) anymore.

Using this technique, we solved, e.g., the mcca system (see Matrix A.7). For this

matrix, vk computes a lower bound for the smallest singular value as 2.4�10�2 (this
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Name dim nnz cond bound time

fs 680 1 680 2646 2.1�104 3.56�10�38 21.75 sec

west2021 2021 7353 7.5�1012 9.43�10�25 705.93 sec

mvmtls4000 4000 8784 2.7�107 3.62�10�30 1h03.55min

pores2 1224 9613 3.31�108 4.87�10�17 292.68 sec

bcsstk08 1074 12960 4.7�107 9.49�10�28 82.72 sec

pde2961 2961 14585 9.49�102 1.77�10�14 7.22 sec

add32 4960 23884 2.14�102 6.89�10�15 1h08.28min

fidap009 4683 95053 1.04�107 1.1�10�8 25.37 sec

s3rmt3m1 5489 112505 1.33�1010 5.2�10�7 520.02 sec

e30r5000 9661 306356 1.27�1011 1.2�10�38 2h10.57min

e40r5000 17281 553956 1.4�1016 1.3�10�29 7h02.09min

Table 7.7: A quick overview over some systems we solved with vk. The objective

was to get 5 correct digits in the iterated solution. Since convergence

sometimes was very fast, we overshot at times.We only display the

results of the smalles arithmetic that delivers these 5 digits (almost

always multiple<2>).Note that `time' denotes the overall time for

solving and veri�cation.

seems to be roughly underestimated due to the very high condition number) and

an upper bound for kLU �Ak2 as 2.31�109. That is we cannot apply Theorem 4.4

directly. Switching to the normal equations, vk �nds 7.67�103 as a lower bound

for �min(A
TA). Applying a Cholesky preconditioned CG algorithm, we are able to

verify �ve decimal digits in less than three seconds.

7.8 Performance Tuning

The veri�cation time depends strongly on the number of nonzero elements and the

bandwidth of L and U . Therefore, it is advantageous to reduce these quantities. We

discuss two possibilities to achieve this reduction: column/row reordering algorithms

and incomplete factorizations (see Section 1.4.2).

Drop-Tol. nnz �min(LU) kLU �Ak2 total time bound

complete 54058 (6.67%) 4.2284�10�2 4.50�10�15 9.95 sec 1.23�10�26

1�10�4 32083 (3.96%) 4.2456�10�2 2.43�10�3 7.05 sec 1.60�10�8

1�10�3 26843 (3.31%) 4.4330�10�2 7.68�10�2 failed |

Table 7.8: Here we demonstrate the possible speed up by using incomplete LU

factorizations at the example of Matrix pde900 (A.8).

The problem with incomplete factorizations is that we have to bear inequality

(7.1) in mind. Particularly for ill-conditioned systems kLU � Ak2 grows heavily

with increasing sparsity in L and U . However, if the smallest singular value of A is

not too small, we can achieve a signi�cant improvement, as shown in Table 7.8 at
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the example of Matrix pde900 (A.8). Switching from a complete LU preconditioner

to incomplete LU with drop-tolerance 10�4 saves nearly 30% computing time

Applying reordering algorithms can sometimes dramatically speed up the ver-

i�cation process. We illustrate the e�ect of reordering with the bcsstk08 and

tols4000 matrix (see Matrices A.2 and A.12). Because bcsstk08 is symmetric,

we applied the symmetric minimum degree reordering algorithm. This algorithm

computes a permutation matrix P to a given matrix A, such that the Cholesky

factors of PAP T have less nonzero elements, see Figure 7.7.

(a) A (b) chol(A) (c) PAP T (d) chol(PAP T )

Figure 7.7: spy

Matrix tols4000 is nonsymmetric and therefore we applied a reverse Cuthill-

McKee algorithm, especially designed to deliver smaller bandwidths in the LU fac-

tors.

Table 7.9 shows some experiments with and without reordering.

Reordering Precond. Preconditioner total

Algorithm (droptol) nnz lo/up bandw. time bound

none Chol(10
�5
) 115645 591/1 158.62 sec 9.01�10�7

SymmMinDeg Chol(10
�5
) 23688 1054/1 59.35 sec 5.35�10�8

none ILU(10
�6
) 13584 2401/3218 63.55min 3.62�10�30

Cuthill-McKee ILU(10
�6
) 14820 89/90 34.84 sec 6.10�10�28

Table 7.9: Reordering algorithms can signi�cantly speed up convergence. This

table shows a symmetric and a nonsymmetric example. The �rst aims

to reduce the number of nonzero elements while the second tries to

reduce the bandwidth.



Conclusion

“ Calvin: I think we've got enough information now, don't you?

Hobbes: All we have is one \fact" you made up.

Calvin: That's plenty. By the time we add an introduction,

a few illustrations, and a conclusion,

it will look like a graduate thesis.”
Calvin and Hobbes (by Bill Watterson), 1991

“ So eine Arbeit wird eigentlich nie fertig, man mu� sie f�ur fertig erkl�aren, wenn man

nach Zeit und Umst�anden das M�oglichste getan hat.2 ”
Johann Wolfgang von Goethe, Italienische Reise II, 16.3.1787

As the main result of our investigations, we conclude that traditionally used arith-

metics (mostly IEEE double precision) are often not the best choice for solving linear

systems of equations.

Both, theoretically and by examples, we showed that iterative solvers | par-

ticularly Krylov subspace methods | heavily su�er from rounding errors. Usually,

computationally expensive reorthogonalization strategies (or even full orthogonaliz-

ing methods) are utilized to work against arithmetic insuÆciencies.

In this thesis, we showed that using improved arithmetics can lead to much better

results, compared to those obtained from ordinary 
oating-point arithmetic. Par-

ticularly, exchanging the classically used 
oating-point scalar product by the exact

scalar product often suÆces to obtain signi�cantly more accuracy in the computed

solutions, at least for not too ill-conditioned matrices. For symmetric systems we

mostly obtained nearly maximum accuracy (13 to 15 correct decimal digits), al-

though not veri�ed.

SuÆciently supported in hardware, the exact scalar product can be computed

as fast as an ordinary scalar product. Thus, we urgently postulate this technique to

be implemented in future processors in hardware.

However, if we need to guarantee the computed solutions, this arithmetical im-

provement does often not bene�t to obtain small error bounds. For this purpose,

2\A work of this kind actually never �nishes. You have to declare it �nished when you did all

in your power, dependent on time and circumstances."

{ 109 {
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or when the condition number is too large, we have to switch to higher precision

numbers. This enables us to solve practically arbitrary ill-conditioned systems with

almost any accuracy and guaranteed error bounds (if needed).

Considering the results of this work, it should be discussed whether hardware

manufacturers should be asked to develop hardware support for multiple precision

arithmetics, maybe solely based on integer arithmetic. The number type might

consist of a few bytes for the sign, exponent, and some status information, and

a, propably variable, number of bytes for the mantissa. Alternatively, we could

utilize staggered precision numbers, which would greatly suÆce from a hardware

supported exact scalar product. With this approach, we only had to extend modern

computer architectures by one operation to get a high performance multiple precision

arithmetic.

Combining these techniques, it should easily be possible, not only to save iter-

ations (as we always did in our tests) but also to save real computing time, while

simultaneously getting more accurate solutions. Additionally, the veri�cation pro-

cess will speed up signi�cantly due to its extensive usage of exact scalar products.



APPENDIX

A
Used Matrices

Here we list several test matrices used throughout this thesis. The matrices are

taken from the Matrix-Market [85] and are alphabetically ordered.

Matrix A.1: add32

Computer component design, 32-bit adder

S. Hamm, Motorola Inc. Semicond. Systems Design Technology

Size Type Properties

dim = 4960

nnz = 23884

bandw = 4030=4030

real,

unsymmetric

k � kF = 1:6

cond = 2:14 � 102
�min = 2:99 � 10�4

Matrix A.2: bcsstk08

Structural engineering

John Lewis, Boeing Computer Services

Size Type Properties

dim = 1074

nnz = 7017

bandw = 591=591

real,

symmetric

k � kF = 1:0 � 1011
cond = 4:7 � 107
�min = 2:1 � 103
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Matrix A.3: e30r5000

Driven cavity , 30x30 elements, Re=5000

Andrew Chapman, University of Minnesota

Size Type Properties

dim = 9661

nnz = 306356

bandw = 342=342

real,

unsymmetric

k � kF = 2:20 � 103
cond = 1:27 � 1011
�min = 3:7 � 10�12

Matrix A.4: e40r5000

Driven cavity , 40x40 elements, Re=5000

Andrew Chapman, University of Minnesota

Size Type Properties

dim = 17281

nnz = 553956

bandw = 452=452

real,

unsymmetric

k � kF = 2:10 � 103
cond = 7:68 � 1010
�min = 1:5 � 10�13

Matrix A.5: fidap009

Finite element modeling of 
uid dynamics

Isaac Hasbani, Fluid Dynamics International

Size Type Properties

dim = 3363

nnz = 99397

bandw = 86=86

real,

symmetric

k � kF = 3:00 � 1010
cond = 4:05 � 1013
�min = 2:27 � 10�4

Matrix A.6: fs680 1

Chemical kinetics problems

Alan Curtis, Computer Science and Systems Division

Size Type Properties

dim = 680

nnz = 2646

bandw = 561=281

real,

unsymmetric

k � kF = 1:2 � 1014
cond = 2:1 � 104
�min = 7:44 � 108

Matrix A.7: mcca

Nonlinear radiative transfer and statistical equilibrum in astro-

physics

Mats Carlson, Institute of Theoretical Astrophysics

Size Type Properties

dim = 180

nnz = 2659

bandw = 43=66

real,

unsymmetric

k � kF = 2:3 � 1019
cond = 3:6 � 1017
�min =
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Matrix A.8: pde900

Elliptic partial di�erential equation

H. Elman, University of Maryland

Size Type Properties

dim = 900

nnz = 4380

bandw = 31=31

real,

unsymmetric

k � kF = 2:2 � 102
cond = 8:73 � 102
�min = 4:43 � 10�2

Matrix A.9: pde2961

Elliptic partial di�erential equation

H. Elman, University of Maryland

Size Type Properties

dim = 2961

nnz = 14585

bandw = 48=48

real,

unsymmetric

k � kF = 2:2 � 102
cond = 9:49 � 102
�min = 4:23 � 10�2

Matrix A.10: pores2

Reservoir modeling

John Appleyard, Harwell Laboratory

Size Type Properties

dim = 1224

nnz = 9613

bandw = 472=471

real,

unsymmetric

k � kF = 1:5 � 108
cond = 3:31 � 108
�min = 2:63 � 10�2

Matrix A.11: s3rmt3m1

Finite element analysis of cylindrical shells

Reijo Kouhia, Helsinki University of Technology

Size Type Properties

dim = 5489

nnz = 112505

bandw = 192=192

real,

symmetric

k � kF = 1:7 � 105
cond = 1:33 � 1010
�min = 3:50 � 10�7

Matrix A.12: tols4000

Aeroelasticity, stability analysis of an airplane in 
ight

S. Godet-Thobie, CERFACS and C. B�es, Aerospatiale

Size Type Properties

dim = 4000

nnz = 8784

bandw = 2401=2418

real,

unsymmetric

k � kF = 3 � 108
cond = 2:7 � 107
�min = 3:03 � 10�12
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Matrix A.13: west2021

Chemical engineering plant models

Art Westerberg, University of Pittsburgh

Size Type Properties

dim = 2021

nnz = 7353

bandw = 1888=1309

real,

unsymmetric

k � kF = 1:8 � 106
cond = 7:50 � 1012
�min = 2:90 � 10�8
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B
Free and Open Source Software

“When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute

copies of free software (and charge for this service if you wish), that you receive source

code or can get it if you want it, that you can change the software or use pieces of it in

new free programs; and that you know you can do these things.”
GNU General Public License (Version 2), 1991

At this place, I wish to thank the hundreds of programmers that spend their

time, energy and knowledge in producing free and open source software. This thesis

would basically be impossible in this form without these programs. In the following,

I enumerate the most important of them, used for writing this thesis and coding the

programs.

First of all, I want to mention the operating system itself: LINUX. All text

editing was done with XEmacs combined with auctex-mode. For formatting the

thesis I used TEX/LATEX together with a couple of packages and my own document

style `dissbook'. The graphics where created using XFig, The Gimp and gnuplot.

Besides the dozens of really helpful little (and large) utilities, my programming

environment consisted of the GNU C compiler, egcs, xxgdb and again XEmacs with

cc-mode. Additionally I used several libraries, like gmp (GNU multiple precision),

doubledouble, pro�l, BIAS and gtk (GNU toolkit).
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C
Curriculum Vitae

Name Axel Facius

Address Jenaer Strasse 8,

76139 Karlsruhe

Date of Birth/ June 21, 1969 in Schw�abisch Gm�und

Birthplace

Nationality German

School Education 1976 - 1980 Grundschule (primary school)

1980 - 1989 Gymnasium (high school)

University 1991 - 1997 study of Mathematics, Computer Science and

Electrical Engineering at the University of

Karlsruhe

1995 project on "Simulation of Dynamical Oscillators in

Neural Networks on Parallel Computers"

1996-1997 Diploma-Thesis at the Institute of Logic,

Complexity, and Deduction Systems, Prof. Menzel,

subject: "Reconstruction and Analysis of

Independent Components with Neuronal Networks"

Diploma 11/1997 graduation to `Diplom Technomathematiker'

Thesis since 1998 work on Ph.D. at the Institute of Applied

Mathematics, advisors Prof. Kulisch and

Dr. Lohner
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