Spektroskopie an Fullerenen, Fullerendimeren und Kohlenstoffnanoröhren

Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften von der Fakultät für Chemie der Universität Karlsruhe (TH) angenommene

DISSERTATION

von

Diplom-Chemiker

Frank Hennrich

aus Mannheim

Dekan: Prof. Dr. M. Ballauff 1. Gutachter: Prof. Dr. M. M. Kappes 2. Gutachter: Priv. Doz. Dr. D. Nattland

Tag der mündlichen Prüfung: 27.10.2000

Inhaltsverzeichnis

1 Einleitung	1
1.1 Fullerene	1
1.2 Kohlenstoffnanoröhren	2
2 Höhere Fullerene	3
2.1 Allgemeine Betrachtungen	3
2.1.1 Symmetriebetrachtungen zu Fullerenen	3
$2.1.1.1^{-13}CNMR$	5
2.1.1.2 Schwingungsspektren	6
2.1.2 IP-Regel	7
2.1.3 Isolierte hohe Fullerene bei Beginn der Arbeit	10
2.2 Darstellung	13
2.2.1 K-H-Verfahren und Aufarbeitung	13
2.2.2 Eigene Trennung	15
2.3 ¹³ C NMR	20
2.3.1 Allgemeine Betrachtungen	20
2.3.2 Literatur	21
2.3.3 Messungen	23
2.3.3.1 Chemische Verschiebung und Strukturmotive	26
2.4 Elektronische Struktur	35
2.4.1 Literatur	35
2.4.2 Allgemeine Betrachtungen	36
2.4.3 TDDFT	39
2.4.4 Messungen	42
$2.4.4.1 C_{60}$	42
$2.4.4.2 C_{70}$	46
$2.4.4.3 C_{76}$	47
$2.4.4.4 C_{78}$	49
$2.4.4.5 C_{80}$	51
$2.4.4.6 C_{82}$	52

2.5 IR	55
2.5.1 Literaturübersicht	55
2.5.2 DRIFT-Messungen	56
2.5.3 DFT-Rechnugen	58
2.5.4 Messungen und Diskussion	58
$2.5.4.1 C_{60}$	58
2.5.4.2 Höhere Fullerene C_{70} , C_{76} , C_{78} (C_{2v} , C_{2v} ', D_3) und C_{82} (C_2)	66
2.6 Raman-Spektroskopie	74
2.6.1 Messungen	74
2.6.2 Lamb-Theorie	76
2.6.2.1 Monopolare Schwingungsmode	78
2.6.2.2 Quadrupolare Schwingungsmode	84
3 Fullerendimere	92
3.1 Literatur	92
3.2 Darstellung/Aufarbeitung	95
3.3 Welche C ₁₃₀ O-Isomere wurden hergestellt?	98
3.4 PM3-Rechnungen	101
3.5 DRIFT-Spektroskopie	101
$3.5.1 C_{120}, C_{120}O, C_{120}O_2$	101
$3.5.2 C_{130}O$	107
3.6 Raman	111
3.6.1 Systematik der Käfig-Käfig-Schwingungen	111
4 Nanoröhren	118
4.1 Literatur	118
4.1.1 Nomenklatur	118
4.1.2 Darstellung/Aufarbeitung	122
4.1.3 Reinigung	124
4.1.4 Chemisches Zerschneiden der SWNTs	125
4.1.5 Charakterisierung	127
4.2 Eigene SWNT-Herstellung	128
4.2.1 Karlsruher Apparatur zur Herstellung von SWNTs	128
4.2.2 Reinigung	130
4.2.3 Charakterisierung	131

4.2.3.1 Rasterelektronenmikroskopie (SEM)	131	
4.2.3.2 Elektronische Struktur/UV-vis-NIR-Spektren	133	
4.2.3.3 FT-Raman-Spektroskopie	138	
4.3 Chemische Modifikation	143	
5 Zusammenfassung	147	
5.1 Höhere Fullerene	147	
5.2 Fullerendimere	148	
5.3 Nanoröhren	149	
6 Anhang	150	
7 Literatur	176	

Danksagung

Ich danke an dieser Stelle allen Personen, die mich unterstützt haben und zum Gelingen dieser Arbeit beigetragen haben:

Prof. Dr. M. M. Kappes für die Themenstellung, seine stete Diskussionsbereitschaft und ganz besonders für die Freiheiten, die er mir ließ.

Den ehemalige Doktoranden und Diplomanden Rudi H. Michel, Achim Fischer, Philip Gerhardt und Steffen Nasterlack für die gute Zusammenarbeit auf dem Gebiet der Fullerene und Nanoröhren.

Hans-Jürgen Eisler für Messung der Raman-Spektren, die gute Zusammenarbeit und für seine Freundschaft.

Stefan Gilb für seine stete, unermüdliche und aufopfernde Hilfsbereitschaft, ohne die das Forschen auf diesem Niveau nicht möglich gewesen wäre.

Allen ehemaligen und jetzigen Mitarbeitern: Dr. habil. R. D. Beck, Anja Behrendt, Thomas Bergen, Götz Bräuchle, Doug Cameron, Jochen Friedrich, Martin Gegenheimer, Oliver Hampe, Olaf Hansen, Susanne Haupt, Stefan Heil, Mathias Hillenkamp, Dieter Illig, Julian Kaller, Geoff Koretsky, Klaus May, Sabine Richard-Schneider, Detlef Schooß, Henrik Schreiber, Robert Schulz, Carsten Stoermer, Carmen Warth, Dr. Patrick Weis, Ralf Wellmann und ganz besonders Jörg Pfister.

Den Angestellten des Instituts für die hervorragende Zusammenarbeit: Frau M. Peting, Herrn E. Kretzschmar, Herrn G. Zerrath, Herrn K. Dickgießer. Sowie allen Mitarbeitern der mechanischen Werkstatt und deren Leiter Herrn W. Baltz. Besonderen Dank auch an Herrn G. Rotter, der durch seine Glasarbeiten viele Experimente möglich gemacht hat.

Dr. Rüdiger Bauernschmitt, Dr. Axel Gbureck und Filip Furche des Arbeitskreises Prof. Ahlrichs für die DFT-Rechnungen.

Für die tolle Zusammenarbeit Dr. Dirk Fuchs und besonders Dr. Sergei Lebedkin am Forschungszentrum Karlsruhe.

Dr. Boris Reznick und den Angestellten des Physikalischen Instituts Frau K. Krebs und HerrnP. Pfundstein für die Anfertigung der SEM-und TEM-Aufnahmen.

Den Angestellten des Instituts für Organische Chemie Frau A. Kernert und Frau I. Rossnagel für die Messung der DRIFT-Spektren. und Herrn H. Röttele für die Geduld bei den Messung der ¹³C NMR-Spektren an Fullerenen.

Dr. Rainer Friedlein für seine fachliche Unterstützung und sein Engagement.

Ganz besonders danke ich meiner Freundin Regina Fischer für ihre Zuneigung und die Zusammenarbeit und meinen Eltern und meinen Geschwistern für ihre Unterstützung.

1 Einleitung

1.1 Fullerene

1996 erhielten Robert F. Curl, Jr., Sir Harold W. Kroto und Richard E. Smalley für die Entdeckung der *Fullerene* den Nobelpreis. Sie hatten 1985 diese hohlen Kohlenstoffmoleküle bei dem Versuch der Simulation von Hochtemperaturbedingungen, unter denen sich Kohlenstoffketten in Sternennebel bilden sollten, in einer Clusterstrahlapparatur entdeckt¹. Aber erst mit der Entdeckung der Herstellung von Fullerenen in Gramm-Mengen mit Hilfe eines Bogenentladungsverfahrens Anfang der 90er Jahre durch W. Krätschmer, D. R. Huffman und Mitarbeitern wurde eine intensive Erforschung der Eigenschaften ermöglicht². Seitdem wurden vor allem die Eigenschaften von C₆₀ und C₇₀ intensiv untersucht. Sie sind die einfachsten Vertreter dieser neuen Substanzklasse und die überwiegenden Produkte (>95%) bei der Herstellung. C₆₀ ist aufgrund seiner hohen Symmetrie von besonderem Interesse und besitzt für die Fullerene Modellcharakter. Zum Beispiel zeigt es im ¹³C NMR-Spektrum eine Linie; es hat vier IR-erlaubte und zehn Raman-erlaubte Schwingungen. Deshalb wurde es schnell nach seiner Entdeckung charakterisiert. Neben C₆₀ und C₇₀ entstehen zu einem kleinen Prozentanteil sogenannte *höhere Fullerene*, C₇₂, C₇₄, C₇₆, usw., über die man bisher wenig weiß, weil deren Charakterisierung aufgrund folgender Gründe erschwert ist:

- Für die Charakterisierung durch Standardanalysemethoden, wie ¹³C NMR, IR-, Raman-Spektroskopie und Röntgenstrukturanalyse benötigt man mindestens mg-Mengen. Viele höhere Fullerene fallen bei der Bogenentladung aber nur in sehr kleinen Mengen an (typischerweise etwa 0,01 % des verdampften Kohlenstoffs bei Herstellung durch Bogenentladung).
- Ab der Kohlenstoffzahl n = 76 können Fullerene in mehreren Isomeren auftreten, die durch Standardtrennmethoden kaum oder gar nicht trennbar sind.

Ziel dieser Arbeit war es nun, monodisperse Proben höherer Fullerene herzustellen, sie zu charakterisieren und die zur Zeit genausten Rechnungen auf ihre Tauglichkeit für die Beschreibung der Eigenschaften solch großer Moleküle zu überprüfen.

1.2 Kohlenstoffnanoröhren

Bei der Fullerenherstellung entstehen neben den Fullerenen eine Vielzahl von anderen Strukturen auf Kohlenstoffbasis: sog. Zwiebeln - das sind ineinander verschachtelte, leere Fullerene - und ein- und mehrwandige Nanoröhren – sie sind die röhrenförmigen Pendants zu den Fullerenen³. Seit Entdeckung der Nanoröhren wurden deren Eigenschaften sehr schnell unter dem Aspekt der Nutzung für industrielle Anwendungen erforscht. So werden sie mittlerweile schon zum Bau von Flachbildschirmen genutzt. Einige Publikationen berichten von der Möglichkeit, dass Nanoröhren für die Wasserstoffspeicherung geeignet sein sollen⁴⁻¹¹. Doch leider sind die Angaben der Wasserstoffspeicherkapazität sehr widersprüchlich. 1998 wurde vom BMBF ein Projekt ins Leben gerufen, welches das Ziel verfolgt, verlässliche Zahlenwerte für die Wasserstoffspeicherkapazität von Nanoröhren zu ermitteln. Im Rahmen des durch das BMBF finanzierte Verbundprojekt "H₂-Carbonspeicher" sollte in schnellst möglicher Zeit eine funktionierende Apparatur zur Herstellung von etwa 1g einwandiger Nanoröhren pro Tag aufgebaut werden, um die bei dem Projekt beteiligten Forschungseinrichtungen mit Material zu versorgen.

2 Höhere Fullerene

In dieser Arbeit wurden isomerenreine Proben der Fullerene C₆₀, C₇₀, C₇₆, C₇₈(C_{2v}, C_{2v}', D₃), C₈₀ (D₂) und C₈₂ (C₂) dargestellt und durch ¹³C NMR, UV-vis-NIR-, DRIFT- und Raman-Spektroskopie charakterisiert. Dabei wurden die drei C₇₈-Isomere mit der Bezeichnung C_{2v}, C_{2v}' und D₃, C₈₀ (D₂) und C₈₂ (C₂) zum ersten Mal in mg-Mengen mit Reinheiten > 99% hergestellt. In diesem Kapitel soll nach einigen allgemeinen Bemerkungen zu hohen Fullerenen die Darstellung und Trennung der neuen Käfige beschrieben werden.

2.1 Allgemeine Betrachtungen

In diesem Unterkapitel sollen einige grundlegende Betrachtungen bezüglich der Symmetrie und der daraus resultierenden Eigenschaften der Fullerene behandelt werden. Sie sind für spektroskopische Probleme, die an späterer Stelle detailliert behandelt werden, von Bedeutung.

2.1.1 Symmetriebetrachtungen zu Fullerenen

Die spektroskopischen Eigenschaften von C_{60} lassen sich aufgrund seiner hohen Symmetrie (I_h) einfach vorhersagen. Die Gegenwart von Symmetrieelementen in einem Molekül hat wichtige theoretische und praktische Konsequenzen, da die Spektroskopie molekularer Spezies von Symmetrieregeln beherrscht wird. Wenn die Punktgruppe einer molekularen Struktur bekannt ist, sagen Symmetrieargumente, ob das Molekül chiral und damit optisch aktiv ist oder ob es ein permanentes Dipolmoment und damit die Messung eines reinen Rotationsspektrums ermöglicht oder ob sein Infrarot- und Raman-Spektrum gemeinsame Linien besitzt. Molekulare Symmetrie legt auch die zu erwartenden Signale in einem NMR-Spektrum fest. Da ¹³C-NMR das wichtigste Werkzeug zur Strukturaufklärung höherer Fullerene darstellt, ist es zur konkreten Zuordnung von Isomeren wichtig, die möglichen Symmetrien von Fullerenstrukturen zu kennen. So hat C₆₀ I_h-Symmetrie und damit 60 ununterscheidbare Kohlenstoffatome (1 ¹³C NMR-Signal).

Die Topologie aller Fullerene ist nur mit einigen wenigen Typen von Symmetrieelementen vereinbar. Es gibt gerade 28 Fullerenpunktgruppen.

Unter der Voraussetzung, dass alle C-C-Bindungen gleich lang sind, lässt sich ein Fulleren, C_n (*n* gerade, $n \ge 20$, außer 22), beschreiben als ein pseudosphärischer hohler

Kohlenstoffpolyeder, bestehend aus *n* Ecken, jede mit drei anderen verbunden, *12* fünfeckigen und *n*/2-10 sechseckigen Flächen. Um die Symmetrie des gesamten Gebildes zu bestimmen, ist es nützlich zu wissen, wie Symmetrieoperationen sich auf seine Komponenten auswirken. Die 3n + 2 speziellen Punkte auf einem Fulleren-Polyeder sind die *n* Ecken, 3n/2 Kantenmittelpunkte und n/2 + 2 Flächenmitten. Jeder Punkt ist charakterisiert durch seine *Platzsymmetrie* - die Gruppe von Operationen, welche die umliegende Umgebung, betrachtet von diesem Punkt aus, unverändert lässt -, die bestimmt ist durch die Symmetrieelemente des gesamten Objektes, die durch diese Stelle laufen. Die maximale Platzsymmetrie für eine Fullerenecke ist C_{3v}. Wenn die Rotationsachse allein präsent ist, dann ist die Platzgruppe C₃, wenn nur eine Spiegelebene durch die Ecke verläuft, dann ist die Platzgruppe C₁. Eine Fullerenecke hat also Platzsymmetrie C_{3v} oder eine Untergruppe. Die Platzsymmetrie des Mittelpunktes einer Kante und die Mitte einer Fläche lassen sich ebenfalls einfach bestimmen. Für alle Plätze in einem Fullerenkäfig erhält man dann folgende mögliche Symmetrien:

C_{3v}, C₃, C_s, C₁ für Ecken; C_{2v}, C₂, C_s, C₁ für Kantenmitten; C_{5v}, C₅, C_s, C₁ für Fünfeckmitten; C_{6v}, C₆, C_{3v}, C₃, C_{2v}, C₂, C_s, C₁ für Sechseckmitten.

Alle Symmetrieachsen und -ebenen eines Fullerens müssen durch spezielle Punkte verlaufen. Damit sind Fullerenpunktgruppen limitiert auf die, die nur die Platzgruppen aus der oberen Liste zulassen. Sie sind somit kompatibel mit 35 Punktgruppen¹². Neben den niedrigen Symmetrien C₁, C_i und C_s und den hohen Symmetrien I_h, I, T_d und T, gibt es die Punktgruppen D_{nh}, D_{nd}, D_n, S_{2n}, C_{nh}, C_{nv}, C_n mit n = 2, 3, 5 und 6, die das Platzsymmetriekriterium erfüllen. Eine nähere Betrachtung, unter Berücksichtigung des Ring-Spiral-Algorithmus¹³, zeigt, dass falls eine C₅- oder C₆-Achse präsent ist, die geometrische Schließung des Fullerenkäfigs eine senkrechte C₂-Achse erzwingt¹⁴. Das bedeutet, dass C₅-, C_{5v} -, C_{5h} -, und S_{10} - Symmetrien nur als Untergruppen von fünffach dihedralen oder ikosadrischen Fullerenen und C₆-, C_{6v}-, C_{6h}- und S₁₂-Symmetrien nur als Untergruppen von sechsfach dihedralen Fullerenpunktgruppen auftreten können. Die endgültige Liste von 28 Fullerenpunktgruppen ist somit: I_h, I, T_h, T_d, T, D_{6h}, D_{6d}, D₆, D_{5h}, D_{5d}, D₅, D_{3h}, D_{3d}, D₃, D_{2h}, D_{2d}, D₂, S₆, S₄, C_{3h}, C_{2h}, C_{3v}, C₃, C_{2v}, C₂, C_s, C_i, C₁. Alle erlaubten Gruppen sind Untergruppen von I_h, T_d, oder D_{coh}.

Zwei wichtige Eigenschaften von Fullerenen lassen sich anhand der Kenntnis der Punktgruppe festmachen. Fullerene können chiral und polar sein. Eine chirale Struktur gehört zu einer reinen Rotationspunktgruppe und die neun chiralen Fullerenpunktgruppen sind demnach I, T, D₆, D₅, D₃, D₂, C₃, C₂ und C₁. Permanente Dipolmomente sind ausgeschlossen in Punktgruppen mit mehreren Rotationsachsen, Drehspiegelachsen oder Inversionszentren. Ein polares Fulleren muss demnach zu einem von den sechs Gruppen C_{3v}, C₃, C_{2v}, C₂, C_s oder C₁ angehören.

Fullerene können sphärische Kreisel (I_h, I, T_h, T_d, T), symmetrische Kreisel (D_{6h}, D_{6d}, D₆, D_{5h}, D_{5d}, D₅, D_{3h}, D_{3d}, D₃, S₆, S₄, C_{3h}, C_{3v}, C₃) oder asymmetrische Kreisel (D_{2h}, D₂, C_{2h}, C_{2v}, C₂, C_s, C_i, C₁) sein. Ein reines Rotations-Absorptionsspektrum ist nur für die sechs polaren Fullerengruppen erlaubt.

2.1.1.1 ¹³C NMR

Das ¹³C NMR-Spektrum eines Fullerenisomers besteht aus einer Zahl von Banden. Jede Bande steht für einen Satz von äquivalenten Käfigpositionen, mit Intensitäten, die proportional zu der Zahl der äquivalenten Kohlenstoffatome sind. Eine Symmetrieanalyse kann Anzahl und relative Intensitäten von Linien in einem hypothetischen ¹³C NMR-Spektrum jedes Fullerenisomers voraussagen. Symmetriebetrachtungen erlauben eine nützliche Beschränkung der ¹³C NMR-Spektren. Die Tatsache, dass nur vier Platzgruppen für Fullerenatome verfügbar sind, hat zur Folge, dass nicht mehr als vier verschiedene Signalhöhen möglich sind. Zu berücksichtigen ist außerdem noch, dass die C_{3v}- und C₃-Platzgruppe einander ausschließen, weil keine Punktgruppe zwei verschiedene Sätze C₃-Achsen besitzen kann. Das idealisierte Spektrum eines reinen Fullerenisomers sollte deshalb höchstens drei verschieden Signalhöhen enthalten. Wird eine größere Anzahl beobachtet, muss die Probe eine Mischung enthalten. Die 28 Fullerenpunktgruppen geben NMR-Muster wie folgt:

nur C₁-Plätze: C₁, C_i, C₂, S₄, D₂, D₅, D₆ alle Signalhöhen gleich;

C₁- und C_s-Plätze: C_s, C_{2h}, C_{2v}, D_{2h}, D_{5h}, D_{6h}, D_{2d}, D_{5d}, D_{6d} \leq 2 Höhen (Verhältnis 2:1);

C₁- und C₃-Plätze: C₃, S₆, D₃, T, I \leq 2 Höhen (3:1);

C₁-, C_s- und C₃-Plätze: C_{3h}, $T_h \le 3$ Höhen (3:2:1);

 C_1 -, C_s - und C_{3v} -Plätze: C_{3v} , D_{3h} , D_{3d} , T_d , $I_h \le 3$ Höhen (6:2:1).

2.1.1.2 Schwingungsspektren

Wenn die Punktgruppe bekannt ist, können die Schwingungen eines Moleküls analysiert und die Anzahl IR-aktiver und Raman-aktiver Moden gezählt werden. Ein Fulleren, C_n , hat 3n - 6 Schwingungen, deren Symmetrie gegeben ist durch eine mit Hilfe der Gruppentheorie ableitbare irreduzible Darstellung Γ_{vib} . Die für ein isoliertes C₆₀-Molekül 3n - 6 = 174 Schwingungsfreiheitsgrade reduzieren sich aufgrund seiner hohen Symmetrie zu 46 Normalmodenfrequenzen, für die sich gruppentheoretisch folgende irreduzible Darstellung finden lässt:

$$\Gamma_{vib} = 2A_g + 3F_{1g} + 4F_{2g} + 6G_g + 8H_g + 1A_u + 4F_{1u} + 5F_{2u} + 6G_u + 7H_u.$$
(2.1)

Die Entartung für jede Symmetrie folgt ebenfalls aus der Gruppentheorie: $A_g(1)$, $F_{1g}(3)$, $F_{2g}(3)$, $G_g(4)$, $H_g(5)$, $A_u(1)$, $F_{1u}(3)$, $F_{2u}(3)$, $G_u(4)$, $H_u(5)$.

Mit Hilfe der Gruppentheorie lässt sich entscheiden, welche Normalmoden Raman- und/oder IR-aktiv sind. Ein Schwingungsübergang ist IR-aktiv, wenn die beteiligte Normalmode zu der gleichen Repräsentation der Punktgruppe gehört wie eine oder mehrere Komponenten des Dipolmomentes und Raman-aktiv, wenn die Mode zu der gleichen Repräsentation gehört wie eine oder mehrere Komponenten des Polarisierbarkeitstensors¹⁵. Von den 46 Normalmoden des C₆₀ sind die zwei A_g- und die acht H_g-Moden Raman-erlaubt und die vier F_{1u}-Moden IR-erlaubt. Die verbleibenden 32 sind optisch stille Moden. Eine gruppentheoretische Analyse

lässt sich auch für die höheren Fullerene durchführen. Tabelle 2.1 listet die irreduziblen Darstellungen für Schwingungen einiger höherer Fullerene, die für diese Arbeit relevant sind, auf sowie die IR- und Raman-erlaubten Schwingungen.

 Tab. 2.1: Irreduzible Darstellungen f
 ür Schwingungen der hier behandelten Fullerene.

Fulleren	Irreduzible Darstellung	IR	Raman
C ₆₀	$2A_g + 3F_{1g} + 4F_{2g} + 6G_g + 8H_g + 1A_u + 4F_{1u} + 5F_{2u} + 6G_u + 7H_u$	F_{1u}	A _g , H _g
C ₇₀	$12A'_1+9A'_2+21E'_1+22E'_2+9A''_1+10A''_2+19E''_1+20E''_2$	E'_{1}, A''_{2}	A'_{1}, E'_{2}, E''_{1}
C ₇₆	$57A + 55B_1 + 55B_2 + 55B_3$	$B_1, B_2 B_3$	A, B ₁ , B ₂ , B ₃
C ₇₈ (C _{2v})	$59 \ A_1 + 56 \ A_2 + 56 \ B_1 + 57 \ B_2$	A_1, B_1, B_2	A_1, A_2, B_1, B_2
C ₇₈ (C _{2v} ')	$60 \ A_1 + 55 \ A_2 + 56 \ B_1 + 57 \ B_2$	A_1, B_1, B_2	A_1, A_2, B_1, B_2
C ₇₈ (D ₃)	$39 A_1 + 37 A_2 + 76 E$	A2, E	A ₁ , E
C ₈₀ (D ₂)	$60 \text{ A} + 58 \text{ B}_1 + 58 \text{ B}_2 + 58 \text{ B}_3$	B_1, B_2, B_3	A, B ₁ , B ₂ , B ₃
$C_{82}(C_2)$	121 A + 119 B	A, B	A, B
C ₈₄ (D ₂)	$63A + 61B_1 + 61B_2 + 61B_3$	$B_1, B_2 B_3$	A, B ₁ , B ₂ , B ₃
C ₈₄ (D _{2d})	$32A_1 + 30A_2 + 31B_1 + 31B_2 + 61E$	B ₂ , E	A_1, B_1, B_2, E

2.1.2 IP-Regel

Eine wichtige Eigenschaft von Vielecken wird durch das Theorem von Euler beschrieben. Dieses besagt, dass die Anzahl der Ecken (e), Kanten (k) und Flächen (f) in einem dreidimensionalen Vieleck folgende Beziehung zu einander haben:

$$e + f = k + 2.$$
 (2.2)

Für Fullerene, C_n , ist die Zahl der Ecken e = n, die Zahl der Kanten k = 3n/2 und die Zahl der Flächen f = n/2 + 2. Wenn man die Anzahl von Fünfringen mit p und die Anzahl der Sechsringe mit h bezeichnet, dann lässt sich die Anzahl der Ecken auch mit

$$(5p + 6h)/3 = e,$$
 (2.3)

die Gesamtzahl an Flächen mit

$$p+h=f \tag{2.4}$$

und die Anzahl der Kanten mit

$$(5p + 6h)/2 = k$$
 (2.5)

schreiben. Daraus ergibt sich

$$6(f + e - k) = p = 12.$$
(2.6)

Alle Fullerene bestehen somit aus 12 Fünf- und n/2 - 10 Sechsringen. Prinzipiell gibt es für ein bestimmtes Cn viele verschiedene diskrete Anordnungen dieser Fünf- und Sechsringe, die nicht alle zu einem geschlossenen Käfig führen. Über den sog. Spiral-Algorithmus findet man all diese Möglichkeiten, die zu einem geschlossenen Käfig führen 13 . Für C₆₀ gibt es zum Beispiel 1812 Möglichkeiten. Allerdings wird bei der Herstellung der Fullerene nur eines der 1812 möglichen Isomere als extrahierbare und luftstabile Substanz beobachtet. Es unterscheidet sich von den anderen Isomeren dadurch, dass es das einzige Isomer ist, bei dem die 12 Fünfecke so über die Käfigoberfläche verteilt sind, dass sie keine C-Atome gemeinsam haben. Die Vermeidung sich berührender Fünfringe ist ein wichtiges Bildungsprinzip aller Fullerene und deren Derivate und verringert die Zahl der möglichen Isomere erheblich. Diese Regel wird in der Literatur als Isolierter-Fünfring-Regel (Isolated Pentagon Rule, IPR) bezeichnet. Der Grund für die bevorzugte Bildung der IPR-Isomere ist die Maximierung der Resonanzenergie und die Minimierung sterischer Spannung. C60 ist im übrigen das kleinste mögliche Fulleren, das die IP-Regel erfüllen kann. Für die höheren Fullerene, ab C₇₆, erlaubt die IP-Regel mehrere Isomere: C76 (2 Isomere), C78 (5), C80 (7), C82 (9), C84 (24), usw.. Für C₆₂, C₆₄, C₆₆ und C₆₈ ist kein IPR-Isomer möglich.

IR, R, IR + R^a Fulleren Punktgruppe NMR-Muster C₆₀ $I_{h} \\$ 1 x 60 4, 10, 0 C₇₀ 3 x 10, 2 x 20 31, 53, 0 $D_{5h} \\$ C₇₂ 2 x 12, 2 x 24 D_{6d} 26, 45, 0 C₇₄ 56, 93, 37 D_{3h} 1 x 2, 4 x 6, 4 x 12 C_{76} D_2 19 x 4 165, 222, 165 T_{d} 1 x 4, 2 x 12, 2 x 24 29, 59, 29 C_{78} $D_{3} \\$ 13 x 6 113, 115, 76 3 x 2, 18 x 4 172, 228, 172 $C_{2v} \\$ 5 x 2, 17 x 4 173, 228, 173 $C_{2v} \\$ 3 x 6, 5 x 12 D_{3h} 58, 97, 38 3 x 6, 5 x 12 D_{3h} 58, 97, 39 C_{80} D_{5d} 2 x 10, 3 x 20 35, 60, 0 $D_{2} \\$ 20 x 4 174, 234, 174 $C_{2v} \\$ 6 x 2, 17 x 4 178, 234, 178 D_3 1 x 2, 13 x 6 116, 118, 78 C_{2v} 4 x 2, 18 x 4 177, 234, 177

Tab. 2.2: Zusammenfassung der spektroskopischen Eigenschaften der IPR-Fullerenisomere
von C_{60} bis C_{84} .

 I_h 1 x 2 ^aIR-, Raman, IR-und Raman-erlaubt.

 D_{5h}

Fulleren	Punktgruppe	NMR-Muster	IR, R, IR + R^a
C ₈₂	C ₂	41 x 2	240, 240, 240
	Cs	6 x 1, 38 x 2	240, 240, 240
	C ₂	41 x 2	240, 240, 240
	Cs	6 x 1, 38 x 2	240, 240, 240
	C ₂	41 x 2	240, 240, 240
	Cs	6 x 1, 38 x 2	240, 240, 240
	C_{3v}	1 x 1, 3 x 3, 12 x 6	122, 122, 122
	C_{3v}	1 x 1, 5 x 3, 11 x 6	123, 123, 123
	C_{2v}	7 x 2, 17 x 4	183, 240, 183

4 x 10, 2 x 20

1 x 20, 1 x 60

36, 61, 0

6, 14, 0

fulleren	Punktgruppe	NMR-Muster	IR, R, IR + R^a
84	D ₂	21 x 4	183, 246, 183
	C ₂	42 x 2	246, 246, 246
	Cs	4 x 1, 40 x 2	246, 246, 246
	D_{2d}	3 x 4, 9 x 8	93, 156, 93
	D_2	21 x 4	183, 246, 183
	C_{2v}	4 x 2, 19 x 4	186, 246, 186
	C_{2v}	4 x 2, 19 x 4	186, 246, 186
	C ₂	42 x 2	246, 246, 246
	C ₂	42 x 2	246, 246, 246
	Cs	8 x 1, 38 x 2	246, 246, 246
	C ₂	42 x 2	246, 246, 246
	C ₁	84 x 1	246, 246, 246
	C ₂	42 x 2	246, 246, 246
	Cs	2 x 1, 41 x 2	246, 246, 246
	Cs	4 x 1, 40 x 2	246, 246, 246
	Cs	2 x 1, 41 x 2	246, 246, 246
	C_{2v}	6 x 2, 18 x 4	187, 246, 187
	C_{2v}	2 x 2, 20 x 4	185, 246, 185
	D_{3d}	2 x 6, 6 x 12	62, 63, 0
	T _d	1 x 12, 3 x 24	31, 63, 31
	D_2	21 x 4	183, 246, 183
	D_2	21 x 4	183, 246, 183
	D_{2d}	1 x 4, 10 x 8	92, 155, 92
	D_{6h}	3 x 12, 2 x 24	31, 53, 0

2.1.3 Isolierte hohe Fullerene bei Beginn der Arbeit

Es ist festzuhalten, dass bisher nur IPR-Isomere in Extrakten nachgewiesen werden konnten. Tabelle 2.3 führt die ab C₆₀ möglichen IPR-Käfige auf. Auch nur ein kleiner Bruchteil der möglichen IPR-isomere wird im Rohruß tatsächlich gefunden. Die Gründe dafür sind noch nicht abschließend verstanden. Mögliche Gründe für das Vorkommen und die Isolierbarkeit nur bestimmter Isomere sind sicher ein Zusammenspiel aus thermodynamischen und kinetischen Stabilitätskriterien, wobei hier unter kinetischer Stabilität die Stabilität eines Fullerens gegenüber der Weiterreaktion durch *Clustern* – z. B. C₆₀ + C₆₀ \rightarrow C ₁₂₀ -, C₂-Addition – C_n + C₂ \rightarrow C _{n+2} - oder *Fragmentation* – z. B. C_n \rightarrow C _{n-2} + C₂ - im Herstellungsverfahren gemeint ist. HOMO-LUMO-Lücke und Spannungsenergie wurden von einigen Autoren als Kriterien für den Versuch der Erklärung von kinetischer bzw. thermodynamischer Stabilität herangezogen ^{13,16-19}. Von den prinzipiell möglichen IP-Größen bis C_{94} (siehe Tabelle 2.2) waren zu Beginn dieser Arbeit C_{72} und C_{74} bisher überhaupt noch nicht isoliert. Tabelle 2.3 enthält des weiteren eine Aufstellung der zu Beginn dieser Arbeit bereits nachgewiesenen bzw. isolierten IPR-Käfigen bis zu C_{94} .

Fulleren	IPR	Symmetrie	im Gemisch nachgewiesen	isolierte Isomere
C ₆₀	1	I _h	_	I _h
C_{70}	1	D_{5h}	-	D_{5h}
C ₇₂	1	D_{6d}	-	_ ^d
C_{74}	1	D _{3h}	-	_d
C ₇₆	2	D_2, T_d^{a}	-	D_2
C ₇₈	5	$D_3, C_{2v}, C_{2v}, D_{3h}, D_{3h}$	C _{2v} '	D ₃ , C _{2v} ,
C_{80}	7	$D_{5d}, D_2, C_{2v}, D_3, C_{2v}, D_{5h}, I_h^{\ b}$	-	_e
C ₈₂	9	$C_2, C_s, C_2, C_s, C_2, C_s, C_{3v}, C_{3v}, C_{2v}$	C_2	-
C ₈₄	24	_c	D ₂ , D _{2d}	-
C ₈₆	19	_c	C_2	-
C ₈₈	35	_c	-	C_2
C ₉₀	46	_c	C_2, C_{2v}	-
C ₉₂	86	_c	C ₂ , D ₂	-
C ₉₄	134	_c	C_2	-

Tab. 2.3: Bekannte Isomere einiger Fullerene.

^aIst ein Open-shell-System und besitzt nach Jahn-Teller-Verzerrung D_{2d}-Symmetrie; ^bIst ein Open-shell-System und besitzt nach Jahn-Teller-Verzerrung D₂-Symmetrie; ^cAufgrund der Vielzahl von Isomeren, wurde auf die Nennung der Symmetriebezeichnungen verzichtet; ^dZu Beginn dieser Arbeit bisher überhaupt noch nicht isoliert; ^eBisher nur durch LC-MS nachgewiesen.

Die Abbildung 2.1 zeigt eine kleine Auswahl der Strukturen von Fullerenisomeren.

C₆₀

C₇₀

C₇₂

C₇₈ (C_{2v}')

C₇₆ (D₂)

C₈₀ (D₂)

C₈₂ (C₂)

 $C_{82} (C_2)$

 $C_{82}(C_2)$

Abb. 2.1: Für diese Arbeit relevante IPR-Isomere von C_{60} - C_{82} .

2.2 Darstellung

Die Entdeckung eines Verfahrens zur Herstellung von Fullerenen in Gramm-Mengen mit Hilfe einer Bogenentladung durch W. Krätschmer, D. R. Huffman und Mitarbeitern Anfang der 90er Jahre war der Startschuss zur intensiven Erforschung der Eigenschaften der Fullerene (K-H-Verfahren). Seit dem wurden eine Vielzahl von Darstellungs- und Aufarbeitungsmethoden entwickelt.

Für diese Arbeit wurden Fullerene nach dem K-H-Verfahren am Institut für Nukleare Festkörperphysik (INFP) hergestellt und dann durch Hochdruck-Flüssigchromatographie (High Performance Liquid Chromatography, HPLC) aufgearbeitet. Deshalb wird in dem nächsten Kapitel zunächst eine Literaturübersicht über Herstellungs- und Trennverfahren gegeben. Anschließend werden alle für diese Arbeit dargestellten Fullerene vorgestellt und deren Herstellung eingehender erläutert.

2.2.1 K-H-Verfahren und Aufarbeitung

Bei dem von Krätschmer und Huffman entwickelten Verfahren wird Graphit in einer He-Atmosphäre durch eine Bogenentladung verdampft. Der dabei anfallende Ruß enthält etwa 5 % extrahierbare Fullerene, hauptsächlich C_{60} (~ 80 %) und C_{70} (~ 15 %). Daneben entstehen auch höhere Fullerene, wie C_{76} , C_{80} , C_{82} , C_{84} , C_{86} , usw., in bedeutend kleineren Mengen.

Der Schlüsselprozess bei der Charakterisierung von Fullerenen ist die Aufarbeitung des Rußes und die Isolierung einzelner Spezies aus dem löslichen Anteil. Bei dem K-H-Prozess der Fullerenentstehung aus Kohlenstoffdampf fallen neben löslichen Fullerenen und Verunreinigungen vor allem unlösliche nm-große Rußpartikel an. Die wichtigste Methode, die eingesetzt wird, um den löslichen Anteil abzutrennen, ist die Soxhlet-Extraktion mit geeigneten Lösungsmitteln, wie z. B. Toluol (Löslichkeit bei 295 K: 2,8 mg C₆₀ pro ml²⁰), Schwefelkohlenstoff (7,9 mg/ml²⁰) oder chlorierten Benzolen (27 mg/ml für 1,2-Dichlorbenzol²⁰).

Für die Isolierung der Fullerene aus dem löslichen Anteil des Fullerenrußes hat sich die HPLC als vielversprechendste Methode durchgesetzt. Um höhere Fullerene sauber isolieren zu können, bedarf es größerer Anstrengungen. Eine Vielzahl von HPLC-Säulen, die zum Teil für die Trennung größerer polyaromatischer Kohlenwasserstoffe entwickelt worden waren, kamen dabei zur Anwendung. Da höhere Fullerene, $> C_{76}$, in mehreren Isomeren bei der Synthese entstehen, ist man daran interessiert, isomerenreine Proben zu erhalten.

Aus all den stationären Phasen, die für die Trennung von Fullerenen im Laufe der Jahre ausprobiert wurden, haben sich einige wenige für die präparative Isolierung durchgesetzt. Eine Phase, die eine breite Anwendung gefunden hat, ist die Buckyclutcher-I-Phase, die von Pirkle und Welch entwickelt wurde²¹. Die funktionalen Gruppen enthalten Tris(2,4-dinitrophenoxy-)decyl-Gruppen an einer C₉-Kette. Die polaren Endgruppen bilden einen lockeren Hohlraum, in dem Fullerene festgehalten werden können. Die kleinen Größenunterschiede der Fullerene beeinflussen den Grad der Wechselwirkung zwischen dem Käfig und den polaren Endgruppen.

Die im Moment am häufigsten verwendete Säule ist die Cosmosil Buckyprep PYE-Säule, die speziell für die HPLC-Trennung großer Mengen (im mg-Bereich) von Fullerenen entwickelt wurde. Als Laufmittel kann, im Gegensatz zu Trennungen mit C₁₈-Säulen oder der Buckyclutcher-Säule, bei denen zweikomponentige Laufmittel notwendig sind, reines Toluol verwendet werden. Toluol ist ein gutes Lösungsmittel für Fullerene, womit hohe Beladungen ermöglicht werden. Die funktionellen Gruppen, die bei diesem Säulenmaterial an Kieselgel angebracht sind, enthalten Pyrengruppen. Diese relativ starren und planaren Gruppen können sich parallel anordnen und sich den Fullerenmolekülen entgegen stellen, was darauf schließen dass Größenunterschiede der lässt. die Fullerene den größten Beitrag zum Trennungsmechanismus leisten.

Zu Beginn dieser Arbeit war die Isolierung isomerenreiner Proben in mg-Mengen bisher nur für C₆₀, C₇₀ und C₇₆, die nur in einer Isomerform im Ruß anfallen, so wie für zwei C₇₈-Isomere mit C_{2v}- und D₃-Symmetrie und für C₈₈ gelungen. Tabelle 2.4 listet einige in der Literatur verwendeten HPLC-Säulen auf.

Ref.	stationäre Phase	mobile Phase	isoliert	charakterisiert mit
22	Vydac 201TP 510 C ₁₈ (Separations Group, USA)	Dichlormethan-Acetonitril (70:30)	C ₇₆	LD-MS ^b , UV/Vis, ¹³ C NMR, IR
23	Buckyclutcher I (Regis, USA)	Toluol-Hexan- Dichlormethan (50:40:10)	C ₇₆	LD-MS, IR, Raman
24	Vydac 201TP 510 C ₁₈	Toluol-Acetonitril (50:50)	$C_{78} (C_{2v}), C_{78} (D_3)$	LD-MS, ¹³ C NMR, UV/Vis
25, 26, 27, 28	JAIGEL 2Hx3 (Japan Analytical Industry)	CS_2	$\begin{array}{c} C_{76}, C_{78}{}^{a}, C_{82}{}^{a}, \\ C_{84}{}^{a}, C_{86}{}^{a}, C_{88}, \\ C_{90}{}^{a}, C_{96}{}^{a}, C_{110}{}^{a} \end{array}$	FAB-MS, LD-MS, UV/Vis, ¹³ C NMR ^c
29	Wakosil II 5C ₁₈ AR (Wako Chemicals, Japan)	Toluol-Acetonitril (50:50)	$C_{78} (C_{2v}), C_{78} (C_{2v}'), C_{78} (D_3)$	LD-MS
30	Develosil Lop ODS column (Nomura Chemicals, Japan); Wakosil II 5C ₁₈ AR	Toluol-Methanol (55:45); Toluol-Acetonitril (50:50)	$\begin{array}{c} C_{76}, C_{78}{}^{a}, C_{82}{}^{a}, \\ C_{84}{}^{a}, C_{86}{}^{a}, C_{88}{}^{a}, \\ C_{90}{}^{a}, C_{92}{}^{a}, C_{94}{}^{a}, \\ C_{98}{}^{a} \end{array}$	LC-MS ^d
31	Vydac 201TP52 C ₁₈ (Separations Group, USA); Hypersil-ODS (Shandon, UK); Zorbax Rx-C ₁₈ (Rockland Technologies, DE); Cosmosil PYE (Nacalai Tesque, Japan)	Dichlormethan-Acetonitril (50:50)	$\begin{array}{c} C_{76}{}^{a}, C_{78}{}^{a}, C_{80}{}^{a}, \\ C_{82}{}^{a}, C_{84}{}^{a}, C_{86}{}^{a}, \\ C_{88}{}^{a}, C_{90}{}^{a} \end{array}$	LC-MS

 Tab.
 2.4: Auflistung einiger in der Literatur verwendeter HPLC-Säulen sowie der entsprechenden Laufmittel.

^aAnzahl Isomere in Arbeit unbekannt; für Details siehe Referenz; ^bLaser Desorption Mass Spectrometry; ^cNicht für alle isolierten Fullerenfraktionen; für Details siehe Referenz; ^dLiquid Chromatography Mass Spectrometry: Flüssigchromatographie mit On-line-Massenspektroskopie; für Details siehe Referenz.

2.2.2 Eigene Trennung

Aus den am INFP gewonnen Fullerenextrakten, die dort auch per HPLC (mit Buckyprep-Säule) grob fraktioniert wurden und deshalb nur noch höhere Fullerene enthielten, wurden die Substanzen C₇₆, C₇₈ (C_{2v}), C₇₈ (C_{2v}'), C₇₈ (D₃), C₈₀ (D₂), C₈₂ (C₂) isomerenrein und in mg-Mengen durch HPLC gewonnen. Eine genaue Beschreibung des K-H-Lichtbogenofens und der Prozessparameter findet sich in der Dissertation von D. Fuchs³². Die in dieser Arbeit verwendete HPLC-Anlage wurde von R. H. Michel aufgebaut und ist in seiner Dissertation beschrieben³³. Oberhalb C₈₂ gelang keine Isomerentrennung höherer Fullerene mehr. Trotzdem wurden für spektroskopische Untersuchungen im Rahmen dieser Arbeit auch mg-Mengen des D₂/D_{2d}-Isomerengemisches von C₈₄ hergestellt. Für die HPLC-Arbeiten wurden speziell vier Säulen verwendet. Tabelle 2.5 listet die eingesetzten Säulen und verwendeten Laufmittel auf.

Tab. 2.5: Auflistung der verwendeten HPLC-Säulen.

Säule	Abmessungen	Laufmittel	$\alpha \left(C_{60} / C_{70} \right)^a$	R ^b
Cosmosil PYE (Nacalai Tesque, Japan)	10x250 mm	Toluol	2,064	9,930
Cosmosil PYE "Buckyprep"	20x250 mm	Toluol		
Wakosil II 5C18 AR (Wako Chemicals, Japan)	10x250 mm	Toluol-Acetonitril	2,060	12,568
Wakosil II 5C18 AR	20x250 mm	Toluol-Acetonitril		
Buckyclutcher I (Regis, USA)	10x250 mm	Toluol-Hexan	1,391	4,425
^a Selektivität. ^b Auflösung.				

Die Flussraten waren für die Säulen mit den Abmessungen 10x250 mm 5 ml/min und für die Säulen mit den Abmessungen 20x250 mm typischerweise 18 ml/min. Die Wakosil- und Cosmosil-Säule, mit einem Durchmesser von 10 mm, wurden für HPLC-Analysen verwendet.

Abb. 2.2: Chromatogramm von einem typischen Soxhlet-Extrakt vor der Aufarbeitung mit der Buckyprep-Säule (Laufmittel: Toluol).

Für die präparative HPLC kamen die Säulen mit Durchmesser 20 mm zur Anwendung. Semipräparative HPLC wurde mit den Säulen Cosmosil (20x250 mm) und Wakosil (20x250 mm) durchgeführt. Die Cosmosil-Buckyprep-Säule ist die wichtigste Säule und wurde auch am häufigsten verwendet. Sie steht am Beginn jeder HPLC-Aufarbeitung. Das Extrakt, das aus der Soxhlet-Extraktion erhalten wurde, wurde mit ihr in die Bestandteile C₆₀, C₇₀, C₇₆, C₇₈-Isomergemisch, C₈₀ (D₂), C₈₂ (C₂), C₈₄-Isomerengemisch und andere höhere Fullerene aufgetrennt. Abbildung 2.2 zeigt ein typisches Chromatogramm von einem Soxhlet-Extrakt vor der Aufarbeitung mit der Buckyprep-Säule. Um Reinheiten > 99% zu erreichen, müssen die Fullerenfraktionen mindestens zweimal mit der Säule gereinigt werden.

Die Buckyclutcher-Säule gehört der ersten Säulengeneration an, die speziell für die Fullerentrennung entwickelt wurde. Sie wurde für die Abtrennung von C_{82} (C_2) von dem C_{84} -Isomerengemisch verwendet. Abbildung 2.3 zeigt das Chromatogramm einer HPLC-Analyse einer C_{84}/C_{82} -Probe, bevor sie mit der Buckyclutcher-Säule gereinigt wurde.

Abb. 2.3: Chromatogramm einer HPLC-Analyse einer C₈₄/C₈₂-Probe vor der Aufarbeitung mit der Buckyclutcher-Säule (Laufmittel: Toluol/Hexan).

Tab. 2.6: Aufgabenmengen bei verschiedenen Trennschritten (siehe Abb. 2.5).

Gemisch	Säule	Laufmittel	Aufgabenmenge ^a	α	R
C ₇₆ –C ₈₈	Buckyprep	Toluol	~ 10 mg in 1ml Dichlorbenzol		
$C_{78} (C_{2v}, C_{2v}, D_3)$	Wakosil	Toluol-Acetonitril (50:50)	~ 200 μg in 200 μl Toluol	1,123 (C _{2v} '/C _{2v}) 1, 075 (C _{2v} /D ₃)	2,382 (C _{2v} '/C _{2v}) 1,500 (C _{2v} /D ₃)
C ₈₄ /C ₈₂	Buckyclutcher	Toluol-Hexan (50:50)	~ 100 μg in 100 μl Toluol	1,110	1,141

^aAufgabenmenge in mg abgeschätzt aus angenommener Löslichkeit von 1 mg Fulleren/ml.

Abb. 2.4: Chromatogramm einer HPLC-Analyse einer C₇₈-Probe vor der Aufarbeitung mit der Wakosil-Säule (Laufmittel: Toluol/Acetonitril).

Die Wakosil-Säule besitzt eine stationäre C_{18} -Phase für Reversed-Phase-Chromatographie. Mit ihr gelang die Trennung der C_{78} -Isomere in mg-Mengen. Abbildung 2.4 zeigt das Chromatogramm einer HPLC-Analyse einer C_{78} -Probe, die mit der Buckyprep-Säule gereinigt wurde. Tabelle 2.6 sowie Abbildung 2.5 fassen die wichtigsten Trennprotokolle zusammen.

Abb. 2.5: Schematische Zusammenfassung der Trennprotokolle.

2.3 ¹³C NMR

Es wurden ¹³C NMR-Untersuchungen der Fullerene C_{78} (C_{2v} , C_{2v} ', D_3), C_{80} (D_2) und C_{82} (C_2) durchgeführt.

2.3.1 Allgemeine Betrachtungen

Für Strukturaufklärung ist die Röntgen-Kristallographie an Einkristallen die beste Methode. Dafür benötigt man Einkristalle, die für Fullerene sehr schwierig zu züchten sind. Bisher gelang dies nur für C_{60} befriedigend³⁴. Deshalb sind NMR-Methoden, mit denen man auch flüssige Proben untersuchen kann, die wichtigste Methode für die Strukturaufklärung von Fullerenen.

Kohlenstoff hat zwei stabile Isotope: ¹²C, mit einem Molekülgewicht von 12,011 au und Kernspin 0, das 98,892% des natürlich vorkommenden Kohlenstoffs ausmacht und ¹³C, mit einem Molekülgewicht von 13,003 au und Kernspin ¹/₂, das 1,108% des Kohlenstoffs stellt. Die Wahrscheinlichkeit p_m , dass m ¹²C-Isotope in einem Fulleren, C_n , durch ¹³C, mit einer Häufigkeit x, substituiert sind, lässt sich über

$$p_m(C_n) = \binom{n}{m} x^m (1-x)^{n_c - m}$$
(2.7)

berechnen. Der Binomialkoeffizient in Gleichung (2.7) ist durch

$$\binom{n}{m} = \frac{n!}{(n-m)!m!} \tag{2.8}$$

gegeben. Demnach enthält etwa die Hälfte der C_{60} -Moleküle, die mit natürlich vorkommenden Kohlenstoff synthetisiert wurden, ein ¹³C-Isotop. Tabelle 2.7 listet die mit

Gleichung (2.7) berechneten Resultate für C_{60} und einigen höheren Fullerenen für natürlich vorkommenden (x = 0,01108) Kohlenstoff auf.

	C ₆₀	C ₇₀	C ₇₆	C ₇₈	C ₈₀	C ₈₂	C ₈₄
m = 0	0,5125	0,4584	0,4288	0,4193	0,4101	0,4011	0,3922
1	0,3445	0,359	0,3651 0,	3665 0,	3676 0,	3685 0,	3691
2	0,1139 0,	2780 0,	0307 0,	3162 0,	3254 0,	3344 0,	3433
3	0,0247 0,	0353 0,	0424 0,	0449 0,	0474 0,	0500 0,	0526
4	0,0039 0,	0066 0,	0087 0,	0094 0,	0102 0,	0111 0,	0119

Tab. 2.7: Wahrscheinlichkeit von 0, 1, 2, 3 und 5 13 C-Atomen in C₆₀ und einigen höherenFullerenen unter Annahme des natürlichen Isotopenvorkommens von x = 0,01108.

In Unterkapitel 2.1 wurde schon erklärt, was man alleine mit Hilfe gruppentheoretischer Überlegungen aus ¹³C NMR-Spektren lernen kann. Doch Symmetrie alleine gibt natürlich noch keine Information über ¹³C NMR Chemische Verschiebungen. So ist es möglich, dass chemisch ähnliche Kerne, die aber auf nicht äquivalenten Plätzen sitzen, sich überlappende Linien verursachen. Andererseits kann die effektive Punktgruppe eines Moleküls aufgrund minimaler Verzerrungen des Käfigs geringer sein als die maximale Gruppe, so dass das vorausgesagte idealisierte NMR-Muster aufgespalten ist. Demnach kann die Zahl der Linien im NMR-Spektrum dazu dienen, mögliche Strukturkandidaten für ein Fulleren auszuschließen. Mit ihr gelingt aber nicht einzig und allein eine Strukturvoraussage.

2.3.2 Literatur

NMR war eine der ersten Spektroskopiearten, mit welcher der Beweis der Struktur des C₆₀ gelang. Ein regulärer Ikosaeder - alle Atomplätze sind äquivalent - ist konsistent mit einer einzigen scharfen Linie im ¹³C NMR-Spektrum: C₆₀ hat in Benzol eine einzige Linie bei 142,68 ppm (parts per million Frequenzverschiebung relativ zu dem Standard Tetramethyilsilan)^{35,36}. C₇₀ in Benzol zeigt fünf Linien bei 150,07, 147,52, 146,82, 144,77 und 130,28 ppm mit Intensitäten im Verhältnis 1:2:1:2:1, was im Einklang mit fünf verschiedenen Platzsymmetrien in C₇₀ ist³⁶. NMR war ebenfalls hilfreich für die Identifizierung der Struktur von C₇₆, das 19 Linien gleicher Intensität im ¹³C NMR-Spektrum zeigt³⁷.

Wie schon zuvor erwähnt, war es Diederich *et al.* gelungen, zwei C₇₈-Isomere mit der Symmetrie D₃ und C_{2v} in ausreichenden Mengen zu isolieren, um ¹³C NMR-Messungen daran zu machen. Das zweite C_{2v}-Isomer wurde erst später von einer anderen Gruppe durch ¹³C NMR in einem C₇₈-Gemisch entdeckt. Aufgrund gruppentheoretischer Überlegungen erwartet man für das D₃-Isomer 13 Linien gleicher Intensität. Für das C_{2v}-Isomer erwartet man 21 Linien (5 x 2, 16 x 4) und für das zweite C_{2v}-Isomer, das in der Literatur als C_{2v}'-Isomer bezeichnet wird, erwartet man 22 Linien (3 x 2, 18 x 4).

Die Unterscheidung verschiedener Isomere eines Fullerens ist aufgrund von NMR-Messungen nicht immer möglich, weil Isomere gleicher Symmetrie auch die gleiche Zahl Linien im ¹³C NMR-Spektrum besitzen können. Kikuchi *et al.* finden 42 starke NMR-Linien in ihrer C₈₂-Probe, was auf ein Isomer mit C₂-Symmetrie hindeutet, können aber durch ihre NMR-Messung alleine nicht entscheiden, welches C₂-Isomer aus drei möglichen sie isoliert haben³⁸.

Eines der beiden Hauptisomere von C_{84} besitzt D_2 -Symmetrie und zeigt 21 Linien gleicher Intensität³⁹. Für C_{84} sind 24 Isomere theoretisch möglich. Vier von ihnen sollten D_2 -Symmetrie mit 12¹³C NMR-Linien besitzen. Da es zu der damaligen Zeit keine anderen strukturunterstützenden Messungen gab, konnte eine eindeutige Zuordnung des Isomers erst mit Hilfe von quantenmechanischen Rechnungen durch D. Bakowies *et al.* erfolgen⁴⁰.

Tabelle 2.8 fasst alle Fullerene und Fullerenisomere zusammen, deren Topographie mit Hilfe von NMR-Messungen eindeutig bestimmt werden konnte.

Tab. 2.8: Fullerene,	deren NMR-Linie	n eindeutig	zugeordnet	wurden.
----------------------	-----------------	-------------	------------	---------

	Sym.	Pattern	Gemessene Chemische Verschiebung [ppm] ^b			
C ₆₀	$\mathbf{I}_{\mathbf{h}}$	1 x 60	143,2 und 142,68			
C ₇₀	D_{5h}	3 x 10, 2 x 20	150,8a; 148,3; 147,8a; 144,4; 130,8a und 150,07a; 147,52; 146,82a; 144,77; 130,28a			
C ₇₆	D ₂	19 x 4	150,03; 147,96; 147,66; 147,19; 146,65; 146,50; 145,92; 144,14; 144,05; 143,61; 142,86; 142,79; 142,15; 142,11; 141,35; 137,06; 135,67; 133,40; 129,56			
C ₇₈	D ₃	13 x 6	132,18; 132,90; 134,85; 139,55; 140,45; 140,82; 140,91; 141,83; 142,88; 144,53; 145,45; 148,14; 149,45			
	C_{2v}	3 x 2, 18 x 4	132,31; 132,63a; 133,98; 136,49; 137,67; 138,08; 138,39; 138,41; 142,19a; 143,34; 143,89; 144,49; 144,72; 144,89; 144,99a; 145,96; 146,04; 146,12; 146,99; 147,56; 147,62			
	C_{2v} , a	5 x 2, 17 x 4	146,99a; 146,88a; 146,45; 146,36; 145,86a; 145,79; 144,84a; 144,55; 143,86; 143,85; 143,29; 142,24; 139,14; 138,02; 137,90; 136,82; 136,65; 136,50; 135,79; 134,77; 134,35a; 132,22			

^aim Gemisch gemessen, ^brelativ zu dem Standard TMS.

2.3.3 Messungen

Die Messungen wurden am Institut für Organische Chemie von H. Röttele an einem 500 MHz-Gerät (Avance DRX 500) durchgeführt. Die Fullerenproben wurden einige Stunden (~ 12 h) unter Vakuum (p < 10^{-3} mbar) getrocknet, anschließend in CS₂ aufgenommen, mit Deuterochloroform als Lock-Substanz versetzt und in einem NMR-Röhrchen abgeschmolzen. Abbildung 2.6 zeigt die ¹³C NMR-Messungen der fünf untersuchten Fullerenproben. Die Auflistung aller Linien und Intensitäten findet sich im Anhang. Einige Proben waren trotz mehrstündigen Trocknens unter Vakuum mit Toluol verunreinigt, was in den Spektren Linien bei etwa 137,3, 128,8, 128,1 und 125,2 ppm verursacht. In den Spektren, in denen Toluol zu sehen ist, wurden die Linien, die vom Toluol stammen, mit einem "T" markiert. Tabelle 2.9 fasst Scan-Anzahl, Messdauer, Signal/Rausch-Verhältnis und verwendete Mengen der untersuchten Fullerene zusammen.

	Scans	Dauer [h]	S/R ^a	m [mg]
C ₇₈ (C _{2v})	32000	~ 7,4	7/1	~ 4
C ₇₈ (C _{2v} ')	36000	~ 8,3	5/1	~ 4
C ₇₈ (D ₃)	18000	~ 4,2	4/1	~ 4
C ₈₀ (D ₂)	60000	~ 13,8	3/1	~ 2
$C_{82}(C_2)$	18000	~ 4,2	3/1	~ 1

^aSignal/Rausch-Verhältnis; ^bverwendete Probenmenge.

Aus dem Spektrum des C_{78} (C_{2v}) lassen sich 21 Linien (3 + 18 im Verhältnis 1:2) extrahieren, was im Einklang mit der gruppentheoretischen Voraussage für das C_{78} -Isomer mit der Bezeichnung C_{2v} ist. Für das C_{2v} '-Isomer erwartet man 22 Linien (5 + 17 im Verhältnis 1:2). Aus dem Spektrum lassen sich auch tatsächlich 22 Linien extrahieren, wobei das Signal bei 137,36 ppm von Toluol stammt und das Signal bei 144,07 ppm die Summe der Chemischen Verschiebung zweier Kohlenstoffsignale darstellt. Somit ergibt sich für das zweite C_{2v} -Isomer die erwartete Anzahl von 22 NMR-Signalen. Das NMR-Spektrum des dritten C_{78} -Isomers zeigt 14 Linien mit etwa gleichen Verhältnissen. Das Signal bei 137,16 ppm stammt wieder von der Verunreinigung mit Toluol. Das NMR-Spektrum des dritten Isomers besitzt somit 13 Linien, die vom Fulleren stammen und steht somit im Einklang mit der gruppentheoretischen Voraussage.

Abb. 2.6 a): ¹³C NMR-Spektren der drei C_{78} -Isomere C_{2v} , C_{2v} ' und D_3 .

Abb. 2.6 b): 13 C NMR-Spektren von C_{80} (D₂) und C_{82} (C₂).

Das Spektrum der C₈₀-Probe enthält 18 Linien etwa gleicher Intensität und eine bei 144,42 ppm mit etwa doppelter Intensität. Die Zahl von 20 nicht-symmetrieäquivalenten C-Atomen ist nur mit einem Strukturvorschlag in Einklang zu bringen, der D₂-Symmetrie besitzt. Für C₈₀ gibt es nur eine mögliche Struktur mit D₂-Symmetrie (siehe Abbildung 2.1). Das Isomer mit I_h-Symmetrie ist ein open-shell-System, für das man eine Verzerrung des Käfigs erwartet. Nagase *et al.* berechneten, dass dieses Isomer zu einer Struktur mit D₂-Symmetrie verzerrt⁴¹. Die Berechnung der ¹³C NMR-Spektren für die beiden Isomere auf HF-GIAO-Niveau zeigt, dass die Spektren einen Bereich von 21,1 ppm für das D₂-Isomer und 38,9 ppm für das D₂ (I_h)-Isomer überstreichen⁴². Die Voraussage für das D₂-Isomer ist somit in besserer Übereinstimmung mit dem experimentellen Spektrum, das einen Bereich von 23,61 ppm überstreicht.

Das letzte Spektrum der Abbildung 2.6 b) ist das der extrahierten C_{82} -Probe. Es enthält neben den Signalen, die von Toluol stammen (137,00 ppm, 128,82 ppm, 128,07 ppm, 125,18 ppm), 41 Linien etwa gleicher Intensität, die nur auf einen Strukturvorschlag mit C₂-Symmetrie passen. Für C₈₂ gibt es drei mögliche Strukturen mit dieser Symmetrie (siehe Abbildung 2.1). Anhand des NMR-Spektrums lässt sich aber nicht entscheiden, welches der drei möglichen C₂-Isomere in der vermessenen Probe vorliegt. Aufgrund des schlechten Signal/Rausch-Verhältnisses (3/1) der Messung lässt sich nur schwer abschätzen, ob noch andere Isomere in der Probe enthalten sind. Sollten noch andere Isomere mit C₂- bzw. C_s-Symmetrie enthalten sein, dann liegt der Gehalt unter 30%. Für Isomere mit anderer Symmetrie erwartet man weniger Linien. Der Anteil dieser Isomere sollte dann kleiner etwa 10% sein.

2.3.3.1 Chemische Verschiebung und Strukturmotive

Abbildung 2.7 zeigt die aus den Messungen extrahierten Strichspektren von allen im Rahmen dieser Arbeit gemessenen Fullerenen und zum Vergleich Strichspektren von C_{60} , C_{70} , und C_{76} aus der Literatur.

Fullerene kann man sich aus verschiedenen Motiven (siehe Abbildung 2.8) aufgebaut vorstellen: aus Corannulen, Pyren bzw größeren polyzyklischen, aromatischen Kohlenwasserstoffen (PAHs). Diese sind zum Teil gut durch ¹³C NMR charakterisiert. Die C-Atome dieser Strukturen, die von drei hexagonalen Ringsystemen umgeben sind, haben Chemische Verschiebungen im Bereich von etwa 130 ppm.

Abb. 2.7 a): Als Strichspektren dargestellte ¹³C NMR-Spektren von C₆₀ aus Ref. 35, C₇₀ aus Ref. 36 und C₇₆ aus Ref. 37.

Abb. 2.7 b): Als Strichspektren dargestellte ¹³C NMR-Spektren der drei C₇₈-Isomere C_{2v}, C_{2v}; und D₃.

Abb. 2.7 c): Als Strichspektren dargestellte 13 C NMR-Spektren von C_{80} (D₂) und C_{82} (C₂).

Die Chemischen Verschiebungen überstreichen für Fullerene einen großen Bereich. Sie liegen etwa zwischen 130 und 155 ppm und sind damit teilweise deutlich größer als die, die für Corannulen bzw PAHs gemessenen wurden. Der Grund dafür dürfte sein, dass Fullerene gespannte Hohlkugeln sind. Je nachdem, wie die 12 Fünfringe im Fullerenkäfig verteilt sind, kommt es zur Ausbildung von größeren PAH-Motiven im Käfig, die ihn abflachen. Dadurch kommt es zu sterischen Spannungen, die größere Chemischen Verschiebungen in den PAH-Motiven, verglichen zu denen der ungestörten PAHs, verursachen.

Benzo[ghi]perylen

Abb. 2.8: Einige PAH-Motive in Fullerenen.

 C_{60} kann man sich aus nur Corannulen-Einheiten aufgebaut vorstellen (siehe Abbildung 2.9). Corannulen ist durch ¹³C NMR gut charakterisiert und es wurde ein Wert der Chemischen Verschiebung der fünf C-Atome im inneren Ring von 135,81 ppm gefunden⁴³. Für ein Molekül, das nur aus Corannulen-Einheiten aufgebaut ist, würde man ähnliche Werte für die Chemischen Verschiebungen erwarten. Für C_{60} findet man aber einen deutlich höheren Wert von 142,68 ppm. Eine mögliche Erklärung wäre, dass die Verschiebungen zu größeren Werten mit der sterischen Spannung des C_{60} korreliert ist.
C_{70} besitzt die Form eines Rugbyballs. Es hat fünf symmetrisch nicht-äquivalente C-Atome, für die Chemische Verschiebungen von 150,0, 146,82, 147,52, 144,77 und 130,28 ppm gemessen wurden³⁵. Die größte Verschiebung haben die C-Atome der Fünfringe an den Enden. Dort ist C_{70} auch am gespanntesten. Die kleinsten Verschiebungen findet man am Bauch. Dort ist C_{70} aufgrund von Pyren-Motiven, die einen Gürtel bilden, flacher als an den spitzen Enden (siehe Abbildung 2.9).

Abbildung 2.7 enthält das ¹³C NMR von C₇₆, das 19 symmetrisch nicht-äquivalente Käfigpositionen besitzt. Eine Zuordnung der Chemischen Verschiebungen zu diesen Positionen ist kaum mehr möglich. Das Spektrum zeigt aber Linien zu hohem (149,46 ppm) sowie auch zu niedrigem Feld (129,00 ppm). Es enthält, verglichen mit C₇₀, ein neues Strukturmotiv: zwei sich gegenüberliegende Benzo[*ghi*]perylen-Einheiten, die das C₇₆ stark abflachen (siehe Abbildung 2.9). Für das synthetisierte Benzo[*ghi*]perylen wurden Resonanzen im Bereich von 120,4 bis 132,2 ppm gefunden⁴⁴.

Abbildung 2.7 zeigt die für diese Arbeit gemachten ¹³C NMR-Spektren der drei C₇₈-Isomere. Der qualitative Vergleich der Spektren miteinander verdeutlicht, dass zwischen den Spektren der beiden C_{2v}-Isomeren noch eine Ähnlichkeit zu erkennen ist, während das Spektrum des D₃-Isomers sehr verschieden zu denen der C_{2v}-Isomere ist. Das deutet schon darauf hin, dass sich die C₇₈- Isomere mit C_{2v}-Symmetrie strukturell ähnlich sind. Sie lassen sich theoretisch durch eine sogenannte Stone-Wales-Umlagerung ineinander überführen⁴⁵. Diese Umlagerung wird in der Literatur als möglicher Mechanismus für die Umwandlung von Fullerenisomeren beim Herstellungsprozess diskutiert. Der Bildungsmechanismus der Fullerene ist noch ungeklärt und es wurden einige Modelle vorgeschlagen. Allen Modellen ist jedoch gemeinsam, dass die direkte Bildung von IPR-Isomeren bei der Schließung der Käfige bei den Herstellungsbedingungen, wie sie normalerweise im Bogenentladungsofen herrschen, recht unwahrscheinlich ist. Wahrscheinlicher ist, dass sich zunächst Nicht-IPR-Isomere, also Isomere mit sich berührenden Fünfringen, in dem sich abkühlenden Plasma bilden, die dann beim weiteren Abkühlen in eine thermodynamisch stabilere Isomerform umlagern. Eine mögliche Variante für eine Umwandlung wäre die Drehung einer Doppelbindung in einem Pyracylen-Motiv, wie sie von Stone und Wales postuliert wurde. Für Ih-C60 würde eine Stone-Wales-Umlagerung zu einem Nicht-IPR-Isomer mit zwei sich berührenden Fünfringen führen. Bei den C₇₈-Isomeren besteht die Möglichkeit, durch die Drehung einer ausgezeichneten Doppelbindung, zwei IPR-Isomere ineinander überzuführen. Abbildung 2.9 zeigt, wie die beiden C_{2v}-Isomere über eine Pyracylen-Umlagerung miteinander verwandt sind.

 C_{76}

C₇₈ (C_{2v})

C₇₈ (C_{2v}')

C₇₈ (D₃)

Abb. 2.9: Beispiele für Strukturmotive in den untersuchten Fullerenen.

Die Umlagerung des C_{2v} '-Isomers in das C_{2v} -Isomers erzeugt in dem C_{2v} -Isomer ein Coronen-Motiv, welches das C_{2v} -Isomer im Vergleich zum C_{2v} '-Isomer auf einer Seite stark abflacht (siehe Abbildung 2.9). Das würde die Unterschiede der Chemischen Verschiebungen im unteren Bereich der Spektren der beiden C_{2v} -Isomere erklären. Das C_{2v} -Spektrum reicht zu kleineren Chemischen Verschiebungen herunter. Für die flachste Stelle, wo das Coronen-Motiv im Käfig sitzt, sollte man auch die kleinsten Chemischen Verschiebungen finden: 132,09 ppm ist der kleinste Wert. Coronen wurde bereits durch ¹³C NMR charakterisiert und man findet einen Wert von 128,65 ppm für die sechs C-Atome des inneren Ringes⁴⁶.

Das ¹³C NMR-Spektrum des D₃-Isomers überstreckt einen deutlich größeren Bereich als die C_{2v} -Isomere, was darauf hindeutet, dass das D₃-Isomer stärker noch von der perfekten Kugelgestalt abweicht, als die C_{2v} -Isomere. Es besitzt zwei sich gegenüberliegende Benzo[*ghi*]perylen-Einheiten, die es in eine stark eiförmige Gestalt zwingen (siehe Abbildung 2.9).

Das NMR-Spektrum des C_{80} zeigt 20 Linien annähernd gleicher Intensität, was nur mit dem Strukturvorschlag für C_{80} mit D_2 -Symmetrie zur Deckung zu bringen ist. Der Vergleich des Spektrums mit denen aller anderen höheren Fullerene zeigt, dass das C_{80} -Spektrum am stärksten aufgefächert ist, was darauf hindeutet, dass es von allen untersuchten Fulleren am stärksten gespannt ist. Wenn man sich das C_{80} (D_2) anschaut, dann findet man, dass es aus mehreren Benzo[*ghi*]perylen-Einheiten aufgebaut ist, die es in eine röhrenförmige Gestalt zwingen (siehe Abbildung 2.9). Dadurch ist es stark gespannt.

Das thermodynamisch stabilste C_{82} (C_2)-Isomer enthält als größtes PAH-Strukturmotiv zwei, sich gegenüberliegende, Benzo[*ghi*]perylen-Einheiten. Es ist deshalb etwas abgeflacht. Es ist aber aufgrund seiner Größe weniger gespannt als zum Beispiel C_{80} .

Tab. 2.10: Aufspaltung $\Delta\delta$ der NMR-Signale der Fullerene C₇₀ – C₈₂.

Fulleren	$\Delta\delta$ [ppm]					
C ₇₀	19,79					
C ₇₆ 20,	47					
C ₇₈ (D ₃)	17,25					
C ₇₈ (C _{2v})	15,27					
C ₇₈ (C _{2v} ')	14,77					
$C_{80}(D_2)$	23,61					
C ₈₂ (C ₂)	21,95					

Als Resultat lässt sich festhalten, dass die Aufspaltung $\Delta\delta$ des NMR -Spektrums ein Gradmesser für Käfigspannungen in Fullerenen ist. Tabelle 2.10 fasst die Aufspaltung $\Delta\delta$ der NMR-Spektren aller hier behandelten Fullerene zusammen. Demnach sollte C₈₀ (D₂) das gespannteste Fulleren in der Reihe der untersuchten Fullerene sein. Das ist vielleicht auch der Grund, warum es bei der Herstellung durch Bogenentladung nur in sehr geringen Mengen gebildet wird⁴².

2.4 Elektronische Struktur

In diesem Kapitel werden Experimente und Rechnungen zu den elektronischen Absorptionsspektren der Fullerene C₆₀, C₇₀, C₇₆, C₇₈ (C_{2v}, C_{2v}', D₃), C₈₀ (D₂) und C₈₂ (C₂) vorgestellt.

2.4.1 Literatur

Bei der Erforschung der physikalischen Eigenschaften der Fullerene sind ihre elektronischen Absorptionsspektren von besonderem Interesse, da nur sehr wenig Material erforderlich ist (einige 10 μ g). Auch in diesem Zusammenhang ist C ₆₀ das am besten untersuchte Fulleren aufgrund seiner äußerst symmetrischen Struktur und seiner Häufigkeit. Somit ist die Chance, das elektronische Absorptionsspektrum zu interpretieren und durch Vergleich mit Rechnungen zu verstehen für C₆₀ am größten.

Zu Beginn dieser Arbeit gab es schon eine Vielzahl von elektronischen Absorptionsmessungen für C_{60} und C_{70} in $Lösung^{47-54}$, in der Gasphase⁵⁵⁻⁵⁹ und am Festkörper⁶⁰⁻⁶³ im Energiebereich zwischen 0 und 7 eV. In Hinblick auf höhere Fullerene war dagegen sehr viel weniger bekannt. Verschiedene Modelle wurden für die Beschreibung der elektronischen Struktur einzelner Fullerenmoleküle entwickelt^{64,65}. Eine Reihe von Rechnungen der elektronischen Zustände des freien C₆₀-Moleküls wurden mit verschiedenen Rechenmethoden durchgeführt⁶⁵⁻⁶⁸ und eine generelle Übereinstimmung mit einfachen Hückel-Rechnungen wurde gefunden.

Aufgrund der hohen Symmetrie des C_{60} versuchten einige Autoren eine mehr phänomenologische Annäherung an die elektronische Struktur, basierend auf einfachen Symmetrieüberlegungen mit Hilfe eines einfachen Kugelschalenansatzes^{69,70}.

2.4.2 Allgemeine Betrachtungen

Vor einer Diskussion der im Zuge dieser Arbeit erhaltenen Resultate sollen in diesem Unterkapitel die wichtigsten optischen Eigenschaften der Fullerene anhand des gut untersuchten C₆₀ verdeutlicht werden. Abbildung 2.10 zeigt das Energieniveau-Diagramm der mit einer Hückel-Rechnung ermittelten Molekülorbitale des C₆₀. Der elektronische Grundzustand besitzt die elektronische Konfiguration $a_g^2 t_{1u}^6 h_g^8 t_{2u}^8 g_g^8 h_g^{10} h_u^{10}$ und ist somit ein ¹Ag-Zustand.

Im einfachsten Fall der Näherung durch Einelektronenanregung erzeugt man optisch angeregte Zustände des C₆₀, indem man eines der Elektronen in der h_u- oder h_g-Schale in eine höhere Konfiguration anregt (Elektronen-Loch-Paar). Die niedrigsten angeregten Konfiguration sind demnach ... $h_u^9 t_{1u}^1$ bzw. ... $h_u^9 t_{1g}^1$ und ... $h_g^9 h_u^{10} t_{1u}^1$ bzw. ... $h_g^9 h_u^{10} t_{1g}^1$. Um die Symmetrie des angeregten Zustandes zu bestimmen, bildet man das direkte Produkt aus dem angeregten Elektron (T_{1u}) und dem Loch (H_u): z. B.

$$\Gamma_{1u} \otimes H_u = H_g + G_g + T_{2g} + T_{1g}$$
(2.9)

und

$$T_{1u} \otimes H_g = H_u + G_u + T_{2u} + T_{1u}.$$
(2.10)

Da das Elektron und das Loch einen Spin von ½ besitzen, kann man Singlet- (S = 0, A_g-Symmetrie) und Triplet-Zustände (S = 1, T_{1g}-Symmetrie) haben. Optisch erlaubt sind nur ${}^{1}A_{g} \rightarrow {}^{1}T_{1u}$ -Übergänge.

Wie aufwendigere Rechenmethoden zeigen, die sich Linearkombinationen aus Einelektronenanregungen bedienen, ist das einfache Hückel-Bild der Einelektronenanregung allerdings zu einfach (siehe unten).

Abb. 2.10: Energieniveau-Diagramm der Molekülorbitale des C_{60} mit einer Hückel-Rechnung ermittelt. Bis einschließlich dem h_u -Molekülorbital mit Elektronen aufgefüllt.

Fernerhin ist für eine Deutung der experimentellen Spektren relevant, dass nicht-dipolerlaubte Übergänge aufgrund der Mischung mit einer Schwingung geeigneter Symmetrie schwach erlaubt werden können (Kopplung von Elektronenbewegung und Schwingungsbewegung der Kerne). Dieser Effekt wird auch als Herzberg-Teller-Kopplung (H-T-Kopplung) bezeichnet. wurden, Die Betrachtungen, die gelten für zuvor gemacht Moleküle ohne Schwingungsanregung. Die gekoppelten Elektronen-Schwingungszustände bezeichnet man als vibronische Zustände.

Um die Symmetrie des vibronischen Zustandes zu finden, identifiziert man zunächst die Symmetrie der elektronischen Anregung des Vielelektronensystems und dann ermittelt man die Symmetrien der Schwingungsmoden, die H-T-Kopplung machen können. Die Symmetrien der Schwingungen des C_{60} , die mit dem elektronischen Grundzustand zu einem vibronischen, angeregten Zustand koppeln sind in Tabelle 2.11 gegeben.

Um die Symmetrie des vibronischen Zustandes zu ermitteln, der aus der Kopplung einer Schwingungsmode mit Symmetrie H_u mit dem Grundzustand A_g eine Anregung in den angeregten Zustand mit ${}^{1}T_{1g}$ bewirkt, bildet man das direkte Produkt

$$T_{1g} \otimes H_u = T_{1u} + T_{2u} + G_u + H_u.$$
 (2.11)

Wenn das direkte Produkt die Repräsentation des elektrischen Dipoloperators (T_{1u}) wie in diesem Fall enthält, dann ist der Übergang zwischen dem ¹A_g-Grundzustand und dem vibronischen Zustand $|{}^{1}T_{2g}; v[H_u(j)]\rangle$ für jede Schwingungsmode mit j = 1,..., 7 und Symmetrie H_u erlaubt. Tabelle 2.11 listet alle Schwingungsmoden auf, die zu einem vibronischen Zustand führen, der T_{1u} in seiner irreduziblen Repräsentation enthält. Viele der intramolekularen Modenfrequenzen in Fullerenen sind ziemlich groß. Sie können einen signifikanten Beitrag zu der Energie des vibronischen Zustandes leisten. Für C₆₀ hat die größte Mode eine Frequenz von 1566 cm⁻¹, was etwa 0,2 eV entspricht.

Tab. 2.11: Symmetrien von Schwingungen, die einen elektronischen Übergang zwischen dem
Grundzustand mit Ag-Symmetrie und einem angeregten Zustand mit Symmetrie Γ_i
für ikosaedrische Symmetrie aktivieren. Die Symmetrie des vibronischen
Zustandes findet man, in dem man das direkte Produkt $\Gamma_{ex} \otimes \Gamma_{vib}$ für die
elektronische Anregung Γ_{ex} und die Normalmode Γ_{vib} bildet.

Γ_{ex}	$\Gamma_{ m vib}$	Γ_{ex}	Γ_{vib}
Ag	T_{1u}	A_u	T _{1g}
$T_{1g} \\$	A_u, T_{1u}, H_u	F_{1u}	A_g, T_{1g}, H_g
T_{2g}	F_{2u}, G_u, H_u	F_{2u}	T _{2g} , G _g , H _g
G_{g}	T_{2u}, G_u, H_u	G_{u}	T_{2g} , G_g , H_g
H_{g}	T_{1u} , T_{2u} , G_u , H_u	H_{u}	T_{1g} , T_{2g} , G_g , H_g

2.4.3 TDDFT

Aufwendigere Methoden und Rechnungen sind nötig, um verlässliche Voraussagen elektronischer Strukturen machen zu können. Die bisher beste Berechnung der elektronischen Struktur und angeregter Zustände liefert die zeitabhängige Dichtefunktionaltheorie (TDDFT)⁷¹.

In einer Zusammenarbeit mit R. Bauernschmitt, F. Furche und A. Gbureck (Arbeitskreis Prof. Ahlrichs) wurden die elektronischen Absorptionsspektren für die Fullerene C₆₀, C₇₀, C₇₆, C₇₈ (C_{2v}, C_{2v}', D₃, D_{3h}, D_{3h}'), C₈₀ (D₂) und dreier C₈₂ (C₂)-Isomere mit Hilfe einer Methode, die auf der Dichtefunktionaltheorie aufbaut, berechnet. Auf Basis dieser Rechnungen wurden einige Übergänge in den gemessenen Spektren zugeordnet und es gelang eine Strukturzuordnung im Falle des C₈₂.

Die Rechenmethode basiert auf der zeitabhängigen Erweiterung der Dichtefunktionaltheorie, die den Weg öffnet zu der Behandlung frequenzabhängiger Antwortfunktionen wie etwa dynamische Dipolpolarisierbarkeiten $\alpha(\omega)^{72}$. Die Arbeitsgleichungen der TDDFT-Methode sind denen des zeitabhängigen Hartree-Fock-Formalismus (TDHF) ähnlich. Man tauscht im wesentlichen die Terme durch den sich aus DFT ergebenden entsprechenden Austausch-Korrelations-Term E_{XC} aus, die Austauschbeiträge zu der Gesamtenergie (in HF) berücksichtigen. Das erlaubt die Anwendung eines effizienten Rechenverfahrens, das auf die Verwendung von Auxiliarbasensätze zurückgreift, um Elektronendichten anzunähern⁷³. Eine Behandlung von relativ großen, niedersymmetrischen Molekülen wird durch diesen Ansatz möglich.

Testrechnungen mit der TDDFT-Methode an kleinen Molekülen (N₂, Formaldehyd, Ethen und Pyridin) und der Vergleich mit experimentellen Werten haben gezeigt, dass die B3LYPund B-P86-Funktionale die besten Resultate mit einer Standardabweichung σ von -0,54 eV/-0,65 eV der Anregungsenergien liefern⁷⁴⁻⁷⁸.

Für die Berechnung von Anregungsenergien der Fullerene wurde zuerst ein Basissatz, der von Spackman⁷⁹ für die effiziente Berechnung molekularer Polarisierbarkeiten vorgeschlagen wurde, benutzt. Er besteht aus einer 6-31G-Basis, die durch eine diffuse s- und d-Funktion erweitert wurde. Rechnungen für C₆₀ zeigen, dass der Fehler, der durch das Weglassen der diffusen d-Funktion erzeugt wird, kleiner als 0,1 eV für die ersten acht dipolerlaubten Anregungen, die sich bis zu 6 eV erstrecken, beträgt. Darauf aufbauend wurden Rechnungen mit einem TZVP-Auxiliarbasissatz (triple- ζ valence plus polarization) durchgeführt. In einer

Zahl von Testrechnungen wurde bestätigt, dass der Fehler, der durch die Verwendung dieser Auxiliarbasis verursacht wird, unbedeutend ist.

Für alle höheren Fullerene wurden die untersuchten Strukturen mit der DFT-SCF-Methode (Self-Consistent Field, SCF) mit dem B-P86-Funktional und einem Basissatz mit SVP-Qualität (Split Valence Plus Polarisation, SVP)⁸⁰ für Kohlenstoff optimiert. Für C₆₀ führt diese Behandlung zu C-C-Bindungsabstände von 1,459 Å und 1,408 Å, die nahezu mit experimentell gefundenen Werten von 1,453 Å und 1,391 Å identisch sind⁸¹.

Durch Rechnungen an C_{60} wurde überprüft, dass der Einfluss des verwendeten Funktionals auf die Berechnung der Anregungsenergien ziemlich klein ist, solange nicht Hybridfunktionale verwendet werden. Die Differenz der Anregungsenergien für die ersten fünf dipolerlaubten Übergänge des C_{60} , die mit dem B-P86-Funktional und der klassischen LDA (Local Density Approximation), die von Vosko, Wilk und Nusair vorgeschlagen wurde⁸², berechnet wurden, wurde zu weniger als 0,003 eV bestimmt. Hybridfunktionale, wie z. B. B3LYP, führen zu Anregungsenergien, die generell zwischen denen liegen, die mit RPA (Random Phase Approximation) und denen, die ohne Hybridfunktionalen berechnet wurden. Da die Wirksamkeit der Erweiterung durch Auxiliarbasensätze verloren geht, wenn HF-Austausch, wie es bei Hybridfunktionalen geschieht, einbezogen wird, wurde für die im folgenden vorgestellten Berechnungen von Anregungsenergien für höhere Fullerene diese Art von Funktionale nicht verwendet. Außerdem sind sie mangelhaft theoretisch fundiert.

Energien, Oszillatorstärken und Symmetrien der angeregten Zustände dipolerlaubter Übergänge, die für die IPR-Käfige C₆₀, C₇₀, C₇₆, C₇₈ (C_{2v}, C_{2v}', D₃), C₈₀ (D₂) und C₈₂ (C₂) berechnet wurden, sind in den Tabellen 2.13 bis 2.18 aufgelistet. Sie sind zusammen mit experimentell bestimmten Peakmaxima/schultern - wenn vorhanden - und zusammen mit den aus der Literatur bekannten, bisherigen Zuordnungen tabelliert. In dem Falle von C₆₀ wurden alle gerechneten Übergänge aufgelistet. Für die niedersymmetrischeren Fullerene C₇₀, C₇₆, C₇₈, C₈₀ und C₈₂ wurden im wesentlichen die Übergänge aufgelistet, die das Spektrum dominieren und die für die Zuordnung relevant sind. Eine umfassende Auflistung aller dipolerlaubter Übergänge für diese Moleküle sowie für die experimentell nicht isolierten C₇₈-Isomere mit Bezeichnung D_{3h} und D_{3h}' findet sich im Anhang.

Aufgrund seiner hohen Symmetrie hat C_{60} die niedrigste Dichte erlaubter Übergänge unter den hier untersuchten Fullerenen. Das erleichtert den Vergleich zwischen Experiment und Theorie. Basierend auf der Zuordnung (siehe Tabelle 2.13) wird ersichtlich, dass die mit TDDFT gemachten Voraussagen für die angeregten Zustände systematisch niedriger in der Energie sind als die im Experiment beobachteten. Die Datenmenge ist nicht groß genug, um zu entscheiden, ob die Abweichung eine Funktion der Anregungsenergie ist. Auf der Basis von Testrechnungen für kleinere Moleküle, erwartet man einen konstanten Versatz. Für C₆₀ beträgt die durchschnittliche Abweichung –0,35 eV über den untersuchten Energiebereich. In Ermangelung umfangreicher Testrechnungen für Moleküle dieser Größe, wurden deshalb alle berechneten Übergangsenergien einheitlich blauverschoben, in dem 0,35 eV zu den TDDFT-Voraussagen addiert wurden. In den Abbildungen 2.11 bis 2.17 sind die Rechnungen als Strichdiagramm mit korrigierten Übergangsenergien über das experimentelle Spektrum gelegt. Ein einheitlichen guten Übereinstimmung von Experiment und korrigierter Theorie. Der daraus erhaltene Skalierungsfaktor wurde einheitlich für die Darstellung aller anderen Strichspektren der höheren Fullerene verwendet.

Der Vergleich von Experiment und Rechnungen wird erschwert durch die Tatsache, dass in Rechnungen Lösungsmitteleffekte nicht berücksichtigt werden. Das Experiment fragt die optische Antwort von gelösten Fullerenmolekülen, deren Grundzustand und angeregten Zustände von der Wechselwirkung mit Lösungsmittelmolekülen beeinflusst werden, ab. Dagegen beziehen sich die Rechnungen auf isolierte Teilchen ohne Schwingungsanregung. Sie berücksichtigen also nicht die umgebenden Moleküle, ob nun Lösungsmittelmoleküle oder Moleküle der eigenen Spezies. Im Falle von C₆₀ haben systematische Untersuchungen gezeigt, dass Lösungsmittelwechselwirkungen bei Raumtemperatur generell eine Rotverschiebung von Übergängen relativ zu der Gasphase verursachen⁵³. Abhängig von dem angeregten Zustand kann diese Rotverschiebung für Toluollösungen bis zu 0,06 eV betragen. Für C_{70} wurden vergleichbare Rotverschiebungen relativ zur Gasphase beobachtet⁵³. Für Hexanlösungen wurden kleinere Verschiebungen beobachtet. Der Effekt lässt sich dadurch verstehen, dass es Unterschiede in den statischen Polarisierbarkeiten von Grundzustand und Zuständen gibt und den damit einhergehenden Änderungen angeregtem der Wechselwirkungen zwischen Chromophor und Lösungsmittelumgebung. Für höhere Fullerene existieren bisher keine systematischen Untersuchungen zu Lösungsmitteleffekten. Auf der Basis von Photoakustikmessungen⁸³ an mikrokristallinen Proben von C₇₆ und C₇₈ und der Extrapolation analog zu der in Referenz 53 erwartet man, dass die Spektren von C₇₆, C₇₈, C₈₀ und C₈₂ in Toluol bei Raumtemperatur in dem selben Maße wie im Falle des C₆₀ also nicht mehr als 0,06 eV relativ zu der Gasphase rotverschoben sind. Man erwartet des weiteren, dass die Temperatur einen sehr viel kleineren Einfluss auf die Absorptionsenergien haben sollte als der, der von Lösungsmitteleffekten herrührt. Konsequenterweise sollten die

TDDFT-Rechnungen um -0,05 bis -0,07 eV verschoben werden, um Lösungsmitteleffekten Rechnung zu tragen und um sie mit Experimenten vergleichen zu können. Die TDDFT-Rechnungen sind also systematisch um etwa –0,4 eV daneben.

2.4.4 Messungen

Es wurden UV-Vis-NIR-Spektren von C_{60} in Hexan und höheren Fullerenen in Toluol gemessen. Die Konzentrationen waren etwa $2,5x10^{-5}$ mol/l für C_{60} und etwa 10^{-4} mol/l für alle anderen Fullerene. Abbildung 2.11 zeigt ein Absorptionsspektrum für C_{60} in Hexan. Die Abbildungen 2.13 bis 2.17 zeigen Absorptionsspektren für Toluollösungen von C_{70} , C_{76} , C_{78} (C_{2v} , C_{2v} ', D_3), C_{80} (D_2), C_{82} (C_2) und den Vergleich mit TDDFT-Rechnungen in Form von Strichspektren. In allen Spektren wurden ausgeprägte lokale Absorptionsmaxima/schultern in alphabetischer Reihenfolge gekennzeichnet.

2.4.4.1 C₆₀

Abbildung 2.11 zeigt das Absorptionsspektrum von C_{60} . Es lässt sich im wesentlichen in zwei Bereiche aufteilen: in den Bereich a) von 6,5 bis etwa 3 eV mit sehr intensiven, dipolerlaubten Übergängen und in den Bereich b) zwischen 3 und 1,8 eV mit sehr schwachen, nicht dipolerlaubten Übergängen, die durch symmetriebrechende Mechanismen (Herzberg-Teller-Kopplung), wie schon oben erklärt, schwach erlaubt werden. Das Spektrum ist in quantitativer Übereinstimmung mit früheren Messungen der optischen Absorption von C_{60} in Hexanlösung bei Raumtemperatur⁴⁹.

Mit TDDFT lässt sich die elektronische Struktur des C_{60} genauer beschreiben als mit einfachen Hückel-Rechnungen. Abbildung 2.12 zeigt einen Ausschnitt aus dem mit TDDFT berechneten Energieniveauschema der Molekülorbitale des C_{60} . Der Vergleich der beiden Energieniveauschemata (siehe Unterkapitel 2.4.2) zeigt, dass die Hückel-Rechnungen aber schon ein qualitativ richtiges Bild der elektronischen Struktur des C_{60} liefern.

Abb. 2.11: Absorptionsspektrum von C_{60} in Hexan und mit TDDFT berechnete Energien und Oszillatorstärken der ersten zehn dipolerlaubten angeregten Zustände.

Tab. 2.12: Anregungsenergien der ersten zehn dipolerlaubten elektronischen Übergänge, die mit TDDFT berechnet wurden und deren Hauptkomponenten.

E_{calc}	\mathbf{f}_{calc}	beteiligte MOs	Anteil [%]	E_{calc}	\mathbf{f}_{calc}	beteiligte MOs	Anteil [%]
2,72	0,007	$6 \ h_u \rightarrow 3 \ f_{1g}$	71	5,29	2,220	$6 g_g \rightarrow 7 f_{2u}$	39
		$10~h_g \rightarrow 7~f_{1u}$	29			$6 \; h_u \to 7 \; g_g$	26
3,39	0,353	$10~h_g \rightarrow 7~f_{1u}$	49			$6 h_u \rightarrow 11 h_g$	10
		$6 \; h_u \rightarrow 11 \; h_g$	31			$10 \; h_g \rightarrow 7 \; f_{2u}$	9
		$6 \; h_u \rightarrow 3 \; f_{1g}$	17			$10 \ h_g \rightarrow 7 \ f_{1u}$	6
4,31	0,884	$6 \; h_u \rightarrow 11 \; h_g$	50			$6 \ h_u \rightarrow 3 \ f_{1g}$	3
		$6~g_g \rightarrow 7~f_{2u}$	32	5,60	0,006	$5 \; h_u \mathop{\rightarrow} 3 \; f_{1g}$	95
		$10~h_g \rightarrow 7~f_{1u}$	10	5,86	2,541	$6 \; h_u \to 7 \; g_g$	67
4,84	0,006	$9 \; h_g \mathop{\rightarrow} 7 \; f_{1u}$	96			$6~g_g \! \rightarrow 7~f_{2u}$	10
4,92	0,021	$10~h_g \!\rightarrow 7~f_{2u}$	87			$6 \ h_u \rightarrow 11 \ h_g$	6
		$6~g_g \to 7~f_{2u}$	11			$10 \; h_g \mathop{\longrightarrow} 7 \; f_{1u}$	4
						$5 h_u \rightarrow 3_{1g} f$	2
						$10 \; h_g \mathop{\rightarrow} 7 \; f_{2u}$	2
				6,26	0,062	$8 \ h_g \rightarrow 7 \ f_{1u}$	98
				6,41	0,084	$6g_g \rightarrow 7 \ h_u$	89
						$6 g_u \rightarrow 1 \frac{1}{2}$	h6

Tabelle 2.12 listet die Anregungsenergien der ersten zehn dipolerlaubten elektronischen Übergänge auf, die mit TDDFT berechnet wurden sowie deren Hauptkomponenten (Molekülorbitale die an den jeweiligen superponierten Einelektronenübergängen beteiligt sind). Um die elektronischen Übergänge in C_{60} richtig beschreiben zu können, ist das simple Modell der einzelnen Einelektronenanregung offensichtlich zu einfach. Die hier verwendete Rechenmethode bedient sich Linearkombinationen von Einelektronenanregungen.

Abb. 2.12: Mit DFT berechnetes Energieniveau-Diagramm der Molekülorbitale des C₆₀.

Aus Abbildung 2.11 geht hervor, dass Experiment mit den aus TDDFT berechneten Anregungsenergien gut übereinstimmen. Die Rechnungen sind allerdings nicht im Einklang mit früheren Arbeiten in der Literatur. Arbeiten, die sich des CNDO/S-Verfahrens, das speziell zur Interpretation der optischen Spektren von π -Elektronensystemen entwickelt wurde, bedienen, finden die ersten fünf angeregten ${}^{1}T_{1u}$ -Zustände zwischen 3,36 (${}^{1}T_{1u}$) und 4,97 eV (5 ${}^{1}T_{1u}$)⁸⁴. TDDFT-Rechnungen liefern sowohl eine breitere Verteilung dieser Zustände als auch deutlich unterschiedliche relative Intensitäten. Deshalb wurde eine spektrale Zuordnung im UV-Bereich vorgeschlagen, die leicht von der Studie von Leach *et* $al.^{49}$ abweicht, die bisher die umfassendste Zuordnung der gemessenen Strukturen versucht haben und die sich des CNDO/S-Verfahrens bedienten. Einige dominierende Absorptionen wurden anderen Übergängen zugeordnet: Übergang $2^{1}T_{1u} - 1^{1}A_{g}$ anstatt $3^{1}T_{1u} - 1^{1}A_{g}$, $3^{1}T_{1u} - 1^{1}A_{g}$ anstatt $6^{1}T_{1u} - 1^{1}A_{g}$ (siehe Tabelle 2.13). Die kleineren Strukturen b und d, die vorher den Übergängen $2^{1}T_{1u} - 1^{1}A_{g}$ und $4/5^{1}T_{1u} - 1^{1}A_{g}$ zugeordnet wurden, müssen dann nichtdipolerlaubten Übergängen, die durch z. B. Herzberg-Teller-Kopplung schwach erlaubt werden, bzw. Triplet-Singlet-Übergängen zugeordnet werden⁶⁰.

Auf Basis der sehr gut aufgelösten Absorptionsspektren von Leach *et al.* wurde durch mehrere Gruppen eine Zuordnung der schwachen Strukturen in der Region zwischen 3 und 1,8 eV zu vibronischen Zuständen versucht^{49,84}. Die Zuordnung ist sehr unzuverlässig, da die in diesen Arbeiten verwendeten Rechenmethoden zur Berechnung der in Frage kommenden niederenergetischen, nicht-dipolerlaubten Übergänge sehr unsicher sind. Außerdem waren zu diesem Zeitpunkt auch die meisten Frequenzen der 46 Normalmoden des C₆₀ nur sehr ungenau bestimmt. Die für diese Arbeit gemachten TDDFT-Rechnungen bestimmen die niederenergetischsten, nicht-dipolerlaubten, elektronischen Übergänge in C₆₀ zu $1^{1}G_{g}$ (1,59 eV), $1^{1}T_{1g}$ (1,64 eV), $1^{1}T_{2g}$ (1,65 eV) und $1^{1}H_{g}$ (1,74 eV).

Tab. 2.13: Mit TDDFT berechnete Anregungsenergien und Oszillatorstärken dipolerlaubte

Übergänge des C_{60} und Vergleich mit früheren Zuordnungen. Werte in

Klammern sind dipolverbotene Übergänge. Alle Energien sind in eV angegeben.

	E	Exp. 1 ^b		Exp. 2 ^c		dies	e Arbeit ^d	
Struktur ^a	Zuordnung	E_{obs}	\mathbf{f}_{obs}	Zuordnung	E_{obs}	Zuordnung	E _{cal}	\mathbf{f}_{cal}
a	$1^{1}T_{1u}$	3,04	0,015	(¹ T _{2u}	3,02)	$1^{1}T_{1u}$	2,72	0,007
b	$2^{1}T_{1u}$	3,30	-	-	-	d	-	-
с	$3^{1}T_{1u}$	3,78	0,37	${}^{1}\mathrm{T}_{1\mathrm{u}}$	3,81	$2^{1}T_{1u}$	3,39	0,353
d	$4^{1}T_{1u}$ $5^{1}T_{1u}$	4,06 4,35	0,10	$(^{3}T_{1u}$	4,22)	d	-	-
e	$6^1 T_{1u}$	4,84	2,27	${}^{1}\mathrm{T}_{1\mathrm{u}}$	4,90	$3^{1}T_{1u}$	4,31	0,884
f	$7^{1}T_{1u}$	5,46	0,22	$(^{3}T_{1u}$	5,52)	$4^{1}T_{1u}$ $5^{1}T_{1u}$	4,84 4,92	0,006 0,021
g	$8^{1}T_{1u}$	5,88	3,09	${}^{1}T_{1u}$	5,96	$6^{1}T_{1u}$	5,29	2,22
h	$9^{1}T_{1u}$	6,36	-	-	-	$8^{1}T_{1u}$	5,86	2,54

^aAbsorptionsspektrum von C_{60} in n-Hexan bei 300 K⁵¹; ^bAbsorptionsspektrum von C_{60} in einer Ar-Matrix bei 5 K⁸⁵; ^csiehe Abbildung 2.11; ^dZuordnung siehe Text.

Abbildung 2.13 beinhaltet das Absorptionsspektrum von C_{70} in Toluol. Die spektralen Strukturen und deren relativen Intensitäten stimmen mit früheren Messungen in der Literatur überein. Die absoluten Absorptionskoeffizienten sind niedriger als die, die in einer früheren Arbeit gefunden wurden, in der C_{70} in Toluol gemessen wurde (z. B. $\varepsilon_{382} = 37500^{86}$ gegen 35000 l mol⁻¹ cm⁻¹). Sie sind aber größer als die aus einer noch früheren Arbeit, in der C_{70} in Benzol gemessen wurde (z. B. $\varepsilon_{381} = 29400 \text{ l mol}^{-1} \text{ cm}^{-1}$).

Abb. 2.13: Absorptionsspektrum von C₇₀ in Toluol und mit TDDFT berechnete Energien und Oszillatorstärken dipolerlaubter angeregter Zustände.

Die überwiegende Mehrheit der Berechnungen der elektronisch angeregten Zustände, die für die Zuordnung der spektralen Strukturen herangezogen wurden, wurden auf CNDO/S- oder INDO/S-Niveau, das eine Weiterentwicklung des CNDO/S-Verfahrens ist, durchgeführt⁸⁷. Basierend auf diesen Rechnungen wurden Übergänge im C₇₀-Spektrum teilweise zugeordnet (siehe Tabelle 2.14). Die TDDFT-Rechnungen ermöglichen eine umfassendere Zuordnung. In Tabelle 2.14 wurden nur die für die Zuordnung relevanten Zustände aufgelistet. Im Anhang sind alle optisch erlaubten Zustände zu finden.

Tab. 2.14: Zuordnung einiger Strukturen im Absorptionsspektrum des C70 mit Hilfe vonTDDFT-Rechnungen und Vergleich mit einer früheren Zuordnung.

		CNDO/S ^c				
Struktur ^a	E_{obs}	Zuordnung	E _{cal}	\mathbf{f}_{cal}	Zuordnung	E _{cal}
a	1,95	$1^{1}E_{1}'$	1,79	0,0003	-	-
b	2,27	$2^{1}E_{1}'$	2,06	0,022	-	-
с	2,62	$3^{1}E_{1}'$	2,228	0,062	${}^{1}E_{1}'{}^{d}$	2,37
d	3,24	$4^{1}A_{2}''$	2,85	0,151	${}^{1}E'_{1} + {}^{1}A''_{2}$	3,00
e	3,4	-	-	-	${}^{1}E'_{1}$	3,52
f	3,7	$6^{1}E'_{1}$ $5^{1}A''_{2}$	3,24 3,24	0,094 0,087	${}^{1}A_{2}''$	3,75
g	3,92	-	-	-	-	-

^asiehe Abbildung 2.13; ^bsiehe Anhang für alle dipolerlaubten Übergänge; ^cVergleich mit Zuordnung basierend auf Referenz 87.

2.4.4.3 C₇₆

Abbildung 2.14 zeigt das Absorptionsspektrum von C_{76} . Für C_{76} sind bereits Absorptionsmessungen bei Raumtemperatur in verschiedenen Lösungsmitteln, unter anderem in Hexan⁸⁸, Dichlormethan⁸⁹, Methylcyclohexan⁹⁰ und Toluol⁹¹ publiziert. Abbildung 2.14 ist in guter Übereinstimmung mit diesen Messungen. Nur im Falle der Messung in Dichlormethan wurden absolute Absorptionskoeffizienten angegeben. Entsprechende Bandenmaxima, die hier in Toluol gemessen wurden, sind etwa 25% größer.

Es existiert in der Literatur nur eine begrenzte Zahl von Berechnungen angeregter Zustände. Die umfangreichsten sind Voraussagen auf CNDO/S- und INDO/S-Niveau für elektronische Absorptions- und magnetische Zirkulardichroismus-Spektren⁹². Tabelle 2.15 vergleicht diese CNDO/S-Rechnungen mit den für diese Arbeit gemachten TDDFT-Rechnungen, die das Experiment besser beschreiben.

Abb. 2.14: Absorptionsspektrum von C₇₆ in Toluol und mit TDDFT berechnete Energien und Oszillatorstärken dipolerlaubter angeregter Zustände.

Tab. 2.15: Zuordnung einiger Strukturen im Absorptionsspektrum des C₇₆ mit Hilfe von TDDFT-Rechnungen und Vergleich mit einer früheren Zuordnung.

		diese	e Arbeit ^b		CNDO/S ^c			
Struktur ^a	$E_{obs} \\$	Zuordnung	E_{cal}	\mathbf{f}_{cal}	Zuordnung	E_{calc}	\mathbf{f}_{cal}	
a	1,60	$1^{1}B_{3}$	1,37	0,004	$1^{1}B_{3}$	1,72	0,0000	
b	1,73	$2^{1}B_{1}$	1,43	0,022	$1^{1}B_{2}$	1,86	0,0412	
с	2,17	3^1B_3	1,97	0,007	$1^{1}B_{1}$	1,98	0,0296	
		3^1B_2	1,98	0,002	$2^{1}B_{3}$	2,03	0,0047	
					$2^{1}B_{1}$	2,32	0,0047	
					3^1B_3	2,37	0,0052	
d	2,75	6^1B_2	2,24	0,013	$7^{1}B_{3}$	2,92	0,1023	
		8^1B_3	2,32	0,013				
		8^1B_2	2,38	0,013				
		$9^{1}B_{1}$	2,46	0,026				

^asiehe Abbildung 2.14; ^bsiehe Anhang für alle dipolerlaubten Übergänge in dem Energiebereich; ^cVergleich mit Zuordnung aus Referenz 92.

Es wurden TDDFT-Rechnungen für die isolierten C_{78} -Isomere C_{2v} , C_{2v} ' und D_3 sowie auch an den bisher nicht isolierten Isomeren D_{3h} und D_{3h} ' durchgeführt. Durch eine sog. Stone-Wales-Umlagerung sollte es möglich sein, IPR-Isomere durch das Umklappen einer Doppelbindung ineinander umwandeln zu können (siehe Unterkapitel 2.3.3.1). Das ist aber bisher noch nicht gelungen. Aber aufgrund dieser Eventualität wurden Rechnungen für die "fehlenden" D_{3h} -Isomere gemacht.

Die Abbildung 2.15 enthält die Absorptionsspektren für C78 (C2v), C78 (C2v') und C78 (D3) in deutliche Unterschiede Toluol. Sie zeigen in ihren Spektren, die somit Fingerabdruckcharakter haben. Sie sind qualitativ in guter Übereinstimmung mit früheren $Messungen \quad von \quad C_{78} \quad (C_{2v}) \quad und \quad C_{78} \quad (D_3) \quad in \quad CH_2Cl_2\text{-}L\ddot{o}sung^{93}. \quad Die \quad absoluten$ Absorptionskoeffizienten sind etwa 25% größer für C78 (C2v) als in der früheren Arbeit. Für C_{78} (D₃) wurden keine absoluten Absorptionskoeffizienten angegeben. Für C_{78} (C_{2v}) existieren frühere Messungen in Methylcyclohexan⁹⁰ und Schwefelkohlenstoff⁹⁴, die qualitativ mit den Messungen, die für diese Arbeit durchgeführt wurden, übereinstimmen. Die Veröffentlichungen enthalten keine absoluten Absorptionskoeffizienten. Außerdem existieren Zirkulardichroismus-Spektren von C_{78} (D₃) in Toluol⁹⁵.

Es gibt nur eine kleine Zahl Veröffentlichungen mit Rechnungen angeregter Zustände der C₇₈-Isomere. Die Rechnungen, die relevant für eine spektrale Zuordnung sind, bedienen sich wieder des semiempirischen CNDO/S-⁹⁴ bzw. INDO/S-Verfahrens⁹⁶. Die Übereinstimmung mit dem Experiment ist schlecht und eine Unterscheidung der Isomere aufgrund der Rechnungen ist nicht möglich. Die Abbildung 2.15 zeigt eine qualitativ gute Übereinstimmung zwischen TDDFT-Rechnungen und Experiment, was eine Unterscheidung und Zuordnung der Isomere auf Basis der Rechnungen erlaubt. Tabelle 2.16 listet eine vorläufige spektrale Zuordnung auf. Diese Tatsache gibt Anlass zu der berechtigten Hoffnung, die zwei fehlenden C₇₈-Isomere mit D_{3h}-Symmetrie mit Hilfe der Berechnung ihres Fingerabdrucks zu identifizieren, sollte es jemals möglich sein, sie herzustellen, sei es durch eine gezielte Stone-Wales-Umlagerung aus den vorhandenen Isomeren mit C_{2v}-Symmetrie oder durch eine andere Art der Fullerendarstellung als durch Bogenentladung.

Abb. 2.15: Absorptionsspektrum der drei C_{78} -Isomere C_{2v} , C_{2v} ' und D_3 in Toluol und mit TDDFT berechnete Energien und Oszillatorstärken dipolerlaubter angeregter Zustände.

Isomer	Struktur ^a	E _{obs}	Zuordnung	$E_{cal}^{\ \ b}$	\mathbf{f}_{cal}
	a	1,39	$1^{1}B_{2}$	1,19	0,001
	b	1,78	1^1 B $_1$	1,52	0,002
			2^1B_2	1,52	0,006
C_{2v}	с	1,95	3^1B_2	1,60	0,009
	d	2,33	4^1B_2	1,89	0,012
			5^1B_2	1,99	0,006
			3^1A_1	2,00	0,013
			$3^{1}B_{1}$	2,04	0,007
	a	1,04	1^1B_2	0,85	0,005
	b	1,27	2^1B_2	1,05	0,005
C_{2v}	с	1,85	4^1B_2	1,48	0,016
	d	2,60	9^1B_2	2,25	0,027
	e	2,87	$10^{1}A_{1}$	2,58	0,076
	a	1,51	$1^{1}E$	1,29	0,004
D_3	b	1,61	$2^{1}E$	1,44	0,010
	с	2,62	5^1A_2	2,26	0,039

Tab. 2.16: Zuordnung der berechneten dipolerlaubten Übergänge dreier C₇₈-Isomere zu den experimentellen Spektren. Alle Energien sind in eV angegeben.

^asiehe Abbildung 2.15; ^bsiehe Anhang für alle dipolerlaubten Übergänge in dem Energiebereich.

2.4.4.5 C₈₀

Die Abbildung 2.16 enthält das in Toluol gemessene Absorptionsspektrum von C_{80} (D₂). Da es bisher von keiner anderen Gruppen isoliert werden konnte, gibt es keine Möglichkeit des Vergleichs mit Messungen in der Literatur. Die absoluten Extinktionskoeffizienten wurden auf 10% genau bestimmt und sind etwas größer als die, die von uns in CH₂Cl₂ gemessen wurden⁹⁷. In Ermangelung experimenteller Hinweise auf die Existenz von C₈₀ in der Vergangenheit existieren keine relevanten Rechnungen angeregter Zustände. Tabelle 2.17 vergleicht das Experiment mit der TDDFT-Rechnung. Die Übereinstimmung ist befriedigend und erlaubt eine vorläufige Zuordnung herausragender spektraler Strukturen.

Abb. 2.16: Absorptionsspektrum von C₈₀ (D₂) in Toluol und mit TDDFT berechnete Energien und Oszillatorstärken dipolerlaubter angeregter Zustände.

Tab. 2.17: Zuordnung der dipolerlaubten Übergänge des C_{80} . Alle Energien sind in eV angegeben.

Struktur ^a	E_{obs}	Zuordnung	E_{cal}^{b}	\mathbf{f}_{cal}	
а	1,43	2^{l} D	1 22	0.015	
b	1,57	2 D ₃	1,22	0,015	
	2.06	4^1B_2	1,75	0,004	
С	2,00	$4^{1}B_{1}$	1,82	0,004	
d	2,47	6^1B_2	2,13	0,012	
e	2,61	7^1B_1	2,24	0,013	

^asiehe Abbildung 2.16; ^bsiehe Anhang für alle dipolerlaubten Übergänge in dem Energiebereich.

2.4.4.6 C₈₂

Für C_{82} wurden TDDFT-Berechnungen der Anregungsenergien der drei Isomere mit C_2 -Symmetrie durchgeführt. Die Rechnung für das C_2 -Isomer mit der Bezeichnung Nr. 3 zeigt die beste Übereinstimmung mit der in Toluol gemessenen C_{82} -Fraktion. Abbildung 2.17 zeigt den Vergleich der Rechnungen für die drei C_2 -Isomere mit dem Experiment. Isomer C_2 (3) ist nach PM3- und DFT-Rechnungen auch das thermodynamisch stabilste Isomer. Tabelle 2.18 fasst den Versuch der Zuordnung experimenteller Strukturen zusammen.

Abb. 2.17: Absorptionsspektrum von C₈₂ (C₂) in Toluol und mit TDDFT berechnete Energien und Oszillatorstärken dipolerlaubter angeregter Zustände der drei theoretisch möglichen C₂-Isomere. Im Falle der C₈₂-Probe war die Menge zu gering, um absolute Absorptionsquerschnitte bestimmen zu können. Deswegen ist in der Abbildung nur log (I/I₀) angegeben.

			h	
Struktur ^a	E _{obs}	Zuordnung	E_{cal}^{b}	f_{cal}
а	1,05	$1^{1}A$	0,79	0,001
b	1,24	$2^{1}A$	1,00	0,000
с	1,41	3 ¹ A	1,11	0,006
d	1,68	$4^{1}A$	1,32	0,008
e	2 15	$7^{1}A$	1,78	0,005
C	2,13	$8^{1}A$	1,85	0,006
f	2 30	$10^1 B$	2,01	0,006
1	2,30	11^{1} A	2,03	0,007
g	2,51	$13^{1}B$	2,23	0,010
		23 ¹ A	2,53	0,020
h	3,00	$24^{1}A$	2,56	0,036

Tab. 2.18: Zuordnung der dipolerlaubten Übergänge des C₈₂ (C₂ Nr. 3). Alle Energien sind in eV angegeben.

^asiehe Abbildung 2.17; ^bsiehe Anhang für alle dipolerlaubten Übergänge in dem Energiebereich.

Zusammenfassend lässt sich sagen, dass es mit TDDFT-Rechnungen zum ersten Mal gelungen ist, die elektronische Struktur und optischen Eigenschaften solcher großen Moleküle wie den Fullerenen so gut zu beschreiben, dass sich Fullerenisomere anhand der Rechnungen zuordnen lassen. Die befriedigende Beschreibung aller Effekte, wie zum Beispiel die Herzberg-Teller-Kopplung, ist selbst für das einfachste Fulleren C_{60} noch nicht möglich.

2.5 IR

Als Teil dieser Arbeit wurden IR-Spektren von isomerenreinen, polykristallinen Fullerenproben C₆₀, C₇₀, C₇₆, C₇₈ (C_{2v}, C_{2v}', D₃) und C₈₂ (C₂) aufgenommen. Die Spektren wurden zwecks Verbesserung des Signal/Rausch-Verhältnisses in Reflexion mit Hilfe der Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) Methode erhalten. Die Spektren wurden außerdem mit Normalmodenfrequenzen und IR-Intensitäten verglichen, die auf DFT-Niveau berechnet wurden.

2.5.1 Literaturübersicht

 C_{60} besitzt aufgrund seiner einzigartigen, hochsymmetrischen Struktur unter den Fullerenen Modellcharakter und ist deshalb schwingungsspektroskopisch am besten charakterisiert. So sind alle IR- und Raman-erlaubten Moden nunmehr zugeordnet. Zu Beginn dieser Arbeit gab es schon eine Vielzahl von Messungen und Berechnungen der Normalmoden auf verschiedensten Theorieniveaus. Die Rechnungen lassen sich dabei im wesentlichen in drei Kategorien aufteilen: a) klassische, basierend auf angepassten Kraftkonstanten (für im wesentlichen Biegungen und Streckungen)⁹⁸⁻¹⁰³, b) *ab initio*¹⁰⁴⁻¹¹⁰ und c) semiempirische Rechnungen^{111,112}.

 C_{70} ist ebenfalls schwingungsspektroskopisch gut charakterisiert¹¹³⁻¹¹⁸. Mangels guter Rechnungen ist aber eine Zuordnung der 31 IR-erlaubten Moden bisher noch nicht gelungen.

Für höhere Fullerene gibt es bisher wenige Publikationen mit schwingungsspektroskopischen Untersuchungen an isomerenreinen Proben. C_{76} wurde sehr bald nach C_{70} isoliert und vermessen^{119,120}. Für C_{78} gelang die schwingungsspektroskopische Charakterisierung bisher nur für die beiden Isomere C_{2v} und C_{2v} ^{,121}. C_{80} (D₂) und C_{82} (C₂) konnten erstmals in dieser Arbeit untersucht werden.

2.5.2 DRIFT-Messungen

DRIFT ist eine besondere Variante der IR-Spektroskopie, die es erlaubt, Messungen an Pulverproben zu machen. Dabei wird der zu untersuchende Analyt mit KBr zerrieben und die Messung wird dann an dem polykristallinem Pulver durchgeführt. Die Probe wird dazu mit dem Messstrahl bestrahlt und das diffus reflektierte Licht wird mit einem Parabolspiegel aufgefangen und detektiert. Etwa 10% der gestreuten Strahlung wird aufgesammelt.

Generell kann es bei der Wechselwirkung von dem IR-Licht mit der Pulverprobe zu den folgenden Prozessen kommen:

- a) gerichtete Reflexion
- b) diffuse Reflexion
- c) Absorption

Bei der gerichteten Reflexion wird das IR-Licht direkt von Partikelgrenzflächen reflektiert ohne in die Probe einzudringen. Bei diffuser Reflexion dringt das Licht in die Probe ein und wird dann zum Teil an Partikelgrenzen in der Probe reflektiert. Ein Teil des Strahls findet den Weg zurück zur Oberfläche und verlässt die Probe. Neben Reflexion kann es zu Absorption kommen. Absorption wird bedeutsam, wenn der Teilchendurchmesser größer als die verwendete Messwellenlänge ist. Um den Anteil der gerichteten Reflexion zu verringern, wird die zu untersuchende Substanz mit nicht-absorbierendem Material wie KBr verdünnt.

P. Kubelka und F. Munk entwickelten ein Modell auf Basis der Kontinuumtheorie zur quantitativen Beschreibung der diffusen Reflexion^{122,123}. In dieser Behandlung wird das Strahlungsfeld in der Probe in zwei Flüsse aufgeteilt: einer, der von der Oberfläche in den Bulk wandert und einer, der vom Bulk in die Oberfläche wandert. Die Intensitäten der Flüsse werden durch Rayleighstreuung und Absorptionsprozessen bestimmt, die durch die wellenlängenabhängigen Größen *S* für die Streuung und *K* für die Absorption beschrieben werden. Die Summation des Strahlungsfeldes über die beiden Richtungen führt zu der Kubelka-Munk-Beziehung:

$$f(R_{\infty}) = \frac{(1-R_{\infty})^2}{2R_{\infty}} = \frac{K}{S}.$$
 (2.12)

 R_{∞} , das man als relatives Reflexionsvermögen bezeichnet, ist hierbei das Verhältnis aus der diffus reflektierten Strahlungsdichte der Probe und der diffus reflektierten Strahlungsdichte eines nicht-absorbierenden Standards, gewöhnlicherweise KBr. In der Praxis findet man, dass die und Reflexionseigenschaften der Probe über begrenzten Streueinen Konzentrationsbereich (bei jeweils einer festgehaltenen Wellenlänge) durch die Kubelka-Munk-Beziehung beschreibbar sind. Für schwach absorbierende Proben ist $f(R_{\infty})$ proportional K und unter der Annahme, dass gerichtete Reflexion vernachlässigbar ist, ist S über einen begrenzten Konzentrationsbereich konstant. K ist dann proportional εc , wobei Probe Absorptionskoeffizient und die Konzentration der С der ist. Der З Proportionalitätsfaktor lässt sich über die Kalibrierungsmessung mit einer Probe bekannter Konzentration messen.

Eigenschaften der Pulverprobe, wie Partikelgröße, Packungsdichte, Brechungsindex und Absorptionscharakteristik sind ganz entscheidend, damit die Bedingungen, die für die Gültigkeit der Kubelka-Munk-Beziehung nötig sind, erfüllt sind. Für die Messung in diffuser Reflexion wird also der Analyt mit KBr verdünnt und gemessen. Das relative Reflexionsvermögen wird dann wie folgt aus dem Experiment ermittelt:

$$R_{\infty} = \frac{\text{diffus reflektiente Strahlungsdichte von Probe + Standard}}{\text{diffus reflektiente Strahlungsdichte des Standards}}$$
(2.13)

Dabei ist es wichtig, möglichst reproduzierbare Korngrößen und eine homogene Verteilung anzustreben.

Die in dieser Arbeit vorgestellten DRIFT-Messungen an höheren Fullerenen wurden am Institut für Organische Chemie der Universität Karlsruhe mit einem FT-IR-Spektrometer der Firma Bruker (IFS 88) durchgeführt. Die Spektren wurden außer für C_{82} (200 Scans) über 50 Scans gemittelt und mit einer Auflösung von 2 cm⁻¹ aufgenommen. Die zu untersuchenden Fullerenproben wurden für die Messungen wie folgt präpariert: Zunächst wurde das zu untersuchende Fulleren aus einer konzentrierten Toluollösung (1–2 ml) mit Methanol (20–30 ml) gefällt und durch Ultraschallbehandlung aufgeschlemmt. Anschließend wurde die

Suspension mit einem Membranfilter (Schleicher & Schuell, regenerierte Cellulose, Por endur chmesser 0,4 μ m) filtriert und das polykristalline Pulver dann unter Vakuum (~10⁻³ mbar) für mindestens 12 Stunden bei Raumtemperatur getrocknet.

2.5.3 DFT-Rechnugen

Zur Unterstützung der Auswertung der DRIFT-Spektren der gemessenen Fullerenproben wurden in Zusammenarbeit mit A. Gbureck (Arbeitskreis Prof. Ahlrichs) Rechnungen der Normalmoden auf DFT-Niveau unter Verwendung des BLYP-Funktionals¹²⁴ und des SVP-Basissatzes¹²⁵ auf einem IBM-Parallelrechner (IBM RS/6000 SP Power3 SMP "Nighthawk"; 8 Power3-Prozessoren (225 MHz)) im Institut für Nanotechnologie am Forschungszentrum Karlsruhe durchgeführt. Um die Daten an das Experiment anzupassen wurden sie mit einem Faktor von 1,01 skaliert. Die berechneten Fullerene wurden zunächst auf DFT-Niveau geometrieoptimiert.

2.5.4 Messungen und Diskussion

2.5.4.1 C₆₀

Abbildung 2.18 zeigt das DRIFT-Spektrum von C_{60} und zum Vergleich ein konventionelles FT-IR-Spektrum, in Transmisson an einem C_{60} /KBr-Pressling gemessen (0,5 cm⁻¹ Auflösung, 1000 Scans). Beide Aufnahmen wurden jeweils bei Raumtemperatur gemacht. Der Vergleich von DRIFT- und FT-IR-Spektrum zeigt keine wesentlichen Unterschiede. Das DRIFT-Spektrum zeigt neben den vier bekannten F_{1u} -Moden eine Vielzahl von kleinen Strukturen, die auch im FT-IR-Spektrum widergegeben werden. Die Auflistung aller Strukturen sowohl des FT-IR-Spektrums als auch des DRIFT-Spektrums findet sich im Anhang. Der Vergleich zweier DRIFT-Einzelmessungen zeigt, dass kleine Absorptionspeaks mit Intensitäten von \geq 0,02% der des intensivsten Signals bei 526,5 cm⁻¹ reproduzierbar sind. Die Abweichungen in den Postionen der Peakmaxima betragen $\leq 0,2$ cm⁻¹ und die Abweichungen in den relativen Intensitäten betragen 20 %. C_{60} ist mit konventioneller IR-Absorptionsspektroskopie gut untersucht, aber DRIFT-Spektroskopie kam dabei bisher noch nicht zur Anwendung. Aber

wie der Vergleich mit dem herkömmlich aufgenommenen FT-IR-Spektrum zeigt, ist DRIFT gut für Fullerene geeignet.

Abb. 2.18: DRIFT-Spektrum von C_{60} und ein konventionelles FT-IR-Spektrum in Transmisson an einem C_{60} /KBr-Pressling gemessen. Rechte Achse: vergrößerter Ausschnitt.

Wie schon oben erwähnt zeigt das DRIFT-Spektrum neben den vier F_{1u} -Moden bei 526,5, 576,0, 1182,8 und 1429,0 cm⁻¹ noch etwa 160 sehr viel kleinere, reproduzierbare Strukturen bis zu etwa 3100 cm⁻¹ hinauf. In der Literatur ist seit längerem schon bekannt, dass IR- und Raman-Messungen von C₆₀ bei Raumtemperatur sehr viele kleine, reproduzierbare Strukturen aufweisen. Diese werden drei verschiedenen Effekten zugeschrieben: (i) stillen Moden, die aufgrund der vorliegenden Isotopenverteilung und der Störung des C₆₀ im Kristall schwach erlaubt werden und gegebenenfalls relativ zum isolierten Molekül aufgespalten sind; (ii) Obertönen; (iii) Kombinationsbanden. C₆₀ kristallisiert in einem fcc-Gitter¹²⁶ und bei Raumtemperatur kann es quasi frei rotieren¹²⁷. Röntgenstruktur-Untersuchungen an einzelnen C₆₀-Kristallen zeigen jedoch, dass die gemittelte Ladungsdichteverteilung des C₆₀-Moleküls im Kristall nicht ganz sphärisch ist¹²⁸. Die C₆₀-Moleküle sind im Kristall also etwas gestört. Diese Störung bedingt, dass IR-stille Moden schwach erlaubt werden. Bei Raumtemperatur sollten also schon stille Moden im IR-Spektren detektierbar sein.

Des weiteren weist die Beobachtung von Raman-Linien (Absorptionen die Raman-erlaubten Normalmoden zugeordnet werden können) im DRIFT-Spektrum darauf hin, dass sie aufgrund des ¹³C-Isotopeneffektes aktiv werden. Wie schon in Unterkapitel 2.3.1 gezeigt wurde, ist mit einem natürlichen ¹³C-Vorkommen (1,1 %) der Anteil von ¹²C₆₀, ¹³C₁¹²C₅₉, ¹³C₂¹²C₅₈ und ¹³C₃¹²C₅₇ im synthetisierten C₆₀ 51,2, 34,5, 11,4 und 2,5 %. Der Anteil von Isotopomeren mit vier oder mehr ¹³C-Atomen ist weniger als 0,5 %. Der Einbau eines ¹³C in C₆₀ zu ¹³C₁¹²C₅₉ erniedrigt die Symmetrie des ¹²C₆₀ drastisch von I_h zu der niedrigsymmetrischen Punktgruppe C_s. In dieser Punktgruppe gibt es nur E- und σ -Symmetrieoperationen. Die Spiegelebene verläuft durch das ¹³C-Atom. Für ¹³C₁¹²C₅₉ gibt es drei verschiedene mögliche niedrigere Symmetriegruppen (Isotopomere): C₁, C_s und C_{2v} mit Wahrscheinlichkeiten 56/59, 1/59 und 2/59. Für die Punktgruppen C₁ und C_s sind alle Schwingungsfreiheitsgrade IR- und Ramanaktiv. Für das Isotopomer mit C_{2v}-Symmetrie sind alle Schwingungsmoden Raman-erlaubt. IR-erlaubt sind alle A₁-, B₁- und B₂-Moden.

Die Tatsache, dass man Absorptionen bis zu etwa 3100 cm⁻¹ findet, impliziert, dass man es hier mit Moden zweiter Ordnung, Kombinationsmoden und Obertöne, zu tun hat. Die Anharmonizität des Bindungspotentials führt zu neuen Linien im Spektrum, den sogenannten Kombinationsmoden, die sich aus fundamentalen Schwingungen zusammensetzen.

Die Gruppentheorie hilft dabei, die IR-erlaubten Kombinationsmoden zu identifizieren. Dabei braucht man im wesentlichen nur Additionsbanden berücksichtigen, da die Intensität der Differenzbande $v_k - v_i$, mit $v_k > v_i$, kleiner sein sollte als die der dazugehörigen Additionsbande $v_k + v_i$. (Wenn die Additionsbande $v_k + v_i$ erlaubt ist, dann ist es die dazugehörige Differenzbande $v_k - v_i$ auch.) Kombinationsbanden, bestehend aus drei Frequenzen, addiert oder subtrahiert, werden bei den folgenden Betrachtungen ebenfalls nicht berücksichtigt, da deren Intensitäten noch kleiner sein sollten als Kombinationsbanden, bestehend aus zwei Frequenzen.

Die Charaktertafeln der Punktgruppen werden dazu benutzt, um die Symmetrie der Schwingungsmoden zweiter Ordnung ausfindig zu machen. Wenn das direkte Produkt zweier fundamentaler Moden F_{1u} -Symmetrie in seinem Charakter enthält, dann bedeutet das, dass die Kombination dieser beiden Moden IR-aktiv ist. Alle direkten Produkte können mit Hilfe der

Charaktertafel der I_h -Punktgruppe berechnet werden. Ein Beispiel einer Kombinationsmode, die F_{1u} -Charakter besitzt und damit symmetrieerlaubt ist, ist

$$F_{2g} \otimes H_u = F_{1u} + F_{2u} + G_u + H_u.$$
(2.13)

Kombinationen, die Raman-aktiv sind, enthalten A_g oder H_g in ihrem Charakter. Tabelle 2.20 fasst zusammen, welche Kombinationsmoden entweder IR- oder Raman-aktiv sind.

 Tab. 2.20:
 Übersicht über IR- bzw. Raman-aktiver Kombinationsschwingungsmoden (nur Zweierkombinationen).

	A_{g}	$F_{1g} \\$	$F_{2g} \\$	G_{g}	H_{g}	A_{u}	$F_{1u} \\$	$F_{2u} \\$	G_{u}	H_{u}
A_{g}	R									
$F_{1g} \\$		R								
$F_{2g} \\$		R	R							
G_{g}		R	R	R						
H_{g}		R	R	R	R					
A_{u}		IR				R				
$F_{1u} \\$	IR	IR			IR		R			
$F_{2u} \\$				IR	IR			R		
G_{u}			IR	IR	IR				R	
H_{u}		IR	IR	IR	IR					R

Gemäß Tabelle 2.20 gibt es 380 erlaubte IR- und 484 erlaubte Raman-Kombinationsmoden. Wenn man eine zufällige Verteilung der fundamentalen Moden zwischen 0 und 2 x 1600 = 3200 cm^{-1} annimmt, dann beträgt der mittlere Abstand zwischen Kombinationslinien 8 cm⁻¹ im IR- und 6 cm⁻¹ im Raman-Spektrum. In Wirklichkeit sind Kombinationsbanden nicht statistisch auf das Spektrum verteilt. Der Abstand zweier Kombinationsmoden sollte im nieder- und hochfrequenten Bereich größer und im mittleren Bereich kleiner sein. Um Kombinationsmoden sicher zuordnen zu können, bedarf es genauer Rechnungen. Da die bisher berechneten Normalmoden mit einer mittleren Unsicherheit von ca. 30 cm⁻¹ behaftet sind und es bisher nicht möglich ist, Intensitäten bzw. Raman-Querschnitte für stille Moden, die durch einen symmetriebrechenden Effekte schwach erlaubt werden, zu berechnen, war es unmöglich alle im Experiment detektierten Strukturen Normalmoden, Kombinationsbanden oder Obertönen eindeutig zuzuordnen. Mit Hilfe der in Unterkapitel 2.5.3 vorgestellten Rechenmethode wurden die 46 Normalmoden des C₆₀ berechnet, um eine neue Zuordnung der schwachen Strukturen im C₆₀-DRIFT-Spektrum zu versuchen. Der Vergleich mit Rechnungen aus der Literatur zeigt, dass DFT mit dem BLYP-Funktional und der hier verwendeten Basis die bisher beste Voraussage (kleinste Standardabweichung) der zehn Ramanund vier **IR-erlaubten** Schwingungsfrequenzen des C₆₀ liefert. Tabelle 2.21 listet zum Vergleich die mit DFT und PM3 berechneten vier IR-erlaubten und zehn Raman-erlaubten Normalmoden des C60 und die bisher besten ab initio-Rechnungen aus der Literatur auf. Die experimentellen Werte für die vier IR-aktiven F_{1u}-Moden, die zehn Raman-erlaubten Ag- und Hg-Moden wurden aus eigenen DRIFT- bzw. FT-Raman-Messungen (1064 nm Anregung) entnommen. Die bisher beste Rechnung aus der Literatur ist im Mittel $-(8 \pm 21)$ cm⁻¹ vom Experiment entfernt¹⁰⁷.

Tab. 2.21: Experimentell bestimmte IR- und Raman-Moden des C_{60} und Vergleich miteigenen DFT- und PM3-Rechnungen sowie einiger Rechnungen aus der Literatur.

Mode	Exp. ^a	DFT, dies	e Arbeit	PN	13	Bohnen ^e	Wang ^f	Faulhaber ^g
		unskaliert	skaliert ^c	unskaliert	skaliert ^d			
F_{1u}	526,5	520	525	557	479	514	533	506
	576,0	570	575 733		630 569		548	550
	1182,2	1177	1188	1377	1184	1143	1214	1145
	1429,0	1415	1429	1708	1469	1457	1485	1446
A_g	496	481	485	623	536	481	483	459
	1467	1454	1469	1752	1507	1489	1529	1493
H_{g}	272	256	259	267	230	263	263	249
	432	420	424	440	378	422	432	421
	710	696	703	758	652	717	713	640
	772	763	770	941	809	763	778	750
	1100	1091	1102	1291	1110	1080	1111	1067
	1249	1232	1245	1437	1236	1198	1282	1200
	1425	1407	1421	1670	1436	1422	1469	1425
	1572	1551	1566	1814	1560	1580	1598	1567
$M\!\!+\!\sigma^b$		-(12 ±5)	-(3 ±5)	154 ±99	1 ±39	-(8 ±21)	16 ±27	-(21±25)

^aIR-Frequenzen wurden aus eigener DRIFT-Messungen extrahiert; Details siehe später; Raman-Frequenzen wurden aus einer FT-Raman-Messungen bei einer Anregungswellenlänge von 1064 nm extrahiert. ^bMittelwert der Differenz der gerechneten und gemessenen Normalmodenfrequenzen und die Standardabweichung des Mittelwertes in cm⁻¹.^cskaliert mit 1.01. ^dskaliert mit 0,86. ^eRef. 107; ^fRef. 108; ^gRef. 109.

In Abbildung 2.19 wurden die experimentell bestimmten Frequenzen der IR- und Ramanerlaubten Normalmoden gegen die gerechneten Frequenzen zur besseren Übersicht graphisch aufgetragen.

Abb. 2.19: Vergleich der experimentell bestimmten Frequenzen der IR- und Raman-erlaubten Normalmoden mit gerechneten Frequenzen (oben: PM3, unten: BLYP).

Gemessen an den bekannten IR- Raman-erlaubten Normalmoden, besitzen die DFT-Rechnungen, die für diese Arbeit gemacht wurden, einen mittleren Fehler von $-(12 \pm 6)$ cm⁻¹. Dieser mittlere Fehler ist immer noch zu groß, um die kleinen Strukturen im C₆₀-DRIFT-Spektrum stillen Normalmoden zuordnen zu können. Durch die Skalierung mit einem Faktor von 1,01 gelang allerdings eine Übereinstimmung der gerechneten mit den gemessenen Frequenzen mit einem mittleren Fehler von $-(3 \pm 5)$ cm⁻¹. Der Skalierungsfaktor ist der Quotient der Summe aller experimentell bestimmten IR- und Raman-erlaubten Normalmodenfrequenzen und der Summe aller berechneten IR- und Raman-erlaubten Normalmodenfrequenzen. Die Rechnung wurde für ein isoliertes Molekül gemacht. Deshalb stellt sich die Frage, wie gut die Ergebnisse mit Messungen, die an C_{60} -Pulverproben gemacht wurden, überhaupt vergleichbar sind. Der Vergleich von Schwingungsspektren, die in der Gasphase^{129,130} und am Festkörper gemacht wurden, zeigt einen Unterschied von wenigen Wellenzahlen bei den gemessenen Frequenzen. Das bedeutet, dass die Wechselwirkungen zwischen C_{60} -Molekülen im Festkörper nur schwach sind.

Tab.	2.22:	Berechnete	Normalmodenfrequenz	en des	C_{60}	und	Zuordnung	zu	experimentell
		gefundenen	Absorptionen.						

Mode	DFT ¹	Exp.	rel. I _{exp} ^a	Mode	DFT	Exp.	rel. I _{exp}
Ag	485	497,5	0,002	A _u	953	-	
	1469	1468,8	0,004				
				F_{1u}	525	526,5	1
F_{1g}	558	-			575	576,0	0,412
	826	824,1	0,002		1188	1182,8	0,341
1274		-			1429	1429,0	0,367
F_{2g}	557	554,1	0,001	F_{2u}	335	-	
	707	-			708	-	
790		797,1	0,002		964	962,3	0,013
1333		1330,0	0,001		1183	-	
					1523	1524,8	0,011
G_g	472	471,8	0,001				
	566	-		G_u	347	-	
	736	738,6	0,008		726	725,7	0,009
1081		-			750	756,0	0,002
1305		1306,9	0,007		960	957,8	0,007
1495		1495,8	0,016		1302	-	
					1426	-	
H_{g}	259	-					
	424	432,0	0,002	H_{u}	399	-	
	703	712,2	0,011		522	-	
770		774,6	0,008		667	667,2	0,002
1102		1099,9	0,012		724	725,7	0,009
1245		1242,6	0,003		1213	1213,6	0,01
1421		1418,7	0,028		1336	1342,9	0,004
1566		1571,1	0,006		1557	1559,5	0,006

^aIntensitäten (in Kubelka-Munk-Einheiten) relativ zu der größten Absorption bei 526,5 cm⁻¹.

Mit den skalierten Schwingungsfrequenzen wurde ein erneuter Versuch der Zuordnung der stillen Moden gemacht. Tabelle 2.22 fasst die mit DFT berechneten 46 Normalmoden des C60 und die Zuordnung zu experimentell gefundenen Absorptionen zusammen. Für die Zuordnung wurde eine maximale Abweichung von Experiment und berechneter Schwingungsfrequenz von ±6 cm⁻¹ zugelassen. Für die Frequenzen der Hg-Schwingungen, die ja bereits aus Raman-Messungen bekannt sind, wurde eine größere Differenz zugelassen. Die $H_{\rm g}$ (3)-Mode zum cm⁻¹ 9 Beispiel wird zu tief berechnet. Berechnete um und gemessene Schwingungsfrequenzen haben eine mittlere Differenz von $-(2 \pm 4)$ cm⁻¹. In Abbildung 2.20 wurden in das gemessene C₆₀-DRIFT-Spektrum die gerechneten, skalierten vier IR-erlaubten samt gerechneter Intensitäten und zusätzlich alle stillen Moden und die zehn Raman-erlaubten Moden als Strichspektrum beigefügt. Zur graphischen Auswertung der gerechneten Normalmoden des C60 wurden den stillen Moden und die Raman-erlaubten Moden eine von Null verschiedene Intensität, die nichts mit den experimentell gefundenen Intensitäten zu tun haben, gegeben.

Abb. 2.20: Gemessenes C₆₀-DRIFT-Spektrum und gerechnete, skalierten vier IR-erlaubten Moden samt gerechneter Intensitäten und zusätzlich alle stillen und die zehn Raman-erlaubten Moden als Strichspektrum (unten).

In dem Bereich zwischen 400 und 1600 cm⁻¹ finden sich neben den vier intensiven Absorptionen noch etwa 65 kleinere Strukturen, von denen 30 mit Hilfe der Rechnung stillen Moden zugeordnet werden können. Aufgrund der Unsicherheit der Rechnungen und der Vielzahl der Zuordnungsmöglichkeiten wurde, bis auf einen Fall bei 1538,9 cm⁻¹, auf den Versuch der Zuordnung von Kombinationsmoden bzw. Obertönen im Bereich zwischen 400 und 3200 cm⁻¹ verzichtet. Das C₆₀-DRIFT-Spektrum zeigt bei 1538,9 cm⁻¹ eine starke Absorption, die sich mit Hilfe der Rechnungen entweder der Kombinationsschwingung $G_{\mu}(3)$ + $F_{2g}(3) = 1540 \text{ cm}^{-1}$ oder dem ersten Oberton der $H_g(4)$ -Mode bei 1540 cm⁻¹ zuordnen lässt. Auf einen Vergleich mit Arbeiten aus der Literatur wurde verzichtet, da die für damalige Arbeiten für die Auswertung benutzen Rechnungen bzw. Annahmen hinsichtlich der 46 Normalmoden stark von Publikation zu Publikation abweichen - teilweise mehrere hundert Wellenzahlen. So sind die von einigen Forschergruppen für C₆₀ aus Raman- und IR-Messungen an C_{60} -Einkristallen bei tiefer Temperatur^{131,132}, inelastischer Neutronenstreunung (NIS)¹³³⁻¹³⁵, Photolumineszenzspektren (PL)¹³⁶ und hochaufgelöster Elektronenenrgie-Verlustspektroskopie (HREELS)^{137,138} gewonnenen Zuordnungen aufgrund sehr ungenauer Rechnungen mit Vorsicht zu genießen.

Als Fazit lässt sich sagen, dass in dieser Arbeit auf Grund der Genauigkeit der Rechnungen zum ersten Mal stille Moden von C_{60} auf etwa 5 cm⁻¹ genau zugeordnet werden können.

2.5.4.2 Höhere Fullerene C70, C76, C78 (C2v, C2v', D3) und C82 (C2)

Die genaue Berechnung der Schwingungsmodenfrequenzen mittels DFT von C_{60} gibt Anlass zu der Hoffnung, Normalmodenfrequenzen und IR-Intensitäten auch für die höheren Fullerene durchzuführen. Dabei gelangen Rechnungen für C_{70} , C_{76} , C_{78} (C_{2v} , C_{2v} ', D_3) und für drei C_{82} (C_2)-Isomere. In Unterkapitel 2.5.4.1 konnte die Übereinstimmung von Experiment und Rechnung durch die Skalierung der gerechneten Frequenzen mit 1,01 verbessert werden. Dieser Skalierungsfaktor wurde einheitlich für die Anpassung der gerechneten Normalmodenfrequenzen der höheren Fullerene verwendet.

Die Abbildungen 2.23 bis 2.26 zeigen die DRIFT-Messungen der gemessenen höheren Fullerene und die DFT-Rechnungen als Strichspektren. Die Übereinstimmung der gerechneten Spektren mit dem Experiment ist in allen Fällen visuell gut. Doch die Zuordnung einzelner Strukturen in den experimentellen Spektren ist wegen der hohen Dichte an erlaubten
Normalmodenfrequenzen schwierig. Für C_{70} mit seinen 32 erlaubten IR-Moden wurde eine Zuordnung versucht. Tabelle 2.23 fasst die gerechnete Normalmodenfrequenzen und die Zuordnung zusammen.

Abb. 2.21: DRIFT-Spektrum von C₇₀ und gerechnete Schwingungsfrequenzen sowie Intensitäten.

Aus Tabelle 2.23 geht hervor. dass 24 von 31 berechneten IR-erlaubten Normalmodenfrequenzen experimentellen Strukturen mit einem mittleren Fehler von $-(4 \pm$ 12) cm⁻¹ zugeordnet werden können. Die große Standardabweichung der Differenz von 12 cm⁻¹, verglichen mit der von 5 cm⁻¹ im Falle des C₆₀, liegt an der Zuordnung der gerechneten Mode bei 737 cm⁻¹ zu dem experimentellen Absorptionspeak bei 795,2 cm⁻¹. Schwingungen in diesem spektralen Bereich werden von DFT-Methoden schlecht beschrieben. Das ist in der Literatur bereits bekannt¹³⁹. In diesem Bereich sind Schwingungen zu finden, bei denen benachbarte C-Atome stark gegenläufige Bewegungen in den Käfig bzw. aus dem Käfig heraus machen. Bei dieser Schwingungsbewegung werden C-C-C-Bindungswinkel stark verbogen. Das wird von DFT scheinbar schlecht beschrieben. In Abbildung 2.22 ist diese Mode des C₇₀ bei 737 cm⁻¹ gezeigt. Die Zuordnung dieser berechneten Schwingung zu einer experimentellen Struktur ist unsicher. Eine Abschätzung der zu erwartenden Abweichung von Rechnung und Experiment ist schwierig und wird derzeit noch untersucht.

Abb. 2.22: Mit DFT berechnete Mode des C_{70} bei 737 cm⁻¹.

Tab. 2.23: Gerechnete Frequenzen IR-erlaubter Normalmoden für C₇₀ und Zuordnung zu experimentellen Strukturen.

Mode	DFT ^a	rel. I _{cal} ^b	Exp.	rel. I _{exp} ^b	Mode	DFT	rel. I _{cal}	Exp.	rel. I _{exp}
A_2''	317	0,002	-	-	A_2''	904	0,005	905,1	0,002
\mathbf{E}'_{1}	321	0,001	-	-	\mathbf{E}'_1	1085	0,017	1086,4	0,038
\mathbf{E}'_1	357	0,004	-	-	A_2''	1138	0,113	1133,3	0,153
\mathbf{E}'_1	409	0,000	412,0	0,002	\mathbf{E}'_1	1177	0,002	1175,7	0,027
A_2''	456	0,088	458,3	0,228	A_2''	1215	0,035	-	-
\mathbf{E}'_{1}	501	0,001	506,5	0,002	\mathbf{E}'_{1}	1251	0,009	1250,9	0,014
\mathbf{E}'_1	531	0,220	534,8	0,544	\mathbf{E}'_1	1286	0,007	1291,4	0,019
A_2''	562	0,188	565,0	0,165	\mathbf{E}'_1	1316	0,006	1321,0	0,044
\mathbf{E}'_1	570	0,115	577,3	0,535	A_2''	1331	0,019	-	-
\mathbf{E}'_1	641	0,053	642,2	0,196	E'_1	1408	0,027	1414,2	0,295
\mathbf{E}'_1	667	0,078	674,3	0,355	E'_1	1429	1,000	1430,3	1,000
A_2''	699	0,001	692,3	0,052	A_2''	1459	0,128	1459,8	0,091
\mathbf{E}'_1	723	0,000	724,5	0,203	\mathbf{E}'_1	1476	0,035	1477,2	0,021
E'_1	737 [°]	0,051	795,2	0,234	E'_1	1549	0,019	-	-
\mathbf{E}'_{1}	828	0,001	-	-	A_2''	1550	0,005	1552,4	0,010
E'_1	902	0,005	896,7	0,003					

^askaliert mit 1,01; ^brelativ zu der intensivsten Mode bei 1430,3 cm⁻¹; ^cZuordnung unsicher, siehe Text.

Wenn man der Zuordnung von Scuseria *et al.* glaubt, dann beträgt sie für C_{70} (8 E'₁) 58 cm⁻¹. Für alle anderen höheren Fullerene findet C_{60} und man ganz analoge Schwingungsbewegungen, deren Frequenzwerte dann mit Vorsicht zu genießen sind. Für C₆₀ gibt es eine Schwingung, deren Wert mit DFT zu 736 cm⁻¹ berechnet wurde, die der C₇₀-Mode bei 737 cm⁻¹ analog ist. Da sie weder IR- noch Raman-erlaubt ist, gibt es für sie keinen verlässlichen experimentellen Wert. Allerdings zeigt C_{120} eine IR-erlaubte Schwingung bei ca. 800 cm⁻¹ (siehe Unterkapitel 3.5.1). In den DRIFT-Spektren der höheren Fullerene in den Abbildungen 2.22 bis 2.25 sind um etwa 800 cm⁻¹ starke Absorptionen zu sehen, die von der Theorie nicht beschrieben wurden. Im Falle des C_{78} (D₃) und des C_{82} (C₂) sind sie sogar die intensivsten Signale. Tabelle 2.24 listet diese intensiven Absorptionen aller gemessenen höheren Fullerene auf.

Tab. 2.24: Frequenzlage und rel. Intensität der intensive Peaks um 800 cm⁻¹ aller gemessener höher Fullerene, die von der Theorie nicht beschrieben werden.

	$\tilde{v} [cm^{-1}]$	rel. I _{exp} ^a		$\tilde{v} [cm^{-1}]$	rel. I _{exp}
C ₇₀	795,2	0,234	C ₇₈ (C _{2v} ')	786,8	0,264
C ₇₆	790,0	0,202		793,2	0,214
	804,8	0,261		798,4	0,147
C ₇₈ (C _{2v})	793,2	0,259	$C_{82}(C_2)$	788,1	0,293
	799,7	0,202		798,4	0,808
C ₇₈ (D ₃)	788,7	0,313		806,1	1,000
	800,3	1,000			

^aRelativ zur intensivsten Absorption.

Für die höheren Fullerene C_{76} , C_{78} (C_{2v} , C_{2v} ', D_3) und C_{82} (C_2) wurde keine Zuordnung versucht. Wie der Vergleich der C_{78} -Isomere in Abbildung 2.24 zeigt, werden die Unterschiede der C_{78} -Isomere qualitativ sehr gut wiedergegeben, was eine Isomerzuordnung alleine mit Hilfe des Vergleiches von Rechnungen und DRIFT-Messungen für Fullerene ermöglicht.

Abb. 2.23: DRIFT-Spektrum von C₇₆ und gerechnete Schwingungsfrequenzen sowie Intensitäten.

Da zu dem Zeitpunkt dieser Arbeit noch nicht geklärt war, welches C_{82} (C_2)-Isomer (siehe Unterkapitel 2.1.3) bei der Synthese gebildet wird, wurden die IR-Spektren der drei möglichen C_2 -Isomere mit DFT berechnet. Die Abbildungen 2.25 zeigt den Vergleich dieser gerechneten Spektren mit dem DRIFT-Spektrum. Das gerechnete IR-Spektrum des C_2 -Isomers Nr. 3, dass nach den Rechnungen auch das thermodynamisch stabilste Isomer sein sollte, passt visuell am besten auf das Experiment, was dafür spricht, dass in der gemessenen C_{82} -Probe dieses Isomer vorliegt.

Abb. 2.24 a): DRIFT-Messungen der drei C₇₈-Isomere C_{2v}, C_{2v}' und D₃.

Abb. 2.24 b): Gerechnete Schwingungsfrequenzen sowie Intensitäten der drei C_{78} -Isomere C_{2v}, C_{2v} ' und D_3 .

Abb. 2.25: DRIFT-Messung an C_{82} (C_2) und gerechnete Schwingungsfrequenzen sowie Intensitäten der drei theoretisch möglichen C_2 -Isomere.

2.6 Raman-Spektroskopie

Die Spektren wurden von H.-J. Eisler aufgenommen. C_{60} (I_h), C_{70} (D_{5h}), C_{76} (D₂), C_{78} (C_{2v}, C_{2v} , D₃), C_{80} (D₂), C_{82} (C₂) sowie eine C₈₄-Isomerenmischung, die Isomere mit D₂- und D_{2d}-Symmetrie enthält, wurden untersucht. Aufbau und Messmethode sind in der Dissertation von H.-J. Eisler besprochen¹⁴⁰.

2.6.1 Messungen

Stokes-verschobene, unpolarisierte Spektren wurden in 180°-Rückstreugeometrie mit vier verschiedenen Laseranregungswellenlängen bei Raumtemperatur gemessen. Die Messungen bei 514, 693 und 794 nm Anregung wurden mit einem Triple-Monochromator-Spektrographen (Spex TripleMate 1877D) und einer CCD-Kamera (Photometrics SDS 9000) gemacht. Die Anregung erfolgte dabei sowohl durch einen mit einem Ar⁺-Ionenlaser (Spectra Physics BeamLok 2040E) gepumpten Titan-Saphir-Laser (Spectra Physics Ti:Sapphire 3900S; 680-850 nm durchstimmbar) als auch durch den Pumplaser (514 nm) selbst. Die Leistungsdichte des Lasers betrug typischerweise 150–200 mW pro mm². Um die Breitbandluminiszenz des Titan-Saphir-Lasers zu unterdrücken, wurde ein im Haus hergestellter Vormonochromator verwendet. Für Messungen bei 794 nm wurde generell die erste Stufe des Monochromators durch eine Alkalidampfzelle ersetzt, die eine effizientere Unterdrückung des Rayleigh-gestreuten Lichtes erlaubte. Eine Zahl von Raman-Messungen wurden mit einem FT-Raman-Spektrometer (Bruker IFS FRAU 106), ausgestattet mit einem Nd-YAG-Laser (1064 nm, 140 mW defokusierter Fleck), gemacht. Abbildung 2.26 zeigt die stokes-verschobenen unpolarisierten Raman-Spektren, die mit 693 nm Anregung gemessen wurden, der isomerenreinen Fullerene C₆₀, C₇₀, C₇₆, C₇₈ (C_{2v}, C_{2v}, D₃), C₈₀ (D₂), C₈₂ (C₂) und dem C₈₄-Isomer-Gemisch aus einem D₂- und D_{2d}-Isomer.

Abb. 2.26: Raman-Messungen aller hier untersuchter Fullerenproben; 693 nm Anregungswellenlänge.

2.6.2 Lamb-Theorie

Aufgrund der Vielzahl von erlaubten Schwingungsmoden bei den höheren Fullerenen ist die Zuordnung der einzelnen Banden in IR- oder Raman-Spektren mit Hilfe allein gruppentheoretischer Betrachtungen völlig unmöglich. Eine weitgehend sichere Zuordnung von Banden gelingt durch den Vergleich mit quantenchemischen Rechnungen (siehe auch Unterkapitel 2.5). Dabei hat sich gezeigt, dass semiempirische Rechnungen auf PM3-Niveau besonders im niederfrequenten Bereich sehr gute Übereinstimmungen mit Messungen liefern.

Sehr viel einfachere Modelle liefern schon eine gute Beschreibung niederfrequenter Moden von Fullerenen. Es wurde zum ersten Mal von Ceulemans *et al.* gezeigt, dass sich die niederfrequenten Schwingungen (< 600 cm⁻¹) von C₆₀ ganz gut mit dem Konzept der Kontinuummechanik einer schwingenden Hohlkugel verstehen lassen¹⁴¹. Eisler *et al.* konnten zeigen, dass dieses Konzept auch für höhere Fullerene verwendbar ist¹⁴². Die Eigenfunktionen und Eigenfrequenzen der fundamentalen Schwingungen der isotropen (gefüllten) elastischen Kugel¹⁴³ sowie die der Kugelschale (unendlich dünn)¹⁴⁴ wurden zuerst durch H. Lamb vor mehr als einem Jahrhundert abgeleitet.

Lamb findet zwei Klassen von oszillierenden Lösungen: eine, die nur rein tangentiale (I) und eine, die tangentiale und radiale Bewegungen beinhaltet (II). Beide Klassen von Lösungen haben Eigenfunktionen, die wie Kugelflächenfunktionen transformieren. Die Schwingungsfrequenzen sind im wesentlichen abhängig von einer Quantenzahl l ($l \in N$), dem Kugelradius, der ersten und zweiten Lamé-Elastizitätskonstanten, dem Poisson-Verhältnis und der Volumendichte. Das Poisson-Verhältnis hängt mit den Lamé-Elastizitätskonstanten zusammen, die abhängig von der Volumendichte und der transversalen (c_t) und longitudinalen (c_t) Schallgeschwindigkeit in isotropen Schalenmaterialien sin¹⁴⁵.

Für Klasse I gibt es nur eine Lösung pro *l*-Wert, die real und nicht null ist für $l \ge 1$. Klasse II dagegen hat zwei Lösungen ((a) und (b)) pro l – außer für l(II) = 0, das nur eine Lösung besitzt. Diese haben reale, finite Werte ab l = 0 (b) bzw. l = 2 (a). Aus Symmetriegründen und wegen der Beschränkung, dass nur bestimmte Poisson-Verhältnisse, die zwischen 0 und 0,5 variieren können, erlaubt sind, kann gezeigt werden, dass die niedrigsten Raman-aktiven Lösungen die aus Klasse II(a) mit l = 2, die zudem fünffach entartet ist, und Klasse II(b) mit l0 sind. Diese quadrupolare und monopolare = Oszillatorbewegungen der niederenergetischsten Lösungen des Modells entsprechen denen des C₆₀, die in der Literatur als Deformations- und Atmungs- Moden bezeichnet werden. Abbildung 2.27 fasst die Ergebnisse aus der Lamb-Theorie graphisch zusammen.

Abb. 2.27: Energieniveau-Diagramm der Lösungen der Lamb-Theorie einer schwingenden Hohlkugel. Ebenfalls zu sehen sind die niederenergetischsten Raman-aktiven Schwingungen des C₆₀, die den Lösungen 0 S_g und 2 D_g entsprechen.

Die Untersuchung der Normalmoden für höhere Fullerene hat gezeigt, dass es für höhere Fullerene dem C_{60} vergleichbare monopolare und quadrupolare Schwingungen gibt.

2.6.2.1 Monopolare Schwingungsmode

Wie oben gezeigt, entspricht die Lösung aus Klasse II(b) mit l = 0 der Schwingungsbewegung des C₆₀, die in der Literatur als Atmungsmode bezeichnet wird. Lamb beschreibt die Kreisfrequenz dieser monopolaren Mode mit einem Ausdruck, der abhängig von longitudinaler und transversaler Schallgeschwindigkeit c_l und c_t und dem Kugelradius *R* dargestellt werden kann:

$$\omega = \frac{2(c_t^2 (3c_l^2 - 4c_t^2)/c_l^2)^{1/2}}{R}.$$
(2.14)

Wenn man in diese Gleichung die gemessenen Werte der longitudinalen (21 km s⁻¹) und transversalen (12,3 km s⁻¹) Schallgeschwindigkeit für dreidimensionalen Graphit¹⁴⁶ und den Radius für C₆₀ (0,35 nm) einsetzt, erhält man einen Wert von 476 cm⁻¹, was bemerkenswert gut mit dem experimentellen Wert von 496 cm⁻¹ für die Atmungsmodenfrequenz, der aus den Raman-Spektren extrahiert wurde, überein stimmt. Die Raman-Spektren wurden bei Raumtemperatur an Pulverproben gemacht. Zwei Überlegungen stützen die Tatsache, dass ein klassisches Modell, parametrisiert mit Hilfe von Eigenschaften von Graphit, eine niederfrequente, "akustische" Schwingung ziemlich gut beschreiben kann. Zum einen ist die Distanz, die Schall während einer Schwingungsperiode der Atmungsbewegung in Graphit zurücklegt, vergleichbar mit dem Umfang des Fullerenkäfigs, zum anderen sollte die gemittelte C-C-Streckkraftkonstante nicht sehr verschieden sein zu der in planarem Graphit.

Die Untersuchung der mit PM3 berechneten Normalmoden für größere Käfige (> C_{60}) niedrigerer Symmetrie (< I_h) zeigt, dass es immer nur eine totalsymmetrische Raman-erlaubte monopolare Schwingung für höhere Fullerene im niederfrequenten Bereich des Spektrums gibt. Es lassen sich keine anderen ähnlichen Schwingungsbewegungen finden. Abbildung 2.28 zeigt Darstellungen monopolarer Schwingungen für einige höhere Fullerene, so wie sie aus dem Programmpaket HyperChem geliefert werden. Die Pfeile symbolisieren Amplitude und Auslenkungsrichtung der Schwingung jedes Atoms.

 $C_{78}^{}(C_{2v}^{})$

C₇₈ (D₃)

 $C_{80}(D_2)$

 $C_{90} (D_{5h})$

Abb. 2.28: Darstellungen monopolarer Schwingungen für einige höhere Fullerene.

In Abbildung 2.29 sind die skalierten PM3-Frequenzen der Atmungsmoden für alle untersuchten Fullerenkäfige, C_{2n} , gegen $M^{-1/2}$ aufgetragen, wobei M die Molmasse des Fullerens bedeutet. Die für Fullerenschwingungen mit PM3 vorausgesagten Frequenzen sind generell immer größer als im Experiment. Für das Raman- und IR-Spektren von C₆₀ gelang eine gute Zuordnung der im Spektrum beobachteten Strukturen zu berechneten Werten (siehe Unterkapitel 2.5.4.1). Das wurde ausgenutzt, um die PM3-Frequenzen zu skalieren. Unglücklicherweise sind die Abweichungen der Theorie nicht gleichmäßig. Die Korrektur der PM3-Rechnungen ist abhängig vom Frequenzbereich und dem Schwingungstyp. Der Skalierungsfaktor für C₆₀ überstreckt einen Bereich zwischen 0,76 und 1,01 mit einem mittleren Wert von 0,883. Für den Atmungsmodenbereich von C₆₀ und C₇₀ findet man einen Skalierungsfaktor von 0,796 und 0,797. Deshalb wurde für die weitere Auswertung der Mittelwert 0,796 als "PM3-Skalierungsfaktor" benutzt.

Abb. 2.29: Skalierte PM3-Atmungsmodenfrequenzen gegen $M^{-1/2}$ aufgetragen, wobei M die molare Masse des Fullerens ist. Experimentelle Werte wurden darüber gelegt. Die gestrichelte Linie ist ein linearer Fit der berechneten Atmungsmodenfrequenzen.

PM3 erlaubt nicht die Berechnung von Raman-Wirkungsquerschnitten - insbesondere Resonanz-Raman-Wirkungsquerschnitte, die für die Untersuchungen hier benötigt würden. Deshalb ist der Vergleich der Rechnungen mit dem Experiment, das typischerweise eine hohe Dichte von Schwingungsbanden in der relevanten spektralen Region zeigt, problematisch. Der Vergleich von Spektren, die mit verschiedenen Anregungswellenlängen gemacht wurden, kann bei der Zuordnung der Atmungsmoden helfen. Abbildung 2.30 zeigt als typisches Beispiel die Spektren der drei C_{78} -Isomere, aufgenommen bei 514, 693 und 1064 nm (794 nm im Fall des D₃-Isomers). Darüber sind PM3-Voraussagen gelegt, skaliert zu dem C_{60}/C_{70} -Experiment. In dem für die Atmungsmode vorausgesagten Bereich gibt es nur eine Raman-Bande mit moderatem bis starkem Raman-Wirkungsquerschnitt für alle verwendeten Anregungswellenlängen. Diese Bande wurde der Atmungsmode zugeordnet. Für alle anderen Fullerene, die experimentell untersucht wurden, ist der Vergleich von Experiment und Theorie so gut oder schlecht wie im Falle der C₇₈-Isomere. Tabelle 2.25 listet die skalierten PM3-Atmungsmodenfrequenzen und die Zuordnungen zu experimentell ermittelten Banden auf.

 Tab. 2.25: Vergleich der skalierten und unskalierten PM3-Frequenzen mit den experimentell ermittelten Atmungsmodenfrequenzen.

	$PM3^{a} [cm^{-1}]$	PM3 ^b [cm ⁻¹]	Exp. [cm ⁻¹]
C ₆₀	623	496	496
C_{70}	571 455	455	
C ₇₆	542 431	436	
C ₇₈ (D ₃)	538	428	430
C ₇₈ (C _{2v})	542	431	429
$C_{78}(C_{2v})$	536	427	434
$C_{80}(D_2)$	528	420	421
$C_{82}(C_2, 1)$	530	422	-
$C_{82}(C_2, 3)$	529	421	420
C ₈₄ (D _{2d})	524	417	415
C ₈₄ (D ₂)	524	417	415

^aunskaliert; ^bskaliert mit 0.796.

Es wurden auch Atmungsmodenfrequenzen für einige Fullerene, die (noch) nicht experimentell zugänglich sind, C_{90} (D_{5h}) und C_{140} (D_{5d} und I), berechnet, um zu zeigen, dass das hier vorgestellte Konzept für höhere Fullerene allgemeingültig ist.

Abb. 2.30: Niederfrequente Region der Raman-Spektren der C₇₈-Isomere bei verschiedenen Anregungswellenlängen. Die Frequenzlage der Atmungsmode ist durch eine gestrichelte gezeigt.

Die Datenpunkte für die Fullerene, die experimentell zugänglich sind, sowie für die Fullerene, die experimentell nicht zugänglich sind, liegen für eine lineare Regression mit der Bedingung, dass die Gerade durch den Ursprung geht, sehr gut (Korrelationskoeffizient $R^2 = 0,9911$) auf einer Geraden mit Steigung 13195 cm⁻¹ amu^{1/2}. Daraus lässt sich schließen, dass (i) die Frequenz monopolarer Moden proportional $M^{-1/2}$ und dass (ii) für verschiedene Isomere einer gegebenen Käfiggröße die Frequenz der monopolaren Mode nicht stark von der Käfigform abhängig ist.

Unter den strukturell charakterisierten Fullerenen gibt es einige, die mehr kugelförmig sind als andere. Dass lässt sich mit Hilfe deren Trägheitsmomente, die in Tabelle 2.26 aufgelistet sind, in Zahlen ausdrücken. Von den untersuchten Käfigen sind C₆₀, C₈₄ (D₂) und C₁₄₀ (I) am kugelförmigsten. Auf der Basis der vorausgesagten 1/*R*-Abhängigkeit für Kugelschalen (siehe Beziehung 2.14) erwartet man für die skalierten PM3-Atmungsmodenfrequenzen der kugelförmigeren Käfige eine bessere Übereinstimmung mit einer $M^{1/2}$ -Abhängigkeit als für den kompletten Datensatz. Das ist aber offensichtlich nicht der Fall, denn die lineare Regression für nur kugelförmige Fullerene liefert einen Korrelationskoeffizienten von $R^2 =$ 0,9979 und für alle untersuchten Fullerene einen Korrelationskoeffizienten von $R^2 =$ 0,9911. Die beiden Korrelationskoeffizienten sind nicht dramatisch anders.

Tab.	2.26 :	Mit PM3	berechnete	Trägheitsmomente ⁴	
------	---------------	---------	------------	-------------------------------	--

	I _a	I _b	I _c
C_{60} (I _h)	10032	10032	10032
C ₇₀ (D _{5h})	12366	14374	14374
C ₇₆ (D ₂)	14398	16285	17880
C ₇₈ (D ₃)	14712	18264	18264
C ₇₈ (C _{2v})	15697	17331	17956
$C_{78}(C_{2v})$	15168	17654	18273
C ₈₀ (D ₂)	15577	18638	19639
C ₈₂ (C ₂ , Nr.3)	17311	19038	19967
C ₈₄ (D _{2d})	19624	19660	19673
C ₈₄ (D ₂)	19095	19222	20729
C ₉₀ (D _{5d})	17093	26253	26261
C ₁₄₀ (I)	54307	54408	54689
C ₁₄₀ (D _{5h})	28681	82562	82566

^ain Einheiten g cm^2 (x10⁻⁴⁰); basierend auf mit PM3 optimierten Koordinaten.

2.6.2.2 Quadrupolare Schwingungsmode

Die Lösung der Lamb-Theorie der Klasse II(a) mit l = 2 ist fünffach entartet ($m_l = -2, -1, 0, 1, 2$) und entspricht der Schwingungsbewegung des C₆₀, die in der Literatur als Deformationsmode (Squashing Mode) bezeichnet wird. Im Gegensatz zu dem Fall der Atmungsmode, liefert die Lamb-Theorie nur eine schlechte quantitative Voraussage für die Deformationsmode des C₆₀. Wenn man die gleichen Werte der Schallgeschwindigkeiten und des Radius wie für die Berechnung der monopolaren Mode einsetzt, erhält man einen Wert von 218 cm⁻¹, was eine Abweichung von 20 % vom experimentellen Wert (269 cm⁻¹) bedeutet. Dieser Fehler lässt sich aufgrund der Tatsache verstehen, dass die Lamb-Theorie Verbiegungen der Kugelschale, die im Falle des C₆₀ Änderungen von C-C-C-Bindungswinkeln bewirken, nicht berücksichtigt.

Im Gegensatz zu der nicht entarteten Atmungsmode, sollte die fünffach entartete Deformationsmode für Käfige niedriger Symmetrie aufspalten. Die mathematischen Lösungen des Lamb-Modells, die ja eine Laufzahl *l* besitzen, legen eine Analogie zu den Lösungen der Kugelflächenfunktionen in der Quantenmechanik nahe. Diese Analogie wurde genutzt, um eine konsistente Nomenklatur der verschiedenen Deformationsmoden höherer Fullerene einzuführen: siehe Abbildung 2.31, in der die einzelnen Schwingungen analog der d-Orbitale mit d_{z^2} , $d_{x^2-y^2}$, d_{xy} , d_{zy} und d_{zx} bezeichnet wurden.

Man sollte also für höhere Fullerene, die niedrigere Symmetrien als C_{60} besitzen, bis zu fünf separate Deformationsmoden messen können. Diese Moden lassen sich mit PM3 vorhersagen und mit dem Programmpaket HyperChem "sichtbar" machen. Alle untersuchten Fullerene haben in der Tat als ihre niederenergetischsten Raman-erlaubten Schwingungen einen Satz mit bis zu fünf Moden. Sie besitzen deutlich quadrupolaren Charakter. Sie treten im Stokesverschobenen Bereich zwischen 190 und 280 cm⁻¹ auf und sind immer deutlich von dem nächsten Satz Raman-aktiver Moden getrennt.

Abbildung 2.31 zeigt, beispielhaft für andere höhere Fullerene, die Deformationsbewegung von C_{70} und C_{80} . Für C_{70} , das D_{5h} -Symmetrie besitzt, findet man drei Deformationsmoden, von denen zwei zweifach entartet sind. Für C_{80} , das eine niedrigere Käfigsymmetrie (D_2) besitzt, findet man fünf getrennte Deformationsmoden. Tabelle 2.27 enthält die Anzahl Deformationsmoden (und ihre dazugehörige Entartung) für alle experimentell untersuchten Fullerene und für die experimentell nicht zugänglichen Fullerene C_{90} (D_{5h}) und C_{140} (Isomere mit Symmetrie I und D_{5d}), wie sie aus PM3-Rechnungen geliefert werden.

Abb. 2.31: Aufgrund Symmetrie aufgespaltene Deformationsmoden für C_{70} und C_{80} aus PM3-Rechnungen.

Die Übereinstimmung der unkorrigierten PM3-Frequenzen mit den gemessenen Frequenzen die ist sehr Das verdeutlicht Abbildungen 2.32 bis 2.34, die gut. den Deformationsmodenbereich (180–300 cm⁻¹) der gemessenen Raman-Spektren von C_{60} , C_{70} , C_{76}, C_{78} (C_{2v}, C_{2v}', D_3), C_{80} (D_2), C_{82} (C_2) und C_{84} (D_2, D_{2d}) zeigen. Im Gegensatz zu den Atmungsmoden, die im Vergleich zu den Deformationsmoden größere Frequenzen haben, benötigt man für die Deformationsmoden keine Skalierung der mit PM3 berechneten Werte. Der berechnete Deformationsmodenbereich wurde als Strichspektrum über den gemessenen Spektren abgebildet. Tabelle 2.27 listet alle gemessenen und mit PM3 gerechneten Frequenzen auf. Die experimentellen Werte der Deformationsmoden wurden mit Hilfe von Lorentz-Fits aus den Spektren extrahiert. Nach der groben Festlegung der Linienpositionen wurden die Maxima und Halbwertsbreiten der Strukturen solange variiert, bis die beste Übereinstimmung mit dem experimentell bestimmten Datensatz erreicht war.

Abb. 2.32: Vergleich der niederfrequenten Region der Raman-Spektren von C₆₀, C₇₀ und C₇₆ mit PM3-Rechnungen.

Abb. 2.33: Vergleich der niederfrequenten Region der Raman-Spektren der drei C_{78} -Isomere C_{2v} , C_{2v} , C_{2v} , $und D_3$ mit PM3-Rechnungen.

Abb. 2.34: Vergleich der niederfrequenten Region der Raman-Spektren von C₈₀ (D₂), C₈₂ (C₂) und der C₈₄-Isomermischung (D₂, D_{2d}) mit PM3-Rechnungen.

Tab. 2.27: Experimentell bestimmte Deformationsmodenfrequenzen, Vergleich mit PM3-
Rechnungen und Nomenklatur. Frequenzen sind in cm⁻¹ angegeben.

	Exp.	PM3	\mathbf{v}_{i}			Exp.	PM3	\mathbf{v}_{i}	
C ₆₀	271	266,5	1-5	-	$C_{82}(C_2, 3)$	234	235,4	5	z^2
C ₇₀	258	261,5	5	z^2			232,8	4	zy
	251	252,2	3,4	zx, zy		221	224,5	3	ZX
	225	223,8	1,2	x^2-y^2 , xy			206,1	2	xy
C ₇₆	250	252,7	5	z^2		204	205,6	1	x^2-y^2
		247,8	4	zy	C ₈₄ (D _{2d})	225	222,5	5	ZX
	231	233,7	3	ZX		220	220,3	4	zy
	210	211,2	2	x^2-y^2			219,4	3	xy
		208,3	1	xy			219,1	2	z^2
C ₇₈ (D ₃)	250	251,8	5	z^2		210	218,2	1	x^2-y^2
	238	241,5	3,4	zy, zx	C ₈₄ (D ₂)		227,9	5	xy
	203	202,4	1,2	x^2-y^2 , xy			227,8	4	x^2-y^2
$C_{78}(C_{2v})$	249	245,5	5	z^2			215,3	3	ZX
	239	239,4	4	zy			214,0	2	zy
		236,6	3	ZX			209,2	1	z^2
	210	209,4	2	x^2-y^2	C ₉₀ (D _{5h})		252,9	7	z^2
		207,5	1	xy			233,9	3,4	zy, zx
$C_{78}(C_{2v})$	242	240,7	5	z^2			158,4	1,2	x^2-y^2 , xy
		237,4	4	zy	C ₁₄₀ (I)		167,6	5	xy
	233	232,6	3	ZX			167,5	4	x^2-y^2
	215	214,2	2	xy			166,8	3	zy
		213,0	1	x^2-y^2			165,7	2	z^2
C_{80}	248	248,6	5	z^2			165,5	1	ZX
	238	238,9	4	zy	C ₁₄₀ (D _{5d})		203,9	9,10	zx, zy
	229	230,5	3	ZX			198,4	8	z^2
	202	199,8	2	xy			92,7	1,2	x^2-y^2 , xy
		199,0	1	x^2-y^2					

Für Fullerene, an denen mit isomerenreinen Proben gemessen werden konnte, wurde eine mittlere Abweichung der aus den Spektren extrahierten Frequenzwerte von den dazugehörigen PM3-Voraussagen von $-(1 \pm 3)$ cm⁻¹ gefunden. Die Tatsache, dass experimentell keine niederfrequenteren Raman-Banden gefunden werden konnten, ermöglicht die sichere Identifizierung der niederfrequentesten Banden zu Deformationsmoden.

Abbildung 2.35 fasst die mit PM3 berechneten Deformationsmoden aller hier untersuchten Fullerene in einem Schaubild zusammen.

Abb. 2.35: Zusammenfassung der mit PM3 berechneten Deformationsmoden aller hier untersuchten Fullerene. " Δ " makiert die mit d_z² bezeichneten Schwingungen.

Der Vergleich der Käfigtopologien mit dem Maß der Aufspaltung der Deformationsmoden lässt den Schluss zu, dass eine Korrelation zwischen der Aufspaltung und der Abweichung des Fullerenkäfigs von der perfekten Kugelgestalt besteht, die jeweils mit Hilfe der Trägheitsmomente abschätzbar ist. Abbildung 2.36 zeigt zum Vergleich die mit PM3 berechneten Trägheitsmomente der hier untersuchten Fullerene. Für Fullerene mit annähernd perfekter Kugelgestalt (C_{60} , C_{84} (D_{2d}) und C_{140} (I)) – sie besitzen in etwa gleich große Trägheitsmomente, $I_a \approx I_b \approx I_c$ (siehe Abbildung 2.36) – liegen die Deformationsmoden in einem engen Frequenzbereich. Fullerene mit starker Abweichung von der perfekten Kugelgestalt, B. C₁₄₀ $(D_{5h}),$ z. das röhrenförmige haben einen größeren Deformationsmodenbereich. Aufgrund der guten Übereinstimmung von PM3-Rechnungen mit Raman-Messungen im Deformationsmodenbereich kann er somit als Fingerabdruck für die Aufklärung der Käfigtopologie bisher noch nicht charakterisierter höherer Fullerene dienen.

Abb. 2.36: Mit PM3 berechneten Trägheitsmomente der hier untersuchten Fullerene.

Abbildung 2.32 zeigt den Deformationsmodenbereich der drei C_{78} -Isomere im Vergleich. Der Vergleich mit den Rechnungen zeigt, dass der Deformationsmodenbereich zur Bestimmung der Isomere ausreicht. Die in Abbildung 2.33 gezeigte Messung von C_{80} (D₂) stimmt mit PM3-Voraussagen überein und ist eine zusätzliche Unterstützung der Strukturaufklärung durch ¹³C NMR-Messung¹⁴⁷.

Wie schon in Unterkapitel 2.1 erwähnt wurde, können ¹³C NMR-Messungen die Käfigstruktur eines höheren Fullerens nicht immer eindeutig aufklären, weil es oftmals mehrere Realisierungsmöglichkeiten einer Käfigtopologie gibt, die gleiche Symmetrie besitzen. Im Falle des C_{82} ist bisher keine eindeutige Strukturaufklärung gelungen. Raman-Messungen können die Strukturaufklärung unterstützen. Die Messung bei 794 nm an der hergestellten C_{82} -Probe stimmt mit der PM3-Voraussage für das Isomer Nummer 3 besser überein als mit der für Isomer Nummer 1. Das Ergebnis steht im Einklang mit dem Vergleich von Absorptionsmessungen in Lösung mit TDDFT-Rechnungen (siehe Unterkapitel 2.4) und dem Vergleich des DRIFT-Spektrums mit DFT-Rechnungen (siehe Unterkapitel 2.5).

3 Fullerendimere

Ein weiterer Teilaspekt dieser Arbeit war die Herstellung und Charakterisierung von Fullerendimeren. Es wurden die Dimere C_{120} , $C_{120}O$, $C_{120}O_2$, und drei Isomere von $C_{130}O$ hergestellt und mittels DRIFT- und Raman-Spektroskopie charakterisiert.

3.1 Literatur

Fullerendimere sind seit der Entdeckung von Koaleszenz¹⁴⁸ und Photopolymerisierung^{149,150} von Interesse. Die Beobachtungen der druckinduzierten Polymerisation¹⁵¹, sowie der spektroskopische und kristallographische Nachweis von Fullerenoligomeren in verschiedenen MC_{60} -Phasen (M = Alkalimetalle) gaben weiteren Anstoß für Untersuchungen¹⁵². Eine Fülle von Arbeiten befassen sich seither mit Fullerendimeren. Unter Fullerendimere sind folgende Spezies gemeint: a) zwei Fullerenmoleküle, die über eine Cycloaddition direkt miteinander verknüpft sind, z. B. C₁₂₀ und b) zwei Fullerenmoleküle, die über ein oder mehrere Heteroatome miteinander verbunden sind, z. B. C₁₂₀O.

Die einfachste Fullerenverknüpfung resultiert aus einer [2+2]-Cycloaddition, wobei beide Fullereneinheiten über zwei C-C-Bindungen so miteinander verbunden sind, dass sie einen Vierring bilden. Das einfachste Fullerendimer erhält man, wenn man zwei C₆₀-Moleküle über eine [2+2]-Cycloaddition zu C₁₂₀ verknüpft (siehe Abbildung 3.1), was vor einiger Zeit durch die Behandlung von C₆₀ in einer Kugelmühle und der Zugabe von KCN als Katalysator gelungen ist¹⁵³.

Einfach herstellbare sauerstoffüberbrückte Dimere, wie z. B. $C_{120}O^{154}$, in dem ein C_{60} - und $C_{60}O$ -Molekül so miteinander verknüpft sind, dass sie einen Furanring bilden (siehe Abbildung 3.1) oder $C_{120}O_2^{155}$ (Struktur und genau Synthesebedingungen: siehe Abbildung 3.1), erhält man, in dem man festes $C_{60}O$ bzw. Mischungen aus C_{60} und $C_{60}O$ erhitzt.

 $C_{120}O$ wurde ursprünglich bei dem Versuch entdeckt, C_{119} , das wegen seiner ungeraden Anzahl Kohlenstoffatome interessant ist, herzustellen. Bei massenspektroskopischen Untersuchungen an mit Ozon behandelten C_{60} - und C_{70} -Proben wurden Kohlenstoffcluster mit ungerader Anzahl Kohlenstoffatome, C_{119} , C_{129} und C_{139} beobachtet^{156,157}.

Abb. 3.1: Reaktionsschemata der Herstellung der verschiedensten Dimere.

Erst einige Zeit später gelang die Darstellung von C_{119} durch die thermische Zersetzung von $C_{120}O_x$ (x < 3)¹⁵⁸. $C_{120}O_x$ (x < 3)¹⁵⁸. $C_{120}O_x$ (x < 3)¹⁵⁸. $C_{120}O_x$ und C_{119} scheinen Zwischenprodukte bei dem oxidaktiven Abbau von C_{60} zu sein. Mit Hilfe von ¹³C NMR-Messungen und dem Vergleich von molekulardynamischen Rechnungen mit Raman-Messungen gelang die Strukturaufklärung

des C_{119} (Struktur: siehe Abbildung 3.1)¹⁵⁹. Abbildung 3.1 fasst die Herstellung der verschiedensten Dimere in einfachen Reaktionsschemata zusammen.

Abb. 3.2: Reaktionsschema der Darstellung von C₁₄₀; mögliche C₁₃₀O-Isomere.

Es gelang nicht nur zwei C₆₀-Moleküle zu C₁₂₀ bzw. C₁₂₀O miteinander zu verbinden, sondern auch zwei C₇₀ zu C₁₄₀ durch Druck/Temperatur-Behandlung¹⁶⁰ bzw. C₆₀ und C₇₀ zu C₁₃₀O durch Heizen fester C₆₀O/C₇₀-Gemische¹⁶¹ analog der Herstellung von C₁₂₀O. Abbildung 3.2 zeigt die fünf möglichen C_{130} O-Isomere. Welche Isomere entstehen, konnte erst im Laufe dieser Arbeit geklärt werden.

In neuester Zeit gelang die Darstellung eines C₆₀-Dimers, das zwei verschiedene Heteroatome enthält¹⁶². Hierbei handelt es sich um C₁₂₀OS, das durch Heizen von C₁₂₀O und elementarem Schwefel erzeugt wurde. Es besitzt eine dem C₁₂₀O₂ analoge Struktur.

Verschiedene theoretische Methoden wurden angewendet, um Energien, elektronische Eigenschaften und Schwingungen diverser Fullerendimere zu beschreiben¹⁶³⁻¹⁶⁸. Die Dimere sind gerade wegen ihres Schwingungsverhaltens interessant, speziell wegen der sechs Käfig-Käfig-Moden, die zusätzlich zu den Schwingungen der Monomere auftreten, niedrige Frequenzen besitzen und nur sehr schwach an die Monomerschwingungen, die höhere Frequenzen besitzen, koppeln. Eine dieser sechs Schwingungen, eine symmetrische Käfig-Käfig-Streckung, erklärt die Raman-Bande bei 118 cm⁻¹, die bei polymerisiertem C₆₀ beobachtet wurde¹⁶³. Intensiven Strukturen im niederfrequenten Bereich der Raman-Messungen von C₁₂₀, C₁₂₀O und C₁₂₀O₂, nahe 100 cm⁻¹, wurden symmetrischen Streckschwingungen zugeschrieben¹⁶⁹. Zwei andere, schwächere Raman-Strukturen die bei 127 und 139 cm⁻¹ für C₁₂₀ beobachtet wurden, wurden Käfig-Käfig-Torsionsbewegungen zugeordnet.

3.2 Darstellung/Aufarbeitung

Zur Herstellung von C_{120} wurde gemäß Referenz 153 eine Mischung von C_{60} und KCN in 20fach molarem Überschuss für etwa 30 Minuten unter Luft in einer Kugelmühle geschüttelt. Bei dieser Prozedur entsteht neben C_{120} auch große Mengen an $C_{120}O$. Das nicht umgesetzte C_{60} und $C_{120}O$ lassen sich durch HPLC auf der Buckyprep-Säule von dem gewünschten Produkt abtrennen.

Zur Herstellung von $C_{120}O$ bzw. $C_{130}O$ wurde gemäß Referenz 154 eine feste Mischung aus $C_{60}O$ mit C_{60} bzw. C_{70} in Luft für eine Stunde auf etwa 200°C geheizt. C_{60} und C_{70} wurden dabei jeweils in 10fach molarem Überschuss zugegeben, um zu gewährleisten, dass keine Fullerenoxidoligomere entstehen. Die Aufarbeitung der drei entstandenen $C_{130}O$ -Isomere erfolgte durch HPLC auf der Buckyprep-Säule. Abbildung 3.3 zeigt ein Chromatogramm des löslichen Anteils der Umsetzung von $C_{60}O$ mit C_{60} und C_{70} .

Abb. 3.3: Chromatogramm des löslichen Anteils der Umsetzung von $C_{60}O$ mit C_{60} (unten) und $C_{60}O$ mit C_{70} (oben).

Abb. 3.4: HPLC-Analysen auf der Buckyprep-Säule nach der Umsetzung von C₇₀ bzw. C₆₀ mit MCPBA; Chromatogramm der beiden C₇₀O-Isomere auf der Wakosil-Säule.

 $C_{60}O$ und $C_{70}O$ wurden aus einer Reaktion von Meta-Chlorperbenzoesäure (MCPBA) mit C_{60} bzw. C_{70} gewonnen¹⁷⁰. Die Aufarbeitung erfolgte durch HPLC mit der Buckprep-Säule. Um die beiden $C_{70}O$ -Isomere von einander zu trennen, wurde eine Wakosil- C_{18} -Säule (Wako Chemicals, Japan) mit einem Toluol-Acetonitril-Gemisch als Laufmittel betrieben. Abbildung 3.4 zeigt HPLC-Analysen nach der Umsetzung von C_{70} bzw. C_{60} mit MCPBA und ein Chromatogramm der beiden $C_{70}O$ -Isomere auf der Wakosil-Säule.

Die Reinheit der für spätere Messungen verwendeten Fullerendimere wurde mit Hilfe von matrixvermittelter Flugzeitmassenspektroskopie (Matrix Assisted Laser Desorption Time of Flight Mass Spectrometry, MALDI-TOF-MS) an einem im Hause von C. Stoermer aufgebauten Flugzeitmassenspektrometer überprüft. Die verwendete Matrix war 9-Nitroantharcen und wurde etwa im Verhätnis 1:1000 mit dem Analyten vermengt und aus CS_2 auf den Probenträger aufgetropft. Die Reinheit der verwendeten C_{120} -Proben konnte durch MALDI-TOF-MS nicht überprüft werden, da es bisher noch nicht gelang, C_{120} unzerstört in die Gasphase zu überführen.

3.3 Welche C₁₃₀O-Isomere wurden hergestellt?

Bei der HPLC-Analayse für $C_{130}O$ wurden drei Peaks im Chromatogramm beobachtet, die darauf hindeuten, dass drei Isomere entstanden sind (siehe Abbildung 3.3). C_{70} besitzt 8 nicht äquivalente Bindungen, wobei die vier kürzeren Bindungen Doppelbindungs- und die vier längeren Bindungen Einfachbindungscharakter besitzen. In Abbildung 3.3 sind die Doppelbindung mit I, II, III und IV bezeichnet. Zwei der Doppelbindungen sind besonders reaktiv: I und II^{171,172}. Das rührt wahrscheinlich daher, dass C_{70} dort am gekrümmtesten ist. Die Addition von $C_{60}O$ an die Bindung I erzeugt zwei cis/trans-Stellungsisomere. Um dies näher zu untersuchen, wurde die Umsetzung von zwei $C_{70}O$ -Isomeren, deren Struktur man aus NMR-Untersuchungen kennt¹⁷³ und die hier als $C_{70}O$ (I) und $C_{70}O$ (II) bezeichnet sind, mit C_{60} durchgeführt. Abbildung 3.4 zeigt die Reaktionsprodukte aus der Umsetzung von MCPBA mit C_{70} und die möglichen Reaktionsprodukte der $C_{70}O$ -Isomere mit C_{60} . Abbildung 3.5 zeigt HPLC-Analysen nach der Umsetzungen der zwei $C_{70}O$ -Isomere mit C_{60} .

Abb. 3.4: Reaktionsschemata der Umsetzung von MCPBA mit C_{70} und der möglichen Reaktionsprodukte der C_{70} O-Isomere mit C_{60} .

Die Umsetzung von $C_{70}O(I)$ mit C_{60} zeigt zwei HPLC-Peaks, die Analyse nach der Umsetzung von $C_{70}O(II)$ zeigt nur einen, was die Annahme stützt, dass man es hier wirklich mit den in Abbildung 3.3 gezeigten $C_{130}O$ -Isomeren 1a, 1b und 2 zu tun hat, die von der Addition an zwei verschiedene C_{70} -Bindungen herrühren. Die Chromatogramme enthalten auch Peaks, die $C_{120}O$ und $C_{60}O$ zugeordnet werden können, die bei der Darstellung von $C_{130}O$ an Luft als Nebenprodukte immer gebildet werden.

Abb. 3.5: HPLC-Analysen der Produkte nach der Umsetzungen der zwei $C_{70}O$ -Isomere mit C_{60} und zum Vergleich eine HPLC-Analayse der Reaktionsprodukte der Umsetzung von $C_{60}O$ mit C_{70} .

Als Fazit lässt sich sagen, dass die Substanz mit der Bezeichnung $C_{130}O(I)$ demnach dem Isomer $C_{130}O(2)$ zugeordnet werden kann und dass die Substanzen $C_{130}O(II, III)$ den Isomeren $C_{130}O(1a, 1b)$ zugeordnet werden können.

3.4 PM3-Rechnungen

Zur Unterstützung der Auswertung der IR- und Raman-Spektren der Dimere wurden semiempirische, quantenmechanische PM3-Rechnungen (Grundzustände, harmonische Schwingungsanalyse) an den Dimeren C_{119} , C_{120} , $C_{120}O$, $C_{120}O_2$ und den fünf möglichen $C_{130}O$ -Isomeren mit Hilfe des Programmpaketes HyperChem auf einem IBM Power PC (RISC 6000: AIX 4.2 mit 128 MB) durchgeführt. Eine detailliertere Beschreibung der Rechnungen findet sich in der Dissertation von H.-J. Eisler.

3.5 DRIFT-Spektroskopie

In dieser Arbeit wurden IR-Spektren von den isomerenreinen Dimeren C_{120} , $C_{120}O$, $C_{120}O_2$ und $C_{130}O$ (drei Isomere) aufgenommen. Dabei wurde die DRIFT-Methode, die bereits in Unterkapitel 2.5.2 beschriebene wurde, verwendet. Die Spektren wurden bei allen Proben mit einer Auflösung von 2 cm⁻¹ aufgenommen und über 50 Scans gemittelt.

3.5.1 C₁₂₀, C₁₂₀O, C₁₂₀O₂

Abbildung 3.6 zeigt DRIFT-Spektren der C₆₀-Dimere C₁₂₀, C₁₂₀O, C₁₂₀O₂ und zum Vergleich das DRIFT-Spektrum von C₆₀. Für die Dimere erwartet man aufgrund ihrer größeren Anzahl C-Atome und ihrer geringeren Symmetrie verglichen mit C₆₀ eine größere Anzahl Absorptionspeaks im IR-Spektrum. Tabelle 3.1 listet die irreduziblen Darstellungen von C₆₀ und der Dimere C₁₂₀, C₁₂₀O und C₁₂₀O₂ auf.

Abb. 3.6: DRIFT-Spektren der C₆₀-Dimere C₁₂₀, C₁₂₀O, C₁₂₀O₂ und zum Vergleich das DRIFT-Spektrum von C₆₀.
Bei der Verknüpfung zweier C₆₀-Moleküle zu einem Dimer, sei es jetzt direkt über eine [2 + 2]-Cycloaddition, wie bei C₁₂₀, oder über Verbrückung durch ein oder mehrere Sauerstoffatome, wie bei C₁₂₀O und C₁₂₀O₂, bleibt der C₆₀-Käfig intakt. Wenn man C₆₀ isoliert betrachtet, dann bewirkt die Verknüpfung eine Erniedrigung der Symmetrie des C₆₀ von I_h nach C_{2v} im Falle von C₁₂₀ und C₁₂₀O und C_s im Falle des C₁₂₀O₂. Unter der Annahme, dass die Verknüpfung zweier C₆₀ nur als Störung des Käfigs wirkt, sollte man erwarten, dass die 46 Normalmoden des C₆₀ um wenige Wellenzahlen aufspalten und man im wesentlichen die IR-erlaubten Normalmoden in den Dimerspektren sieht. Tabelle 3.2 listet die zu erwartenden Normalmoden und Aufspaltungen eines gestörten C₆₀ mit C_{2v}-Symmetrie auf.

Tab. 3.1: Irreduzible Darstellung für C_{60} , C_{120} , $C_{120}O$ und $C_{120}O_2$.

	Sym.	irreduzible Darstellung	IR	Raman
C ₆₀	I_h	$\begin{array}{l} 2Ag+3F_{1g}+4F_{2g}+6G_g+8H_g+\\ 1A_u+4F_{1u}+5F_{2u}+6G_u+7H_u \end{array}$	F_{1u}	A _g , H _g
C ₁₂₀	D_{2h}	$\begin{array}{l} 47A_g + 44B_{1g} + 44B_{2g} + 42B_{3g} + \\ 43A_u + 44B_{1u}, 44B_{2u} + 46B_{3u} \end{array}$	$\begin{array}{l} B_{1u},B_{2u},\\ B_{3u}\end{array}$	$\begin{array}{l} A_{g},B_{1g},B_{2g},\\ B_{3g} \end{array}$
$C_{120}O$	C_{2v}	$92A_1 + 87A_2 + 91B_1 + 87B_2 \\$	A_1, B_1, B_2	A_1, A_2, B_1, B_2
$C_{120}O_{2}$	C_{2v}	$93A_1 + 88A_2 + 91B_1 + 88B_2 \\$	A_1, B_1, B_2	A_1, A_2, B_1, B_2

Tab. 3.2: Symmetrien der Normalmoden des ungestörten und eines symmetrieerniedrigten
 C_{60} mit Symmetrie C_{2v} .

I _h	C_{2v}
2Ag	2A ₁
$3F_{1g}$	$3A_2 + 3B_1 + 3B_2$
$4F_{2g}$	$4A_2 + 4B_1 + 4B_2 \\$
6G _g	$6A_1 + 6A_2 + 6B_1 + 6B_2$
8Hg	$16A_1 + 8A_2 + 8B_1 + 8B_2 \\$
$1A_u$	1A ₂
$4F_{1u}$	$4A_1 + 4B_1 + 4B_2 \\$
$5F_{2u}$	$5A_1 + 5B_1 + 5B_2 \\$
6G _u	$6A_1 + 6A_2 + 6B_1 + 6B_2 \\$
$7H_{u}$	$7A_1 + 14A_2 + 7B_1 + 7B_2 \\$
R 10 (A _g , H _g)	R 174 (A ₁ , A ₂ , B ₁ , B ₂)
IR 4 (F_{1u})	IR 132 (A ₁ , B ₁ , B ₂)

Wie aus Tabelle 3.2 zu erkennen ist, werden im Falle einer Symmetriereduzierung von I_h nach C_{2v} alle Moden des C_{60} bis auf die A_u -Mode IR-erlaubt und eine Aufspaltung aller Moden bis auf die A_g -Mode ist zu erwarten. Im Falle des $C_{120}O_2$, bei dem C_{60} eine Symmetrieerniedrigung von I_h nach C_s erleidet, ist eine Aufspaltung in noch mehr Moden zu erwarten.

Tab. 3.3: Aus DRIFT-Spektren der Dimere extrahierte Schwingungsfrequenzen; Vergleich mit einer DRIFT-Messung an C₆₀ sowie DFT-Rechnung für C₆₀.

	DFT ^a	C ₆₀	C ₁₂₀	C ₁₂₀ O	$C_{120}O_{2}$		DFT	C ₆₀	C ₁₂₀	C ₁₂₀ O	$C_{120}O_2$
Hg	259					F _{2g}	790	797,1	796,5	795,8	792,0
F_{2u}	335					F_{1g}	826	824,1		831,2	
G_u	347					Au	953				
H_{u}	399					G_u	960	957,8		960,4	961,7
H_{g}	424	432,0	435,2	430,7	437,1	F_{2u}	964	962,3	962,9	964,2	
					465,4	G_{g}	1081		1083,2		
G_{g}	472	471,8	478,9	478,3	469,9	Hg	1102	1099,9	1099,9	1101,2	1108,9
					471,8	F_{2u}	1183				
A_g	485	497,5	495,6	496,3	502,0	F_{1u}	1188	1182,8	1183,4	1182,2	1189,9
H_{u}	522								1187,9	1187,3	
F_{1u}	525	526,5	526,5	526,5	527,1	H_{u}	1213	1213,6	1216,9	1218,1	
F_{2g}	557	554,1			552,2	Hg	1245	1242,6	1245,1	1245,8	
F_{1g}	558		560,5	563,8	563,8	F_{1g}	1274		1277,9	1268,9	1269,6
G_{g}	566					G_u	1302			1299,1	1297,2
			569,5		569,5	Gg	1305	1306,9	1306,2	1308,1	
F_{1u}	575	576,0	574,0	573,4	576,6	F_{2g}	1333	1330,0	1337,1	1338,4	
			579,8			H_{u}	1336	1342,9	1344,8	1338,4	1344,1
H_{u}	667	667,2	666,6	666,6	672,4	Hg	1421	1418,7			
H_{g}	703	712,2	711,0	711,0	718,7	G_u	1426				
F_{2g}	707		706,5			F_{1u}	1429	1429,0	1425,8	1429,6	1421,6
F_{2u}	708				709,7				1430,3		1426,4
H_{u}	724								1438,4		1430,3
G_u	726	725,7		725,7	729,6	Ag	1469	1468,8	1462,4	1463,7	1463,7
G_{g}	736	738,6	738,0	739,2	738,0	G_g	1495	1495,8	1493,3	1493,3	1493,3
G_{u}	750	756,0		757,9	757,9	$F_{2u} \\$	1523	1524,8			
						H_u	1557	1559,5	1554,3	1561,4	1555,6
H_{g}	770	774,6	770,1	771,4	776,5	H_{g}	1566	1571,1	1571,1	1570,4	1564,0

^askaliert mit 1,01

Aus den DRIFT-Messungen an den Dimeren C_{120} , $C_{120}O$ und $C_{120}O_2$ wurden in dem Bereich zwischen 400 und 1600 cm⁻¹ im Falle von C_{120} und $C_{120}O$ etwa 80 und im Falle des $C_{120}O_2$ 95

Absorptionen extrahiert. Der Vergleich der Spektren untereinander zeigt Ähnlichkeiten. So findet man für C_{120} und $C_{120}O$ etwa 45 Absorptionen, welche die gleiche Frequenzlage (innerhalb von 2 cm⁻¹) und vergleichbare Intensitäten besitzen. Der Vergleich von C_{120} mit $C_{120}O_2$ und $C_{120}O$ mit $C_{120}O_2$ liefert 40 Absorptionen gleicher Frequenzlage und vergleichbaren Intensitäten. Ein Vergleich der gemessenen Dimer-DRIFT-Spektren mit einem C_{60} -Spektrum ist in Tabelle 3.3 zusammengefasst.

Die Dimere haben mit C_{60} immerhin noch jeweils etwa 30 Absorptionen gemeinsam. Mit Hilfe des Vergleichs mit DFT-Rechnungen an C_{60} und der C_{60} -DRIFT-Messung wurde versucht diese Absorptionen stillen C_{60} -Moden zuzuordnen. Dabei wurden Absorptionen aus den Dimerspektren C_{60} -Schwingungsmoden zugeordnet, wenn sie nicht weiter als \pm 5 cm⁻¹ von experimentellen C_{60} -Frequenzen entfernt waren. In den Fällen, in denen den DFT-Rechnungen der stillen Moden des C_{60} keine experimentellen Absorptionen aus der C_{60} -DRIFT-Messung zugeordnet werden konnte, wurden experimentelle Strukturen aus den Dimerspektren direkt mit den DFT-Rechnungen für C_{60} verglichen.

Der Vergleich der Dimerspektren mit dem C₆₀-Spektrum zeigt, dass nur wenige signifikante Aufspaltungen von Moden zu beobachten sind (siehe Tabelle 3.3). Die F_{1u}-Moden des C₆₀ sind in den Dimerspektren deutlich wiederzuerkennen und können dadurch sicher zugeordnet werden. Sie sind teilweise aufgespalten. Im C₁₂₀-Spektrum ist eine deutliche Aufspaltung der F_{1u} (2)-, F_{1u} (3)- und der F_{1u} (4)-Mode zu erkennen (siehe Tabelle 3.3). Im C₁₂₀O-Spektrum ist nur die F_{1u} (3)-Mode und im C₁₂₀O₂-Spektrum nur die F_{1u} (4)-Mode aufgespalten. Die Stärke der Aufspaltung ist für die F_{1u} (4)-Mode erheblich und beträgt mehr als 10 cm⁻¹. Warum nicht mehr Moden aufgespalten sind, ist noch nicht geklärt und bedarf weiterer Untersuchungen. Aus PM3-Rechnungen erwartet man Aufspaltungen der F_{1u}- und H_g-Moden um einige Wellenzahlen. Wie schon in Unterkapitel 2.5.4.1 festgestellt wurde, lassen sich mittels PM3 Schwingungsfrequenzen nur mit einem Fehler von (1 ± 39) cm⁻¹ berechnen. Für eine Abschätzung der Stärke der Aufspaltung von Normalmoden des C₆₀ sollten PM3-Rechnungen aber genügend genau sein. IR-Intensitäten werden nur sehr schlecht wiedergegeben und sind für Zuordnungen nicht zu gebrauchen.

Im Bereich zwischen etwa 900 und 1100 cm⁻¹ unterscheiden sich die Dimere stark von einander (siehe Abbildung 3.6). PM3-Rechnungen sagen für diesen Bereich Etherschwingungen der sauerstoffüberbrückten Dimere voraus. Verglichen mit C_{120} besitzt $C_{120}O$ theoretisch drei und $C_{120}O_2$ theoretisch sechs zusätzliche Schwingungen aufgrund der zusätzlichen Sauerstoffatome, welche die Möglichkeiten der Schwingungen erhöhen (siehe Tabelle 3.1). Abbildung 3.7 zeigt beispielhaft die mit HyperChem visualisierten Schwingungen des $C_{120}O$. Tabelle 3.4 fasst alle in dem Bereich zwischen 900 und 1100 cm⁻¹ experimentell gefundenen Strukturen der Dimere $C_{120}O$ und $C_{120}O_2$ und die Zuordnung zu Etherschwingungen, die mit PM3 berechnet wurden, zusammen.

Abb. 3.7: Mit PM3 berechnete Etherschwingungen des C₁₂₀O.

Tab. 3.4: IR-Absorptionen der Dimere $C_{120}O$ und $C_{120}O_2$ im Bereich zwischen 900 und 1100 cm^{-1} und Zuordnung zu mit PM3 berechneten Etherschwingungen.

C ₁₂	20 O	$C_{120}O_2$			
Exp. [cm ⁻¹]	$PM3^{a} [cm^{-1}]$	Exp. $[cm^{-1}]$	PM3 [cm ⁻¹]		
1033,0	1049	1007,9	1025		
1062,6 1086		1034,3 1040			
1101,2 1100		1047,8 1043			
		1058,7	1063		
		1064,5	1092		
		1108,9	1098		

^askaliert mit 0,86.

Als Fazit lässt sich sagen, dass es mit Hilfe der DFT-Rechnungen gelingt, eine Vielzahl der Dimerschwingungen auf stille und IR- und Raman-erlaubte Schwingungen zurückzuführen.

3.5.2 C₁₃₀O

Abbildung 3.8 zeigt die DRIFT-Spektren der drei isolierten C_{130} O-Isomere. Die Tabellen 3.5 und 3.6 fassen den Vergleich von DFT-Rechnungen der IR-erlaubten Normalmodenfrequenzen von C_{60} und C_{70} und den DRIFT-Messungen von C_{60} und C_{70} mit den DRIFT-Spektren der drei C_{130} O-Isomere zusammen.

Tab. 3.5: Vergleich von DFT-Rechnung der IR-erlaubten Normalmodenfrequenzen von C_{70} und DRIFT-Messung von C_{70} mit DRIFT-Spektren der drei C_{130} O-Isomere.

Sym.	DFT ^a	C ₇₀	I^{b}	II ^c	III^d	Sym.	DFT ^a	C ₇₀	Ι	II	III
A_2''	317					A_2''	904	905,1	908,3		
E'_1	321					E'_1	1085	1086,4			
\mathbf{E}'_{1}	357					A_2''	1138	1133,3	1137,2		
\mathbf{E}'_1	409		410,8	414,0	413,3	E ' ₁	1177	1175,7	1181,5	1181,5	1179,6
A_2''	456	458,3	455,8	453,2	461,5	A_2''	1215		1218,1	1218,1	1218,8
\mathbf{E}'_1	501	506,5	504,0	501,4	505,3	E'_1	1251	1250,9		1246,4	1245,8
E'_1	531	534,8	526,5	533,5	529,7	E'_1	1286	1291,4		1288,9	1291,4
A_2''	562	565,0	561,2	563,8	563,1	E ' ₁	1316	1321,0	1322,9	1319,1	1322,3
E'_1	570	577,3	571,5	570,2	569,5	A ["] ₂	1331			1333,9	1334,5
E'_1	641	642,2	640,9	644,8	642,2	E'_1	1408	1414,2	1405,2		
E'_1	667	674,3	669,2	671,7	671,1	E'_1	1429	1430,3	1431,6	1428,4	1428,4
A_2''	699	692,3	692,3	696,2	702,0	A_2''	1459	1459,8	1462,4	1462,4	1462,4
E'_1	723	724,5	725,7	722,5	725,7	E'_1	1476	1477,2			
\mathbf{E}'_{1}	737	795,2	795,8	795,8	795,8	E'_1	1549		1542,1	1542,1	1542,8
E'_1	828		829,2	828,6	824,7	A″ ₂	1550	1552,4			
E'_1	902	896,7	900,6	896,7	895,5						

^askaliert mit 1,01; ^bC₁₃₀O (I), ^cC₁₃₀O (II); ^dC₁₃₀O (III).

Abb. 3.8: DRIFT-Spektren der drei isolierten C₁₃₀O-Isomere I, II und III.

Mode	DFT ^a	C ₆₀	C ₁₃₀ O(I)	C ₁₃₀ O(II)	C ₁₃₀ O(III)		
F_{1u}	525	526,5	526,5	526,5	526,5		
F_{1u}	575	576,0	575,3 576,	6 575,	3		
F_{1u}	1188	1182,2	1181,5	1182,2	1180,2		
			1186,6	1187,3	1187,3		
F_{1u}	1429	1429,0	1431,6	1428,4	1428,4		
^a skaliert mit 1,01.							

Tab. 3.6: Vergleich von DFT-Rechnung der IR-erlaubten Normalmodenfrequenzen von C_{60} und DRIFT-Messung von C_{60} mit DRIFT-Spektren der drei C_{130} O-Isomere.

Der visuelle Vergleich der DFT-Rechnungen von C₆₀ und C₇₀ mit den DRIFT-Messungen der C₁₃₀O-Isomere zeigt schon, dass die C₁₃₀O-Spektren deutliche Ähnlichkeit mit den Monomeren C₆₀ und C₇₀ haben. Tatsächlich finden sich viele der Absorptionspeaks in den C₁₃₀O-Spektren, die von IR-erlaubten Normalmoden des C₇₀ ableitbar sind. IR-stille Moden von C₆₀ und C₇₀ sollten ebenfalls detektierbar sein. Allerdings sind für sie wahrscheinlich kleinere Intensitäten zu erwarten. Tabelle 3.5 fasst alle Banden aus den C₁₃₀O-Spektren zusammen, die wahrscheinlich von C₇₀-Schwingungen stammen und vergleicht sie mit den Banden, die aus dem C₇₀-DRIFT-Spektrum extrahiert wurden und aus Vergleich mit DFT-Rechnungen Normalmoden des C₇₀ zugeordnet werden (siehe Unterkapitel 2.5.4.2). Dabei wurden Absorptionen aus den Dimerspektren C₇₀-Schwingungsmoden zugeordnet, wenn sie nicht weiter als ± 5 cm⁻¹ von experimentellen C₇₀-Frequenzen entfernt waren. In den Fällen, in denen den DFT-Rechnungen der Moden des C₇₀ keine experimentelle Strukturen aus den C₇₀-DRIFT-Messung zugeordnet werden konnte, wurden experimentelle Strukturen aus den Dimerspektren direkt mit den DFT-Rechnungen für C₇₀ verglichen.

Die größten Unterschiede zwischen Monomeren und Dimeren sind im Bereich zwischen 1000 und 1100 cm⁻¹ zu erkennen. Wie schon für die $C_{120}O$ und $C_{120}O_2$ gezeigt, sind in diesem Bereich Etherschwingungen zu erwarten. Tabelle 3.7 listet die in diesem Bereich für die $C_{130}O$ -Isomeren gefundenen Absorptionen auf und vergleicht sie mit PM3-Rechnungen. Für solche großen Systeme sind Rechnungen auf DFT-Niveau noch zu teuer.

Tab. 3.7: IR-Banden der C_{130} O-Isomere im Bereich zwischen 1000 und 1100 cm⁻¹ und Zuordnung zu Etherschwingungen, die mit PM3 berechnet wurden.

	Exp.			PM3 ^a	
Ι	II	III	2	1a	1b
1005,4	1004,7	1007,3	1025	1034	1041
1027,5	1025, 9	1027, 2	1041	1048	1051
1043,9	1058, 1	1057, 4	1046	1082	1081
1057,4	1072, 2	1072, 9	1086	1097	1097
1076,7	1097, 3	1096, 0	1092	1104	1101
1096,7	-	-	1100	-	-
liert mit	0,86.				

Der Etherbereich der DRIFT-Spektren der $C_{130}O$ -Isomere eignet sich dazu, um die Isomere voneinander zu unterscheiden. Wie in Unterkapitel 3.3 festgestellt wurde, lässt sich die HPLC-Fraktion, die mit $C_{130}O(I)$ bezeichnet wurde, dem Isomer Nummer 2 zuordnen und die HPLC-Fraktionen $C_{130}O(II$, III) wurden den Isomeren 1a und 1b zugeordnet. Die Auswertung des Etherbereichs zeigt, dass die Übereinstimmung der Absorptionspeaks von $C_{130}O(II)$ und $C_{130}O(II)$ größer ist als von $C_{130}O(I)$ und $C_{130}O(II)$ bzw. $C_{130}O(I)$ und $C_{130}O(II)$, was dafür spricht, dass sich unter den HPLC-Peaks mit der Bezeichnung $C_{130}O(II, III)$ tatsächlich die Isomer 1a und 1b verbergen.

Als Fazit lässt sich sagen, dass der Vergleich mit den DFT-Rechnungen für C_{60} und C_{70} eine Großzahl der IR-Banden der C_{130} O-Isomere auf Schwingungen von C_{60} und C_{70} zurückführen lassen. Der Vergleich des Etherbereiches der C_{130} O-Isomere stützt die Isomerzuordnung des Unterkapitels 3.3.

3.6 Raman

Die hier vorgestellten Raman-Experimente wurden von H.-J. Eisler durchgeführt und die daraus gewonnen Folgerungen sind bereits publiziert¹⁶¹. Der Einsatz einer Alkalidampfzelle zur Unterdrückung der Rayleigh-Streung ermöglichte die Detektion von Absorptionen mit kleinen Frequenzen bei den Fullerendimeren C_{120} , $C_{120}O$ und $C_{120}O_2$.

3.6.1 Systematik der Käfig-Käfig-Schwingungen

Abbildung 3.9 zeigt den niederfrequenten Ausschnitt von 15–375 cm⁻¹ der Raman-Messungen von C₁₂₀, C₁₂₀O und C₁₂₀O₂. PM3-Rechnungen der Frequenzen wurden als Strichspektrum darübergelegt. Mit Hilfe von PM3-Rechnungen gelingt die Zuordnung dieser Strukturen zu Käfig-Käfig-Schwingungsmoden. Diese niederfrequenten Raman-Moden lassen sich in zwei Regionen aufteilen, die deutlich im Experiment wie auch im berechneten Spektrum durch eine Lücke voneinander getrennt sind: in eine von 15 bis 180 cm⁻¹ und eine von 240 bis 375 cm⁻¹. Das Programmpaket HyperChem ermöglicht die Sichtbarmachung der für den Bereich von 15 bis 180 cm⁻¹ berechneten Normalmoden der Dimere. Für alle Dimere findet man in diesem Bereich nur Käfig-Käfig-Schwingungen. Abbildung 3.10 zeigt, repräsentativ für andere Dimere, diese Schwingungsmoden für C₁₂₀. Es sind fünf Torsionsbewegungen (v₁ – v₃, v₅, v₆) und eine symmetrische Streckung (v₄), analog zu der eines zweiatomigen Moleküls, weshalb die Bezeichnung dieser Schwingung als "superzweiatomige Schwingungsmode" nahe liegt.

Für die Dimere, die zusätzlich durch ein oder mehrere Heteroatome miteinander verbunden sind, sind diese Bewegungen ganz analog. Diese Systematisierung ist genauso anwendbar für $C_{130}O$ und C_{119} . Auf den Bereich mit den Käfig-Käfig-Moden folgen Deformationsmoden zu höherer Energie zwischen 200 und 400 cm⁻¹ (siehe auch Unterkapitel 2.6.2). Oberhalb von 400 cm⁻¹ setzen andere Typen von Schwingungen ein, die größere Anteile an tangentialen Atombewegungen beinhalten.

Abb. 3.9: Niederfrequenter Ausschnitt von 15–375 cm⁻¹ der Raman-Messungen von C_{120} , $C_{120}O$ und $C_{120}O_2$. PM3-Rechnungen der Frequenzen wurden als Strichspektrum darüber gelegt.

Abb. 3.10: Käfig-Käfig-Schwingungen des C₁₂₀ repräsentativ für andere Dimere.

Das Auftreten von sechs wohldefinierten niederfrequenten Käfig-Käfig-Moden impliziert die idealisierte Beschreibung der Fullerendimere als zwei miteinander verbundene, starre Hohlkugeln. Kugel für sich betrachtet, hat drei Jede Rotationsund drei Translationsfreiheitsgrade, also 12 zusammen, die sich durch Verbindung der beiden Kugeln zu einem "Superdimer" auf drei Rotations- und drei Translationsfreiheitsgrade, also sechs zusammen, reduzieren. Dieses superzweiatomige Molekül hat im Gegensatz zu dem zweiatomigen Analogon drei Rotationsfreiheitsgrade. Sechs der ursprünglichen Rotationsund Translationsfreiheitsgrade der Einzelkugeln werden durch das Verbinden der beiden Kugeln zu den fünf Torsionsbewegungen und der symmetrischen Streckung, was sich auch einfach durch gruppensymmetrische Überlegungen zeigen lässt. Abbildung 3.11 verdeutlicht die idealisierte Darstellung der Bewegungen von gekoppelten Hohlkugeln und fasst die Ergebnisse der Frequenzanalyse für die ersten sechs Normalmoden der Fullerendimere C_{120} , $C_{120}O$ und $C_{120}O_2$ in einem Korrelationsdiagramm zusammen.

Abb. 3.11: Idealisierte Darstellung der Bewegungen von gekoppelten Hohlkugeln und Zusammenfassung der Ergebnisse der Frequenzanalyse für die ersten sechs Normalmoden von C_{120} , $C_{120}O$ und $C_{120}O_2$ in einem Korrelationsdiagramm.

In dem Korrelationsdiagramm sind auch die Symmetrien der Käfig-Käfig-Schwingungen zu finden. Die Kenntnis der Symmetrie ist wichtig, wenn es darum geht, zu entscheiden, ob die

Schwingungen Raman- bzw. IR-aktiv sind. Für $C_{120}O$ und $C_{120}O_2$ sollten alle Käfig-Käfig-Schwingungen Raman-aktiv und somit im Experiment sichtbar sein. Für C_{120} sind nur die Käfig-Käfig-Schwingungen mit gerader Symmetrie Raman-aktiv. Die intensivste Bande in allen Spektren kann der symmetrischen Streckschwingung sicher zugeordnet werden. So findet man für C_{120} bei 96 cm⁻¹ eine intensive Bande, die über den Vergleich mit der PM3-Rechnung der symmetrischen Streckschwingung v₄ zugeordnet werden kann. Für die Ramanerlaubten Schwingungsübergänge v₅ und v₆ kann im Spektrum eine Bande bei 139 cm⁻¹ vermutet werden. Für $C_{120}O$ und $C_{120}O_2$ lässt sich die Bandenzuordnung aufgrund der PM3-Rechnungen in analoger Art und Weise bewerkstelligen. Tabelle 3.8 fasst die gerechneten Käfig-Käfig-Schwingungsfrequenzen der gemessenen Dimere zusammen und vergleicht sie mit experimentell gefundenen Werten.

Tab. 3.8: Mit PM3 berechnete Käfig-Käfig-Schwingungsmoden und Vergleich mitexperimentell gefundenen Werten. PM3-Rechnungen und Experimente in cm⁻¹.

C ₁₂₀	PM3	Exp.	C ₁₂₀ O	PM3	Exp.	$C_{120}O_{2}$	PM3	Exp.
$A_u^{\ a}$	25	_b	B1	19	-	A ₁	42	21
$B_{1u}{}^a$	27	-	A_2	22	-	A_2	52	31
$B_{3u}{}^a$	39	-	A_1	40	41	B_1	67	42
A_{g}	96	96	A_1	101	100	A ₁	123	123
B_{3g}	133	139	A_2	121	-	A_2	165	162
\mathbf{B}_{1g}	146	-	B ₂	128	-	B ₂	168	-

^aNicht Raman-erlaubt; ^bNicht detektiert.

Im Gegensatz zu $C_{120}O_2$, für das die Übereinstimmung zwischen den ersten drei experimentell bestimmten Moden und den PM3-Vorussagen weniger gut ist, findet man für C_{120} und $C_{120}O$ eine nahezu quantitative Übereinstimmung zwischen Theorie und Experiment. Über die Gründe für die Diskrepanz bei dem $C_{120}O_2$ -System kann nur spekuliert werden. Eine mögliche Erklärung könnte die Parametrisierung der semiempirischen Rechenmethode PM3 sein, das die Bindungsverhältnisse umso schlechter beschreibt je mehr sauerstoffverbrückende Funktionen das Dimer enthält. Eine andere mögliche Erklärung könnte sein, dass der Strukturvorschlag, der sich auf ¹³C NMR-Untersuchungen stützt, die wirkliche Struktur des $C_{120}O_2$ nicht richtig beschreibt.

Bei allen Fullerendimeren ist die v_4 -Mode, die nach der hier eingeführten Nomenklatur als superzweiatomige, symmetrische Streckschwingung bezeichnet wird, von besonderem

Interesse. Wie schon zuvor erwähnt, ist sie die im Raman-Spektrum intensivste Käfig-Käfig-Mode. Wenn man sich des einfachen Bildes der durch Federn miteinander verbundenen starren Hohlkugeln bedient, sollte die Streckschwingung mit Hilfe des einfachen Hook'schen Gesetzes, $\omega = (k/\mu)^{1/2}$, beschrieben werden können. Der einzige Unterschied in der C₆₀-Dimerreihe, C₁₂₀, C₁₂₀O und C₁₂₀O₂, besteht in der Art der Verknüpfung. Das bedeutet in dem einfachen Bild der mit Federn verbundenen starren Hohlkugeln, dass sich C₁₂₀, C₁₂₀O und C₁₂₀O₂ nur in ihren Kraftkonstanten unterscheiden sollten. Es findet sich folgende *k*-Abfolge für die aus C₆₀-Einheiten bestehenden Dimere: $k(C_{120}) < k(C_{120}O) < k(C_{120}O_2)$. Interessanter Weise entspricht diese *k*-Abfolge umgekehrt dem Grad der Fragmentation, die bei laservermittelter Flugzeitmassenspektroskopie beobachtet wird.

Abb. 3.12: Auftragung der mit PM3 berechneten und experimentell bestimmten Streckschwingungsfrequenzen der Dimertypen gegen reduzierte Masse μ .

Die Kraftkonstante, die aus der für $C_{130}O$ berechneten superzweiatomigen Frequenz erhalten wurde, ist fast die gleiche wie die, die für $C_{120}O$ gefunden wurde. Dies deutet darauf hin, dass k in erster Näherung nur vom Verbindungstyp abhängig ist und nicht von den miteinander verbundenen Fullerenen.

In Abbildung 3.12 wurden die mit PM3 berechneten und experimentell bestimmten Streckschwingungsfrequenzen der Dimertypen, gruppiert nach Art der Verknüpfung (Verbrückung unter Bildung eines Vierrings, Verbrückung durch Sauerstoff unter Bildung eines furanoiden Fünfrings, Verbrückung über zwei Sauerstoffe unter Bildung zweier furanoider Fünfringe), gegen reduzierte Masse μ aufgetragen. Die erdnussförmigen Fullerendimere (C₁₁₉, C₁₂₉, C₁₄₃, C₁₅₉) mit ungerader Kohlenstoffanzahl wurden in das Diagramm mit aufgenommen. Vor einiger Zeit gelang die Herstellung eines C₁₄₀-Isomers¹⁶⁰. Die für C₁₄₀ ermittelte Streckschwingungsfrequenz wurde mit in das Schaubild aufgenommen. Die Abbildung enthält Eintragungen für verschiedene, bisher noch nicht synthetisierte, Fulleren/C₆₀-Kombinationen, C₆₀-C_x, C₆₀O-C_x, C₆₀O₂-C_x, C₅₉-C_x (x = 60, 70, 84, 100) unter der Annahme, dass die Kraftkonstante für einen Verbindungstyp unabhängig ist. Die gestrichelten Linien sind lineare Regressionen der PM3-Schwingungsfrequenzen unter der Annahme, dass die Kraftkonstante für einen Dimertyp konstant ist.

4 Nanoröhren

In den nachfolgenden Unterkapiteln wird die Darstellung, Aufarbeitung und Charakterisierung von einwandigen Kohlenstoffnanoröhren (Single-Walled Nanotubes, SWNTs) beschrieben. Dazu wurde eine Apparatur zur Erzeugung von SWNTs mittels Zweipuls-Laserablation aufgebaut. Das dabei entstandene Rohmaterial wurde durch die folgenden physikalischen Messungen charakterisiert: Raman-Spektroskopie, UV-vis-NIR-Absorptionsspektroskopie, Rasterelektronenmikroskopie (Scanning Electron Microscopy, SEM). Außerdem gelangen erste Versuche, das produzierte SWNT-Material zu reinigen bzw. aufzuarbeiten.

4.1 Literatur

In diesen Unterkapiteln wird die Nomenklatur zur Beschreibung einzelner Nanoröhren sowie Methoden zur Herstellung, Reinigung und Charakterisierung von SWNTs aus der Literatur vorgestellt.

4.1.1 Nomenklatur¹⁷⁴

Einwandige Kohlenstoffnanoröhren kann man sich aus einzelnen Graphenschichten zu Röhren aufgerollt vorstellen. Aufgrund der hexagonalen Symmetrie gibt es verschiedene Möglichkeiten, die Graphenschicht so aufzurollen, dass sich Kanten zu perfekten Zylindern treffen, was zu verschiedenen kristallographischen Orientierungen der Sechsecke führt. Abbildung 4.1 zeigt einen Ausschnitt einer Graphenschicht und wie sich daraus eine Nanoröhre konstruieren lässt. Auf jedem Eckpunkt des Honigwabengitters sitzt ein Kohlenstoffatom.

Abb. 4.1: Konstruktion einer (5, 4)-Kohlenstoffnanoröhre.

Kohlenstoffnanoröhren sind bestimmt durch die Angabe ihres Durchmessers d und des chiralen Winkels θ , wobei der chirale Vektor C_h

$$\boldsymbol{C}_h = n\boldsymbol{a}_1 + m\boldsymbol{a}_2 \tag{4.1}$$

ist. Der Vektor C_h verbindet zwei kristallographisch äquivalente Stellen O und A auf der zweidimensionalen (2D)-Graphitschicht. Die Konstruktion in Abbildung 4.1 zeigt den chiralen Winkel θ der Nanoröhre in Bezug auf die Zickzack-Richtung ($\theta = 0^\circ$) und Einheitsvektoren a_1 und a_2 des hexagonalen Honigwabengitters. Einen Zylinder erhält man, wenn man die beiden Enden *OA* des Vektors C_h entlang der gestrichelten Linien zu Deckung bringt. In Abbildung 4.1 ist die Konstruktion einer (5, 3)-Nanoröhre gezeigt, die einen chiralen Vektor $C_h = 5a_1 + 3a_2$ besitzt. Die (n, m)-Bezeichnung der Nanoröhren ist die gebräuchliche Nomenklatur und charakterisiert die Röhrchen eindeutig. Der Durchmesser einer Röhre ist als Funktion von n und m gegeben durch:

$$d = \frac{C_h}{\pi} = \frac{\sqrt{3}}{\pi} (m^2 + mn + n^2)^{\frac{1}{2}} a_{C-C}.$$
 (4.2)

wobei a_{C-C} der C-C-Abstand in Graphit (1,421 Å) und C_h die Länge des chiralen Vektors C_h ist. In Abbildung 4.2 sind alle Kombinationen von (n, m), die für Durchmesser zwischen 0,75 und 1,55 nm in Frage kommen, graphisch aufgetragen. In diesem Durchmesserbereich sind für *n* Werte zwischen 6 und 19 und für *m* Werte zwischen 0 und 11 möglich. Insgesamt erhält man dann 100 mögliche Röhren.

Abb. 4.2: Alle Kombinationen von (n, m) für Durchmesser zwischen 0,75 und 1,55 nm.

Der chirale Winkel θ ergibt sich zu

$$\theta = \tan^{-1} \left[\frac{\sqrt{3}m}{(m+2n)} \right]. \tag{4.3}$$

SWNTs mit n = m ($\theta = 30^{\circ}$), m = 0 ($\theta = 0^{\circ}$) oder $n \neq m$ ($30^{\circ} < \theta > 0^{\circ}$) bezeichnet man als Sessel-, Zickzack- bzw. als chirale Nanoröhren. (n, 0)- und (n, n)-Röhren besitzen besonders hohe Symmetrie. Die Eigenschaften der Nanoröhren, z. B. Leitfähigkeit, sind stark von der Chiralität der Röhren abhängig. So sollten nach theoretischen Voraussagen alle SesselNanoröhren und Röhren, für die n - m durch drei teilbar ist, metallisch und alle anderen halbleitend sein^{175,176}.

Abbildung 4.3 zeigt mögliche chirale Vektoren, spezifiziert durch das Paar ganzer Zahlen (n, m) in Klammern. Unterhalb einiger Zahlenpaare ist die Zahl von Endkappen aufgelistet, die unter der Annahme möglich sind, dass die Kappe nur Fünf- und Sechsringe enthält, sowie dass die Isolierter-Fünfring-Regel gilt. Daraus resultiert, dass die Sessel-Röhre (5, 5), die durch eine C₆₀-Halbkugel abgeschlossen werden kann, die Röhre mit dem kleinsten Durchmesser ist, die sich mit einer Fullerenhalbkugel schließen lässt.

Abbildung 4.4 zeigt als Beispiel für Sessel-, Zickzack- und chirale Nanoröhre eine (5, 5)-, (9, 0)- und eine (10, 5)-Nanoröhre.

Abb. 4.3: Mögliche chirale Vektoren, spezifiziert durch das Paar ganzer Zahlen (n, m) in Klammern. Unterhalb einiger Zahlenpaare ist die Zahl von Endkappen aufgelistet, die unter der Annahme möglich sind, dass die Kappe nur Fünf- und Sechsringe enthält, sowie dass die Isolierter-Fünfring-Regel gilt.

Abb. 4.4: Beispiele für Sessel-, Zickzack- und chirale Nanoröhren: a) (5, 5)-, b) (9, 0)- und c) (10, 5)-Nanoröhre.

4.1.2 Darstellung/Aufarbeitung

Schon relativ früh nach der Entdeckung der Bogenentladung als geeignete Methode zur Herstellung von Fullerenen in makroskopischen Mengen gelang der Nachweis der den Fullerenen verwandten quasi-eindimensionalen Systemen, zuerst der mehrwandigen Nanoröhren 1991 durch Iijima¹⁷⁷ und etwas später auch der einwandigen Nanoröhren^{178,179} im Ruß von Bogenentladungen mittels Transmissionselektronenmikroskopie (Transmisson Electron Microscopy, TEM). Um gezielt einwandige Nanoröhren bei der Bogenentladung herstellen zu können, wurden den Graphitelektroden Katalysatoren mit Anteilen von 1–10 Gew.% zugefügt: Co, Co/Ni-, Co/Y-, Co/Fe-, Ni/Lu-, Co/Pt-, Fe/Ni und Ni/Y-Mischungen ¹⁷⁸⁻¹⁸⁹.

Die Herstellung von SWNTs mit großen Ausbeuten (> 70% bzgl. verdampften Kohlenstoffs) gelang allerdings erst durch ein Zweipuls-Laserablations-Verfahren in der Gruppe um R. E. Smalley¹⁹⁰. Hierbei wurde Kohlenstoff von einer Graphitscheibe mit Hilfe zweier Nd:YAG-Laser (1. Laser: 532 nm, 250 mJ, 5 mm-Fleck, 10 Hz; 2. Laser: 1064 nm, 300 mJ, 7 mm-Fleck, 10 Hz), die mit einem zeitlichen Versatz von 50 ns betrieben wurden, in einen Argonfluss verdampft. Das Graphitziel befand sich dabei in einem Glaszylinder, der mit

einem Ofen auf 1200°C geheizt wurde. Der verwendete Graphit wurde mit 1,2 Atom% einer 1:1-Mischung aus Kobalt und Nickel als Katalysator versetzt. Die bei der Laserverdampfung erzeugten Kohlenstoffspezies wurden durch den Argonfluss auf den Kühlfinger befördert, wo sie sich niederschlugen. Abbildung 4.5 zeigt schematisch die von R. E. Smalley *et al.* benutzte Apparatur zur Herstellung ihrer SWNTs. Die Charakterisierung der SWNTs durch SEM, TEM und Röntgenstrukturanalyse ergab, dass die SWNTs einen mittleren Durchmesser von $1,38 \pm 0,02$ nm und eine Länge von mehreren µm besitzen und dass sie sich in B ündeln von 100 bis zu 500 Röhren organisieren.

Abb. 4.5: Schematische Darstellung der von R. E. Smalley *et al.* benutzten Apparatur zur Herstellung ihrer SWNTs.

Die Entdeckung der Herstellung von SWNTs in großen Ausbeuten und enger Durchmesserverteilung durch das Zweistrahl-Laserablationsverfahren gab den Anstoß zu einer Vielzahl von Forschungsvorhaben, die das Ziel hatten, den Bildungsmechanismus zu verstehen, das Verfahren zu verbessern und die Eigenschaften der SWNTs zu erforschen. Einige Arbeiten beschränkten sich darauf, die Parameter, die für die Bildung von SWNTs wichtig sind, herauszufinden. Einige wichtige Ergebnisse waren, dass der Durchmesser der Nanoröhren vom verwendeten Katalysator, der Ofentemperatur und der Laserlichtintensität abhängt¹⁹¹⁻¹⁹⁵.

4.1.3 Reinigung

Bei der Produktion von SWNTs durch Laserablation oder Bogenentladung fallen neben Nanoröhren vor allem µm-große Partikel aus amorphem Kohlenstoff und Katalysatorpartikel als Verunreinigung an. Um diese Verunreinigungen zu entfernen, hat sich vor allem eine oxidative Aufarbeitung des Rußes durchgesetzt. Das Reinigungsprinzip basiert darauf, dass SWNTs im Idealfall aus einer ungestörten, defektfreien, aufgerollten Graphitschicht bestehen und damit gegen oxidierende Medien (oxidierende Säuren oder Luftsauerstoff) inert sind. Reiner Graphit ist resistent gegen die meisten Säuren, Basen und reaktiven Gase. Reaktionen mit aggressiven Medien passieren zunächst (d. h. bei niedriger Temperatur) nur an aktiven Stellen, an Defekten oder an den Kanten einer Basalfläche einer Graphitschicht (Prismenfläche), wobei je nach kristallographischer Richtung der Graphit eine Zickzack- oder Sessel-Kante besitzt. Die O₂-Oxidationsrate entlang der Zickzack-Kante ist größer als entlang der Sessel-Kante^{196,197}. Reaktionen mit der Basalfläche sind sehr viel langsamer. Die Reaktivität von Graphit hinsichtlich der verschiedensten reaktiven Medien wurde schon eingehend untersucht¹⁹⁸⁻²⁰⁰. Die Reaktion mit oxidierenden Säuren wie Salpetersäure oder Schwefelsäure beginnt erst merklich bei Temperaturen oberhalb etwa 600°C.

Die gleichzeitig mit den SWNTs gebildeten Metallpartikel und der amorphe Kohlenstoff sind gegenüber oxidierenden Medien sehr viel reaktiver. Das nutzt man aus, um Nanoröhrenruß von Verunreinigungen zu befreien. Dazu wurden zunächst Techniken benutzt, die für mehrwandige Kohlenstoffnanoröhren (Multi-walled Nanotubes, MWNTs) entwickelt worden waren. Die ersten Gruppen, die versuchten MWNTs zu reinigen, bedienten sich eines Gasphasen-Oxidationsverfahrens mit Luft bei hohen Temperaturen^{201,202}. Der große Nachteil bei diesem Verfahren ist, dass auch der Großteil der Nanoröhren (> 99%) dabei verloren geht. Deshalb sind einige Arbeitsgruppen dazu übergegangen nasschemische Verfahren zur Reinigung von SWNTs zu entwickeln. Dabei kamen im wesentlichen Salzsäure, Salpetersäure, Schwefelsäure und Mischungen aus den letzten beiden zur Anwendung²⁰³⁻²⁰⁸.

Die von R. E. Smalley und Mitarbeitern verwendete Reinigung beginnt mit einer Behandlung des SWNT-Rußes mit 2–3 M HNO₃ unter Rückfluss für45 h²⁰⁷. Der Gewichtsverlust ist dabei etwa 70%. Nach mehrmaligem Waschen und Zentrifugieren des Reaktionsgemisches werden die verbleibenden Partikel mit einer sogenannten Gegenstrom-Filtration (Cross-Flow Filtration, CCF) von den SWNTs abgetrennt. Sie erhalten nach ihren Aussagen – abgeschätzt

aus SEM-Aufnahmen - somit Ausbeuten von 10–20 Gew.% an SWNTs mit einer Reinheit > 95%.

Die bisher reinsten Nanoröhren - > 98%, thermogravimetrisch bestimmt – erhielt die Gruppe um M. J. Heben mit einer Kombination aus nasschemischer Behandlung des SWNT-Rußes und anschließender Oxidation mit Luft bei 550°C für 30 Minuten²⁰⁸. Ihnen gelingt eine Reinigung mittels Oxidation in Luft ohne sehr große Verluste. Sie führen das darauf zurück, dass ihre SWNTs aufgrund der Verwendung langer Laserpulse wenige Defekte enthalten.

4.1.4 Chemisches Zerschneiden der SWNTs

Um die Chemie der SWNTs, z. B. Derivatisierung, untersuchen zu können, ist es von entscheidender Bedeutung, SWNTs oder kleinere Stücke davon mit Standardlösungsmitteln in Lösung zu bringen (bzw. als stabile Suspension ohne Zusätze).

Der Gruppe um R. C. Haddon gelang es, auf chemischem Wege zerhackte SWNTs (100-300 nm Länge) mit Octadecyl-Endgruppen zu derivatisieren und in organischen Lösungsmitteln zu lösen^{209,210}. Das Zerhacken der SWNTs auf chemischem Wege erfolgte nach folgender Prozedur²¹¹: Gereinigte Nanoröhren wurden zunächst bei 35°-40°C in eine 1:3-Mischung aus konzentrierter HNO₃ und H₂SO₄ unter Ultraschallbehandlung für 24 h suspendiert. Danach wurde die Suspension mit H₂O verdünnt und größere Nanoröhren abfiltriert. Anschließend wurden die gekürzten Röhren durch eine Behandlung mit einem 1:4-Gemisch aus 30 % igem H₂O₂ und konzentrierter H₂SO₄ bei 70°C für 30 Min. "poliert".

Das abfiltrierte, gewaschene und getrocknete Material diente dann als Ausgangsmaterial für die Derivatisierung. Dabei wird die Tatsache ausgenutzt, dass die offenen Enden der Nanoröhrenstücke aufgrund der Säurebehandlung mit Karbonsäureresten terminiert sind. Die gekürzten SWNTs wurden dann mit SOCl₂ bei 70°C für 24 h gerührt. Danach wurde die Mischung zentrifugiert und im Vakuum getrocknet. Das getrocknete Material wurde dann anschließend mit Octadecylamin bei 90°C für 96 h erhitzt. Nach dem Entfernen des überschüssigen Reagens sind etwa 85-90 % der gekürzten SWNTs in CS₂ löslich. Abbildung 4.6 fasst das Reaktionsschema des Kürzens und Derivatisierens der SWNTs noch einmal zusammen.

Abb. 4.6: Reaktionsschema des Kürzens und Derivatisierens der SWNTs nach Haddon et al.

4.1.5 Charakterisierung

Um einen Eindruck über die Qualität des produzierten SWNT-Materials zu erhalten, benötigt man möglichst schnelle Routineanalysemethoden. Dafür haben sich im wesentlichen die folgenden Methoden durchgesetzt:

- 1. Rasterelektronenmikroskopie (SEM) mit Auflösung von 10 nm;
- 2. Transmissionselektronenmikroskopie (TEM) mit Auflösung < 1 nm;
- 3. UV-vis-NIR-Spektroskopie
- 4. Raman-Spektroskopie
- 5. Rastertunnel- und Rasterkraftmikroskopie (STM/AFM)
- 6. Röntgenstrukturmethoden

SEM und TEM bieten sozusagen einen direkten Blick auf und in Nanoröhren. Mit diesen Methoden lässt sich am besten die Qualität des produzierten Materials abschätzen. Speziell mit TEM lassen sich zuverlässig Röhrendurchmesser bestimmen.

Aus Raman- und UV-vis-NIR-Spektroskopie kann man etwas über die Durchmesserverteilung bzw. über die metallischen Eigenschaften der Röhren lernen. Speziell bei der Raman-Spektroskopie hat man herausgefunden, dass die Atmungsmode der Nanoröhren unabhängig von der Chiralität und umgekehrt proportional des Durchmessers der Röhre ist.

STM und AFM besitzen für die Charakterisierung nur eine untergeordnete Rolle, da man mit ihnen im wesentlichen nur einzelne Bündel bzw. Röhren beobachten kann. Speziell mit STM lassen sich aber Transporteigenschaften, elektronische Zustandsdichten und Chiralitätswinkel einzelner Röhren ausmessen.

Die Charakterisierung des SWNT-Materials mit Röntgenstrukturmethoden ist schwierig, weil die Güte der Messungen stark von der Güte der Probe abhängt. Aber aus Röntgenstrukturuntersuchungen an einzelnen SWNT-Bündeln, die genügend kristallin sind, lassen sich Durchmesser ermitteln¹⁹⁰.

4.2 Eigene SWNT-Herstellung

In diesen Unterkapiteln wird die Apparatur beschrieben, die im Rahmen dieser Arbeit zur Herstellung von g-Mengen SWNTs aufgebaut wurde. Danach werden erste Experimente vorgestellt und die Charakterisierung des produzierten SWNT-Materials durch SEM, UV-vis-NIR- und Raman-Spektroskopie erläutert.

4.2.1 Karlsruher Apparatur zur Herstellung von SWNTs

Nach einer Testphase mit einer Apparatur, die der in der Gruppe von R. E. Smalley verwendeten Apparatur nachempfunden war, die aber nur µg -Mengen SWNTs lieferte, wurde für die Herstellung von SWNTs in g-Mengen eine größere Version aufgebaut. Abbildung 4.7 zeigt schematisch die Apparatur, die auf der Basis von Zweipuls-Laserablation arbeitet. Der größte Unterschied zu der von Smalley besteht darin, dass der Kohlenstoff in der für diese Arbeit entwickelten Apparatur senkrecht zum Argonfluss verdampft wird und die entstehenden Kohlenstoffspezies nicht auf einem Kühlfinger direkt hinter dem Ofen abgeschieden, sondern erst etwa 1m nach der heißen Zone des Ofens in einer Papierfilterhülse aufgesammelt werden.

Abb. 4.7: Karslruher Apparatur zur Herstellung von SWNTs.

Das Kernstück der Apparatur besteht aus einem Ofen (Erwärmungseinrichtung Typ FKT-70/300/1300, Linn-High-Therm GmbH), der einem T-förmigen Quarzrohr (Aachener Quarzglas Technologie Heinrich) Platz bietet. Das Quarzrohr ist an seinen drei Enden mit Flanschen versehen, um ein optisches Fenster, eine Sammelvorrichtung und eine Durchführung für die drehbare Graphitstabhalterung anbringen zu können. Der Ofen ermöglicht Temperaturen bis zu 1400°C. In der Praxis sind aber nur Temperaturen bis etwa 1250°C aufgrund der thermischen Belastbarkeit des Quarzrohres eingestellt worden. Die Reaktionskammer wird während des Betriebes mit einem Inertgas (Ar) gespült (Fluss von 50– 100 sccm), um die entstehenden SWNTs aus der heißen Reaktionszone zu transportieren. Vor der Vakuumpumpe befindet sich ein Reduzierventil, mit dem der Druck auf 0,5 bar eingestellt wird.

Die verwendeten Graphitstäbe, die von der Firma Toyo Tanso in Japan bezogen wurden, besaßen einen Durchmesser von 10 bzw. 20 mm und eine Länge von 50 mm und waren zu 1,2 Atom% mit Kobalt und 1,2 Atom% mit Nickel dotiert. Für die Ablationsversuche mit Kohlenstoff, der mit etwa 1 Atom% der Metallmischungen Pd/Rh (1:1), Ni/Al (1:1) und Ni/Ti (3:7)dotiert war. wurden von S. Lebedkin Stäbe gefertigt. Dazu wurde Mesophasenkohlenstoff mit dem gewünschten Katalysatoranteil vermengt und mit 100-150 MPa in einer handelsüblichen Presse zu einem Stab gepresst. Danach wurde der Stab langsam (50°C/h) unter Ar auf 1000°C geheizt, um flüchtige Anteile des Kohlenstoff zu entfernen und diesen zu vernetzen.

Die für die Ablation verwendeten Laser sind zwei Nd:YAG-Laser der Firma Continuum: 1. Laser: Powerlite 7030, 550 mJ/Puls bei 1064 nm, 6–8 ns Pulslänge, 30 Hz, 6 mm Strahldurchmesser; 2. Laser: NY-61-30 (baugleich Powerlite 7030), 500 mJ/Puls bei 1064 nm. Die optische Einheit mit den zwei Lasern dient zur Darstellung eines Kohlenstoffplasmas. Auf die Optimierung des zeitlichen Versatzes zwischen den Lasern wurde für diese Arbeit verzichtet. Die Laserstrahlen werden unfokussiert mittels dichroischer Spiegel (Laser Components) und eines optischen Fensters in die Apparatur eingekoppelt.

Eine Bewegungseinheit, die im wesentlichen aus einem einfachen DC-Motor und einer Gewindestange besteht und somit den Graphit um seine Längsachse dreht und gleichzeitig vor und zurück bewegt, ermöglicht ein gleichmäßiges Abtragen der Graphitoberfläche.

Nach einer kurzen Testphase, in denen der Ofenaufbau optimiert wurde, ist es möglich mit der oben beschriebenen Apparatur etwa 300 mg SWNT-Ruß pro h zu produzieren. Die besten Ausbeuten von etwa 50 Gew.% an SWNTs im Ruß wurden dabei mit folgenden Parametern erzielt: 1150–1200°C Ofentemperatur, 50–100 sccm Ar-Fluss bei einem Druck von 0,5 bar, beide Laser bei 1064 nm unfokussiert.

4.2.2 Reinigung

Zur Reinigung des SWNT-Rußes wurden einige Versuche an Ruß, der mit Co und Ni dotierten Stäben produziert wurde, durchgeführt. Im wesentlichen wurde die Reinigungsprozedur von M. J. Heben *et al.* verwendet²⁰⁸. Der Reinheitsgrad nach der Behandlung wurde mit Hilfe von SEM überprüft. Die beste Reinigung wurde durch folgende Prozedur erzielt:

1 g Ruß wurde zunächst etwa 24 h unter Rückfluss in 1 l einer etwa 3 M HNO₃ gekocht. Nach dem Abkühlen wurde der Ruß filtriert und mit H₂O gewaschen. Anschließend wurde der Filterkuchen etwa 30 Min. in 100 ml in einer 3:1-Mischung aus konz. H₂SO₄ und HNO₃ unter Ultraschall bei etwa 80°C behandelt. Nach dem Abkühlen wurde das Gemisch auf etwa das Zehnfache verdünnt, abfiltriert und mit H₂O gewaschen. Die zurückbleibenden SWNTs wurden dann anschließend bei Raumtemperatur im Vakuum bei etwa 10⁻³ mbar für etwa 12 h getrocknet. Nach dieser Prozedur erhält man von 1 g SWNT-Ruß etwa 100 mg reinste SWNTs (siehe SEM-Bilder in 4.2.3.1).

4.2.3 Charakterisierung

Die im Rahmen dieser Arbeit hergestellten SWNT-Proben wurden im wesentlichen mittels SEM, FT-Raman- (Anregungswellenlänge 1064 nm) und UV-vis-NIR-Spektroskopie charakterisiert. Zum Vergleich wurde eine Nanoröhrenprobe, die von Smalley gekauft wurde, als Referenzprobe charakterisiert. Nach deren Aussagen wurde das Material nach dem in Unterkapitel 4.1.2 beschriebenen Verfahren hergestellt und gereinigt. Die Graphitstäbe waren mit etwa 1 Atom% Ni und 1 Atom% Co dotiert.

4.2.3.1 Rasterelektronenmikroskopie (SEM)

Die SEM-Aufnahmen wurden am Laboratorium für Elektronenmikroskopie (Prof. Gerthsen) der Universität Karlsruhe sowie am Institut für Nanotechnologie des Forschungszentrums Karlsruhe aufgenommen. Abbildung 4.8 (a) zeigt exemplarisch ein SEM-Bild, das von SWNT-Ruß gemacht wurde, der bei 1200°C Ofentemperatur hergestellt wurde. Die Aufnahme zeigt deutlich die sehr poröse Anordnung von Nanoröhrenbündeln. Neben Bündeln erkennt man größere Verunreinigungen, die im wesentlichen Rußpartikel und Katalysatorteilchen sind. Über die Qualität der Röhren lässt sich nicht viel sagen und die Bestimmung der Ausbeute an SWNTs aufgrund solcher Bilder ist schwierig und lässt sich visuell auf etwa 30–50 Gew.% festlegen.

Abbildung 4.8 (b) zeigt das SEM-Bild einer SWNT-Probe, die mit der in Unterkapitel 4.2.2 vorgestellten Prozedur gereinigt wurde. Der größte Teil der Verunreinigungen sind verschwunden und die SWNT-Bündel sind relativ dicht und verwoben zusammengelagert. Die makroskopische Probe bildet auch nach dem Filtrieren einen stark zusammenhängenden, flexiblen, papierartigen Film ("Buckypaper").

Zum Vergleich ist in Abbildung 4.8 (c) ein SEM-Bild der Referenzprobe abgebildet. Die Referenzprobe und die selbsthergestellte Probe zeigen einen ähnlichen Reinheitsgrad.

b)

c)

a)

Ac: Y Self Magn Dri WD I I µn Ac: Y Self Magn Dri WD I | Y H |

Abb. 4.8: SEM-Bilder von a) SWNT-Rohruß, b) gereinigter SWNT-Probe und c) der Referenzprobe.

132

4.2.3.2 Elektronische Struktur/UV-Vis-NIR-Spektren

Es wurden UV-vis-NIR-Spektren von hergestellten Nanoröhren und einer Referenzprobe mittels eines Spektrometers der Arbeitsgruppe von Prof. Hippler (Cary 5E, Varian) aufgenommen. Für die Probenpräparation wird das Nanoröhren-Material in Aceton mittels Ultraschall suspendiert und mit einer handelsüblichen Airbrush-Pistole auf ein Quarzsubstrat aufgesprüht. Dieses wird gleichzeitig mit einem Heißluftgebläse auf etwa 80°C erwärmt, um zu gewährleisten, dass das Aceton beim Auftreffen auf das Substrat schnell verdampft und somit möglichst ein homogener Film entsteht.

Abb. 4.9: Typisches Absorptionsspektrum der Referenzprobe (großes Bild: untergrundkorrigiert; kleines Bild: Rohdaten).

Abbildung 4.9 zeigt ein typisches Absorptionsspektrum der Referenzprobe nach dem Abzug des Untergrunds. Dieser wird abgezogen, indem man zunächst die experimentelle Kurve durch einen Spline-fit anpasst. Der Fit wird dann per Hand dem Untergrund angepasst und von dem gemessenen Spektrum abgezogen. Mit unterschiedlichen Spline-Fits sind die Positionen von A, B und C innerhalb eines Fehlers von 1 % reproduzierbar. Die Rohdaten sind dem Spektrum als Einsatz beigefügt. Im Energiebereich zwischen 0,6 und 3 eV sind drei

Hauptstrukturen A, B und C zu erkennen, die elektronischen Interbandübergängen zwischen van-Hove-Singularitäten in der elektronischen Zustandsdichte (DOS) von SWNTs zugeordnet wurden²¹². Dabei entsprechen den Strukturen A und B Übergängen zwischen den ersten beiden Paaren van-Hove-Singularitäten in halbleitenden Nanoröhren und die Struktur C dem Übergang zwischen dem ersten Paar von Singularitäten in metallischen SWNTs. Aus Bandstrukturrechnungen wurde ein Zusammenhang zwischen dem Durchmesser der SWNTs d und dem energetischen Abstand zwischen Paaren von Singularitäten in der DOS theoretisch vorhergesagt und durch spektroskopische Messungen mit STM an einzelnen Nanoröhren bestätigt²¹³⁻²¹⁵.

Der Energieabstand ΔE^q der ersten beiden Paaren von van-Hove-Singularitäten für halbleitende SWNTs ist danach

$$\Delta E^{q} = \frac{2V_{pp\pi}a_{c-c}}{d}q, q = 1, 2.$$
(4.4)

Für metallische SWNTs ergibt sich für ΔE^{I} , dem Energieabstand des ersten Paares von van-Hove-Singularitäten,

$$\Delta E^{1} = \frac{6V_{pp\pi}a_{c-c}}{d}.$$
(4.5)

 $V_{pp\pi}$ ist eine Konstante, die ein Maß für die pp π -Wechselwirkung der nächsten Kohlenstoffnachbarn ist. Für die Auswertung wurde ein Wert von 2,7 eV angenommen. Er wurde mittels STS/STM-Messungen an SWNTs auf einem Au (111)-Substrat ermittelt²¹⁴. Andere Experimente und Rechnungen finden einen Wert nahe bei 2,5 eV^{215,216}. Raman-Messungen deuten darauf hin, dass der Wert für $V_{pp\pi}$ eher bei 2,95 eV liegt²¹⁷. Für den C-C-Abstand a_{c-c} wurde ein Wert von 0,142 nm verwendet²¹⁹.

Die Beziehungen 4.4 und 4.5 dienen als Grundlage für die Auswertung der UV-vis-NIR-Spektren der Referenzprobe und des selbsthergestellten SWNT-Materials. Wenn man davon ausgeht, dass nicht nur eine Sorte von SWNTs sondern eine Verteilung von SWNTs mit unterschiedlichem Durchmesser in der Probe enthalten sind, dann sind die breiten Strukturen A, B und C die Summe aus den Beiträgen mehrere SWNTs. Tatsächlich lässt sich bei näherer Betrachtung Feinstruktur in den Strukturen B und C erkennen. Deshalb wurde versucht, die Strukturen B und C in den Absorptionsspektren mit Lorentz-Kurven zu fitten. Für die Referenzprobe konnten Struktur B und C durch jeweils 3 Lorentzkurven gefittet werden. Mit den daraus erhaltenen Energielagen wurden Durchmesser berechnet. Außerdem wurde versucht, die ermittelten Durchmesser mit Hilfe der Beziehung 4.2 einer Röhre mit definierter Chiralität zuzuordnen. Dabei wurden alle Röhren berücksichtigt, deren Durchmesser, der mit der Beziehung 4.2 berechnet wurden, auf 0,01 nm genau den experimentellen Wert beschreiben. Tabelle 4.1 fasst die Ergebnisse für die Referenzprobe zusammen.

 Tab. 4.1: Zusammenfassung der Auswertung der Referenzprobe.

Struktur	<i>E</i> [eV]	<i>d</i> [nm]	(<i>n</i> , <i>m</i>)-SWNT
А	0,745	1,03	(8, 7), (10, 5), (12, 2)
В	1,206	1,27	(13, 5), (15,2), (14,4)
	1,289	1,19	(12, 5)
	1,389	1,10	(10, 6), (13, 2), (14, 0)
С	1,779	1,29	(11, 8), (16, 1)
	1,887	1,22	(9, 9)
	2,024	1,14	(10, 7)

Aus der Auswertung folgt, dass die Referenzprobe halbleitende und metallische Röhren mit Durchmessern zwischen 1,03 und 1,29 nm enthält, was deutlich unter dem Wert von $(1,38 \pm 0,02)$ nm liegt, der von Smalley *et al.* in ihren Publikationen angegeben wird. Auch ist die Breite der Durchmesserverteilung, die bei der Auswertung der UV-vis-NIR-Daten herauskommt, sehr viel größer. Außerdem müsste nach Gleichung 4.4 für die Auswertung der Strukturen A und B die gleichen Durchmesser erhalten werden. Das zeigt, dass die Strukturen mit diesem einfachen Modell nicht gut beschrieben werden und die erhaltenen Durchmesser mit einem unbekannten Fehler behaftet sind.

Aufgrund der Unsicherheit der Rechnungen und der Messungen konnte den meisten Durchmessern nicht eindeutig eine Röhre definierter Chiralität zugeordnet werden. Aber im wesentlichen kommen auf Basis der Auswertung 14 Röhren definierter Chiralität in Frage.

Im Rahmen der Optimierung der Apparatur wurde die UV-vis-NIR-Spektroskopie als erstes Diagnostikwerkzeug zur Charakterisierung des selbstproduzierten SWNT-Rohmaterials verwendet. Dabei gelangen Absorptionsmessungen im Falle der temperaturabhängigen Untersuchung der Herstellung von SWNTs mit Ni/Co-Stäben.

Abb. 4.10: Untergrundkorrigierten Absorptionsmessungen der SWNT-Herstellung bei 1200°, 1150° und 1100°C.

Bei den Versuchen mit anderen Katalysatoren waren die Ausbeuten zu schlecht (abgeschätzt < 1 %), so dass Strukturen, wie sie für SWNTs typisch sind, nicht in den Spektren beobachtet werden konnten. Abbildung 4.10 enthält die untergrundkorrigierten Absorptionsmessungen der drei Versuche bei 1200°, 1150° und 1100°C. Tabelle 4.2 fasst die aus den Messungen extrahierten Absorptionen und den daraus berechneten Durchmessern zusammen. Außerdem wurde auch hier versucht, die ermittelten Durchmesser mit Hilfe der Beziehung 4.1 einer Röhre mit definierter Chiralität zuzuordnen. Im Spektrum für den Versuch bei 1150°C war das Rausch/Signal-Verhältnis zu schlecht, so dass die Bestimmung verlässlicher Absorptionsenergien nur für A möglich war. In zwei Fällen, wurden die Strukturen B und C durch eine Überlagerung von vier bzw. fünf Lorentzkurven angefittet (siehe Tabelle 4.2).

Tab. 4.2: Zusammenfassung der Ergebnisse der temperaturabhängigen Versuche.

$T[^{\circ}C]$	Struktur	<i>E</i> [eV]	<i>d</i> [nm]	(<i>n</i> , <i>m</i>)-SWNT
1200	А	0,705	1,09	(9, 7), (10, 6), (14, 0)
	В	1,103	1,39	(14, 6), (16, 3)
		1,184	1,30	(10, 9), (12, 7)
		1,268	1,21	(10, 8), (15, 1)
	С	1,500	1,53	(18, 3), (19, 1)
		1,568	1,47	(15, 6)
		1,646	1,40	(17, 2), (18, 0)
		1,772	1,30	(11, 8), (15, 3), (16, 1)
1150	А	0,721	1,06	(11, 4)
1100	А	0,739	1,04	(10, 5), (11, 4)
	В	1,207	1,27	(13, 5), (14, 4), (15, 2)
		1,287	1,19	(12, 5)
		1,359	1,13	(12, 4), (14,1)
		1,443	1,06	(11, 4)
	С	1,677	1,37	(10, 10), (13, 7)
		1,778	1,29	(11, 8), (16, 1)
		1,835	1,25	(12, 6)
		1,912	1,20	(13, 4)
		1,987	1,16	(10, 7), (15, 0)

Der Vergleich der temperaturabhängigen Messungen zeigt, dass sich die Strukturen A, B und C mit steigender Temperatur zu kleineren Energien verschieben, was gleichbedeutend ist mit einer Vergrößerung der Röhrendurchmesser. Der Vergleich mit der Messung der Referenzprobe, die ja bei einer Ofentemperatur von 1200°C hergestellt wurde, zeigt, dass die von uns bei 1100°C hergestellte Probe eine ähnliche Durchmesserverteilung zu haben scheint.

Worauf das zurückzuführen ist, lässt sich nicht eindeutig klären. Möglicherweise ist der Ort, an dem die Temperatur gemessen wurde, bei Smalley *et al.* ein anderer gewesen als in dem Fall der für diese Arbeit aufgebauten Apparatur. Leider ist nicht genau bekannt, wo bei der Apparatur von Smalley die Temperatur gemessen wurde. Es ist aber anzunehmen, dass die Temperaturmessung außerhalb des Quarzrohres und damit außerhalb der eigentlichen Reaktionszone gemessen wurde, so dass die wirkliche Reaktionstemperatur gar nicht bekannt ist. Ofengeometrie, Form und Beschaffenheit des Quarzrohres werden einen Einfluss auf die Temperatur in der Reaktionszone haben. Wie groß dieser ist, lässt sich abschließend nicht beurteilen und sollte durch weitere Untersuchungen belichtet werden.

Außerdem ist grundsätzlich noch zu klären, ob und wie gut die Auswertung der UV-vis-NIR-Daten ein Maß für die Durchmesserverteilung liefert.

4.2.3.3 FT-Raman-Spektroskopie

Es wurden Raman-Spektren mit einem FT-IR/Raman-Spektrometer (Bruker IFS FRAU 106) von S. Lebedkin am Forschungszentrum Karlsruhe angefertigt. Die Anregungswellenlänge betrug 1064 nm (Nd:YAG-Laser bei 140 mW, unfokussierter Fleck).

Abbildung 4.11 zeigt ein FT-Raman-Spektrum der Referenzprobe, das einige wenige intensive Linien enthält. Gruppentheoretische Auswahlregeln besagen, dass SWNTs je nach gegebener Symmetrie (abhängig natürlich von n und m) 15–16 Raman- und 6–9 IR-aktive Schwingungsmoden besitzen²¹⁸. Das Spektrum enthält im wesentlichen Strukturen im niederfrequenten Bereich zwischen 150 und 200 cm⁻¹ und im hochfrequenten Bereich zwischen 150 und 200 cm⁻¹ und einen nieder- und einen hochfrequenten Bereich ist von Bedeutung, weil die niederfrequenten Moden stärker vom Durchmesser der Röhren abhängig sind als die hochfrequenten Moden.

Zwischen 1550 und 1600 cm⁻¹ sind zwei starke Strukturen bei 1567 und 1591 cm⁻¹ zu erkennen, die zu der optischen E_{2g} -Mode in Graphit korrespondieren, die in hochorientiertem pyrolytischem Graphit (Highly Oriented Pyrolytic Graphite, HOPG) untersucht wurde²¹⁹. Die zwei intensiven Linien können E_{1g} -, E_{2g} - oder A_{1g} -Moden in SWNTs mit unterschiedlichen Durchmessern zugeordnet werden. Rao *et al.* ordneten sie E_{2g} (8, 8)-, und E_{1g} - oder A_{1g} (9, 9)-Röhren zu²²⁰.

Abb. 4.11: FT-Raman-Spektrum der Referenzprobe. Das kleine Bild zeigt den niederfrequenten Ausschnitt des Spektrums, in dem die radialen Atmungsmoden der Nanoröhren zu finden sind.

Im niederfrequenten Bereich zwischen 150 und 200 cm⁻¹ des Spektrums findet man die Atmungsmoden der Nanoröhren, die denen in Fullerenen analog sind. In dem Spektrum in Abbildung 4.11 findet man zwei starke Linien bei 171 und 181 cm⁻¹, die zwei A_{1g} -Atmungsmoden zweier Nanoröhren mit unterschiedlichem Durchmesser zugeordnet werden können.

Ein wichtiger Effekt, der Resonanz-Raman-Effekt, ist bei den Raman-Messungen an SWNTs unbedingt zu beachten und hat eine Auswirkung auf die Interpretation der beobachteten Durchmesserverteilung, die man aus der Auswertung der niederfrequenten Strukturen ermittelt²²⁰. Wenn man mit der Anregungsenergie nahe einer optischen Absorption der zu untersuchenden Probe kommt, dann ist die Raman-Intensität erhöht. Diesen Effekt kennt man als Resonanz-Raman-Effekt. Unter Resonanzbedingungen kann mehr Licht absorbiert werden und das Raman-Signal wird durch Elektron-Phonon-Kopplungsprozesse erhöht.

Für dieselbe SWNT-Probe ändert sich das Raman-Spektrum, wenn man die verwendete Frequenz des Anregungslasers ändert. So bewirkt die Änderung der Anregungswellenlänge

um wenige Nanometer eine Verschiebung der Atmungsmodenfrequenzen um mehrere Wellenzahlen. Das wird damit erklärt, dass SWNTs aufgrund von van-Hove-Singularitäten in ihren elektronischen Zustandsdichten sehr scharfe optische Übergänge besitzen. Das bedeutet, dass mit sich ändernder Anregungswellenlänge Nanoröhren mit unterschiedlichen Durchmessern adressiert werden und im Raman-Spektrum aufgrund des Resonanz-Raman-Effektes sichtbar werden. Um also mittels Raman-Spektroskopie eine verlässliche Durchmesserverteilung ermitteln zu können, müsste die Anregungswellenlänge durch einen großen Bereich gefahren werden. Das konnte im Rahmen dieser Arbeit nicht durchgeführt werden.

Wie schon oben erwähnt, ist die radiale Atmungsmode in Nanoröhren umgekehrt proportional zum Durchmesser. Kraftkonstantenrechnungen liefern folgenden Zusammenhang zwischen der Atmungsmodenfrequenz ω und dem Durchmesser *d* der Röhre¹⁹¹:

$$\omega = \frac{224 \text{cm}^{-1} \text{nm}}{d} \,. \tag{4.6}$$

Mit diesem Ausdruck ist es möglich, Durchmesser von Nanoröhren direkt aus Raman-Messungen zu bestimmen. In der Referenzprobe wurden also bei 1064 nm Röhren mit einem Durchmesser von 1,31 bzw. 1,24 nm angeregt. Die beiden Werte sind aus den Gründen, wie sie oben diskutiert wurden, kein Maß für die Durchmesserverteilung, weil bei einer Anregungswellenlänge nur wenige Röhren aufgrund des Resonanz-Raman-Effektes sichtbar werden.

Im Rahmen der Optimierung der Apparatur wurden einige wenige Versuche unternommen, bei verschiedenen Ofentemperaturen und mit anderen Katalysatoren SWNTs herzustellen. Die Raman-Spektroskopie diente dabei als grobes Diagnostikwerkzeug zur Ermittelung von Nanoröhrendurchmessern und Ausbeuten. Tabelle 4.3 fasst Ergebnisse die der temperaturabhängigen Untersuchungen Abbildung 4.12 zusammen. zeigt den niederfrequenten Bereich der gemessenen Raman-Spektren der temperaturabhängigen Versuche. Neben dem Katalysator aus Co und Ni, der sich ja in der Literatur als einer der besten Katalysatoren zur Herstellung von SWNTs herauskristallisiert hat, wurden folgende Metallmischungen verwendet: Pd/Rh, Ni/Ti, Ni/Al.

Abb. 412: Niederfrequenter Bereich der Raman-Messungen der SWNT-Herstellungsversuche bei 1200°, 1150° und 1100°C.

Die Ausbeuten an SWNTs waren bei allen drei Katalysatoren sehr schlecht (abgeschätzt < 1 %), im Falle des Ni/Al-Gemisches sogar so schlecht, dass kein Raman-Spektrum aufgenommen werden konnte, das SWNT-typische Strukturen zeigt. Daraus wurde geschlossen, dass die Ausbeute an SWNTs sehr viel kleiner als 1 % ist. Versuche mit selbsthergestellten Stäben, die mit Co und Ni dotiert waren, zeigten allerdings auch schlechtere Ausbeuten als im Falle der gekauften Graphitstäbe, was eher darauf hindeutet, dass die Herstellung mit dem in Unterkapitel 4.2.1 vorgestellten Verfahren nicht optimal ist. Der Abbrand der gekauften Stäbe durch die Laser verläuft auch viel gleichmäßiger als bei den selbsthergestellten Stäben. Die Beschaffenheit des verwendeten Kohlenstoffs hat somit einen entscheidenden Einfluss. Dieser Einfluss sollte weiter untersucht werden.

Tab. 4.3: Zusammenfassung der Ergebnisse der temperaturabhängigen Versuche.

Kat.	$T[^{\circ}C]$	$\omega \pm 1 [\mathrm{cm}^{-1}]$	$d \pm 0,01 \text{ [nm]}$	(<i>n</i> , <i>m</i>)-SWNT
Co/Ni ^a	1200	171	1,31	(12, 7), (13, 6), (15, 3)
		181	1,24	(11, 7), (12,6), (14, 3), (16, 0)
Co/Ni	1200	159	1,41	(15, 5), (17, 2), (18, 0)
		175	1,28	(10, 9), (14, 4), (16, 1)
	1150	160	1,40	(14, 6), (15, 5), (18, 0)
		176	1,27	(13, 5), (14, 4), (15, 2)
	1100	158	1,42	(11, 10), (12, 9), (15, 5), (17, 2), (18, 0)
		176	1,27	(13, 5), (14, 4), (15, 2)
Pd/Rh	1150	265	0,85	(9, 3), (11, 0)
		278	0,81	(6, 6), (7, 5), (10, 1)
		286	0,78	(8, 3), (9, 2), (10, 0)
Ni/Ti	1150	162	1,38	(13, 7), (16, 3), (17, 1)
		179	1,25	(12, 6), (13, 5), (15, 2), (16, 0)

^aReferenzprobe von Smalley.

Die Raman-Messungen der drei Versuche mit Ni/Co-Katalysator, die bei 1200°, 1150° und 1100°C gemacht wurden, zeigen im Atmungsmodenbereich zwei Linien bei gleicher Frequenz. Nur das Verhältnis der beiden Linien zu einander ändert sich mit der Temperatur. Die temperaturabhängigen Messungen wurden allerdings nur einmal durchgeführt und müssen zum Beweis der Reproduzierbarkeit wiederholt werden.

Es ist auffällig, dass die Versuche mit den Ni/Co-Stäben, die für diese Arbeit gemacht wurden, bei 1064 nm Anregungswellenlänge andere Durchmesser zeigen als die Referenzprobe von Smalley. In einem weiten Temperaturbereich von 1000–1200°C wurden

für die selbsthergestellten Proben die selben Durchmesser gemessen. Über die Durchmesserverteilung kann mit Hilfe der Messung bei einer Anregungswellenlänge kann keine Aussage getroffen werden.

Der Versuch mit dem Pd/Rh-Katalysator lieferten, verglichen mit den Ni/Co-Versuchen, entscheidend kleinere Röhrendurchmesser: 0,78, 0,81 und 0,85 nm. Der Versuche mit dem Ni/Ti-Katalysator lieferte Röhren mit Durchmesser, die denen der Ni/Co-Versuche im Rahmen der Messgenauigkeit analog sind.

Analog zu der Auswertung der UV-vis-NIR-Daten in Unterkapitel 4.2.3.2 wurde auch hier versucht, den aus den Raman-Daten ermittelten Durchmessern Röhren definierter Chiralität zuzuordnen. Auch hier sind wieder mehrere (n, m)-Kombinationen für einen Durchmesser möglich.

Da durch die Raman-Messungen mit einer Anregungswellenlänge (1064 nm) keine Durchmesserverteilung der Proben ermittelt werden kann, ist der Vergleich mit den Ergebnissen aus der Auswertung der UV-vis-NIR-Messungen nicht sinnvoll. Außerdem ist noch nicht geklärt, ob und wie zuverlässig sich Durchmesserverteilungen aus den UV-vis-NIR-Daten bestimmen lassen. Somit lässt sich als Fazit sagen, dass es nicht möglich ist, aus der Kombination von Raman- und UV-vis-NIR-Messungen Durchmesserverteilungen zuverlässig zu bestimmen.

4.3 Chemische Modifikation

Nach dem Verfahren von R. E. Smalley²¹¹ und R. C. Haddon^{209,210} wurde versucht, zunächst SWNTs, die von R. E. Smalley bezogen worden sind, auf chemischem Wege zu zerschneiden und dann durch Derivatisierung mit geeigneten Reagenzien löslich zu machen. Zur Überprüfung der Reaktionsprodukte wurden DRIFT- und UV-vis-NIR-Spektroskopie verwendet.

Für das Zerschneiden der Nanoröhren wurde die Prozedur nach Smalley leicht abgewandelt. Und zwar wurden die SWNTs bei einer Temperatur von etwa 90°C mit dem Säuregemisch behandelt. Eine typische Synthesevorschrift sah wie folgt aus: 10 mg SWNTs wurden in 40 ml einer 1:3-Mischung aus 65 %iger HNO₃ und 95 %iger H₂SO₄ suspendiert und mittels Ultraschall (Ultraschallsensor UP200G, umgerüstet auf eine Glassonotrode SG13, Dr. Hielscher GmbH) bei 90°C für 30 Min. gerührt. Die Suspension wurde dann auf 200 ml mit destilliertem H₂O verdünnt und filtriert (Schleicher & Schuell, Poren- \emptyset 0,45 µm).

Abb. 4.13: Untergrundkorrigierte UV-vis-NIR-Spektren von a) unbehandelte Referenzprobe, b)-d) unterschiedlich lang geätzte (5, 30, 60 Min.) und e) derivatisierte SWNTs.

Für die Derivatisierung der gekürzten Röhren sah die Synthesevorschrift wie folgt aus: 10 mg gekürzte SWNTs wurden in 10 ml SOCl₂ und 1 ml DMF suspendiert und 24 h bei 70°C unter N₂-Atmosphäre unter Rückfluss gekocht. Danach wurde filtriert, dreimal mit wasserfreien THF gewaschen und anschließend wurde der Feststoff unter Vakuum (~ 10^{-3} mbar) für mindestens 12 h getrocknet. Der getrocknete Feststoff wurde dann mit 2 g CH₃(CH₂)₁₇NH₂ (Octadecylamin, ODA) 96 h bei 90-100°C in der Schmelze gehalten. Nach dem Abkühlen wurde das überschüssige ODA durch mehrfaches Waschen mit Ethanol entfernt. Der lösliche Anteil des verbleibenden Feststoffes wurde dann mit CH₂Cl₂ herausgelöst. Die so erhaltene Lösung ist leicht gelblich und für einige Tage stabil. Die schwache Färbung der Lösung deutet schon darauf hin, dass nur sehr wenig Material in Lösung gegangen ist und dass die Umsetzung mit ODA nicht quantitativ war.

In Abbildung 4.13 sind die untergrundkorrigierten UV-vis-NIR-Spektren von a) der unbehandelten Referenzprobe, b)-d) unterschiedlich lang geätzten (5, 30, 60 Min.) und e)

derivatisierten Nanoröhren dargestellt. Die Spektren wurden an auf Quarzglas aufgesprühten Filmen gemessen (Präparation siehe Unterkapitel 4.2.3.2) und weisen deutliche Unterschiede auf. Die SWNT-typischen Banden A, B und C (siehe Unterkapitel 4.2.3.2) in den Spektren der säurebehandelten SWNTs sind relativ zu denen der unbehandelten Probe deutlich verschoben. Die Verschiebung der Banden bedeutet eine Veränderung der Bandstruktur der Nanoröhren, für die mehrere Ursachen in Frage kommen. Eine mögliche Erklärung könnte sein, dass durch das Ätzen mit aggressiven Säuren nicht nur die Röhren zerschnitten wurden, sondern dass auch die Wände in Mitleidenschaft gezogen wurden und der Säureangriff unter Ultraschallbehandlung Defektstellen in den Röhrenwänden versucht hat, die dann einen Einfluss auf die Bandstruktur haben sollten.

Abb. 4.14: DRIFT-Messungen von a)-c) unterschiedlich lang geätzten (5, 30, 60 Min.) und d) derivatisierten SWNTs.

Die zweite Erklärung könnte sein, dass durch den Ätzprozess bestimmte Röhren angereichert werden, weil einige SWNTs schneller von der Säure angegriffen werden als andere. Denn, ist eine Röhre erst einmal geöffnet, dann wird der Säurefraß vor allem an den Röhrenenden fortschreiten. Wie schon in Unterkapitel 4.1.3 erwähnt wurde, verläuft zum Beispiel die Oxidation entlang der Zickzack-Kante bei Graphit schneller als entlang der Sessel-Kante. Das

bedeutet, dass bei der Übertragung auf Nanoröhren (n, 0)-Nanoröhren mit einer größeren Rate geätzt werden sollten als (n, n)-Röhren.

Welche der beiden Erklärungen die zutreffendste ist, oder ob beide Prozesse eine Rolle spielen, muss erst noch durch weitere Untersuchungen geklärt werden. Gerade die Möglichkeit einer Anreicherung bestimmter Röhrentypen wäre in diesem Zusammenhang für Anwendungen sehr interessant.

Abbildung 4.14 zeigt DRIFT-Messungen von a)-c) unterschiedlich lang geätzten (5, 30, 60 Min.) und d) derivatisierten Nanoröhren. Die Probenpräparation ist der für Fullerene analog. Das DRIFT-Spektrum der unbehandelten SWNTs ist völlig strukturlos und wurde deshalb nicht aufgeführt. Die Spektren wurden hier nicht in Kubelka-Munk-Einheiten transformiert, da es hier nur um den qualitativen Nachweis von funktionellen Gruppen wie Carboxyl- oder Amidgruppen ging.

In den DRIFT-Spektren der geschnittenen SWNTs sind deutlich Banden zu erkennen. Einige sind auf Alkohole zurückzuführen: O-H-Deformationsschwingung = 1286 cm⁻¹, C-O-Streckschwingung = 1181 und 1070 cm⁻¹. Die breite Bande bei 3010 cm⁻¹ ist konsistent mit einer aufgrund von Wasserstoffbrückenbindungen verbreiterten OH-Streckschwingung. Die Spektren enthalten allerdings keine klaren Hinweise auf Carboxyl-Gruppen, deren charakteristischen Banden zwischen 1710 und 1760 cm⁻¹ (C=O-Valenzschwingung) zu erwarten sind. Das würde erklären, warum die Umsetzung mit ODA, für die Carboxyl-Gruppen notwendig sind, wenig quantitativ war. Trotzdem gelang ja wenigstens zu einem kleinen Teil die Umsetzung mit ODA und das Lösen eines kleinen Teils der geschnittenen SWNTs. Das DRIFT-Spektren des mit CH₂Cl₂ extrahierten Anteils zeigt deutlich Banden bei 2920 und 2850 cm⁻¹, die von ODA stammen (C-H-Streckschwingung) und eine Bande bei 1648 cm⁻¹, die ein deutlicher Hinweis auf die Amid-Bindung ist, die ODA mit Carboxyl-Gruppen bildet.

5 Zusammenfassung

5.1 Höhere Fullerene

In dieser Arbeit gelang die Herstellung isomerenreiner Fullerenproben C₆₀, C₇₀, C₇₆, C₇₈ (C_{2v}), C₇₈ (C_{2v}'), C₇₈ (D₃), C₈₀ (D₂) und C₈₂ (C₂) durch die Nutzung des Krätschmer-Huffman-Verfahrens (Bogenentladung) sowie durch Hochdruckflüssigchromatographie (HPLC). Dabei wurden die drei C₇₈-Isomere, C_{2v}, C_{2v}', D₃ und ein C₈₂-Isomer mit C₂-Symmetrie zum ersten Mal in mg-Mengen hergestellt. Ein C₈₀-Isomer mit D₂-Symmetrie wurde erstmals isoliert. Diese isomerenreinen Fullerenproben wurden mittels ¹³C NMR-, UV-vis-NIR-, DRIFT- und Raman-Messungen charakterisiert. Dabei gelang die Strukturaufklärung der C₈₀-Probe und der C₈₂-Probe.

Die Auswertung der UV-vis-NIR- und Schwingungsspektroskopiedaten wurde von den genauesten quantenmechanischen Rechnungen unterstützt. Auf DFT-Niveau wurden elektronisch angeregte Zustände, Schwingungsfrequenzen und IR-Intensitäten der hier untersuchten Fullerene berechnet. ¹³C NMR-, UV-vis-NIR-, DRIFT- und Raman-Messungen an C₆₀ sind aufgrund seiner hohen Symmetrie mit Hilfe gruppentheoretischer Überlegungen und einfacher Modelle (Hückel-Rechnungen für elektronische Struktur, Lamb-Theorie für Hohlkugeln zur Beschreibung der C₆₀-Schwingungen) erklärbar. Aber schon für C₇₀ mit D_{5h}-Symmetrie ist ein größerer Aufwand nötig, um zum Beispiel elektronische Struktur und Schwingungseigenschaften vorauszusagen. DFT-Rechnungen sind momentan so gut, dass Fullerenisomere unterscheidbar sind und eine Strukturaufklärung mittels des Vergleiches von Messungen und Rechnungen möglich war. So gelang die Zuordnung zwischen drei möglichen C₂-Isomeren bei C₈₂ mit Hilfe von UV-vis-NIR-, DRIFT-, Raman-Messungen und dem Vergleich der Berechnung der angeregten Zustände, Schwingungsfrequenzen und IR-Intensitäten aller drei C₂-Isomere.

Durch den Vergleich mit einem einfachen Modell zur Beschreibung der Schwingungsbewegungen von Hohlkugeln gelang die Identifizierung der niederfrequentesten Raman-aktiven Schwingungsmoden: Deformations- und Atmungsmoden. Es wurde gezeigt, dass alle Fullerene solche Schwingungen besitzen. Fernerhin konnte gezeigt werden, dass die Atmungsmode umgekehrt proportional zum Radius des Fullerens ist. Im Zuge der Untersuchungen konnte außerdem gezeigt werden, dass die Aufspaltung der Deformationsmoden im Raman-Spektrum abhängig von der Abweichung des untersuchten Fullerens von der perfekten Kugelgestalt ist. Das lässt sich unterstützend zur Strukturaufklärung ausnutzen. Zum Beispiel war dadurch die Unterscheidung verschiedener C_{82} -Isomere im Raman-Spektrum möglich.

5.2 Fullerendimere

Im Rahmen dieser Arbeit gelang auch die Herstellung und Isolierung der C_{60} -Dimere C_{120} , $C_{120}O_2$ und drei Isomere eines sauerstoffüberbrückten Dimers aus C_{60} und C_{70} : $C_{130}O$. Sie wurden mittels DRIFT- und Raman-Messungen charakterisiert. Die DRIFT-Spektren der Dimere zeigen große Ähnlichkeit zu den Messungen an den Monomeren C_{60} bzw. C_{70} . Eine Vielzahl der gemessenen Absorptionen der C_{60} -Dimere lassen sich IR-stillen Schwingungen des C_{60} zuordnen. In den Spektren der $C_{130}O$ -Isomere findet man im wesentlichen Peaks wieder, die von C_{70} - und C_{60} -Schwingungen stammen. Die größten Unterschiede zwischen den sauerstoffüberbrückten Dimeren und der Monomere bestehen in dem Bereich zwischen 1000 und 1100 cm⁻¹. Die Fullerene besitzen in dem Bereich normalerweise keine Absorptionen, deshalb wurden die starken Absorptionen in dem Bereich der Dimerspektren Etherschwingungen zugeordnet.

Mit Hilfe des Vergleiches mit semiempirischen Rechnungen wurden die niederfrequentesten Peaks in den Raman-Messungen der C₆₀-Dimere Käfig-Käfig-Schwingungen zugeordnet. Es sind Torsionsbewegungen und eine symmetrische Streckschwingung, analog zu der eines zweiatomigen Moleküls. Die Streckschwingung lässt sich mit Hilfe des einfachen Hook'schen Gesetzes beschreiben.

5.3 Nanoröhren

Zur Erzeugung von einwandigen Kohlenstoffnanoröhren (SWNTs) wurde eine Zweipuls-Laserablations-Apparatur aufgebaut. Mit ihr kann 1-2 g SWNT-Ruß pro Tag mit bis zu 50 Gew.% SWNTs hergestellt werden. Durch die Behandlung mit verdünnten und konzentrierten Säuren gelang die Reinigung des SWNT-Rußes. Das zurückbleibende Material (ca. 10% des Ausgangsmaterials) besitzt einen SWNT-Anteil von > 90 Gew.%.

Die Charakterisierung der SWNTs erfolgte mittels SEM-, UV-vis-NIR- und Raman-Messungen. Aus den UV-vis-NIR- und Raman-Daten wurde versucht, Durchmesserverteilungen der untersuchten Proben zu bestimmen. Die Durchmesserverteilung ist im wesentlichen abhängig von den Prozessparametern Temperatur und Katalysator. Um die Durchmesserverteilung zu variieren, wurde bei verschiedenen Temperaturen und mit verschiedenen Katalysatoren und Katalysatorenverhältnissen gearbeitet. Dabei gelang es, die Durchmesser zwischen etwa 0,8 und 1,4 nm zu variieren.

Im Rahmen dieser Arbeit gelang auch die chemische Modifikation von SWNTs. Dabei wurden die Röhren auf chemischem Weg zuerst zerschnitten und anschließend mit Octadecylamin (ODA) derivatisiert, um sie mit Standardlösungsmitteln löslich zu machen.

6 Anhang

A ¹³C NMR-Messungen

 C_{78} (D₃, C_{2v} , C_{2v} ') und C_{80} (D₂):

C ₇₈	(D ₃)	C ₇₈	(C _{2v})	C ₇₈	(C_{2v}')	C ₈₀	(D ₂)
σ [ppm]	rel. Inten.	σ [ppm]	rel. Inten.	σ [ppm]	rel. Inten.	σ [ppm]	rel. Inten.
149,10	1,442	147,36	2,292	147,21	0,913	152,92	1,101
147,79	0,988	147,34 2,	101	147,10 0,	968	152,57 0,	940
145,16	1,446	146,72 1,	712	146,68 1,	148	151,33 1,	035
144,17	1,137	145,89 1,	767	146,57 2,	238	146,08 1,	163
142,54	1,019	145,77 1,	770	146,06 1,	061	144,42 1,	898
141,50	1,308	145,70 1,	852	146,01 1,	896	143,80 1,	314
141,37	1,340	144,78 0,	802	145,08 0,	789	142,79 1,	267
140,56	0,926	144,64 1,	846	144,77 1,	241	142,62 1,	286
140,48	0,950	144,45 1,	903	144,07 2,	920	138,88 1,	022
140,11	0,840	144,24 1,	973	143,50 1,	307	138,71 1,	057
139,22	1,424	143,64 1,	871	142,46 1,	871	138,07 0,	883
137,16 ^a	1,417	143,06 2,	108	139,36 1,	912	137,06 1,	071
132,62	0,776	141,92 1,	014	138,24 2,	008	136,89 1,	286
131,86	1,081	138,16 1,	349	138,14 2,	066	136,03 1,	246
		138,13	2,108	137,36 ^a	0,872	135,27	1,067
		137,81	1,634	137,04	1,286	134,19	0,906
		137,43 1,	775	136,87 1,	948	132,93 1,	101
		136,27 1,	957	136,72 2,	201	131,05 1,	050
		133,74 1,	786	136,02 1,	913	129,30 1,	126
		132,41 0,	836	135,00 1,	213		
		132,09 1,	871	134,57 0,	568		
				132,44	1,950		

^aToluol

σ [ppm]	rel. Int.	σ [ppm] rel. Int.	$\sigma\left[\text{ppm}\right]~\text{rel.}$ Int.
150,01	0,797	141,49 1,200	136,77 1,112
148,69	0,778	141,100, 979	136,39 1, 015
145,48	0,925	140,33 0, 680	136,35 1, 153
145,27	0,832	140,23 0, 945	134,80 0, 885
145,16	0,942	139,79 0, 944	134,17 0, 841
144,94	0,919	139,65 1, 132	133,28 0, 918
144,28	0,997	139,360, 876	132,78 0, 832
143,67	1,131	139,22 1, 060	132,46 0, 827
143,63	1,026	138,91 0, 992	131,42 1, 040
143,49	1,143	138,84 0, 882	130,29 1, 546
143,00	1,375	138,60 0,932	128,82 ^a 1,282
142,96	1,045	137,99 0,771	128,07 ^a 1,276
142,07	0,785	137,94 0,883	127,37 1,674
141,90	0,874	137,82 1,029	125,18 ^a 0,697
141,54	1,137	137,00 ^a 1,015	
^a Toluol			

B TDDFT-Rechnungen elektr. angeregter Zustände

C₇₀ und C₇₆:

	C	70				C	76		
E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}
A_2''		E'_1		B_1		B_2		B ₃	
2,16	0,002	1,79	0,0003	1,32	0,000	1,13	0,000	1,37	0,004
2,45	0,005 2	, 06	0,022 1	, 43	0,022 1	, 53	0,001 1	, 84	0,001
2,67	0,008 2	, 28	0,062 1	, 89	0,000 1	, 98	0,002 1	, 97	0,007
2,85	0,151 2	, 80	0,000 2	, 10	0,000 2	, 12	0,001 2	, 07	0,002
3,24	0,087 2	, 99	0,001 2	, 13	0,000 2	, 18	0,001 2	, 13	0,000
3,84	0,023 3	, 24	0,094 2	, 20	0,005 2	, 24	0,013 2	, 22	0,000
4,01	0,006 3	, 60	0,031 2	, 32	0,001 2	, 32	0,000 2	, 25	0,000
4,24	0,188 3	, 70	0,004 2	, 37	0,001 2	, 38	0,013 2	, 32	0,013
		3,78	0,036 2	, 46	0,026 2	, 44	0,000 2	, 42	0,008
		4,02	0,002 2	, 58	0,003 2	, 53	0,001 2	, 65	0,001
		4,04	0,005						
	4,	15	0,005						

		C ₇₈	(C_{2v})					C ₇₈ ((C _{2v} ')		
E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}
A_1		B ₁		B ₂		A ₁		B ₁		B ₂	
1,79	0,000	1,52	0,002	1,19	0,001	1,69	0,009	1,75	0,000	0,85	0,005
1,88	0,000)	1,80	0,001	1,52	0,006	2,05	0,000	1,80	0,000	1,05	0,005
2,00	0,013	2,04	0,007	1,60	0,009	2,08	0,002	1,93	0,000	1,39	0,003
2,23	0,000 2	, 19	0,000 1	, 89	0,012	2,14	0,003 1	, 99	0,000 1	, 48	0,016
2,31	0,000 2	, 21	0,003 1	, 99	0,006	2,19	0,002 2	, 04	0,017 1	, 64	0,010
2,34	0,004 2	, 27	0,000 2	, 16	0,003	2,23	0,000 2	, 25	0,000 1	, 88	0,006
2,42	0,006 2	, 36	0,008 2	, 26	0,000	2,30	0,000 2	, 28	0,003 2	, 04	0,001
2,51	0,002 2	, 45	0,001 2	, 29	0,000	2,37	0,005 2	, 32	0,011 2	, 12	0,005
2,59	0,003 2	, 51	0,050 2	, 44	0,010	2,40	0,011 2	, 43	0,001 2	, 25	0,027
2,61	0,008 2	, 62	0,002 2	, 59	0,015	2,58	0,076 2	, 45	0,003 2	, 55	0,000

 $C_{78}\,(D_3),\,C_{78}\,(D_{3h})$ und $C_{78}\,(D_{3h}{}'){:}$

	C ₇₈	(D ₃)			C ₇₈ ((D _{3h})			C ₇₈ (D _{3h} ')	
E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}	E [eV]	\mathbf{f}_{cal}
A_2		E		A″ ₂		E'		A_2''		E'	
0,80	0,000	1,29	0,004	1,93	0,006	1,86	0,000	0,80	0,001	1,87	0,012
1,83	0,000 1	, 44	0,010 2	, 18	0,009	2,02	0,003 1	, 15	0,044 2	, 02	0,000
1,96	0,000 1	, 52	0,000 2	, 31	0,001	2,29	0,000 2	, 07	0,001 2	, 07	0,002
2,05	0,007 1	, 86	0,001 2	, 50	0,032	2,33	0,001 2	, 35	0,078 2	, 11	0,001
2,26	0,039 1	, 92	0,000 2	, 68	0,005	2,36	0,003 2	, 70	0,019 2	, 21	0,002
2,36	0,007 1	, 96	0,000 3	, 08	0,181	2,50	0,011 3	, 12	0,001 2	, 24	0,018
2,51	0,004 2	, 00	0,000 3	, 54	0,000	2,68	0,000 3	, 28	0,008 2	, 36	0,005
2,55	0,000 2	, 30	0,001 3	, 71	0,009	2,69	0,002 3	, 35	0,038 2	, 50	0,008
2,66	0,000 2	, 36	0,002			2,82	0,000			2,68	0,130
2,81	0,001 2	, 40	0,006			3,02	0,014			3,26	0,013
						3,11	0,051			3,31	0,000
						3,27	0,000				
						3,32	0,001				
						3,36	0,023				
						3,53	0,044				
						3,59	0,005				

 $C_{82}(C_2, 1)$:

E [eV]	\mathbf{f}_{cal}										
А		А		А		В		В		В	
1,10	0,001	2,49	0,003	3,13	0,014	0,43	0,000	2,48	0,003	3,06	0,002
1,27	0,000 2	, 52	0,000 3	, 15	0.001	1,07	0,001 2	, 52	0,015 3	, 06	0,003
1,36	0,000 2	, 68	0.001 3	, 18	0,002	1,19	0,007 2	, 55	0,004 3	, 08	0,011
1,46	0.001 2	, 73	0,000 3	, 19	0,004	1,27	0,001 2	, 58	0,002 3	, 11	0,004
1,59	0,011 2	, 75	0,002 3	, 21	0,000	1,32	0,002 2	, 61	0,007 3	, 12	0,012
1,79	0,000 2	, 75	0,001 3	, 21	0,003	1,65	0,000 2	, 68	0,002 3	, 16	0,000
1,80	0,000 2	, 82	0,000 3	, 24	0,018	1,80	0,003 2	, 74	0,016 3	, 19	0,004
1,93	0.001 2	, 84	0,000 3	, 29	0,004	1,90	0,003 2	, 76	0,016 3	, 22	0,038
1,99	0,000 2	, 86	0,002 3	, 30	0,001	1,94	0,001 2	, 78	0,044 3	, 23	0,021
2,01	0.001 2	, 88	0,000 3	, 32	0,017	2,01	0,001 2	, 83	0.001 3	, 25	0,004
2,08	0,000 2	, 91	0,000 3	, 35	0,002	2,01	0,001 2	, 84	0,000 3	, 26	0,003
2,12	0,003 2	, 93	0,000 3	, 38	0,002	2,02	0,000 2	, 88	0,000 3	, 29	0,020
2,16	0,000 2	, 93	0,000 3	, 38	0,001	2,13	0,004 2	, 88	0,000 3	, 31	0,004
2,19	0,000 2	, 99	0,002 3	, 41	0,001	2,17	0,001 2	, 89	0,024 3	, 33	0,016
2,21	0,000 3	, 01	0,007 3	, 43	0,011	2,20	0,001 2	, 94	0,021 3	, 36	0,008
2,21	0,002 3	, 02	0,005 3	, 43	0,007	2,24	0,000 3	, 00	0,004 3	, 38	0,003
2,24	0.001 3	, 04	0,001 3	, 48	0,000	2,26	0,000 3	, 00	0,002 3	, 40	0,006
2,30	0.001 3	, 05	0,000 3	, 49	0.001	2,32	0,002 3	, 02	0,004 3	, 40	0,006
2,33	0,002 3	, 07	0,006 3	, 50	0,000	2,35	0,005 3	, 03	0,003 3	, 47	0,001
2,38	0,014 3	, 09	0,018 3	, 52	0,003	2,41	0,019 3	, 04	0,003 3	, 49	0,002

 $C_{82}(C_2, 3)$:

E [eV]	\mathbf{f}_{cal}										
А		А		А		В		В		В	
1,30	0,002	2,51	0,000	3,15	0,000	0,79	0,001	2,47	0,000	3,06	0,007
1,34	0,001 2	, 52	0,000 3	, 17	0,002	1,01	0,000 2	, 49	0,006 3	, 07	0,005
1,42	0,000 2	, 60	0,002 3	, 23	0.001	1,11	0,006 2	, 53	0,020 3	, 10	0,011
1,56	0,000 2	, 60	0,001 3	, 24	0,002	1,32	0,008 2	, 56	0,036 3	, 13	0,001
1,57	0,000 2	, 62	0,001 3	, 27	0,006	1,46	0,005 2	, 57	0,004 3	, 16	0,011
1,70	0,000 2	, 65	0,000 3	, 29	0,001	1,73	0,001 2	, 64	0,001 3	, 18	0,003
1,75	0.001 2	, 67	0,001 3	, 32	0,000	1,78	0,004 2	, 68	0,004 3	, 23	0,012
1,90	0,002 2	, 70	0,000 3	, 35	0,000	1,85	0,005 2	, 73	0,001 3	, 26	0,002
1,97	0,001 2	, 73	0,002 3	, 35	0,000	1,97	0,001 2	, 75	0,001 3	, 26	0,033
2,01	0,006 2	, 77	0,004 3	, 36	0,000	2,00	0,001 2	, 78	0,020 3	, 29	0,004
2,05	0,004 2	, 79	0,021 3	, 37	0,000	2,03	0,007 2	, 80	0,002 3	, 31	0,010
2,17	0,001 2	, 90	0,000 3	, 38	0,000	2,05	0,005 2	, 84	0,004 3	, 33	0,004
2,23	0,010 2	, 91	0,000 3	, 39	0,000	2,15	0,001 2	, 86	0,008 3	, 38	0,033
2,26	0,000 2	, 94	0,026 3	, 45	0,009	2,18	0,006 2	, 89	0,002 3	, 38	0,001
2,30	0,002 2	, 97	0,002 3	, 46	0,001	2,20	0,001 2	, 91	0,006 3	, 42	0,018
2,32	0.001 3	, 04	0,000 3	, 46	0,002	2,27	0,004 2	, 94	0,006 3	, 44	0,014
2,34	0,000 3	, 07	0,006 3	, 51	0,005	2,29	0,005 2	, 96	0,003 3	, 50	0,021
2,41	0,001 3	, 10	0,000 3	, 51	0,002	2,33	0,006 2	, 98	0,012 3	, 52	0,001
2,44	0.001 3	, 11	0,006 3	, 53	0.001	2,37	0,001 3	, 00	0,016 3	, 52	0,003
2,45	0,000 3	, 12	0,000 3	, 54	0,000	2,43	0,001 3	, 02	0,012 3	, 54	0,005

 $C_{82}(C_2, 5)$:

E [eV]	\mathbf{f}_{cal}										
А		А		А		В		В		В	
0,58	0,001	2,41	0,007	3,07	0,000	0,58	0,005	2,37	0,000	2,72	0,005
1,07	0,000 2	, 43	0,006 3	, 08	0,011	0,68	0,001 2	, 39	0,004 2	, 73	0,004
1,16	0,000 2	, 47	0,004 3	, 11	0,001	0,89	0,001 2	, 40	0,001 2	, 80	0,011
1,17	0,001 2	, 53	0,003 3	, 13	0,002	1,11	0,002 2	, 44	0,014 2	, 84	0,009
1,33	0,002 2	, 56	0,002 3	, 17	0,000	1,22	0,002 2	, 49	0,012 2	, 86	0,011
1,55	0,000 2	, 58	0,000 3	, 19	0,003	1,31	0,006 2	, 53	0,005 2	, 87	0,009
1,66	0,001 2	, 61	0,019 3	, 20	0,002	1,50	0,007 2	, 56	0,002 2	, 88	0,006
1,68	0,001 2	, 73	0,000 3	, 23	0,001	1,61	0,006 2	, 61	0,009 2	, 91	0,006
1,74	0,000 2	, 75	0,000 3	, 27	0,007	1,69	0,007 2	, 63	0,005 2	, 95	0,006
1,77	0,010 2	, 76	0,001 3	, 29	0,013	1,71	0,002 2	, 66	0,012 3	, 02	0,004
1,89	0,000 2	, 80	0,005 3	, 33	0,007	1,80	0,007 2	, 72	0,005		
1,93	0,000 2	, 84	0,000 3	, 34	0,008	1,87	0,000 2	, 73	0,004		
2,01	0,006 2	, 86	0,014 3	, 36	0,011	1,94	0,006 2	, 80	0,011		
2,09	0,001 2	, 90	0,003 3	, 38	0,004	2,04	0,005 2	, 84	0,009		
2,13	0,004 2	, 94	0,003 3	, 40	0,003	2,09	0,007 2	, 86	0,011		
2,22	0,003 2	, 98	0,000 3	, 41	0,004	2,14	0,008 2	, 87	0,009		
2,29	0,002 2	, 99	0,001 3	, 42	0,007	2,16	0,001 2	, 88	0,006		
2,31	0,000 3	, 02	0,006 3	, 48	0,000	2,21	0,007 2	, 91	0,006		
2,34	0,001 3	, 04	0,001 3	, 51	0,016	2,25	0,001 2	, 95	0,006		
2,36	0,004 3	, 05	0,003 3	, 53	0,001	2,30	0,012 3	, 02	0,004		

C DRIFT-Messungen

Frequenzen sind in cm⁻¹ und Intensitäten sind im Falle der DRIFT-Messungen in Kubelka-Munk-Einheiten angegeben.

C₆₀:

ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι
408,2	3,6E-4	844,0	1,5E-4	1438,0	0,0224	1734,3	5,7E-4	2076,3	0,0116	2589,3	1,4E-4
412,7	3E-4	944,3	3,5E-4	1468,8	0, 0022	1747,8	0, 0041	2084, 0	0, 0075	2602,8	4, 9E-4
418,5	4E-4	957,8	0,0036	1479, 8	0, 0031	1780,0	0, 0040	2091, 1	0, 0032	2611,8	2, 9E-4
422,3	2,6E-4	962, 3	0,0072	1484, 3	0, 0036	1790,3	0, 0018	2098, 2	0, 0077	2622,1	3, 8E-4
432,0	8,6E-4	1017, 6	4, 7E-4	1495,8	0, 0087	1796,7	5, 8E-4	2120,7	0, 0054	2637,5	7, 2E-4
437,8	6,2E-4	1039, 4	0, 0013	1502, 3	0, 0087	1806,3	0, 0018	2136, 1	0, 0057	2658,1	8, 3E-4
463,5	0,0014	1061,9	7, 7E-4	1508,1	0, 0037	1816,6	0, 0094	2149, 0	2, 9E-4	2676, 7	0, 0047
471,8	7,7E-4	1099, 9	0, 0064	1515, 1	0, 0022	1825,6	0, 0017	2165, 0	0, 0012	2683,8	0, 0024
482,8	8,1E-4	1115, 3	0, 0027	1524, 8	0, 0061	1842,3	0, 0015	2175, 3	0, 0022	2699,2	0, 0011
487,3	0,0014	1142,3	0, 0015	1532, 5	0, 0118	1852,6	0, 0079	2190, 7	0, 0166	2705,6	0, 0011
497,5	0,0011	1151,3	9, 1E-4	1538,9	0, 0428	1874,5	9E -4	2201,7	0, 0044	2718,5	4, 7E-4
526,5	0,5513	1164,8	0, 0058	1559, 5	9, 7E-4	1880, 9	4, 7E-4	2235,7	0, 0034	2728,8	9, 5E-4
554,1	7,6E-4	1182, 8	0, 1878	1571, 1	0, 0031	1888,0	9, 5E-4	2272,4	0, 0050	2736,5	0, 0031
576,0	0,2269	1197,6	0, 0032	1609, 0	0, 0014	1891,2	9, 2E-4	2278,8	0, 0022	2751,3	1, 7E-4
607,5	5E-4	1205,3	0, 0027	1627, 0	6, 7E-4	1911, 1	7, 9E-4	2291,0	0, 0026	2773,8	3, 3E-4
622,3	5,1E-4	1213, 6	0, 0054	1635, 3	4, 3E-4	1924, 0	8, 4E-4	2309,0	0, 0026	2788,6	2, 3E-4
640,9	6,7E-4	1234, 9	0, 0020	1646, 3	3, 3E-4	1935, 5	0, 0068	2327, 7	0, 0508	2810,4	6, 6E-4
667,2	9,8E-4	1242, 6	0, 0015	1653, 3	4, 7E-4	1951, 0	3, 6E-4	2348,2	0, 0177	2838,7	4, 3E-4
673,7	9,9E-4	1258, 6	0, 0042	1663, 6	7, 8E-4	1957, 4	6E -4	2381,0	8, 3E-4	2886, 3	9, 1E-4
691,7	0,0013	1290,1	0, 0024	1670, 1	0, 0011	1977,3	0, 0063	2390, 0	0, 0018	2896,6	0, 0011
712,2	0,0058	1306,9	0, 0037	1674, 6	1E -3	1984,4	0, 0048	2408, 0	2, 7E-4	2910, 1	0, 0044
725,7	0,0052	1330,0	7, 9E-4	1680,3	5, 4E-4	1988, 2	0, 0054	2418, 9	9, 8E-4	2923, 6	0, 0016
738,6	0,0043	1342,9	0, 0019	1684, 8	3, 6E-4	1994, 7	0, 0024	2427, 9	4, 8E-4	2948, 0	3, 8E-4
756,0	0,0010	1375,6	9, 7E-4	1695,8	7, 2E-4	2015, 9	0, 0026	2459, 4	4, 6E-4	2989, 1	4, 2E-4
766,9	0,0017	1394,9	0, 0014	1700, 3	5, 1E-4	2024, 2	0, 0026	2487, 1	1, 2E-4	3001, 3	9, 2E-4
774,6	0,0045	1400,7	0, 0014	1711, 8	4, 9E-4	2039, 0	0, 0013	2506, 4	1, 6E-4	3020, 0	3, 4E-4
797,1	9,5E-4	1418, 7	0, 0154	1718, 3	0, 0012	2048,0	0, 0017	2526, 9	6, 5E-4		
824,1	8,5E-4	1429, 0	0, 2026	1724, 0	0, 0013	2061,5	0, 0020	2559, 7	7, 7E-4		

ĩ	Ι	ν̃ I	ĩ	Ι	ν̃ I	ν̃ I	ν̃ I
526,9	1,1428	1114,3 0,018	4 146	3,0 0,0046	1732,2 0,0076	2024,6 0,0089	2526,0 0,0045
575,9	0,4848	1125,10, 015	1 1469	, 50, 0040	1741,60,0080	2030, 40, 0065	2549,7 0, 0035
712,2	0,0235	1129,40,016	1 1474	, 90, 0029	1747,4 0, 0097	2038, 70, 0080	2560,3 0, 0049
725,1	0,0196	1133,60, 015	4 1479	, 60, 0049	1752,1 0, 0051	2047, 30, 0085	2572,3 0, 0033
738,6	0,0213	1142,20, 017	5 1484	, 40, 0059	1769,80,0059	2061, 40, 0093	2574,5 0, 0033
746,5	0,0184	1150,90,017	3 1488	, 10, 0030	1779,7 0, 0088	2069, 90, 0108	2582,90, 0034
764,7	0,0192	1165,00, 025	9 1494	, 60, 0087	1789,90, 0064	2076, 30, 0186	2603,3 0, 0045
772,4	0,0208	1182,60, 252	3 1496	6, 50, 0120	1793,7 0, 0049	2083, 90, 0130	2611,0 0, 0039
774,9	0,0216	1198,3 0, 003	7 1502	, 50, 0125	1798,00, 0050	2091, 00, 0091	2637,60,0049
786,7	0,0168	1205,60,005	4 1508	, 80, 0066	1806,3 0, 0065	2098, 00, 0136	2658,40, 0054
795,2	0,0176	1213,80,009	7 1515	, 20, 0063	1816,40, 0132	2106, 00, 0060	2676,5 0, 0095
797,8	0,0173	1222,2 0, 007	0 1519	, 10, 0068	1824,00, 0044	2121, 00, 0124	2685,0 0, 0062
800,9	0,0172	1235,2 0, 007	9 1523	, 90, 0109	1826,1 0, 0047	2131, 80, 0102	2697,80,0044
806,0	0,0170	1242,90,007	6 1526	6, 10, 0110	1831,0 0, 0040	2135, 90, 0116	2707,2 0, 0043
823,4	0,0167	1258,90,011	3 1532	, 10, 0179	1842,60, 0056	2165, 20, 0077	2720,1 0, 0034
848,4	0,0174	1290,4 0, 009	1 1539	, 10, 0433	1852,40, 0111	2175, 40, 0093	2725,4 0, 0033
866,4	0,0144	1306,80,010	2 1542	, 60, 0037	1874,3 0, 0044	2190, 50, 0215	2736,2 0, 0065
907,5	0,0145	1330,0 0, 007	1 1546	, 80, 0046	1887,80,0046	2203, 40, 0090	2746,5 0, 0015
956,4	0,0177	1343,50,009	4 1553	, 10, 0031	1891,80,0046	2234, 70, 0093	2749,3 0, 0013
962,0	0,0195	1359,3 0, 008	5 1556	, 30, 0038	1911,7 0, 0051	2272, 70, 0112	2754,0 0, 0012
1014,90	, 0139	1361,60,008	6 1558	, 70, 0028	1935,3 0, 0116	2279, 40, 0081	2758,3 0, 0011
1033,3 0	, 0183	1367,00,009	2 1563	, 60, 0056	1943,4 0, 0048	2290, 90, 0087	2773,7 0, 0012
1053,80	, 0155	1372,20, 010	6 1568	, 00, 0067	1950,2 0, 0050	2309, 80, 0100	2777,9 5, 7E-4
1060,8 0	, 0162	1376,3 0, 012	3 1571	, 50, 0099	1956,60, 0056	2327, 50, 0504	2783,5 5, 6E-4
1070,8 0	, 0168	1384,3 0, 014	9 1620	, 90, 0178	1977,0 0, 0131	2348, 40, 0180	2787,1 4, 9E-4
1073,80	, 0168	1393,00, 016	6 1625	, 80, 0182	1983,9 0, 0105	2389, 60, 0058	2794,2 1, 7E-4
1076,60	, 0170	1417,80,039	2 1636	, 50, 0189	1989,3 0, 0107	2418, 50, 0049	2796,7 2, 8E-4
1079,5 0	, 0172	1428,80, 237	3 1639	, 30, 0188	1995,4 0, 0078	2428, 40, 0038	2849,5 0, 0046
1082,20	, 0172	1440,5 0, 010	1 1646	, 40, 0159	2001,5 0, 0063	2458, 80, 0040	2911,3 0, 0112
1085,00	, 0175	1448,3 0, 003	8 1649	, 00, 0159	2010,3 0, 0081	2503, 70, 0036	2922,80, 0113
1099,60	, 0261	1455,60,001	1 1724	, 10, 0086	2015,8 0, 0088	2512, 20, 0037	

ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι
402,4	1,1E-4	767,5	0,0013	1240,6	0,0032	1618,0	0,0020	1970,9	0,0020	2395,2	3,8E-4
408,2	3,7E-4	795, 2	0,2198	1250, 9	0, 0128	1628,3	0, 0018	1983, 1	7, 9E-4	2431, 8	1, 7E-4
412,0	0,0016	835,0	3,7E-4	1257,4	0, 0056	1636,0	0, 0013	2001, 1	0, 0012	2478,1	4, 5E-4
417,2	0,0032	867,2	5E-5	1276,6	0, 0019	1647,6	8, 3E-4	2015,9	0, 0011	2490,3	5E -4
421,7	5,2E-4	896, 7	0,0031	1291, 4	0, 0180	1653,3	6, 3E-4	2024,2	0, 0010	2503,1	2, 2E-4
428,8	0,0010	905,1	0,0015	1291, 4	0, 0180	1663,0	2, 1E-4	2041,0	0, 0021	2512,1	3, 3E-4
443,5	6,3E-4	922, 4	2,3E-4	1321,0	0, 0416	1675,8	3, 1E-4	2051,2	0, 0013	2524,4	3, 9E-4
458,3	0,2139	931,4	1,3E-4	1339,0	0, 0029	1685,5	0, 0014	2059, 6	0, 0011	2613,7	0, 0014
477,6	0,0012	938,5	2,2E-4	1354,4	0, 0042	1689,3	0, 0014	2080, 8	0, 0046	2622,7	9, 7E-4
480,2	0,0014	946,2	3,6E-4	1373,1	0, 0144	1696,4	7, 4E-4	2088,5	0, 0031	2626,6	1E -3
484,7	0,0011	958,4	6,5E-4	1383,4	0, 0052	1700,9	0, 0010	2098, 8	0, 0037	2657,4	0, 0027
489,8	0,0017	975,8	0,0026	1388, 5	0, 0055	1714,4	0, 0068	2107, 8	0, 0045	2687,0	0, 0019
494,3	0,0014	1002,2	4, 4E-4	1414,2	0, 2769	1735,0	8, 9E-4	2111,0	0, 0042	2722,4	0, 0026
506,5	0,0018	1014,4	7, 8E-4	1420,6	0, 2306	1740,1	6, 7E-4	2117,5	0, 0059	2756,4	0, 0027
509,8	0,0027	1028,5	0, 0107	1430, 3	0, 9400	1756,8	6, 2E-4	2141,2	0, 0037	2769,3	0, 0030
527,8	0,0421	1034,9	0, 0050	1439, 3	0, 2402	1769,0	4, 5E-4	2160,5	5, 9E-4	2778, 3	0, 0021
534,8	0,5118	1060,0	0, 0024	1445, 1	0, 1318	1793,5	0, 0010	2177, 9	0, 0012	2798,2	0, 0013
548,3	0,0023	1072,9	0, 0037	1459, 8	0, 0857	1799,3	0, 0010	2192, 0	0, 0019	2848,3	0, 0054
554,1	0,0016	1086,4	0, 0359	1477, 2	0, 0198	1806,3	9E -4	2202,3	0, 0010	2877,9	0, 0050
565,0	0,1553	1104,4	0, 0018	1492, 6	0, 0605	1830,1	3, 8E-4	2217,7	0, 0042	2908,8	0, 0162
577,3	0,5033	1133,3	0, 1439	1508, 7	0, 0166	1845,5	0, 0020	2237, 7	0, 0030	2928,1	0, 0099
622,3	0,0012	1152,6	0, 0125	1512, 6	0, 0156	1864,2	5, 7E-4	2256,3	0, 0012	2937,7	0, 0106
628,7	5,4E-4	1161, 6	0, 0044	1528, 6	0, 0110	1870,0	8, 1E-4	2264,7	0, 0035	2965,3	0, 0076
642,2	0,1845	1175,7	0, 0251	1534, 4	0, 0111	1888,6	0, 0014	2278, 2	0, 0079	2994,9	0, 0070
656,3	3,7E-4	1194, 4	0, 0020	1552, 4	0, 0096	1922,7	0, 0016	2306, 4	0, 0056	3022,6	0, 0131
674,3	0,3339	1203,4	0, 0103	1561, 4	0, 0505	1931,7	0, 0024	2328, 9	0, 0162	3032,2	0, 0131
692,3	0,0493	1212,4	0, 0042	1585, 2	0, 0178	1950,3	9, 5E-4	2343,1	0, 0100	3058,5	0, 0085
724,5	0,1912	1224,6	0, 0020	1601, 9	0, 0046	1965,8	0, 0040	2357, 9	0, 0029	3082,3	0, 0052

ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι
400,5	0,0021	553,5	0,0173	757,9	1,8E-4	1110,2	7,7E-4	1339,	6 0,0015	2104,0	2,3E-4
407,5	7E-5	561,2	0,0013	764, 3	0,0012	1128,8	0, 0098	1353,	80,0018	2271,7 1	, 6E-4
416,5	3,5E-4	570, 8	0,0746	775, 2	6,6E-4	1135, 9	0, 0030	1372, -	40,0057	2297,4 1	, 5E-4
424,3	2,5E-4	586, 9	2,1E-4	790,0	0,0204	1143,6	9, 1E-4	1393,	60,0183	2328,3 4	, 2E-4
434,5	7,9E-4	596, 5	1,8E-4	804,8	0,0265	1153,2	0, 0014	1403,	96, 7E-4	2334, 73	8, 4E-4
439,0	8,2E-4	603, 0	3,9E-4	827,3	1E-5	1165,4	0, 0022	1422,	60,0022	2343,7 3	8, 8E-4
446,1	0,0216	608,8	2,1E-4	832,5	2E-5	1169,9	0, 0039	1440,	60, 1018	2357,94	, 9E-4
462,2	0,0036	616,5	2,1E-4	867,2	5E-5	1175,1	0, 0038	1463,	1 0, 0091	2723,6 1	, 5E-4
471,2	0,0059	622,9	0,0018	875, 5	8,6E-4	1189, 2	4, 4E-4	1493,	3 0, 0035	2846,4 0), 0023
482,8	9,2E-4	628, 0	0,0160	895, 5	7E-5	1197,6	3, 6E-4	1514,	50,0152	2861,8 8	8, 5E-4
488,5	0,0080	644,8	0,0155	947, 5	1E-5	1210,4	0, 0060	1525, -	4 0, 0049	2917,80), 0059
494,3	0,0146	656,3	8,4E-4	966,8	2E-5	1219,4	0, 0024	1529,	3 0, 0059	2943,5 0), 0023
505,3	5,5E-4	669, 2	0,0205	1016, 9	0, 0018	1222,0	0, 0017	1537,	0 0, 0024	2948,60), 0023
510,4	6,1E-4	680, 7	2,6E-4	1030,4	0, 0031	1227,1	0, 0024	1551,	80,0010	3021,98	3, 5E-4
514,9	0,0024	692,3	0,0170	1046, 5	0, 0023	1240,0	0, 0085	1559,	5 0, 0039	3030,3 7	, 6E-4
520,7	0,0056	703,9	8,1E-4	1056,8	7E -4	1257,4	3, 6E-4	1571,	7 0, 0034	3058,5 3	3, 9E-4
527,1	0,0010	723,8	0,0194	1063, 9	8, 1E-4	1269, 6	7E -4	1575,	60,0020	3081,7 2	2, 6E-4
532,9	0,0063	732,8	0,0111	1078, 0	7, 9E-4	1295, 3	0, 0019	1592, 1	37, 6E-4		
538,7	0,0402	744,4	8,4E-4	1092,8	6, 1E-4	1322, 3	6, 5E-4	1607,	79, 9E-4		
543,2	0,0025	754,0	3,3E-4	1099,2	6, 7E-4	1329, 4	5, 5E-4	1932,	31E-4		

ĩ	Ι	ĩ	Ι	ĩ	Ι		ĩ	Ι		ĩ	Ι		ĩ	Ι	
403,7	2,5E-4	652,5	0,0121	1034,	9 0	,0066	1324,2	0,	0047	1636	,0 0	,0011	2219,7	2,	1E-4
408,8	1,7E-4	658, 9	5E-4	1051,	70,	0024	1326,8	0,	0050	1646,	90,	0021	2226,7	2,	8E-4
415,3	6,5E-4	669, 8	0,0014	1062,	60,	0016	1342,9	0,	0247	1652,	70,	0011	2256,3	4,	3E-4
423,0	8,7E-4	679, 5	0,0011	1077,	40,	0019	1358,9	0,	0064	1669,	41,	9E-4	2267, 9	2E	-4
428,8	8,3E-4	686, 5	0,0065	1088,	30,	0016	1373,7	0,	0025	1675,	81,	7E-4	2275,6	2,	5E-4
435,2	0,0015	691,7	0,0071	1092,	80,	0014	1389,8	0,	0046	1679,	71,	3E-4	2287, 2	2,	5E-4
444,8	0,0219	702,6	0,0020	1098,	60,	0016	1397,5	0,	0040	1684,	81,	8E-4	2303, 2	4,	7E-4
451,9	0,0010	707,1	0,0077	1101,	20,	0016	1414,9	0,	0064	1690,	0 1E	-4	2325,1	0,	0012
462,2	0,0046	715,5	0,0010	1123,	00,	0154	1431,6	0,	0626	1696,	4 1E	-4	2343,7	0,	0015
469,3	0,0051	725,7	0,0426	1132,	70,	0037	1438,0	0,	0633	1700,	91,	5E-4	2363, 0	6,	8E-4
477,6	0,0024	733,5	0,0021	1143,	60,	0060	1447,0	0,	0355	1718,	31,	6E-4	2724, 3	3,	9E-4
489,2	0,0558	739,9	0,0047	1147,	40,	0081	1454,1	0,	0207	1734,	34,	8E-4	2731, 4	3, 1	3E-4
494,3	0,0495	745,7	0,0108	1158,	40,	0434	1466,9	0,	0691	1740,	13,	8E-4	2846, 4	0,	0047
506,5	0,0575	768,8	0,0016	1171,	90,	0033	1493,3	0,	0101	1992,	1 1E	4	2861,8	0,	0022
516,8	0,0013	781,0	0,0018	1175,	10,	0037	1503,6	0,	0079	2020,	41,	9E-4	2915, 8	0,	0099
525,2	0,0262	793,2	0,0324	1191,	10,	0077	1517,1	0,	0038	2032,	61,	5E-4	2919, 1	0,	0100
530,3	0,0020	799,7	0,0253	1200,	80,	0014	1522,2	0,	0090	2050,	02,	1E-4	2949, 3	0,	0055
539,3	0,0694	858,8	1,1E-4	1212,	48,	1E-4	1532, 5	0,	0068	2078,	94,	8E-4	2991, 7	8,	8E-4
545,1	0,1250	862,0	1E-4	1219,	44,	9E-4	1551, 1	8,	6E-4	2089	,25,	2E-4	2996, 2	8,	9E-4
561,2	0,0252	880,0	1,3E-4	1229,	10,	0016	1558,8	0,	0021	2108,	53,	4E-4	3025, 8	0,	0019
570,8	2,9E-4	895, 5	4,4E-4	1239,	40,	0027	1571,1	0,	0050	2116,	82,	5E-4	3056, 0	0,	0012
612,0	2,1E-4	926, 9	6E-5	1243,	20,	0022	1587,8	0,	0060	2129,	71,	6E-4	3081, 7	7,	9E-4
618,4	1,1E-4	936, 6	1,4E-4	1254,	8 7E	2 -4	1594,8	0,	0028	2138,	72,	6E-4			
622,9	3,1E-4	975, 8	2,1E-4	1266,	40,	0040	1601,9	0,	0015	2149,	62,	3E-4			
627,4	0,0023	1003,4	0, 0025	1283,	76,	7E-4	1611, 6	0,	0018	2165,	72,	6E-4			
637,7	0,0378	1013,7	0, 0022	1304,	30,	0021	1617,3	0,	0012	2181,	74,	4E-4			

ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι
405,6	5,1E-4	683,3	0,0059	1042,0	0,0038	1352,5	0,0031	1751,0	2,2E-4	2699,2	3,7E-4
410,1	2,4E-4	691, 7	0,0024	1045, 20), 0029	1360,9	3, 3E-4	1792,8 1	, 2E-4	2703,1	3, 7E-4
414,6	1,4E-4	695, 5	0,0035	1056, 20), 0016	1373,7	0, 0035	1931, 02	e, 3E-4	2708,2	3, 8E-4
417,8	1,7E-4	707, 7	0,0047	1062, 60), 0015	1389,8	4, 1E-4	1952,3 1	, 6E-4	2712,7	3, 6E-4
421,0	1,9E-4	725, 1	0,0211	1079, 90), 0020	1418,1	0, 0138	1987, 01	, 5E-4	2721,7	4, 4E-4
426,8	2,6E-4	738, 6	3,2E-4	1092,80), 0018	1441,2	0, 0760	2033, 91	, 7E-4	2746,1	2, 7E-4
430,7	3,6E-4	745, 7	7,8E-4	1103,1 (), 0016	1443,8	0, 0861	2074, 43	, 4E-4	2751,3	2, 8E-4
442,9	0,0048	750,8	7E-5	1114,00), 0012	1460,5	0, 0076	2102, 73	, 1E-4	2765,4	3, 5E-4
451,3	7,1E-4	759, 8	8E-5	1126,2 (), 0013	1481,1	0, 0032	2131, 03	Е-4	2793,7	3, 8E-4
457,0	0,0011	765,6	4,9E-4	1137,80), 0032	1492,6	0, 0086	2193, 32	2, 3E-4	2803,3	3, 8E-4
462,2	0,0046	778,5	9,7E-4	1141,7 (), 0040	1515,1	0, 0188	2198, 52	2, 5E-4	2813,0	4, 3E-4
471,8	0,0076	786,8	0,0227	1154, 50), 0128	1533,1	0, 0016	2238, 32	2, 9E-4	2816,2	4, 4E-4
480,2	0,0046	793,2	0,0185	1172, 50), 0054	1555,0	6, 8E-4	2249,2 2	e, 8E-4	2846,4	0, 0031
490,5	9,6E-4	798, 4	0,0126	1202, 10), 0102	1560,1	8, 3E-4	2321,97	', 7E-4	2858,0	0, 0011
503,3	0,0250	810,0	5,8E-4	1205,90), 0073	1565,3	0, 0010	2334, 76	6, 6E-4	2862,5	0, 0010
507,2	0,0172	824,1	2,5E-4	1220,1 0), 0052	1569,8	8, 8E-4	2340,5 6	, 3E-4	2914,6	0, 0052
514,9	3,1E-4	863, 3	1,5E-4	1229,7 (), 0043	1576,2	8, 8E-4	2362,4 3	E -4	2930,0	0, 0048
521,3	4,1E-4	871, 0	2,3E-4	1235,5 (), 0026	1596,1	0, 0067	2390, 02	2, 3E-4	2944,8	0, 0022
528,4	0,0197	878,7	7E-5	1247,7 (), 0015	1612,8	6, 3E-4	2405,4 1	, 2E-4	2948,0	0, 0022
536,1	1E-3	881,3	7E-5	1255,4 (), 0072	1617,3	8, 2E-4	2473,6 1	, 7E-4	3023,8	9, 2E-4
544,5	0,0110	935,9	8E-5	1281,80), 0011	1624,4	8, 4E-4	2568,1 1	, 5E-4	3030,9	9, 2E-4
552,8	0,0122	975,8	5,4E-4	1295,97	7, 6E-4	1628, 3	8, 2E-4	2582,9 1	, 7E-4	3051,5	4, 9E-4
583,0	0,0082	988,7	4,5E-4	1314,60), 0039	1635,3	6, 4E-4	2645,2 2	2, 2E-4	3057,3	5, 1E-4
621,0	0,0018	1007,30	0, 0030	1319, 70), 0045	1646,9	5, 2E-4	2665,1 3	E -4		
635,1	0,0467	1020,80	0, 0046	1330, 00), 0142	1653,3	6E -4	2677,4 2	2, 8E-4		
652,5	0,0045	1027,90	0, 0027	1340, 30), 0102	1735,0	3, 5E-4	2687,63	, 6E-4		

ĩ	Ι	ν̃ Ι	[ĩ	Ι	ĩ	Ι	ν̃ Ι		ν̃ Ι	
407,5	4,3E-4	716,1 (0,0118	1084,	4 0,0065	1538,9	0,0090	1992,1 0	,0015	2534,6 5	,5E-4
414,0	8,2E-4	723, 8 (0,0673	1090,	90,0063	1546,60), 0096	2003, 00,	0015	2542,4 6,	2E-4
420,4	9,6E-4	733, 5 (0,0173	1095, -	4 0, 0062	1565,90), 0202	2015, 20,	0014	2549,4 6,	2E-4
424,3	7,8E-4	743,1 (0,0252	1099, 1	20, 0061	1570,40), 0207	2046, 70,	0018	2555,2 6,	2E-4
430,0	0,0015	748,9 (0,0128	1109, 1	5 0, 0075	1589,1 (), 0058	2059, 60,	0017	2581,68,	8E-4
441,6	0,0557	756,6 (0,0162	1123,	00, 0174	1601,30), 0083	2068, 00,	0017	2595,77,	1E-4
453,8	0,0025	763,0 (),0116	1130,	10, 0124	1612,80), 0035	2077, 00,	0017	2610,5 7,	6E-4
462,2	0,0117	767,5 (0,0113	1154, 1	5 0, 0203	1618,00), 0035	2093, 00,	0021	2631,1 8E	E -4
471,2	0,0025	772,7 (),0059	1175,	1 0, 0121	1636,60), 0032	2137, 40,	0016	2652,37,	2E-4
476,3	0,0034	788,7 (0,0317	1186,	0 0, 0073	1646,90), 0029	2152, 20,	0015	2655,57,	2E-4
482,1	0,0139	800,3 (0,1013	1204,	0 0, 0250	1654,00), 0025	2168, 20,	0016	2674,8 0,	0010
488,5	0,0031	815,1 (),0065	1212, -	40,0445	1658,50), 0024	2179, 80,	0011	2701,8 8,	6E-4
495,0	0,0056	834,4 (),0033	1238, 1	7 0, 0071	1663,00), 0024	2192, 70,	0016	2722,4 0,	0012
503,3	0,0460	842,1 (0,0027	1245,	1 0, 0099	1677,10), 0018	2230, 00,	0018	2759,69,	3E-4
518,8	0,0290	847,2 (0,0029	1258,	0 0, 0060	1685,50), 0017	2242, 20,	0014	2764,1 9,	4E-4
525,2	0,0439	857,5 (),0045	1269,	60,0097	1691,30), 0018	2260, 80,	0017	2771,8 9,	5E-4
544,5	0,0277	861,4 (0,0041	1283,	1 0, 0042	1696,40), 0017	2265, 30,	0018	2777,09,	2E-4
552,8	0,0035	875,5 (),0034	1295,	90,0041	1701,60), 0018	2294, 90,	0014	2787,3 0,	0010
565,7	0,0890	890,3 (),0035	1303,	60,0051	1726,00), 0027	2304, 50,	0016	2795,09,	6E-4
586,3	0,0021	896,7 (0,0030	1318, -	40,0100	1736,90), 0030	2319, 90,	0015	2811,1 0,	0012
589,5	0,0019	903,8 (),0031	1329, -	40,0196	1744,00), 0031	2327, 70,	0019	2846,4 0,	0051
595,9	0,0021	922,4 (0,0027	1342, 1	20, 0152	1769,00), 0019	2343, 10,	0023	2865,1 0,	0033
601,7	0,0022	937,9 (),0032	1369, 1	20, 0585	1778,00), 0020	2370, 70,	0027	2913,9 0,	0105
611,3	0,0030	945,6 (0,0030	1386,	60,0060	1790,90), 0025	2435, 05,	2E-4	2921, 00,	0099
618,4	0,0163	959,1 (0,0040	1392, -	40,0060	1810,80), 0018	2444, 06,	4E-4	2951, 20,	0083
622,3	0,0500	975,2 (0,0045	1430,	90,0632	1826,90), 0017	2457, 55,	8E-4	2999, 40,	0015
636,4	0,0050	984,8 (0,0043	1445, 1	7 0, 0336	1846,20), 0023	2472, 35,	6E-4	3021, 90,	0032
645,4	0,0052	1011,2 0,	, 0189	1457, 1	3 0, 0670	1862,90), 0016	2485, 87,	2E-4	3026, 40,	0032
651,2	0,0190	1027,9 0,	, 0109	1465,	60,0638	1897,00), 0013	2490, 37,	4E-4	3057, 30,	0019
660,8	0,0043	1034,9 0,	, 0119	1468,	8 0, 0567	1909,80), 0015	2502, 56,	9E-4	3081, 09,	5E-4
680,1	0,0180	1040,7 0,	, 0199	1492,	60, 0202	1931,7 (), 0024	2507, 66,	6E-4	3096, 53,	1E-4
689,1	0,0340	1049,7 0,	, 0098	1504, 1	2 0, 0209	1947,80), 0018	2515, 45,	7E-4		
699,4	0,0446	1061,3 0,	, 0065	1516,	40,0110	1967,70), 0015	2522, 45,	3E-4		
706,5	0,0203	1076,1 0,	, 0070	1526,	1 0, 0150	1984,40), 0014	2526, 95,	4E-4		

ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι
401,1	0,0011	621,0	0,0609	894,8	0,0024	1312,6	0,0122	1806,3	2,8E-4	2176,0	6,6E-4
407,5	6,3E-4	630, 6	0,0492	901, 9	0,0032	1323,60	, 0133	1817, 32	, 9E-4	2190, 7	4, 6E-4
415,3	0,0025	640,3	0,0549	923, 1	0,0015	1332,60	, 0226	1843, 01	, 7E-4	2211, 3	4, 3E-4
428,1	0,0322	646,0	0,0124	964, 9	0,0039	1348,60	, 0256	1868, 71	, 6E-4	2219, 0	4, 8E-4
433,3	0,0378	657,0	0,0086	972, 6	0,0042	1364,10	, 0272	1875, 11	, 7E-4	2233, 8	5, 2E-4
439,7	0,0058	665,3	0,0336	986, 7	0,0037	1371,80	, 0272	1884, 81	, 5E-4	2243, 4	4, 8E-4
445,5	0,0127	674,3	0,0043	1007, 30	, 0130	1376,90	, 0230	1900, 22	E -4	2262,1	7, 5E-4
456,4	0,0049	689,1	0,0113	1016, 30	, 0094	1398,10	, 0455	1910, 52	, 2E-4	2273, 7	7, 9E-4
463,5	0,0129	697,5	0,0483	1034, 90	, 0116	1403,3 0	, 0325	1916, 92	E -4	2292,3	4, 9E-4
468,0	0,0088	706,5	0,0213	1063, 90	, 0054	1418,10	, 0100	1921, 42	E -4	2307,1	7, 1E-4
474,4	0,0237	713,5	0,0152	1086, 40	, 0052	1434,80	, 0455	1926, 52	E -4	2327,7	0, 0015
479,5	0,0499	723,8	0,0066	1104, 40	, 0167	1463,10	, 0828	1942, 02	, 5E-4	2346, 3	0, 0014
484,7	0,0370	732,8	0,0211	1115, 30	, 0115	1486,80	, 0172	1953, 53	, 3E-4	2353, 4	0, 0010
486,6	0,0370	742,5	0,0084	1125, 60	, 0165	1511,30	, 0342	1963, 22	, 7E-4	2373, 9	5, 7E-4
498,8	0,0160	750,2	0,0046	1139, 10	, 0213	1527,30	, 0155	1977, 33	, 6E-4	2382, 9	5, 3E-4
505,3	0,0124	756,6	0,0099	1146,80	, 0247	1533,80	, 0188	1990, 24	, 1E-4	2392, 6	2, 8E-4
511,7	0,0307	771,4	0,0034	1152, 60	, 0261	1544,10	, 0118	2001, 14	, 7E-4	2411, 9	1, 5E-4
516,8	0,0288	778,5	0,0060	1162,90	, 0202	1559,50	, 0065	2017, 84	, 4E-4	2428, 6	1, 1E-4
521,3	0,0221	788,1	0,0311	1168, 00	, 0106	1562,10	, 0064	2039, 74	, 9E-4	2480, 7	7E -5
531,0	0,0544	798,4	0,0860	1182, 80	, 0052	1574,30	, 0049	2060, 26	, 9E-4	2544, 3	2, 5E-4
539,3	0,0095	806,1	0,1065	1191, 80	, 0045	1586,5 0	, 0073	2084, 08	, 1E-4	2560, 4	3, 7E-4
545,1	0,0040	822,8	0,0021	1200, 10	, 0047	1596,80	, 0170	2098, 28	, 3E-4	2585, 4	3, 9E-4
556,0	0,0106	842,1	0,0013	1211, 10	, 0103	1612,80	, 0041	2107, 27	, 1E-4	3023, 8	7, 4E-4
564,4	0,0655	851,1	0,0013	1219, 40	, 0113	1626,3 0	, 0093	2118, 77	, 7E-4	3059, 8	4E -4
573,4	0,0137	859,5	0,0019	1232, 30	, 0125	1645,00	, 0027	2131, 06	, 7E-4		
581,1	0,0086	863,3	0,0032	1243, 90	, 0061	1651,40	, 0020	2143, 85	, 5E-4		
596,5	0,0021	869,1	0,0020	1261, 20	, 0137	1661,10	, 0010	2156, 77	, 4E-4		
607,5	0,0020	876,2	0,0013	1292, 10	, 0046	1754,9 3	, 3E-4	2168,26	, 3E-4		

\tilde{v} [cm ⁻¹]	In.	\tilde{v} [cm ⁻¹]	In.	\tilde{v} [cm ⁻¹]	In.	\tilde{v} [cm ⁻¹] In.	\tilde{v} [cm ⁻¹] In.
407,5	0,0020	544,5	0,0362	738,0	0,0018	1099,9 0,0110	1357,6 0,0015
416,5	0,0012 5	50, 3	0,0451 7	46, 3	0,0111	1124,9 0, 0106	1376,9 0, 0069
430,7	0,0021 5	60, 5	0,0296 7	62, 4	0,0034	1147,4 0, 0127	1425,80, 0255
435,2	0,0014 5	69, 5	0,0110 7	70, 1	0,0171	1157,1 0, 0149	1430,3 0, 0262
441,0	0,0027 5	74, 0	0,05337	96, 5	0,0331	1175,7 0, 0090	1455,3 0, 0221
449,3	0,0041 5	79, 8	0,0086 8	05, 5	2,9E-4	1183,4 0, 0210	1462,4 0, 0268
453,8	0,0014 5	88, 8	0,0017 8	49, 2	2,7E-4	1187,9 0, 0224	1493,3 0, 0011
458,3	0,0010 5	95, 9	0,0012 8	88, 4	6,3E-4	1216,9 0, 0055	1497,80, 0011
462,8	0,0015 6	02, 3	0,0011 9	25, 0	0,0014	1226,5 0, 0051	1508,1 0, 0011
468,0	0,0014 6	12, 6	0,0271 9	39, 8	0,0020	1245,1 0, 0020	1517,77, 8E-4
478,9	0,0191 6	21, 6	2,1E-4	962,9	0,0026	1268,9 0, 0022	1530,60, 0016
483,4	0,0056 6	60, 8	0,0011 1	034, 30	, 0138	1277,9 0, 0012	1537,0 0, 0024
495,6	0,0013 6	66, 6	2,8E-4	1067,1 0	, 0094	1306,2 0, 0014	1542,1 0, 0031
500,1	0,0013 7	06, 5	0,0111 1	071, 60	, 0095	1321,0 0, 0021	1554,3 5, 3E-4
511,0	0,0017 7	11, 0	0,0098 1	083, 20	, 0098	1337,17, 3E-4	1571,1 8, 6E-4
526,5	0,3518 7	32, 8	0,0014 1	091, 50	, 0105	1344,8 7, 4E-4	1582,64, 4E-4

C₁₂₀O:

ĩ [cm⁻¹]	In.	\tilde{v} [cm ⁻¹]	In.	ĩ [cm⁻¹]	In.	\tilde{v} [cm ⁻¹] In.	\tilde{v} [cm ⁻¹] In.
406,3	6,2E-4	563,8	0,0128	757,9	5,2E-4	1141,7 0,0056	1358,9 0,0023
415,9	0,0011 5	68, 3	0,0030 7	65, 0	0,0153	1148,1 0, 0072	1375,00, 0010
424,9	7,4E-4	573,4	0,0279 7	71, 4	0,0016	1166,1 0, 0111	1429,60, 0280
430,7	0,0011 5	88, 2	0,0061 7	80, 4	0,0019	1182,2 0, 0129	1450,2 0, 0067
440,3	0,0016 6	06, 2	0,0102 7	95, 8	3,4E-4	1187,3 0, 0145	1463,7 0, 0126
444,8	9,3E-4	627,4	8,5E-4	806,7	0,0092	1195,6 0,0033	1483,0 0,0012
448,7	0,0013	651,2	1,3E-4	831,2	0,0016	1218,1 0,0075	1493,3 0,0024
462,2	9,8E-4	659,5	3E-4	849,2	0,0352	1227,8 0,0021	1499,7 0,0016
467,3 9,	2E-4	666,64,	8E-4	928,9	5,9E-4	1245,8 0,0025	1507,4 0,0014
478,3	0,0246	674,3	2,3E-4	960,4	0,0114	1255,4 0,0011	1511,3 0,0013
490,5	8,3E-4	693,0	7,3E-4	964,2	0,0090	1268,9 0,0039	1522,2 0,0010
496,3	5,7E-4	711,0	0,0066	1015,7	0,0194	1286,9 0,0010	1532,5 0,0024
506,5	4,9E-4	725,7	0,0026 1	033, 00	, 1097	1299,1 0, 0015	1542,1 0, 0038
511,0	6E-4	732,8	0,0014 1	062, 60	, 0135	1308,1 0, 0029	1561,49, 9E-4
526,5	0,3611 7	39, 2	7,7E-4	1101,20	, 0462	1322,9 0, 0030	1570,4 0, 0013
550,9	0,0422 7	46, 3	0,0038 1	120, 40	, 0031	1338,4 0, 0017	1589,7 0, 0010

C₁₂₀O₂:

ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ν̃ Ι		ĩ	Ι
403,0	3,7E-4	514,9	0,0022	691,7	3,1E-4	952,0	0,0082	1168,7 0	,0032	1454,7	0,0041
406,3	4E-5	527,1	0,1061	709, 7	8,4E-4	961, 7	0,0100	1175, 10,	0032	1463,7	0, 0039
410,8	1,8E-4	537, 4	0,0113	718, 7	0,0014	975,8	0,0012	1189, 90,	0065	1493,3	1, 8E-4
415,9	3E-4	552,2	0,0206	729, 6	0,0013	983,5	0,0037	1220, 10,	0020	1501,0	2, 8E-4
422,3	0,0011	563,8	0,0035	738, 0	3,7E-4	992, 5	0,0039	1231, 05,	9E-4	1510, 0	1, 2E-4
425,5	9,5E-4	569, 5	0,0074	748, 2	0,0031	1007,9	0, 0432	1250, 93,	7E-4	1529, 3	3E -4
437,1	0,0027	576,6	0,0018	750, 8	0,0016	1034,3	0, 0049	1259, 98,	8E-4	1536, 3	2, 3E-4
447,4	0,0011	581,8	0,0016	757, 9	7,4E-4	1047, 80	0, 0121	1269, 60,	0021	1543,4	3, 9E-4
455,1	0,0015	586,3	0,0073	763, 7	0,0026	1058,7	0, 0076	1286, 92,	6E-4	1555, 6	2, 5E-4
465,4	0,0017	591,4	0,0017	772, 7	8E-4	1064,5	0, 0054	1297, 24,	4E-4	1564, 0	6E -4
469,9	0,0021	599,1	0,0072	776, 5	0,0013	1075,40	0, 0025	1321, 66,	4E-4	1570, 4	3, 7E-4
471,8	0,0024	607,5	0,0011	781, 7	6,2E-4	1090, 20	0, 0026	1344, 15,	6E-4	1592, 3	6E -4
480,2	0,0040	617,8	0,0025	792, 0	0,0025	1098,6	0, 0023	1349, 34,	7E-4		
487,3	0,0012	631,3	5,9E-4	807,4	1,9E-4	1108, 90	0, 0316	1356, 43,	2E-4		
493,0	0,0013	651,8	3,4E-4	815,1	6,8E-4	1124, 90	0, 0016	1426, 40,	0043		
502,0	0,0012	658,9	2,5E-4	838,9	0,0015	1137,8	0, 0039	1430, 30,	0039		
510,4	0,0012	672,4	1,6E-4	937,2	5,2E-4	1153, 20	0, 0015	1443, 80,	0024		

C₁₃₀O(I):

$\tilde{v} [cm^{-1}]$	In.	$\tilde{v} [cm^{-1}]$	In.	$\tilde{v} [cm^{-1}]$	In.	\tilde{v} [cm ⁻¹] In.	\tilde{v} [cm ⁻¹] In.
405,0	0,0023	554,1	0,0085	708,4	0,0019	939,2 2,4E-4	1261,9 0,0233
413,3	0,0015 5	61, 2	0,0124 7	11, 0	0,0011	954,6 0,0062	1309,40, 0013
426,2	0,0010 5	71, 5	0,0107 7	17, 4	5,8E-4	971,9 0,0039	1322,9 0, 0028
433,9	0,0010 5	75, 3	0,0199 7	25, 7	0,0186	1005,4 0, 0390	1357,60, 0010
446,8	0,0010 5	83, 7	0,0161 7	38, 0	0,0015	1027,9 0, 0881	1373,7 0, 0014
455,8	0,0055 5	90, 1	0,0018 7	47, 0	0,0014	1043,9 0, 0256	1405,2 0, 0050
459,6	0,0087 6	03, 0	0,0062 7	58, 5	3,8E-4	1057,4 0, 0295	1420,1 0, 0071
476,3	0,0034 6	10, 7	0,0021 7	65, 6	0,0037	1076,7 0, 0278	1431,60, 0490
483,4	0,0021 6	40, 9	0,0064 7	70, 1	7,9E-4	1096,7 0, 0625	1442,0 0, 0096
489,8	0,0064 6	44, 8	0,0026 7	95, 8	0,0458	1115,3 0, 0189	1462,4 0, 0101
504,0	0,0022 6	49, 3	1,3E-4	808,0	0,0360	1132,7 0, 0086	1493,3 0, 0044
506,5	0,0030 6	57, 6	1E-4	829,2	0,0088	1152,60, 0072	1512,6 6E -4
514,3	0,0107 6	61, 5	3,4E-4	840,2	0,0040	1164,2 0, 0061	1533,8 6, 2E-4
526,5	0,1037 6	69, 2	0,0014 8	46, 0	0,0213	1181,5 0, 0053	1542,1 6, 9E-4
536,1	0,0124 6	76, 9	0,0105 9	00, 6	2,5E-4	1187,3 0, 0050	1566,60, 0018
542,5	0,0079 6	92, 3	0,0042 9	08, 3	1,8E-4	1218,1 0, 0037	1585,2 6, 3E-4
550,3	0,0038 7	04, 5	0,0010 9	32, 1	2,5E-4	1230,4 0, 0011	

ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι
405,0	3,7E-4	547,0	0,0159	696,2	8,7E-4	808,7	0,0089	1148,1	0,0101	1375,6	0,0039
414,0	0,0021	554,8	0,0438	704, 5	0,0014	828,6	0,0068	1164, 2	0, 0121	1414,90), 0850
428,8	0,0024	563,8	0,0355	711, 6	0,0104	843,4	0,0697	1181, 5	0, 0163	1428,40), 2001
441,0	0,0141	570,2	0,0165	719, 3	0,0019	896,7	0,0022	1187, 3	0, 0162	1443,1 (), 0591
453,2	0,0162	576,6	0,0482	722, 5	0,0024	932,7	0,0024	1218, 1	0, 0108	1453,40), 0614
466,7	0,0202	583,7	0,0082	733, 5	0,0052	941,7	0,0041	1227, 8	0, 0038	1462,4 (), 0322
477,0	0,0097	590,1	0,0094	745, 7	0,0210	948,8	0,0028	1246, 4	0, 0034	1490,70), 0041
486,6	0,0034	602,3	0,0163	758, 5	0,0024	959,1	0,0037	1260, 6	0, 0033	1501,60), 0024
495,6	0,0023	617,1	0,0014	764, 3	0,0134	970,7	0,0084	1269, 6	0, 0051	1512,60), 0043
501,4	0,0049	625,5	0,0175	771, 4	0,0029	1004,7	0, 0461	1288, 9	0, 0030	1537,00), 0035
507,2	0,0039	630,0	0,0027	775, 9	0,0026	1025,9	0, 1407	1298, 5	0, 0037	1542,10), 0041
518,8	0,0134	644,8	0,0250	782, 3	0,0037	1058,1	0, 0437	1319, 1	0, 0070	1564,60), 0057
526,5	0,2606	658,9	7,8E-4	784,2	0,0045	1072,2	0, 0432	1323, 6	0, 0074	1569,80), 0050
533,5	0,1119	671,7	0,0635	795, 8	0,0519	1097,3	0, 1048	1333, 9	0, 0049	1585,80), 0059
541,3	0,0228	687,2	0,0021	804, 8	0,0064	1126,2	0, 0733	1357, 6	0, 0052		

C₁₃₀O(III):

ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι	ĩ	Ι
413,3	0,0034	546,4	0,0299	666,0	0,0073	806,7	0,0285	1147,4	0,0116	1416,1	0,0694
421,0	0,0022	554,1	0,0361	671, 1	0,0697	824,7	0,0070	1157, 1	0, 0147	1428,4	0, 1777
426,2	0,0021	563,1	0,0364	677, 5	0,0123	849,8	0,0634	1161, 6	0, 0155	1454,1	0, 0519
432,6	0,0055	569,5	0,0092	702,0	0,0023	878,7	5,4E-4	1179,6	0,0250	1462,4	0,0232
441,6	0,0086	575, 3	0,0617	708,4	0,0059	895, 5	8,4E-4	1187,3	0,0207	1490, 7	0,0054
448,0	0,0019	583,7	0,0239	712,2	0,0055	923,1	0,0015	1218,8	0,0258	1511,9	0,0023
461,5	0,0408	588,8	0,0089	718, 0	0,0019	942,4	0,0030	1245, 8	0, 0029	1533,1	0, 0027
475,7	0,0153	602,3	0,0241	725, 7	0,0057	959,1	0,0050	1259, 3	0, 0024	1537,6	0, 0028
478,9	0,0168	615,2	0,0014	733, 5	0,0049	970,0	0,0118	1268, 9	0, 0035	1542,8	0, 0034
485,3	0,0037	624,2	0,0256	745, 0	0,0231	1007,3	0, 0569	1291, 4	0, 0015	1565,9	0, 0055
505,3	0,0030	631,3	0,0023	759, 8	0,0083	1027,2	0, 1453	1298, 5	0, 0020	1570,4	0, 0057
513,6	0,0101	637,0	7,6E-4	766,2	0,0138	1057,4	0, 0357	1322, 3	0, 0109	1585,8	0, 0033
518,8	0,0163	642,2	0,0064	771, 4	0,0025	1072,9	0, 0335	1334, 5	0, 0043		
526,5	0,2684	648,0	0,0074	781, 0	0,0039	1096,0	0, 0989	1357, 6	0, 0041		
534,8	0,0839	650,5	0,0013	784, 9	0,0035	1127,5	0, 0190	1369, 9	0, 0042		
542,5	0,0578	659,5	6,4E-4	795,8	0,0683	1144,2	0, 0112	1378, 9	0, 0024		

D DFT-Rechnungen von IR-Spektren

Die unskalierten Frequenzen sind in cm⁻¹ und die gerechneten IR-Intensitäten in km mol⁻¹ angegeben.

C₇₀:

\tilde{v} [cm ⁻¹]	I _{cal}	Sym.	\tilde{v} [cm ⁻¹]	I _{cal}	Sym.	$\tilde{v} [cm^{-1}]$	I _{cal}	Sym.
314	0,19	A_2''	693	0,07	A_2''	1273	0,64	E'_1
318	0,12	E'_1	716	0,02	E'_1	1303	0,53	E'_1
354	0,35	E'_1	730	4,34	E'_1	1318	1,65	A_2''
405	0,13	E'_1	820	0,10	E'_1	1394	2,26	E'_1
451	7,51	A_2''	893	0,44	E'_1	1415	85,21	E'_1
496	0,02	E'_1	895	0,43	A_2''	1445	10,89	A_2''
526	18,78	E'_1	1074	1,42	E'_1	1461	2,97	E'_1
557	16,01	A_2''	1127	9,62	A_2''	1534	1,65	E'_1
564	9,80	E'_1	1165	0,17	E'_1	1534	0,41	A_2''
635	4,51	E'_1	1203	2,97	A_2''			
660	6,62	E'_1	1238	0,74	E'_1			

ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}	
202	0,02	B_1	521	1,16	B_2	718	4,16	B_2	1111	0,06	\mathbf{B}_2	1329	1,87	\mathbf{B}_3
221	0,08	\mathbf{B}_3	529	21,22	\mathbf{B}_3	719	0,06	B_3	1114	1,19	\mathbf{B}_3	1339	4,98	B_2
237	0,05	\mathbf{B}_2	530	0,12	\mathbf{B}_1	721	0,06	\mathbf{B}_1	1121	10,17	\mathbf{B}_1	1350	4,82	\mathbf{B}_3
271	0,04	\mathbf{B}_3	538	1,55	B_3	724	1,34	B_2	1129	0,62	\mathbf{B}_1	1352	0,13	B_2
277	0,06	\mathbf{B}_2	546	14,34	\mathbf{B}_1	726	0,01	\mathbf{B}_1	1139	0,27	\mathbf{B}_3	1355	0,66	B_1
283	0,38	\mathbf{B}_2	554	1,50	B_2	727	4,30	B_3	1147	0,33	\mathbf{B}_2	1370	0,49	B_1
290	0,04	\mathbf{B}_1	559	7,30	\mathbf{B}_3	730	0,08	B_1	1151	0,12	\mathbf{B}_1	1377	13,39	\mathbf{B}_2
310	0,09	B_1	560	7,41	\mathbf{B}_2	731	1,20	B_3	1161	5,40	\mathbf{B}_2	1388	0,01	B_3
314	0,00	\mathbf{B}_3	601	0,27	B_2	736	0,58	\mathbf{B}_2	1165	3,46	\mathbf{B}_3	1404	0,17	\mathbf{B}_3
325	0,12	\mathbf{B}_2	607	0,11	\mathbf{B}_3	737	1,50	B_2	1188	0,27	\mathbf{B}_1	1406	0,07	B_1
341	0,26	\mathbf{B}_3	614	7,33	\mathbf{B}_1	741	0,60	B_1	1199	8,24	\mathbf{B}_2	1415	1,86	B_2
361	0,01	\mathbf{B}_3	619	0,14	\mathbf{B}_1	743	1,07	B_1	1210	4,57	\mathbf{B}_3	1422	6,54	B_1
368	0,01	B_1	623	0,21	\mathbf{B}_2	744	4,79	B_3	1214	1,13	\mathbf{B}_3	1426	76,98	\mathbf{B}_3
375	0,24	B_1	634	8,05	\mathbf{B}_3	759	0,02	\mathbf{B}_2	1217	0,53	\mathbf{B}_2	1431	2,50	\mathbf{B}_2
375	0,01	\mathbf{B}_2	651	0,30	\mathbf{B}_3	762	0,05	\mathbf{B}_3	1225	0,73	\mathbf{B}_3	1437	1,15	\mathbf{B}_3
388	0,36	\mathbf{B}_3	654	7,59	\mathbf{B}_2	762	0,01	\mathbf{B}_1	1230	7,59	\mathbf{B}_2	1446	11,41	B_1
392	0,49	\mathbf{B}_2	656	0,03	\mathbf{B}_1	800	0,00	B_2	1233	0,00	\mathbf{B}_1	1449	0,25	\mathbf{B}_2
393	0,13	B_1	662	0,05	B_1	803	0,18	\mathbf{B}_3	1241	0,32	\mathbf{B}_1	1459	1,84	B_1
434	2,37	\mathbf{B}_2	672	2E-4	\mathbf{B}_1	835	0,32	\mathbf{B}_3	1257	1,20	\mathbf{B}_3	1482	2,06	\mathbf{B}_2
437	5,46	B_1	677	7,64	\mathbf{B}_3	842	0,03	\mathbf{B}_2	1258	0,00	\mathbf{B}_2	1492	1,06	\mathbf{B}_1
459	0,72	\mathbf{B}_2	680	0,34	\mathbf{B}_2	860	0,35	B_1	1259	0,16	\mathbf{B}_1	1494	9,15	\mathbf{B}_2
460	0,20	B_1	683	1,03	\mathbf{B}_1	862	0,27	\mathbf{B}_3	1278	2,02	\mathbf{B}_2	1500	4,13	\mathbf{B}_3
461	1,32	\mathbf{B}_3	689	0,00	\mathbf{B}_3	871	2,54	\mathbf{B}_2	1282	0,71	\mathbf{B}_3	1506	4,29	\mathbf{B}_3
467	0,04	\mathbf{B}_3	692	0,21	\mathbf{B}_1	886	0,02	\mathbf{B}_1	1286	0,01	\mathbf{B}_1	1506	0,19	B_1
471	0,02	\mathbf{B}_3	692	0,88	B_2	901	0,26	\mathbf{B}_3	1287	0,01	\mathbf{B}_2	1513	0,73	\mathbf{B}_3
476	0,47	B_2	693	0,73	\mathbf{B}_3	915	0,11	B_2	1300	0,04	\mathbf{B}_3	1514	2,79	B_2
483	13,23	\mathbf{B}_2	694	0,05	\mathbf{B}_2	933	0,00	\mathbf{B}_1	1302	0,68	\mathbf{B}_1	1535	2,98	B_1
486	0,16	B_1	704	1,55	B_2	1010	1,29	\mathbf{B}_2	1302	0,49	\mathbf{B}_3	1542	3,05	B_1
489	0,59	B_1	705	0,45	\mathbf{B}_3	1021	3,47	\mathbf{B}_3	1310	0,40	\mathbf{B}_2	1547	0,06	\mathbf{B}_3
501	0,95	\mathbf{B}_3	709	0,46	\mathbf{B}_1	1028	1,03	\mathbf{B}_1	1310	0,06	\mathbf{B}_3	1547	5,59	\mathbf{B}_2
511	3,88	\mathbf{B}_1	710	0,56	\mathbf{B}_2	1037	1,11	\mathbf{B}_3	1313	0,28	\mathbf{B}_1	1554	0,88	B_3
516	0,06	\mathbf{B}_2	714	1,63	\mathbf{B}_3	1050	0,03	B_2	1319	1,48	\mathbf{B}_1	1557	0,63	\mathbf{B}_2
517	0,57	\mathbf{B}_3	715	0,40	\mathbf{B}_1	1056	0,18	\mathbf{B}_1	1321	2,37	\mathbf{B}_2	1567	0,57	B_1

ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}	
198	0,04	A_1	510	0,16	A_1	722	0,35	A_1	1134	1,10	A_1	1354	0,29	\mathbf{B}_1
201	0,02	\mathbf{B}_2	512	7,62	\mathbf{B}_1	723	2,35	B_2	1140	0,17	\mathbf{B}_2	1359	0,65	A_1
224	0,00	\mathbf{B}_1	523	0,30	B_2	726	0,33	B_2	1149	12,93	\mathbf{B}_2	1368	3,76	\mathbf{B}_1
237	0,00	A_1	528	9,15	A_1	728	0,30	A_1	1152	13,88	A_1	1376	1,00	A_1
270	0,01	A_1	530	2,08	\mathbf{B}_1	729	3,25	B_2	1171	0,14	\mathbf{B}_1	1377	2,53	\mathbf{B}_1
272	0,39	\mathbf{B}_2	534	14,38	\mathbf{B}_1	730	0,15	A_1	1182	4,13	\mathbf{B}_1	1392	3,33	\mathbf{B}_2
287	0,09	\mathbf{B}_1	535	10,43	\mathbf{B}_2	731	0,51	B_1	1189	1,98	\mathbf{B}_2	1397	0,58	A_1
288	0,18	A_1	554	7,62	\mathbf{B}_1	737	0,01	B_2	1195	0,36	A_1	1404	0,12	\mathbf{B}_2
296	0,16	\mathbf{B}_2	573	0,20	\mathbf{B}_1	737	5,86	B_1	1200	0,02	\mathbf{B}_1	1412	26,53	\mathbf{B}_1
306	0,34	\mathbf{B}_1	594	0,09	A_1	737	0,08	A_1	1202	0,22	A_1	1422	11,01	\mathbf{B}_2
325	0,00	A_1	596	0,21	B_2	741	0,15	A_1	1219	1,27	\mathbf{B}_2	1425	0,98	A_1
331	0,45	\mathbf{B}_2	609	0,24	\mathbf{B}_1	744	0,06	B_1	1220	0,39	A_1	1427	25,03	\mathbf{B}_1
358	0,26	\mathbf{B}_2	623	0,74	A_1	752	0,11	\mathbf{B}_2	1227	1,58	\mathbf{B}_2	1429	0,04	A_1
360	0,02	\mathbf{B}_1	628	17,80	B_2	774	0,29	B_2	1228	0,37	$A_{1} \\$	1442	2,97	A_1
368	0,38	A_1	636	2,87	\mathbf{B}_2	788	0,10	B_1	1236	0,87	A_1	1450	28,73	\mathbf{B}_2
370	0,00	\mathbf{B}_2	641	2,27	A_1	814	0,12	\mathbf{B}_1	1251	4,26	\mathbf{B}_2	1458	0,01	A_1
371	0,23	\mathbf{B}_1	649	0,34	\mathbf{B}_1	840	0,01	B_1	1254	0,02	\mathbf{B}_1	1473	3,21	\mathbf{B}_2
374	0,43	A_1	658	0,47	A_1	848	0,01	\mathbf{B}_2	1257	0,22	\mathbf{B}_1	1480	3,16	\mathbf{B}_1
385	0,06	A_1	669	1,46	\mathbf{B}_1	856	0,55	A_1	1267	0,53	\mathbf{B}_1	1491	3,00	\mathbf{B}_1
387	0,00	\mathbf{B}_1	672	0,06	A_1	860	0,05	\mathbf{B}_2	1272	0,15	\mathbf{B}_2	1501	3,89	\mathbf{B}_1
417	0,06	A_1	673	2,57	B_2	864	0,37	B_1	1279	0,29	\mathbf{B}_1	1502	0,25	\mathbf{B}_2
436	3,67	\mathbf{B}_1	679	0,50	\mathbf{B}_1	869	0,10	B_1	1287	0,64	\mathbf{B}_2	1508	0,38	\mathbf{B}_1
440	0,03	A_1	684	0,00	\mathbf{B}_1	888	0,50	A_1	1297	0,47	A_1	1512	2,48	A_1
457	0,37	A_1	689	0,41	A_1	914	1E-5	\mathbf{B}_2	1299	0,07	\mathbf{B}_1	1534	0,26	\mathbf{B}_2
458	0,89	\mathbf{B}_2	691	0,44	A_1	996	1,17	A_1	1299	0,03	\mathbf{B}_2	1545	0,14	A_1
458	0,01	\mathbf{B}_1	693	2,95	\mathbf{B}_2	1007	1,28	B_1	1299	0,47	A_1	1547	2,92	\mathbf{B}_1
463	0,02	\mathbf{B}_2	694	2,40	A_1	1014	1,41	A_1	1304	1,12	A_1	1555	0,54	\mathbf{B}_2
472	0,17	\mathbf{B}_2	695	0,36	A_1	1017	0,21	\mathbf{B}_2	1306	4,76	\mathbf{B}_2	1562	3,69	A_1
476	0,58	\mathbf{B}_1	697	0,25	\mathbf{B}_1	1039	0,45	B_1	1308	5,26	\mathbf{B}_2	1580	0,20	A_1
477	6,04	A_1	708	0,96	\mathbf{B}_1	1041	0,30	A_1	1312	0,41	A_1	1584	0,17	\mathbf{B}_1
477	1,26	\mathbf{B}_2	711	0,04	B_2	1048	0,36	\mathbf{B}_2	1316	0,64	\mathbf{B}_1	1624	0,00	A_1
488	10,36	A_1	713	1,30	\mathbf{B}_1	1111	0,06	A_1	1324	3,27	\mathbf{B}_1	1624	1,27	\mathbf{B}_2
493	2,44	\mathbf{B}_1	714	0,02	B_2	1115	6,25	\mathbf{B}_1	1327	7,24	A_1			
499	9,68	\mathbf{B}_2	715	3,46	B_2	1117	0,47	B_2	1338	4,76	\mathbf{B}_2			
504	0,01	\mathbf{B}_2	719	0,05	\mathbf{B}_1	1125	0,02	\mathbf{B}_1	1345	0,98	\mathbf{B}_2			

ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}	
203	0,00	B_2	508	0,01	\mathbf{B}_2	718	0,02	A_1	1122	0,57	A_1	1356	0,02	\mathbf{B}_1
204	0,08	A_1	511	1,97	A_1	719	0,26	\mathbf{B}_2	1126	0,14	\mathbf{B}_1	1361	1,28	A_1
213	0,01	B_1	514	11,18	\mathbf{B}_1	723	0,11	A_1	1141	11,75	A_1	1373	1,83	\mathbf{B}_1
233	0,02	A_1	526	6,00	\mathbf{B}_1	725	0,02	\mathbf{B}_2	1143	3,96	\mathbf{B}_2	1375	0,76	A_1
269	0,04	B_2	526	1,22	A_1	727	9,31	A_1	1147	6,07	\mathbf{B}_1	1384	0,62	B_2
269	0,32	A_1	531	3,01	\mathbf{B}_2	727	1,98	\mathbf{B}_2	1160	6E-5	\mathbf{B}_2	1397	12,40	\mathbf{B}_1
272	0,01	$A_{1} \\$	539	5,93	\mathbf{B}_1	729	3,31	\mathbf{B}_1	1165	7,16	\mathbf{B}_2	1399	0,69	B_2
280	0,00	B_1	542	0,07	\mathbf{B}_1	734	8,23	\mathbf{B}_1	1182	0,00	$A_{1} \\$	1400	0,80	$A_1 \\$
287	0,09	B_2	569	12,10	\mathbf{B}_1	735	0,42	\mathbf{B}_2	1195	11,44	\mathbf{B}_1	1423	129,58	\mathbf{B}_1
301	0,07	B_1	588	0,42	\mathbf{B}_2	736	5,56	\mathbf{B}_1	1197	7,92	$A_{1} \\$	1424	17,22	A_1
311	0,30	A_1	592	0,09	A_1	737	0,30	A_1	1197	3,70	\mathbf{B}_2	1425	1,28	\mathbf{B}_2
330	0,08	B_2	602	0,18	\mathbf{B}_1	740	0,12	A_1	1203	0,42	\mathbf{B}_1	1432	1,10	A_1
346	0,08	B_1	619	15,81	A_1	742	0,18	\mathbf{B}_2	1217	2,62	\mathbf{B}_2	1439	1,10	\mathbf{B}_1
353	0,09	$A_{1} \\$	623	3,75	$A_{1} \\$	769	0,18	\mathbf{B}_2	1217	10,01	\mathbf{B}_1	1442	2,55	$A_1 \\$
363	0,60	B_2	631	0,14	\mathbf{B}_2	772	0,09	\mathbf{B}_1	1230	0,11	\mathbf{B}_2	1446	2,19	A_1
367	0,00	A_1	642	3,76	A_1	775	0,19	A_1	1233	0,22	A_1	1447	3,05	\mathbf{B}_2
368	0,26	B_1	647	0,75	\mathbf{B}_2	785	0,57	\mathbf{B}_1	1241	12,37	A_1	1457	3,07	\mathbf{B}_1
372	0,02	B_2	647	0,04	\mathbf{B}_1	833	0,03	\mathbf{B}_2	1255	0,19	\mathbf{B}_1	1460	1,07	\mathbf{B}_2
378	0,29	B_1	655	0,69	\mathbf{B}_1	837	0,16	\mathbf{B}_1	1256	0,23	$A_1 \\$	1471	4,30	$A_1 \\$
382	0,19	$A_{1} \\$	664	0,31	A_1	849	1,02	A_1	1260	3,16	\mathbf{B}_2	1478	1,54	\mathbf{B}_1
417	0,32	$A_{1} \\$	665	2,64	B_2	861	0,53	\mathbf{B}_2	1272	4,29	\mathbf{B}_1	1492	13,15	$A_1 \\$
430	0,90	\mathbf{B}_1	671	3,73	\mathbf{B}_2	872	0,25	$A_{1} \\$	1273	0,24	$A_{1} \\$	1492	15,58	\mathbf{B}_1
444	0,20	B_2	678	0,01	\mathbf{B}_1	875	0,11	\mathbf{B}_1	1279	1,64	\mathbf{B}_1	1499	1,53	B_2
444	0,16	$A_{1} \\$	680	2,60	$A_{1} \\$	881	0,05	\mathbf{B}_1	1292	1,83	\mathbf{B}_2	1507	4,28	$A_1 \\$
450	5,90	B_1	682	0,44	\mathbf{B}_2	919	0,34	\mathbf{B}_2	1298	8,47	\mathbf{B}_2	1507	6,3E-4	\mathbf{B}_1
455	0,81	B_2	687	0,95	\mathbf{B}_1	959	3,24	$A_{1} \\$	1302	0,03	\mathbf{B}_1	1513	0,12	\mathbf{B}_1
460	0,14	$A_{1} \\$	690	0,48	\mathbf{B}_1	992	11,15	\mathbf{B}_1	1303	9,94	$A_{1} \\$	1538	0,24	$A_1 \\$
466	0,68	B_1	692	1,81	A_1	1010	1,23	\mathbf{B}_2	1308	0,08	\mathbf{B}_2	1539	0,09	B_2
467	3,22	B_2	695	0,56	A_1	1020	0,02	A_1	1315	9,81	A_1	1542	1,23	\mathbf{B}_1
467	0,01	A_1	695	0,99	\mathbf{B}_2	1029	3,33	\mathbf{B}_1	1320	13,02	\mathbf{B}_1	1556	0,36	\mathbf{B}_2
477	0,56	B_2	707	0,05	\mathbf{B}_1	1030	0,95	\mathbf{B}_2	1326	0,61	\mathbf{B}_2	1566	10,47	A_1
483	0,04	\mathbf{B}_1	711	3,23	\mathbf{B}_1	1049	0,19	A_1	1330	6,66	\mathbf{B}_2	1571	1,64	B_2
491	3,03	B_2	711	0,82	A_1	1076	0,83	\mathbf{B}_1	1334	1,17	A_1	1603	0,22	A_1
492	12,77	A_1	712	0,18	\mathbf{B}_2	1098	1,82	A_1	1352	5,47	B_1			
499	9,05	B_2	715	3,01	\mathbf{B}_1	1098	2,52	\mathbf{B}_2	1355	2,57	\mathbf{B}_2			

C₇₈ (D₃):

ĩ [cm⁻¹]	I _{cal}	Sym.	\tilde{v} [cm ⁻¹]	I _{cal}	Sym.	ĩ [cm⁻¹]	I _{cal}	Sym.	ĩ [cm⁻¹]	I _{cal}	Sym.
194	0,02	E	607	0,10	E	833	0,02	E	1307	0,31	Е
194	0,02	Е	608	14,94	A_2	849	1,45	Е	1309	8,05	A_2
230	0,15	Е	615	0,04	A_2	851	0,36	A_2	1316	0,03	A_2
264	0,07	A_2	628	0,49	E	880	0,05	E	1316	0,13	Е
284	0,11 E	2	642	2,33 E	,	896	0,42 A	A 2	1320	3,34	Е
290	0,36	Е	654	0,12	Е	933	0,02	A_2	1327	2,05	E
309	0,08	A_2	667	2,48	Е	1003	2,93	Е	1351	10,71	Е
328	0,19 E	2	671	0,31 A	2	1018	0,16 E	2	1360	0,87 A	A 2
356	0,14	E	679	1,29	Е	1035	5,30	A_2	1375	1,56	Е
365	0,05	E	681	1,27	Е	1042	0,39	Е	1399	1,66	A_2
375	0,01	A_2	686	5,13	Е	1102	0,12	Е	1411	3,22	Е
384	0,09 E	2	692	1,71 E	4	1116	6,59 A	A 2	1415	0,20	A_2
388	0,02	E	701	0,60	Е	1121	1,55	A_2	1419	22,61	A_2
432	4,50	E	706	0,02	Е	1126	0,29	E	1427	3,57	Е
433	4,89	A_2	708	1,27	A_2	1147	4,06	Е	1435	5,24	E
451	0,04 E	2	714	0,07 E	4	1169	0,06 E	2	1447	16,09	E
466	0,03 E	2	716	1,00 A	2	1179	0,04	A_2	1454	4,91	E
468	1,26	E	719	2,38	Е	1196	0,98	Е	1483	3,94	E
483	0,10	A_2	722	5,12	Е	1200	15,58	E	1492	2,08	A_2
484	0,01	Е	726	0,11	A_2	1222	1,32	A_2	1505	3,05	Е
487	0,41	A_2	727	0,05	Е	1227	0,76	E	1522	1,26	A_2
496	9,35	E	735	1,88	Е	1233	0,94	E	1524	0,50	Е
506	0,89	A_2	735	1,73	A_2	1243	1,10	E	1543	5,79	A_2
511	4,35	E	739	3,04	Е	1256	1,73	E	1547	4,90	Е
514	3,38 E	2	742	1,08 E	4	1272	0,14 A	A 2	1550	0,32	Е
527	0,61	E	745	0,39	A_2	1279	0,03	E	1565	0,05	Е
535	11,51	A_2	749	0,67	Е	1291	0,06	E	1570	0,14	Е
554	6,29 E	2	766	0,13 A	2	1293	0,24	A_2			
554	5,67	A_2	820	0,03	E	1302	0,28	Е			

ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}		ĩ	I _{cal}	
150	2E-5	\mathbf{B}_1	486	1,06	\mathbf{B}_2	701	0,58	B ₃	1052	9,21	\mathbf{B}_2	1312	0,35	\mathbf{B}_2
178	0,40	\mathbf{B}_2	503	0,13	\mathbf{B}_2	702	0,63	\mathbf{B}_1	1077	0,01	\mathbf{B}_3	1319	10,14	\mathbf{B}_3
186	0,23	\mathbf{B}_3	509	0,51	\mathbf{B}_1	705	0,20	B_3	1086	0,14	\mathbf{B}_2	1321	0,42	\mathbf{B}_1
215	0,02	\mathbf{B}_2	511	10,09	B_3	706	2,50	\mathbf{B}_1	1109	0,62	\mathbf{B}_3	1337	0,93	\mathbf{B}_2
230	0,15	\mathbf{B}_1	517	7,29	\mathbf{B}_3	712	0,11	\mathbf{B}_3	1110	0,26	\mathbf{B}_1	1337	0,68	\mathbf{B}_1
231	1,55	\mathbf{B}_3	519	2,66	\mathbf{B}_2	712	0,48	\mathbf{B}_1	1123	0,07	\mathbf{B}_3	1343	11,44	\mathbf{B}_3
243	0,66	\mathbf{B}_3	522	15,79	\mathbf{B}_1	714	0,51	\mathbf{B}_2	1129	1,87	\mathbf{B}_1	1347	0,00	\mathbf{B}_2
247	0,08	\mathbf{B}_2	533	0,77	\mathbf{B}_3	715	3,74	\mathbf{B}_2	1138	5,72	\mathbf{B}_2	1366	1,94	\mathbf{B}_1
278	0,04	\mathbf{B}_1	535	0,00	\mathbf{B}_2	723	0,01	\mathbf{B}_2	1141	0,57	\mathbf{B}_2	1370	5,71	\mathbf{B}_2
292	0,08	\mathbf{B}_3	555	12,11	\mathbf{B}_1	726	11,40	\mathbf{B}_3	1144	4,48	\mathbf{B}_1	1378	0,67	\mathbf{B}_3
303	0,26	\mathbf{B}_2	568	0,83	\mathbf{B}_3	731	1,03	\mathbf{B}_1	1146	8,98	\mathbf{B}_3	1392	1,85	\mathbf{B}_2
303	0,00	А	569	0,98	\mathbf{B}_2	731	0,61	\mathbf{B}_2	1174	12,18	\mathbf{B}_3	1393	7,08	\mathbf{B}_1
313	0,16	\mathbf{B}_2	570	0,12	\mathbf{B}_2	742	0,26	\mathbf{B}_1	1180	1,97	\mathbf{B}_1	1402	0,62	\mathbf{B}_2
319	0,35	\mathbf{B}_1	585	0,11	\mathbf{B}_1	745	6,70	\mathbf{B}_3	1188	1,87	\mathbf{B}_2	1403	0,37	\mathbf{B}_3
335	0,36	\mathbf{B}_3	591	0,85	\mathbf{B}_3	747	0,75	\mathbf{B}_1	1197	0,21	\mathbf{B}_3	1410	0,06	\mathbf{B}_1
344	0,44	\mathbf{B}_1	606	0,00	\mathbf{B}_3	755	0,14	\mathbf{B}_3	1200	0,29	\mathbf{B}_1	1416	6,12	\mathbf{B}_2
353	0,00	\mathbf{B}_3	625	1,15	\mathbf{B}_1	757	0,18	\mathbf{B}_2	1203	0,25	\mathbf{B}_2	1424	6,82	\mathbf{B}_1
355	0,38	\mathbf{B}_2	626	2,98	\mathbf{B}_3	792	0,12	\mathbf{B}_3	1217	5,54	\mathbf{B}_3	1433	23,91	\mathbf{B}_3
364	0,15	\mathbf{B}_1	631	0,08	\mathbf{B}_2	793	0,10	\mathbf{B}_2	1222	1,19	\mathbf{B}_3	1446	11,30	\mathbf{B}_1
379	0,71	\mathbf{B}_1	643	0,08	\mathbf{B}_1	810	0,00	\mathbf{B}_1	1229	0,18	\mathbf{B}_1	1457	0,73	\mathbf{B}_2
392	9,29	\mathbf{B}_3	647	0,19	\mathbf{B}_3	816	0,73	\mathbf{B}_2	1239	0,50	\mathbf{B}_2	1459	4,94	\mathbf{B}_3
393	11,43	\mathbf{B}_2	652	0,20	\mathbf{B}_1	819	0,63	\mathbf{B}_3	1244	0,46	\mathbf{B}_1	1475	7,16	\mathbf{B}_1
401	0,40	\mathbf{B}_1	657	5,37	\mathbf{B}_2	826	0,52	\mathbf{B}_2	1245	3,30	\mathbf{B}_2	1480	9,89	\mathbf{B}_2
419	0,11	\mathbf{B}_2	660	0,18	\mathbf{B}_2	833	0,02	\mathbf{B}_3	1255	1,20	\mathbf{B}_3	1484	0,11	\mathbf{B}_3
423	0,00	\mathbf{B}_3	666	3,62	\mathbf{B}_3	863	0,02	\mathbf{B}_1	1259	1,68	\mathbf{B}_2	1498	0,79	\mathbf{B}_1
436	4,52	\mathbf{B}_2	668	1,09	\mathbf{B}_2	871	0,22	\mathbf{B}_2	1263	8,57	\mathbf{B}_1	1500	0,03	\mathbf{B}_3
439	1,44	\mathbf{B}_3	670	1,21	\mathbf{B}_1	876	0,71	\mathbf{B}_3	1272	2,53	\mathbf{B}_1	1511	0,94	\mathbf{B}_1
443	0,36	\mathbf{B}_1	673	3,75	\mathbf{B}_3	912	0,07	\mathbf{B}_1	1273	9,95	\mathbf{B}_2	1514	0,80	\mathbf{B}_2
451	0,11	\mathbf{B}_1	681	1,42	\mathbf{B}_1	964	0,08	\mathbf{B}_3	1286	0,02	\mathbf{B}_3	1515	11,97	\mathbf{B}_3
457	6,28	\mathbf{B}_2	681	10,89	\mathbf{B}_3	982	1,13	\mathbf{B}_2	1290	0,23	\mathbf{B}_2	1526	2,21	\mathbf{B}_2
464	9,46	\mathbf{B}_1	683	0,66	\mathbf{B}_1	984	0,96	\mathbf{B}_1	1293	0,22	\mathbf{B}_3	1531	1,03	\mathbf{B}_1
467	1,29	\mathbf{B}_2	690	2,41	\mathbf{B}_1	995	4,42	B_1	1295	1,04	\mathbf{B}_2	1536	0,16	\mathbf{B}_3
471	0,05	\mathbf{B}_3	690	0,53	\mathbf{B}_3	1011	0,05	\mathbf{B}_3	1296	0,28	\mathbf{B}_1	1554	0,00	\mathbf{B}_3
474	0,11	\mathbf{B}_1	696	1,21	\mathbf{B}_2	1016	1,26	\mathbf{B}_2	1299	1,64	\mathbf{B}_3	1557	0,20	\mathbf{B}_2
475	3,13	\mathbf{B}_3	700	6,64	\mathbf{B}_2	1046	0,64	\mathbf{B}_1	1300	0,19	\mathbf{B}_1	1558	2,87	\mathbf{B}_1

ĩ	I _{cal}	ĩ	I _{cal}	\tilde{v} I _{cal}	\tilde{v} I _{cal}	\tilde{v} I _{cal}	ĩ	I _{cal}
197	0,02 B	477	8,28 B	678 0,26 A	799 0,11 B	1209 3,73 B	1376	5,64 B
197	0,00 A	482	1,06 A	680 5, 27 B	811 0, 50 A	1215 0,43 B	1384	13,84 B
211	0,17 B	485	0,63 B	683 6, 28 B	834 0, 02 B	1216 1,11 A	1386	11,66 A
222	0,00 A	493	2,55 B	687 0, 00 A	840 1, 49 A	1218 3,46 B	1390	2,18 B
226	0,04 A	494	1,01 A	690 1, 07 B	848 0, 01 B	1227 1,03 B	1396	2,06 A
265	0,01 A	499	0,00 A	6901, 23 A	853 0, 11 A	1228 0,58 A	1399	0,53 B
266	0,05 B	499	3,06 B	692 0, 13 B	855 1, 13 B	1231 3,33 A	1402	0,55 A
271	0,06 B	508	0,25 A	694 0, 27 A	858 0, 72 B	1242 0,00 A	1408	0,17 A
277	0,09 A	509	8,34 B	6940, 03 A	860 0, 27 A	1243 0,02 B	1410	3,43 B
281	0,07 A	511	3,06 B	6982, 71 B	881 0, 07 B	1248 8,69 B	1417	9,44 B
288	0,04 B	512	0,08 A	7060, 09 B	881 1, 05 A	1253 0,58 A	1434	0,59 A
289	0,01 B	515	0,01 A	7100, 35 A	887 0, 00 A	1257 0,00 A	1438	2,00 A
313	0,42 A	521	10,91 B	7100, 57 A	931 0, 04 B	1276 0,62 B	1444	14,33 B
320	0,04 A	523	0,69 B	7110, 66 B	994 0, 01 A	1276 0,01 A	1448	21,23 B
328	0,05 B	523	0,01 A	7120, 55 A	997 0, 61 B	1279 0,94 B	1449	0,08 A
341	0,02 B	525	2,40 B	7150, 00 B	999 2, 26 B	1284 0,04 A	1452	1,76 A
344	0,29 A	550	3,39 B	716 0,67 A	1004 0,18 A	1287 0,90 B	1453	12,90 B
350	0,03 A	554	4,95 A	716 0,56 B	1009 0, 61 A	1293 0,88 A	1466	5,71 B
353	0,06 B	569	0,93 A	718 0,94 B	1012 0,11 B	1296 0,06 B	1467	2,21 A
357	0,34 A	591	2,30 A	722 5,71 A	1022 0,01 A	1298 0,46 A	1487	4,06 B
362	0,29 B	596	0,30 B	724 0,72 B	1026 0,55 A	1303 1,88 B	1493	2,61 A
364	0,27 A	599	0,19 A	725 0, 69 B	1026 1,66 B	1306 1,88 B	1495	0,69 B
367	0,24 B	610	0,07 A	727 0,13 A	1097 1,03 A	1307 0,35 A	1496	0,15 A
367	0,10 A	613	13,56 B	728 6,57 B	1101 0, 54 B	1309 0,07 A	1504	3,37 A
371	0,20 B	618	1,64 B	728 0,37 A	1108 1,30 B	1311 1,40 B	1504	0,57 B
375	0,04 A	619	0,03 A	730 0,03 A	1116 2,44 B	1312 0,02 A	1511	3,22 B
406	0,25 A	622	6,43 B	732 1,00 A	1117 6,15 A	1315 0,01 A	1514	2,41 A
418	3,69 B	629	5,08 B	733 4,71 B	1126 3,97 B	1315 3,85 B	1520	0,00 A
424	3,28 A	631	0,00 A	734 0, 12 B	1127 0,00 A	1321 1,18 B	1521	3,86 B
431	0,11 B	643	1,80 A	7350, 19 A	1136 5,26 B	1326 0,64 B	1531	0,83 A
433	1,29 B	644	0,09 B	7380, 35 A	1140 7,56 B	1326 0,72 A	1538	2,43 B
435	0,56 A	653	3,34 A	738 4,56 B	1145 0,50 A	1334 11,45 B	1544	2,69 A
444	0,01 A	654	0,73 A	743 0,10 A	1153 2, 58 A	1341 0,12 A	1550	0,84 B
453	0,01 A	655	1,45 B	743 0,59 B	11595, 72 A	1344 7,12 A	1552	0,05 A
454	2,10 B	659	2,61 B	748 2,00 A	1182 0, 18 A	1348 3,60 A	1559	0,01 B
455	0,21 B	661	0,35 B	748 5,62 B	1185 0,14 B	1349 9,77 B	1561	1,34 A
460	1,87 B	661	0,45 A	765 0, 18 B	1192 3,21 B	1353 2,78 B	1571	6,65 B
468	2,12 A	668	0,12 A	784 0,49 A	1199 2,03 A	1356 2,61 A	1576	5,46 A
473	7,77 A	674	0,09 A	791 0,06 B	1199 0,80 B	1364 7,78 B	1600	0,89 A
475	0,43 B	674	5,23 B	793 0,08 A	1207 4,08 A	1374 0,44 A	1603	3,44 B

ĩ	I _{cal}	ĩ	I _{cal}	\tilde{v} I _{cal}	\tilde{v} I _{cal}	$\tilde{\nu} ~~ I_{cal}$	ĩ	I _{cal}	
177	0,18 B	469	0,32 A	674 4,88 B	797 0,13 B	1205 1,11 B	1373	5,95 A	
193	0,00 A	470	1,13 B	676 0, 01 A	809 0, 67 A	1208 1,30 A	1374	7,27 A	
200	0,01 A	473	1,29 B	676 0, 72 A	827 0, 19 B	1212 0,50 B	1380	10,46 B	
203	0,10 B	483	2,40 B	677 0, 50 B	835 1, 06 A	1216 7,87 B	1384	2,54 B	
216	0,01 A	487	1,51 A	683 8, 15 B	837 0, 30 B	1223 0,06 A	1394	1,20 B	
246	0,01 A	493	0,18 A	686 1, 25 B	844 0, 80 A	1224 0,78 B	1395	1,36 A	
256	0,09 B	496	5,44 B	687 0, 12 A	851 0, 00 B	1227 0,19 A	1398	0,11 A	
263	0,03 B	503	0,87 A	6901, 61 A	855 0, 14 A	1235 0,05 A	1405	0,13 A	
265	0,01 A	504	6,64 B	693 1, 99 B	855 1, 82 B	1240 1,14 B	1406	3,75 B	
273	0,04 B	505	2,82 B	6930, 16 A	869 0, 09 B	1241 2,45 A	1415	7,09 B	
276	0,03 A	511	0,15 A	696 0, 37 A	871 0, 32 A	1245 2,20 B	1423	4,25 A	
288	0,01 B	512	0,32 A	700 1, 25 B	885 0, 19 A	1247 5,31 B	1435	0,11 A	
293	0,43 A	515	2,09 B	701 1, 07 B	924 0, 15 B	1257 0,18 A	1443	1,28 B	
305	0,07 A	520	8,03 B	7047, 14 A	975 0, 12 A	1266 0,05 A	1444	43,44 B	
309	0,10 B	521	0,23 A	709 0, 11 B	990 0, 32 B	1272 2,46 B	1446	0,17 A	
335	0,02 B	523	1,28 B	7090, 06 A	994 1, 43 B	1277 5,08 A	1449	1,51 A	
338	0,00 A	543	2,68 B	7110, 04 A	997 0, 28 A	1280 0,51 B	1449	5,47 B	
347	0,07 A	548	3,65 A	712 0,53 B	1001 0,31 A	1281 0,52 A	1461	2,48 B	
350	0,05 A	559	2,82 A	716 0,20 A	1002 2,84 B	1287 0,04 B	1461	0,66 A	
352	0,69 A	587	1,06 A	717 0,54 B	1013 0,02 A	1291 0,00 A	1475	0,41 A	
352	0,14 B	587	0,19 B	718 0,29 B	1013 0,65 B	1297 3,40 B	1482	8,05 B	
356	0,21 B	591	1,16 A	719 0,20 A	1019 0,00 A	1301 0,19 A	1488	0,11 B	
359	0,33 B	597	18,93 B	724 1,30 B	1065 0, 54 B	1304 2,13 B	1490	3,43 B	
363	0,11 A	597	1,26 A	726 1,88 A	1091 1,16 A	1305 1,29 B	1493	1,98 A	
367	0,09 A	611	7,42 B	727 2,90 B	1092 1,57 B	1307 0,29 A	1498	0,78 B	
368	0,32 B	612	0,31 A	727 0, 02 A	1109 0,78 B	1310 0,14 A	1502	3,32 A	
397	0,10 A	615	0,95 B	727 2, 97 B	1111 1,13 A	1313 4,72 B	1510	0,11 A	
408	0,23 B	619	0,03 B	7290, 00 A	1114 2,94 B	1313 0,17 A	1513	2,52 A	
413	1,08 A	620	2,90 B	733 2, 62 B	1117 2,92 A	1319 1,24 B	1515	0,11 B	
414	2,44 B	622	0,31 A	735 0, 30 A	1133 4,92 B	1320 0,02 A	1516	3,10 A	
421	0,31 A	628	1,15 A	7364, 54 B	1134 1,82 A	1323 0,94 B	1519	2,65 B	
430	0,62 B	645	0,02 A	737 0,74 A	1136 8,13 B	1331 11,76 B	1526	0,01 A	
441	1,83 A	645	0,04 A	739 2,74 B	1141 6E -5 A	1332 11,38 A	1532	2,38 B	
442	3,31 A	651	2,71 B	742 0,08 A	1157 9, 57 A	1341 2,81 A	1540	1,18 A	
447	4,50 B	657	1,06 A	748 2,28 A	11677,66 A	1344 0,21 A	1543	3,65 B	
452	3,04 B	657	0,21 B	748 5,26 B	1178 0,83 B	1345 0,54 B	1549	1,10 A	
453	0,46 A	658	1,18 B	761 0, 13 B	1181 0,08 A	1346 9,47 B	1560	1,42 B	
454	0,06 B	660	1,23 B	775 0, 19 A	1185 1,20 B	1349 2,24 A	1563	0,03 A	
462	5,93 B	663	0,82 A	787 0,24 B	1193 2,58 B	1357 12,55 B	1596	0,00 A	
463	3,88 A	670	0,64 A	790 0,00 A	1198 0,13 A	1368 5,81 B	1598	3,23 B	
ĩ	I _{cal}	ĩ	I _{cal}	\tilde{v} I _{cal}	\tilde{v} I _{cal}	ĩ	I _{cal}	ĩ	I _{cal}
-----	------------------	-----	------------------	------------------------------	------------------------------	------	------------------	------	------------------
176	0,05 A	475	8,47 A	673 1,21 A	795 0,07 A	1211	0,31 A	1375	11,97 A
198	0,06 A	480	7,66 A	675 1, 05 A	810 0, 06 A	1213	3,02 A	1385	0,96 A
200	0,32 A	481	4,37 A	676 0, 91 A	832 0, 68 A	1215	6,37 A	1386	0,97 A
212	0,91 A	487	0,34 A	682 2, 85 A	837 0, 55 A	1223	2,95 A	1391	12,39 A
223	0,18 A	494	4,33 A	686 1, 49 A	846 0, 27 A	1227	0,80 A	1394	7,92 A
245	0,13 A	496	0,77 A	6883, 92 A	850 0, 02 A	1231	9,67 A	1400	3,37 A
264	0,02 A	500	0,24 A	689 5,19 A	854 0,58 A	1233	10,27 A	1408	1,61 A
268	0,12 A	504	0,05 A	694 0,08 A	862 1,70 A	1237	7,97 A	1411	11,03 A
275	0,05 A	506	1,63 A	6950, 56 A	870 0, 62 A	1241	6,86 A	1416	0,52 A
277	0,05 A	507	1,86 A	702 1, 55 A	874 0, 01 A	1247	4,20 A	1421	12,26 A
285	0,17 A	509	5,95 A	7040, 57 A	884 0, 78 A	1257	1,47 A	1423	4,72 A
289	0,05 A	513	5,92 A	7060, 84 A	884 0, 01 A	1258	1,53 A	1431	0,24 A
313	0,71 A	517	1,32 A	707 1, 28 A	926 0, 01 A	1266	0,23 A	1437	3,23 A
314	0,18 A	522	0,92 A	708 2, 95 A	980 3, 42 A	1268	1,37 A	1442	22,60 A
320	0,72 A	526	1,88 A	7110, 20 A	995 2, 73 A	1280	2,26 A	1449	12,30 A
336	0,06 A	528	6,63 A	7131, 02 A	997 4, 74 A	1282	1,27 A	1454	8,84 A
341	0,29 A	539	4,66 A	713 0,10 A	1001 0,13 A	1287	8,33 A	1457	32,11 A
345	0,22 A	558	2,46 A	715 0,14 A	1006 0, 84 A	1288	3,36 A	1463	11,51 A
350	0,03 A	562	1,25 A	716 0,36 A	1011 1, 36 A	1293	5,30 A	1465	0,18 A
354	0,26 A	577	0,31 A	720 1,02 A	1023 1, 34 A	1294	2,83 A	1480	1,17 A
356	0,50 A	596	5,03 A	721 2,56 A	1025 0, 76 A	1300	0,11 A	1483	0,20 A
360	0,02 A	603	0,08 A	722 6,65 A	1026 0, 13 A	1301	0,82 A	1490	1,45 A
364	0,68 A	605	0,74 A	726 0,46 A	10924, 52 A	1304	0,13 A	1493	0,12 A
367	0,30 A	612	2,37 A	728 8,82 A	1103 4, 99 A	1306	1,31 A	1495	0,57 A
368	0,21 A	616	0,29 A	730 2,81 A	1108 5, 13 A	1310	1,03 A	1499	7,10 A
369	0,21 A	619	1,29 A	730 1,67 A	1113 1, 37 A	1313	1,15 A	1505	4,62 A
407	0,41 A	623	6,80 A	731 0,21 A	1115 13, 57 A	1316	1,91 A	1506	10,82 A
415	1,68 A	626	2,54 A	733 0,71 A	1125 2, 50 A	1321	1,45 A	1511	0,13 A
423	1,11 A	631	3,82 A	734 0,55 A	1129 1, 39 A	1322	0,14 A	1512	0,31 A
426	1,29 A	638	0,04 A	734 0,25 A	1134 4, 82 A	1327	0,73 A	1519	0,02 A
430	0,34 A	646	0,01 A	737 0,18 A	11393, 19 A	1331	24,00 A	1525	2,93 A
437	0,65 A	648	0,03 A	738 1,45 A	1140 2, 67 A	1336	4,18 A	1534	1,18 A
440	0,40 A	650	0,25 A	740 0,43 A	1151 6, 99 A	1342	0,08 A	1539	3,28 A
442	1,21 A	652	1,06 A	744 4,24 A	11617,85 A	1343	2,72 A	1553	15,96 A
451	2,78 A	656	3,22 A	746 2,18 A	1173 17, 32 A	1345	2,00 A	1555	7,51 A
456	2,13 A	657	0,12 A	749 0,17 A	1178 0, 56 A	1349	4,48 A	1557	0,88 A
458	0,35 A	658	0,28 A	763 0,18 A	1186 12, 84 A	1354	0,14 A	1575	27,88 A
462	0,56 A	664	0,86 A	787 0,65 A	1189 13, 97 A	1358	1,27 A	1578	4,56 A
472	1,06 A	667	0,07 A	787 0,16 A	1192 15, 13 A	1366	9,54 A	1604	3,32 A
474	6,43 A	668	2,86 A	794 0,40 A	1207 0, 88 A	1369	4,04 A	1605	0,92 A

7 Literatur

- [1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, *Nature* **318** (1985), 162.
- [2] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, *Nature* **347** (1990), 354.
- [3] S. Iijima, *Nature* **354** (1991), 56.
- [4] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, *Nature* 386 (1997), 377.
- [5] F. Darkrim, D. Levesque, J. Chem. Phys. 109 (1998), 4981.
- [6] Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, R. E. Smalley, *Appl. Phys. Lett.* **74** (1999), 2307.
- [7] C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, Science 286 (1999), 1127.
- [8] A. Chambers, C. Park, R. T. K. Baker, N. M. Rodriguez, J. Phys. Chem. 102 (1998), 4253.
- [9] Q. Wang, J. K. Johnson, J. Chem. Phys. **110** (1999), 577.
- [10] S. Hynek, W. Fuller, J. Bentley, Int. J. Hydrogen Energy 22 (1997), 601.
- [11] P. Chen, X. Wu, J. Lin, K. L. Tan, Science 285 (1999), 91.
- [12] P. W. Fowler, J. Cremona, J. I. Steer, *Theor. Chim. Acta* **73** (1988).
- [13] D. E. Manolopoulos, J. C. May, S. E. Down, Chem. Phys. Lett. 181 (1991), 105.
- [14] P. W. Fowler, D. E. Manolopoulos, D. B. Redmond, R. P. Ryan, *Chem. Phys. Lett.* 202 (1993), 371.
- [15] G. Herzberg, Molecular Spectra and Molecular Structure, II. Infrared and Raman Spectra of Polyatomic Molecules; D. Van Nostrand Company (1945).
- [16] J. Aihara, Bull. Chem. Soc. Jpn. 72 (1999), 7.
- [17] J. Aihara, S. Oe, M. Yoshida, E. Osawa, J. Comput. Chem. 17 (1996), 1387.
- [18] T. G. Schmalz, W. A. Seitz, D. J. Klein, G. E. Hite, J. Am. Chem. Soc. 110 (1988), 1113.
- [19] X. Liu, T. G. Schmalz, D. J. Klein, Chem. Phys. Lett. 188 (1992), 550.
- [20] R. S. Ruoff, D. S. Tse, R. Malhotra, D. C. Lorents, J. Phys. Chem. 97 (1993), 3379.
- [21] a) W. H. Pirkle, C. J. Welch, J. Org. Chem. 56 (1991), 6973; b) C. J. Welch, W. H. Pirkle, J. Chromatogr. A 609 (1992), 89.
- [22] R. Ettl, I. Chao, F. Diederich, R. L. Whetten, *Nature* **353** (1991), 149.
- [23] R. H. Michel, H. Schreiber, R. Gierden, F. Hennrich, J. Rockenberger, R. D. Beck, M. M. Kappes, *Ber. Bunsenges. Phys. Chem.* 98 (1994), 975.
- [24] F. Diederich, R. L. Whetten, C. Thilgen, R. Ettl, I. Chao, M. M. Alvarez, Science 254 (1991), 1768.

- [25] K. Kikuchi, N. Nakahara, M. Honda, S. Suzuki, K. Saito, H. Shiromaru, K. Yamauchi, I. Ikemoto, T. Kuramochi, S. Hino, Y. Achiba, *Chem. Lett.* **1991**, 1607.
- [26] K. Kikuchi, N. Nakahara, T. Wakabayashi, M. Honda, H. Matsumiya, T. Moriwaki, S. Suzuki, H. Shiromaru, K. Saito, K. Yamauchi, I. Ikemoto, Y. Achiba, *Chem. Phys. Lett.* 188 (1992), 177.
- [27] K. Kikuchi, N. Nakahara, T. wakabayashi, S. Suzuki, H. Shiromaru, Y. Miyake, K. Saito, I. Ikemoto, M. Kainosho, Y. Achiba, *Nature* 357, (1992), 142.
- [28] Y. Achiba. K. Kikuchi, Y. Aihara, T. Wakabayashi, Y. Miyake, M. Kainosho, Mat. Res. Soc. Symp. Proc., 359 (1995), 3.
- [29] K. Kikuchi, N. Nakahara, T. Wakabayashi, S. Suzuki, K. Saito, I. Ikemoto, Y. Achiba, *Synth. Met.* **56** (1993), 3208.
- [30] K. Jinno, H. Matsui, H. Ohata, Y. Saito, K. Nakagawa, H. Nagashima, K. Itoh, *Chromatographia* **41** (1995), 353.
- [31] J. F. Anacleto, M. A. Quilliam, Anal. Chem. 65 (1993), 2236.
- [32] D. Fuchs, Darstellung und Charakterisierung endohedraler Metallofullerene, Dissertation Universität Karlsruhe (1996).
- [33] R. H. Michel, Trennung und Charakterisierung von höheren und endohedralen Fullerenen, Dissertation Universität Karlsruhe (1996).
- [34] R.-F. Xiao, J. Crystal Growth 174 (1997), 821.
- [35] R. Taylor, J. P. Hare, A. K. Abdul-Sada, H. W. Kroto, *J. Chem. Soc., Chem. Commun.* **20** (1990), 1423.
- [36] R. D. Johnson, G. Meijer, D. S. Bethune, J. Am. Chem. Soc. 112 (1990), 8983.
- [37] R. Ettl, I. Chao, F. Diederich, R. L. Whetten, *Nature* **353** (1991), 443.
- [38] K. Kikuchi, N. Nakahara, T. Wakabayashi, S. Suzuki, H. Shiromaru, Y. Miyake, K. Saito, I. Ikemoto, M. Kainosho, Y. Achiba, *Nature* 357 (1992), 142.
- [39] D. E. Manolopoulos, P. W. Fowler, R. Taylor, H. W. Kroto, D. R. M. Walton, J. Chem. Soc., Faraday Trans. 88 (1992), 3117.
- [40] D. Bakowies, M. Kolb, W. Thiel, S. Richard, R. Ahlrichs, M. M. Kappes, *Chem. Phys. Lett.* 200 (1992), 411.
- [41] K. Kobayashi, S. Nagase, Chem. Phys. Lett. 262 (1996), 227.
- [42] F. H. Hennrich, R. H. Michel, A. Fischer, S. Richard-Schneider, S. Gilb, M. M. Kappes, D. Fuchs, M. Bürk, K. Kobayashi, S. Nagsae, Angew. Chem. Int. Ed. Engl. 35 (1996), 1732.
- [43] L. T. Scott, M. M. Hashemi, D. T. Meyer, H. B. Warren, J. Am. Chem. Soc. 113 (1991), 7082.
- [44] a) E. Clar, U. Sanigök, M. Zander, *Tetrahedron* 24 (1968), 2817. b) R. S. Matthews. D. W. Jones, K. D. Bartle, *Spectrochim. Acta* 27A (1971), 1185.
- [45] A. J. Stones, D. J. Wales, Chem. Phys. Lett. 128 (1986), 501.
- [46] J. M. Schulman, R. L. Disch, J. Phys. Chem. A 101 (1997), 9176.
- [47] H. Ajie, M. Alvarez, S. Anz, R. Beck, F. Diederich, K. Fostiropoulos, D. Huffmann, W. Krätschmer, Y. Rubin, K. Shriver, D. Sensharma, R. Whetten, J. Phys. Chem. 94 (1990), 8630.

- [48] J. P. Hare, H. W. Kroto, R. Taylor, Chem. Phys. Lett. 177, (1991), 394.
- [49] S. Leach, M. Vervloet, A. Despres, E. Breheret, J. Hare, T. Dennis, H. W. Kroto, R. Taylor, D. Watton, *Chem. Phys.* 160 (1992), 451.
- [50] R. Bensasson, T. Hill, C. Lambert, E. Land, S. Leach, T. Truscott, Chem. Phys. Lett. 206 (1993), 197.
- [51] E. Koudoumas, A. Ruth, S. Couris, S. Leach, Mol. Phys. 88 (1996), 125.
- [52] R. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, P. J. Seta, J. Phys. Chem. 98 (1994), 3492.
- [53] I. Renge, J. Phys. Chem. 99 (1995), 15955.
- [54] S. Gallagher, R. Armstrong, P. Lay, C. Reed, J. Phys. Chem. 99 (1995), 5617.
- [55] S. Dai, L. Toth, G. Cul, D. Metcalf, J. Chem. Phys. 101 (1994), 4470.
- [56] P. Coheur, M. Carleer, R. Colin, J. Phys. B : At. Mol. Opt. Phys. 29 (1996), 4987.
- [57] Q. Gong, Y. Sun, Z. Huang, X. Zhou, Z. Gu, D. Qiang, J. Phys. B : At. Mol. Opt. Phys. 29 (1996), 4981.
- [58] A. Smith, J. Phys. B : At. Mol. Opt. Phys. 29 (1996), 4975.
- [59] J. Close, F. Federmann, K. Hoffmann, N. Quaas, Chem. Phys. Lett. 276 (1997), 39.
- [60] Z. Gasyna, P. Schatz, J. Hare, T. Dennis, H. W. Kroto, R. Taylor, D. Walton, Chem. Phys. Lett. 183 (1991), 283.
- [61] J. Hora, P. Panek, K. Navratil. B. Handlirova, J. Humlicek, H. Sitter, D. Stifter, *Phys. Rev. B* **54** (1996), 5106.
- [62] B. Razbirin, A. Starukhin, A. Chugreev, Y. Grushko, S. Kolesnik, *JETP Lett.* **60** (1994), 451.
- [63] J. Fulara, M. Jakobi, J. Maier, J. Chem. Phys. Lett. 206 (1993), 203.
- [64] R. C. Haddon, Accounts of Chemical Research 25 (1992), 127.
- [65] W. E. Pickett, Solid State Physics, Vol.48, Academic Press, New York (1994), H. Ehrenreich, F. Spaepen (Ed.).
- [66] R. C. Haddon, L. E. Brus, K. Raghavachari, Chem. Phys. Lett. 125 (1986), 459.
- [67] S. G. Louie, E. L. Shirley, J. Phys. Chem. Solids 54 (1993), 1767.
- [68] B. I. Dunlap, D. W. Brenner, J. W. Mintmire, R. C. Mowrey, C. T. White, J. Phys. Chem. 95 (1991), 5763.
- [69] R. Saito, G. Dresselhaus, M. S. Dresselhaus, *Phys. Rev. B* 46 (1992), 9906.
- [70] P. W. Fowler, J. Woolrich, Chem. Phys. Lett. 127 (1986), 78.
- [71] R. Bauernschmitt, R. Ahlrichs, F. H. Hennrich, M. M. Kappes, J. Am. Chem. Soc. 120 (1998), 5052.
- [72] M. Casida, Recent Adcances in Density Functional Methods, Vol.1, D. P. Chong (Ed.), World Scientific, Singapore (1995).
- [73] R. Bauernschmitt, M. Häser, O. Treutler, R. Ahlrichs, *Chem. Phys. Lett.* **264** (1997), 573.
- [74] A. Becke, J. Chem. Phys. 98 (1993), 5648; 96 (1992), 2155; 97 (1992), 9173.
- [75] C. Lee, W. Yang, R. Parr, *Phys Rev. B* 37 (1988), 785.

- [76] P. Stephens, F. Devlin, C. Chabalowski, M. Frisch, J. Chem. Phys. 98 (1994), 11623.
- [77] A. Becke, *Phys. Rev. B* **38** (1988), 3098.
- [78] J. Perdew, *Phys. Rev. B* **33** (1986), 8822.
- [79] M. Spackman, J. Phys. Chem. 93 (1989), 7594.
- [80] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97 (1992), 2571.
- [81] P. Damay, F. Leclerq, Phys. Rev. B 49 (1994), 7790.
- [82] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256 (1996), 454.
- [83] H.-J. Eisler, private Mitteilung.
- [84] F. Negri, G. Orlandi, F. Zerbetto, J. Chem. Phys. 97 (1992), 6496.
- [85] R. Bensasson, R. Bienvenue, M. Dellinger, S. Leach, P. Seta, J. Phys. Chem. 98 (1994), 3492.
- [86] K. Tanigaki, T. Ebbesen, S. Kuroshima, Chem. Phys. Lett. 185 (1991), 189.
- [87] F. Negri, G. Orlandi, Z. Phys. Chem. 200 (1997), 85.
- [88] F. Diederich, R. Ettl, Y. Rubin, R. Whetten, R. Beck, M. Alvarez, S. Anz, D. Sensharma, F. Wudl, K. Khemani, A. Koch, *Science* **252** (1991), 548.
- [89] R. Ettl, I. Chao, F. Diederich, R. Whetten, Nature 353 (1991), 149.
- [90] D. Guldi, D. Lui, P. Kamat, J. Phys. Chem. A 101 (1997), 6194.
- [91] J. Hawkins, A. Meyer, *Science* **260** (1993), 1918.
- [92] G. Orlandi, G. Poggi, F. Zerbetto, Chem. Phys. Lett. 224 (1994), 113.
- [93] F. Diederich, R. Whetten, C. Tilgen, R. Ettl, I. Chao, M. Alvarez, *Science* **154** (1991), 1768.
- [94] M. Benz, M. Fanti, P. W. Fowler, D. Fuchs, M. M. Kappes, C. Lehner, R. Michel, G. Orlandi, F. Zerbetto, *J. Phys. Chem.* **100** (1996), 13399.
- [95] J. Hawkins, M. Nambu, A. Meyer, J. Am. Chem. Soc. 116 (1994), 7642.
- [96] R. D. Bendale, M. C. Zerner, J. Phys. Chem. 99 (1995), 13830.
- [97] F. H. Hennrich, R. H. Michel, A. Fischer, S. Richard-Schneider, S. Gilb, M. M. Kappes, D. Fuchs, M. Bürk, K. Kobayashi, S. Nagase, *Angew. Chemie* 108 (1996), 1839.
- [98] R. A. Jishi, R. M. Mirie, M. S. Dresselhaus, *Phys. Rev. B* 45 (1992), 13685.
- [99] J. L. Feldman, J. Q. Broughton, L. L. Boyer, D. E. Reich, M. D. Kluge, *Phys. Rev. B* 46 (1992), 12731.
- [100] D. E. Weeks, W. G. Harter, Chem. Phys. Lett. 144 (1988), 366.
- [101] E. Brendsdal, B. N. Cyvin, J. Brunvoll, S. J. Cyvin, Spectrosc. Lett. 21 (1988), 313.
- [102] S. J. Cyvin, E. Brendsdal, B. N. Cyvin, J. Brunvoll, Chem. Phys. Lett. 143 (1988), 377.
- [103] R. S. Ruoff, A. L. Ruoff, Appl. Phys. Lett. 59 (1991), 1553.
- [104] G. B. Adams, J. B. Page, O. F. Sankey, K. Sinha, J. Menendez, D. R. Huffman, *Phys. Rev. B* 44 (1991), 4052.
- [105] J. Kohanoff, W. Andreoni, M. Parrinello, Phys. Rev. B 46 (1992), 4371.

- [106] F. Negri, G. Orlandi, F. Zerbetto, Chem. Phys. Lett. 144 (1988), 31.
- [107] K.-P. Bohnen, R. Heid, K.-M. Ho, C. T. Chan, Phys. Rev. B 51 (1995), 5805.
- [108] X. Q. Wang, C. Z. Wang, K. M. Ho, Phys. Rev. B 48 (1993), 1884.
- [109] J. C. R. Faulhaber, D. Y. K. Ko, P. R. Briddon, Phys. Rev. B 48 (1993), 661.
- [110] R. Jones, C. D. Latham, M. I. Heggie, V. J. B. Torres, S. Oberg, S. K. Estreicher, *Philos. Mag. Lett.* 65 (1992), 291.
- [111] R. E. Stanton, M. D. Newton, J. Phys. Chem. 92 (1988), 2141.
- [112] Z. Slanina, J. M. Rudzinski, M. Togasi, E. Osawa, J. Mol. Struct. 202 (1989), 169.
- [113] J. P. Hare, T. J. Dennis, H. W. Kroto, R. Taylor, A. W. Allaf, S. Balm, D. R. M. Walton, J. Chem. Soc., Chem. Commun. 1991, 412.
- [114] D. S. Bethune, G. Meijer, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, C. A. Brown, M. S. de Vries, *Chem. Phys. Lett.* **179** (1991), 181.
- [115] B. Chase, N. Herron, E. Holler, J. Phys. Chem. 96 (1992), 4262.
- [116] R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus, K. A. Wang, Ping Zhou, A. M. Rao, P. C. Ecklund, *Chem. Phys. Lett.* 206 (1993), 187.
- [117] N. Chandrabhas, K. Jayaram, D. V. S. Muthu, A. K. Sood, *Phys. Rev. B* 48 (1993), 5634.
- [118] R. Meilunas, R. P. H. Chang, S. Liu, M. Jensen, M. M. Kappes, J. Appl. Phys. 70 (1991), 5128.
- [119] R. Ettl, I. C. Chao, F. Diederich, R. L. Whetten, Nature 353 (1991), 149.
- [120] R. H. Michel, H. Schreiber, R. Gierden, F. Hennrich, J. Rockenberger, R. D. Beck, M. M. Kappes, C. Lehner, P. Adelmann, J. F. Armbruster, *Ber. Bunsenges. Phys. Chem.* 98 (1994), 975.
- [121] M. Benz, M. Fanti, P. W. Fowler, D. Fuchs, M. M. Kappes, C. Lehner, R. M. Michel, G. Orlandi, F. Zerbetto, J. Phys. Chem. 100 (1996), 13399.
- [122] P. Kubelka, F. Munk, Z. Tech. Phys. 12 (1931), 593.
- [123] P. Kubelka, J. Opt. Soc. Am. 38 (1948), 448.
- [124] A. D. Becke, *Phys. Rev. A* 38 (1988), 3098; C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 37 (1988), 785.
- [125] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97 (1992), 2571.
- [126] J. E. Fischer, P. A. Heiney, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley Jr., A. B. Smith III, *Science* 252 (1991), 1288.
- [127] R. D. Johnson, C. S. Yannoni, H. C. Dorn, J. R. Salem, D. S. Bethune, Science 255 (1992), 1235.
- [128] P. C. Chow, X. Jiang, O. Reiter, P. Wochnew, S. C. Moss, J. D. Axe, J. C. Hanson, R. K. McMullan, R. L. Meng, C. W. Chu, *Phys. Rev. Lett.* **69** (1992), 2943.
- [129] C. I. Frum, R. Engleman Jr., H. G. Hedderich, P. F. Bernath, L. D. Lamb, D. R. Huffman, *Chem. Phys. Lett.* **176** (1991), 504.
- [130] L. Nemes, R. S. Ram, P. F. Bernath, F. A. Tinker, M. C. Zumwalt, L. D. Lamb, D. R. Huffman, *Chem. Phys. Lett.* **21**8 (1994), 295.

- [131] Z.-H. Dong, P. Zhou, J. M. Holden, P. C. Eklund, M. S. Dresselhaus, G. Dresselhaus, *Phys. Rev. B* 48 (1993), 2862.
- [132] M. C. Martin, X. Du, J. Kwon, L. Mihaly, Phys. Rev. B 50 (1994), 173.
- [133] R. L. Cappelletti, J. R. D. Copley, W. A. Kamitakahara, F. Li, J. S. Lannin, D. Ramage, *Phys. Rev. Lett.* 66 (1991), 3261.
- [134] K. Prassides, T. J. S. Dennis, J. P. Hare, J. Tomkinson, H. W. Kroto, R. Taylor, D. R. M. Walton, *Chem. Phys. Lett.* 187 (1991), 455.
- [135] C. Coulombeau, H. Jobic, P. Bernier, C. Fabre, D. Schütz, A. Rassat, J. Phys. Chem. 96 (1992), 22.
- [136] M. K. Nissen, S. M. Wilson, M. L. W. Thewalt, Phys. Rev. Lett. 69 (1992), 2423.
- [137] A. Lucas, G. Gensterblum, J. J. Pireaux, P. A. Thiry, R. Caudano, J. P. Vigneron, P. Lambin, W. Krätschmer, *Phys. Rev. B* **45** (1992), 13694.
- [138] G. Gensterblum, L.-M. Yu, J.-J. Pireaux, P. A. Thiry, R. Caudano, J.-M. Themlin, S. Bouzidi, F. Coletti, *Appl. Phys. A* 56 (1993), 175.
- [139] R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Raman Spectrosc. 29 (1998), 483.
- [140] H.-J. Eisler, *Raman-Spektroskopie an Fullerenen*, Dissertation Universität Karlsruhe (1998).
- [141] A. Ceulemans, P. W. Fowler, I. Vos, J. Chem. Phys. 100 (1994), 5491; A. Ceulemans, I. Vos, Molec. Phys. 72 (1991), 1051.
- [142] H.-J. Eisler, S. Gilb, F. H. Hennrich, M. M. Kappes, J. Phys. Chem. A 104 (2000), 1762.
- [143] H. Lamb, Proc. London Math. Soc. 13 (1882), 189.
- [144] H. Lamb, Proc. London Math. Soc. 14 (1882), 50.
- [145] L. Landau, E. Lifschitz, Course of Theoretical Physics, 3rd. Ed., Vol. 7: Theory of Elasticity, Pergamon Press, Oxford 1998.
- [146] M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. Spain, H. Goldberg, Graphite Fibers and Filaments, Springer Series in Materials Science, Vol. 5, Springer-Verlag, Berlin 1988.
- [147] F. H. Hennrich, R. H. Michel, A. Fischer, S. Richard-Schneider, S. Gilb, M. M. Kappes, D. Fuchs, M. Bürk, K. Kobayashi, S. Nagase, *Angew. Chemie* 108 (1996), 1839.
- [148] C. Yeretzian, K. Hansen, F. Diederich, R. Whetten, Nature 359 (1992), 44.
- [149] A. Rao, P. Zhou, K.-A. Wang, G. hager, J. Holden, Y. Wang, W.-T. Lee, X.-X. Bi, P. Ecklund, D. Cornett, M. Duncan, I. Amster, *Science* 259 (1993), 955.
- [150] P. Zhou, Z.-H. Dong, A. Rao, P. Ecklund, Chem. Phys. Lett. 211 (1993), 337.
- [151] Appl. Phys. A 64 (1997).
- [152] K.-F. Thier, M. Mehring, F. Rachdi, Phys. Rev. B 55 (1996), R496.
- [153] G.-W. Wang, K. Komatsu, Y. Murata, M. Shiro, Nature 387 (1997), 583.
- [154] S. Lebedkin, S. Ballenweg, J. Gross, R. Taylor, W. Krätschmer, *Tetrahedron Lett.* 36 (1995),4971.
- [155] A. Gromov, S. Lebedkin, S. Ballenweg, A. Avent, R. Taylor, W. Krätschmer, *Chem. Commun.* **1997**, 209.

- [156] S. McElvany, J. Callahan, M. Ross, L. Lamb, D. Huffman *Science* 260 (1993), 1632.
- [157] R. Beck, G. Bräuchle, C. Stoermer, M. M: Kappes, J. Chem. Phys. 102 (1995), 540.
- [158] A. Gromov, S. Ballenweg, S. Giesa, S. Lebedkin, W. Hull, W. Krätschmer. Chem. Phys. Lett. 267 (1997), 460.
- [159] S. Lebedkin, H. Rietschel, G. B. Adams, J. B. Page, W. E. Hull, F. H. Hennrich, H.-J. Eisler, M. M. Kappes, W. Krätschmer, J. Chem. Phys. 110 (1999), 11768.
- [160] S. Lebedkin, W. E. Hull, A. Soldatov, B. Renker, M. M. Kappes, J. Phys. Chem. B 104 (2000), 4101.
- [161] H.-J. Eisler, F. H. Hennrich, E. Werner, A. Hertwig, C. Stoermer, M. M: Kappes, J. Phys. Chem. A 102 (1998), 3889.
- [162] S. Giesa, J. H. Gross, W. E. Hull, S. Lebedkin, A. Gromov, R. Gleiter, W. Krätschmer, *Chem. Commun.* 1999, 465.
- [163] G. Adams, J. Page, O. Sankey, M. O'Keeffe, Phys. Rev. B 50 (1994), 17471.
- [164] D. Porezag, M. Pederson, T. Frauenheim, T. Köhler, Phys. Rev. B 52 (1995), 14693.
- [165] M. Pederson, A. Quong, Phys. Rev. Lett. 74 (1995), 2319.
- [166] D. Porezag, G. Jungnickel, T. Frauenheim, G. Seifert, A. Ayuela, M. Pederson, Appl. Phys. A 64 (1997), 321.
- [167] P. W. Fowler, D. Mitchell, R. Taylor, G. Seifert, J. Chem. Soc., Perkin Trans. 2 (1997), 1901.
- [168] M. Krause, L. Dunsch, G. Seifert, P. W. Fowler, A. Gromov, W. Krätschmer, R. Gutierez, D. Porezag, T. Frauenheim, J. Chem. Soc., Faraday Trans. 94 (1998), 2287.
- [169] S. Lebedkin, A. Gromov, S. Giesa, R. Gleiter, B. Renker, H. Rietschel, W. Krätschmer, *Chem. Phys. Lett.* 285 (1998), 210.
- [170] A. Balch, D. Costa, B. Noll, M. Olmstead, J. Am. Chem. Soc. 117 (1993), 8926.
- [171] R. Taylor, J. Chem. Soc. Perkin Trans. 2 1993, 813.
- [172] C. Thilgen, A. Herrmann, F. Diederich, Angew. Chem. 109 (1997), 2362.
- [173] A. B. Smith, III, R. M. Strongin, L. Brard, G. T. Furst, J. H. Atkins, W. J. Romanow, J. Org. Chem. 61 (1996), 1904.
- [174] Science of Fullerenes and Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, P. C: Eklund, Academic Press, Inc. (1996).
- [175] R. A. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, G. Dresselhaus, J. Phys. Soc. Jpn. 63 (1994), 2252.
- [176] M. S. Dresselhaus, R. A. Jishi, G. Dresselhaus, D. Inomata, K. Nakao, R. Saito, *Molecular Materials* 4 (1994), 27.
- [177] S. Iijima, Nature 354 (1991), 56.
- [178] S. Iijima, T. Ichihashi, *Nature* **363** (1993), 603.
- [179] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vasquez, R. Beyers, *Nature* 363 (1993), 605.
- [180] K. Tohji, T. Goto, H. Takahashi, Y. Shinohada, N. Shimizu, B. Jeyadevan, I. Matsuoka, *Nature* 383 (1996), 679.

- [181] W. K. Maser, P. Bernier, J. M. Lambert, O. Stéphan, P. M. Ajayan, C. Colliex, V. Brotons, J. M. Planeix, B. Coq, P. Molinie, S. Lefrant, *Synth. Met.* 81 (1996), 243.
- [182] C. H. Kiang, W. A. Goddard III, R. Beyers, D. S. Bethune, Carbon 33 (1995), 903.
- [183] P. M. Ajayan, J. M. Lambert, P. Bernier, L. Barbedette, C. Colliex, J. M. Planeix, *Chem. Phys. Lett.* **215** (1993), 509.
- [184] J. M. Lambert, P. M. Ajayan, P. Bernier, Synth. Met. 70 (1995), 1475.
- [185] C. H. Kiang, W. A. Goddard III, R. Beyers, J. R. Salem, D. S. Bethune, J. Phys. Chem. 98 (1994), 6612.
- [186] S. Seraphin, D. Zhou, Appl. Phys. Lett. 64 (1994), 2087.
- [187] J. M. Lambert, P. M. Ajayan, P. Bernier, J. M. Planeix, V. Brotons, B. Coq, J. Castaing, *Chem. Phys. Lett.* 226 (1994), 364.
- [188] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer, *Nature* 388 (1997), 388.
- [189] Y. Saito, T. Koyama, K. Kawabata, Z. Phys. D 40 (1997), 421.
- [190] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, *Science* 273 (1996), 483.
- [191] S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, P. C. Eklund, *Phys. Rev. Lett.* 80 (1998), 3779.
- [192] M. Yudasaka, R. Yamada, N. Sensui, T. Wilkins, T. Ichihashi, S. Iijima, *J. Phys. Chem. B* 103 (1999), 6225.
- [193] A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, Chem. Phys. Lett. 316 (2000), 13.
- [194] H. Kataura, A. Kimura, Y. Ohtsuka, S. Suzuki, Y. Maniwa, T. Hanyu, Y. Achiba, Jpn. J. Appl. Phys. 37 (1998), L616.
- [195] O. Lost, A. A. Gorbunov, W. Pompe, T. Pichler, R. Friedlein, M. Knupfer, M. Reibold, H.-D. Bauer, L. Dunsch, M. S. Golden, J. Fink, *Appl. Phys. Lett.* **75** (1999), 2217.
- [196] E. J. Hippo, N. Murdie, A. Hyjaze, *Carbon* 27 (1998), 689.
- [197] I. A. Yavorsky, M. D. Malanov, *Carbon* 27 (1989) 287.
- [198] *Corrosion/Chemical Compatibility Tables*, Bulletin of the Pure Carbon Co., St. Marys, PA (1984).
- [199] Carbon and Graphite Handbook, Interscience Publishers, New York (1968).
- [200] Chemistry and Physics of Carbon (P. L. Walker Jr., ed.) Marcel Dekker Inc., New York (1973).
- [201] T. W. Ebbesen, P. M. Ajayan, H. Hiura, K. Tanigaki, Nature 367 (1994), 519.
- [202] Y. K. Chen, M. L. H. Green, J. L. Griffin, J. Hammer, R. M. Lago, S. K. Tsang, Adv. Mater. 8 (1996), 1012.
- [203] K. Tohji, T. Goto, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoka, Y. Saito, A, Kasuya, T. Ohsuna, K. Hiraga, Y. Nishina, *Nature* 383 (1996), 679.
- [204] H. Hiura, T. W. Ebbesen, K. Tanigaki, Adv. Mater. 7 (1994), 275.
- [205] S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature 372 (1994), 159.

[206] E. Dujardin, T. W. Ebbesen, A. Krishnan, M. M. J. Treacy, Adv. Mater. 10 (1998), 611.

- [207] A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F.-J. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley, *Appl. Phys. A* 67 (1998), 29.
- [208] A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben, Adv. Mater. 11 (1999), 1354.
- [209] J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, *Science* 282 (1998), 95.
- [210] M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, M. Rao, P. C. Eklund, R. C. Haddon, Adv. Mater. 11 (1999), 834.
- [211] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, *Science* 280 (1998), 1253.
- [212] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synt. Met. 103 (1999), 2555.
- [213] C. T. White, J. W. Mintmire, *Nature* **394** (1998), 29.
- [214] J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, *Nature* 391 (1997), 59.
- [215] T. W. Odom, J.-L- Huang, P. Kim, C. M. Lieber, Nature 391 (1997), 62.
- [216] T. W. Odom, J.-L. Huang, P. Kim, M. Ouyang, C. M. Lieber, J. Mater. Res. 13 (1998), 2380.
- [217] M. A. Pimenta, A. Marucci, S. A. Empedocles, M. G. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Gresselhaus, M. S. Dresselhaus, *Phys. Rev. B* 58 (1998), 16016.
- [218] *Physical Properties of Carbon Nanotubes*, R. Saito, G. Dresselhaus, M. S. Dresselhaus, Imperial College Press (1998).
- [219] Graphite Fibers and Filaments, M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, Springer-Verlag, Berlin (1988).
- [220] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. W. Williams, M. Menon, K. R. Subbaswamy, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, *Science* 275 (1997), 187.

Publikationsliste

- Electron Energy Loss and Photoemission Studies of Solid C₈₄, J. Armbruster, M. Roth,
 H. Romberg, M. Sing, M. Schmidt, M. Golden, P. Schweiss, P. Adelmann, J. Fink, R.
 Michel, J. Rockenberger, F. Hennrich, M. M. Kappes, *Phy. Rev. B* 50 (1994) 4933.
- [2] Vibrational Spectroscopy of Purified C₇₆, R. H. Michel, H. Schreiber, R. Gierden, F. Hennrich, J. Rockenberger, R. D. Beck, M. M. Kappes, C. Lehner, P. Adelmann J. F. Armbruster, *Ber. Bunsenges. Phys. Chem.* 98 (1994), 975.
- [3] Crystal and Electronic Structure of Solid C₇₆, J. Armbruster, H. Romberg, P. Schweiss,
 P. Adelmann, M. Knupfer, J. Fink, R. H. Michel, J. Rockenberger, F. Hennrich, H. Schreiber, M. M. Kappes, Z. Physik B 95 (1994), 469.
- [4] Electronic Structure of Fullerenes from High Energy Spectroscopies, M. S. Golden, M. Knupfer, J. Fink, J. F. Armbruster, T. R. Cummins, H. A. Romberg, M. Roth, M. Schmidt, M. Sing, E. Sohmen, R. H. Michel, J. Rockenberger, F. Hennrich, J. Rockenberger, M. M. Kappes, D. Hood, A. Roberts, W. Flaveell, M. Roper, M. Surman, D. Teehan, *Mol. Mat.* 4 (1994), 51.
- [5] Fullerenes and Endofullerenes: Model Substances ?, R. H. Michel, R. D. Beck, A. Fischer, F. Hennrich, P. Weis, D. Fuchs, G. Bräuchle, S. Richard-Schneider, M. M. Kappes, in: *The Chemical Physics of Fullerenes 10 (and 5) Years Later*, W. Andreoni Ed., Seite 149 165, Kluwer Academic, 1996.
- [6] Isolation and Characterization of C₈₀, F. H. Hennrich, R. H. Michel, A. Fischer, S. Richard-Schneider, S. Gilb, D. Fuchs, M. Bürk, K. Kobayashi, S. Nagase, M. M. Kappes, Angew. Chemie 35 (1996), 1732.
- [7] Fullerenes: Aspects, Prospects, Limits and Speculations, F. H. Hennrich, H.-J. Eisler, S. Gilb, P. Gerhardt, R. Wellmann, R. Schulz, M. M. Kappes, Ber. Bunsenges. Phys. Chem. 101 (1997), 1605.
- [8] Experiment versus Time Dependent Density Functional Theory Prediction of Fullerene Electronic Absorption, R. Bauernschmitt, R. Ahlrichs, F. H. Hennrich, M. M. Kappes, J. Am. Chem. Soc. 120 (1998), 5052.

- [9] Superdiatomics and Picosprings: Cage-Cage Vibrations in C₁₂₀O, C₁₂₀O₂ and in Three Isomers of C₁₃₀O, H.-J. Eisler, F. H. Hennrich, E. Werner, A. Hertwig, M. M. Kappes, J. Phys. Chem. A 102 (1998), 3889.
- [10] C₁₂₀ and C₁₂₀O: Vibrational Spectroscopy and PM3 Calculations, H.-J. Eisler, F. H. Hennrich, M. M. Kappes, Proceedings of the International Winterschool on Electronic Properties of Novel Materials Progress in Molecular Nanostructures (IWEPNM 98), AIP Conference Proceedings 442, H. Kuzmany, J. Fink, M. Mehring and S. Roth, Eds., Seite 215-219, AIP Press, Woodbury, 1998.
- [11] Quantum molecular dynamics calculations and experimental Raman Spectra confirm the proposed structure of the odd-numbered dimeric fullerene C₁₁₉, S. Lebedkin, H. Rietschel, G. B. Adams, J. B. Page, W. E. Hull, F. H. Hennrich, H.-J. Eisler, M. M. Kappes, W. Krätschmer, J. Chem. Phys. **110** (1999), 11768.
- [12] Low Frequency Raman Active Vibrations in Fullerenes. 1. Monopolar Modes, H.-J.
 Eisler, F. H. Hennrich, M. M. Kappes, J. Phys. Chem. A 104 (2000), 1762.
- [13] Low Frequency Raman Active Vibrations in Fullerenes: 2. Quadrupolar Modes, H.-J.
 Eisler, S. Gilb, F. H. Hennrich, M. M. Kappes, J. Phys. Chem. A 104 (2000), 1769.

Lebenslauf

Name	Frank Heinz Hennrich
Geburtsdatum	05.01.68
Geburtsort	Mannheim
Familienstand	ledig
1974-1978	Grundschule Geschwister Scholl in Mannheim
1978-1980	Orientierungsstufe in Mannheim
1980-1981	Realschule Geschwister Scholl in Mannheim
1981-1988	Gymnasium Geschwister Scholl in Mannheim
	Abschluss mit der Allgemeinen Hochschulreife (Abitur)
1988-1989	Grundwehrdienst in Altheim im Odenwald
4/1989-1995	Chemie-Studium in Karlsruhe
01-08/1995	Diplomarbeit am Institut für Physikalische Chemie,
	Arbeitskreis Prof. Dr. M. M. Kappes
	"Untersuchung der Entstehung von C ₁₁₉ "
seit 10/1995	Wissenschaftlicher Angestellter am Institut für
	Physikalische Chemie, Arbeitskreis Prof. Dr. M. M. Kappes
10/2000	Promotion