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Abstract. The well known Solid-Shell concept was originally developed as ’four-node type’
elements with trilinear shape functions [20], [24] and [15]. Every ’nodal point’ consists of
one node on the upper surface and one node on the lower surface with three displace-
ment degrees of freedom each. In this contribution these four-node respectively eight-node
elements are extended to nine-node respectively eighteen-node elements with biquadratic-
linear shape functions, and investigated for their capabilities for applications in the large
deformation regions.

The major advantage of the ’nine-node type’ elements with the biquadratic-linear shape
functions is mainly that a much better geometrical approximation especially for curved
shell structures becomes possible. This can be shown with different numerical examples.

For the biquadratic-linear as well as for the trilinear elements different locking effects
appear. These locking effects will be discussed and a summary of methods to overcome the
locking problems will be presented. However, as a consequence problems occur in the large
deformation regime, such that under some types of loading the trilinear elements as well
as the biquadratic-linear elements become unstable, indicated by negative eigenvalues of
the tangential stiffness matrix. This topic is discussed in detail.
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1 INTRODUCTION

With the ’Solid-Shell’ concept a shell element formulation was developed, to overcome
some limits of the well-known degeneration concept. Using nodes at upper and lower
surface and using only displacement degrees of freedom allows general three-dimensional
material laws to be implemented, thus strains and stresses in thickness direction can be
calculated properly. In addition, the treatment of rotations can be avoided completely
and the transition to full 3D-continuum parts is directly possible.

The assumed natural strain (ANS) method proposed by Bathe and Bucalem [9], already
taken in a similar fashion [1] for the ’four-node type’ element to avoid transverse shear
locking, is used for the ’nine-node type’ elements to avoid first transverse shear locking
and second the additionally appearing membrane locking for elements with higher order
shape functions. The problem of thickness locking is resolved by enhancing the normal
strain in thickness direction with a linear extension using the EAS-method [5] and [24],
or alternatively by increasing the order of interpolation for the displacements in thickness
direction over the thickness using an additional degree of freedom [14].

Considering nearly incompressible material behavior, like rubber elasticity or metal
plasticity, the problem of incompressibility locking appears. A rather efficient possibility
- among others as e.g. the EAS-method [5] - to resolve this problem is to use a lower
order of integration for the volumetric parts of the stress tensor and the tangent moduli
tensor, the so called selective reduced integration (SRI). The selective reduced integra-
tion of volumetric parts indeed presumes that a isochoric-volumetric material behavior is
implemented.

Under some types of loading the trilinear elements as well as the biquadratic-linear
elements become unstable at a certain level of loading. Then the well known hourglassing
phenomenon appears if e.g. the EAS-method is used for homogenous compression/tension
states. Such investigations lead to the result that under some boundary conditions similar
effects also appear when only the ANS-method is included presuming a large deformation
state is given.

Another locking effect known for elements with linear and quadratic shape functions is
the problem of so called trapezoidal locking. This effect is only found in structures where
the directors of the element edges are not vertical to the mid-layer. One method to resolve
this problem is using an assumed strain interpolation of the normal strain in thickness
direction as performed in [27] resp. in [2] and [3], where it was proposed to avoid artificial
thickness straining.

2 BASIC RELATIONS OF THE SOLID-SHELL CONCEPT

In this section the basic features of the solid-shell concept are briefly reviewed. For a
more detailed explanation we refer to [16]. The initial geometry X is described as

X(ξ, η, ζ) =
1

2
[ (1 + ζ)Xu(ξ, η) + (1 − ζ)X l(ξ, η) ], (1)
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the displacements u of the three-dimensional shell are approximated as follows:

u(ξ, η, ζ) = T−1(ξ, η) Θ(ζ)




T (ξ, η) 03×3 03×n

03×3 T (ξ, η) 03×n

0n×3 0n×3 1n×n







uu(ξ, η)
ul(ξ, η)
β(ξ, η)


 . (2)

The indices u, l refer to the geometry resp. the displacements of the upper/lower surface
nodes. The matrix T is used for the transformation from global cartesian coordinates
(x, y, z) to local orthonormal coordinates (ξ, η, ζ) aligned to the geometry of the shell-mid-
surface. The matrix T−1 allows the inverse transformation. It should be mentioned, that
in equations (1) and (2) the values X and u as well as their discrete nodal values are given
with respect to global cartesian coordinates. In contrast, the additional degrees of freedom
β belonging to a hierarchical thickness interpolation are given with respect to the local
thickness coordinate. In equations (1) and (2) the approximation in in-plane direction is
decoupled from the approximation in thickness direction. The upper shell surface (index u)
and the lower shell surface (index l) contain the in-plane approximation (local convective
coordinates ξ and η). All terms which are dependent on ζ (local thickness coordinate)
describe the approximation in thickness direction. Choosing a linear interpolation matrix

Θ(ζ) =
1

2




1 + ζ 0 0 1 − ζ 0 0
0 1 + ζ 0 0 1 − ζ 0
0 0 1 + ζ 0 0 1 − ζ


 . (3)

in thickness direction, the displacement approximation (2) is identical to the geometry
approximation (1). Then, making use of the relation T −1T = 1, no transformation matrix
is required. Furthermore, no additional degrees of freedom β are necessary, i.e. the last
line and the last column of the matrix-vector product in equation (2) can be omitted.
However, with higher order interpolation in thickness direction, using additional degrees
of freedom β the transformation matrix T is needed.

The geometry in the current configuration is given by the relation x = X + u. Thus,
the displacement gradient, deformation gradient and the Green-Lagrange strain tensor

H =
∂u

∂X
, F =

∂x

∂X
and E =

1

2
(F T F − 1) (4)

can be computed. The 2. Piola-Kirchhoff stress tensor S and the tangent moduli tensor
C = ∂S/∂E result from the material law. The latter is based on a so-called strain-driven
algorithm also known as ’algorithmic box’. In contrast to the degenerated shell concept
the fully three-dimensional strain tensor and stress tensor are applied, i.e. strains and
stresses in thickness direction are admitted and any general three-dimensional material
law can be used without modification.

It should be mentioned, that the basic relations introduced above hold for both ele-
ment types considered in the following sections: elements with bilinear and elements with
biquadratic interpolation in in-plane direction.
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3 BILINEAR ELEMENTS

First solid-shell elements with bilinear interpolation in in-plane direction are discussed,
i.e. the upper shell surface and the lower shell surface are discretized each by 4 nodes.
This involves bilinear interpolation for the geometry Xu(ξ, η), X l(ξ, η) and for the dis-
placements Uu(ξ, η), U l(ξ, η) as well as for the additional displacements β(ξ, η).

3.1 Transverse shear locking

As known from degenerated shell elements transverse shear locking appears. A removal
is achieved with the assumed natural strain method interpolating the transverse shear
strains as proposed by Bathe and Dvorkin [1]:

EANS
ξζ (η, ζ) =

1

2
[1 − η] Eξζ(ξ = 0, η = −1, ζ) +

1

2
[1 + η] Eξζ(ξ = 0, η = +1, ζ),

EANS
ηζ (ξ, ζ) =

1

2
[1 − ξ] Eηζ(ξ = −1, η = 0, ζ) +

1

2
[1 + ξ] Eηζ(ξ = +1, η = 0, ζ).

(5)

For brevity no further details on this approach are discussed here. For the proper incor-
poration into the solid-shell concept we refer to [15].

3.2 Membrane locking

Due to the coupling of the normal strains with the shear strains in in-plane direction
membrane locking may occur in particular for larger aspect ratios of the elements. To
suppress this locking the EAS approach originally proposed by Simo and Rifai [25] is
applied for the approximation of the in-plane strains (index ip):

EEAS
ip =




E11

E22

2E12




EAS

= Ec
ip + Mα

= Ec
ip +

1

detJ




t211 t212 t11t12
t221 t222 t21t22

2t11t21 2t12t22 t11t22 + t12t21


M̂α.

(6)

The vector Eip contains the in-plane Green-Lagrange strains, where Ec
ip are the strains

compatible to the displacements. The factors

tmn = Gm(ξ, η, ζ) · Gn(0, 0, 0) with m, n = 1, 2 (7)

are used to transform the enhanced strains to the covariant coordinate system at the
element mid-point which is necessary to obtain unique values for the parameters αi. The
parameters αi can be considered as element variables resulting from so-called incompatible
approximations between the elements. The vectors Gm and Gn in equation (7) are the
base vectors of the covariant respectively contravariant coordinate system.
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The matrix M̂ is chosen according to Simo/Rifai [25]

M̂1 =




ξ 0 0 0
0 η 0 0
0 0 ξ η


 . (8)

3.3 Thickness locking

Solid-shell elements suffer from so-called thickness locking, if a linear displacement
assumption in thickness direction is used, see e.g. Verhoeven [28], Braun [5], Hauptmann
[16]. For a short discussion here the standard St.-Venant-Kirchhoff material law is taken.
If the stress-strain relation for Sζζ is considered, the strain Eζζ , which is constant in
thickness direction, is coupled via the Poisson-ratio with the strains Eξξ, Eηη, which vary
linearly in thickness direction. Thus, in pure bending situations instead of Sζζ = 0 a linear
Sζζ stress distribution would result, leading to an overly stiff behavior. To overcome this
thickness locking an additional Eζζ strain with linear distribution in thickness direction
must be introduced. In the following two different approaches are considered.

Approach 1: As suggested in [14] for multi-director elements, an additional quadratic
term is introduced into the interpolation matrix (3) in thickness direction:

Θ̄(ζ) =
1

2




1 + ζ 0 0 1 − ζ 0 0 0
0 1 + ζ 0 0 1 − ζ 0 0
0 0 1 + ζ 0 0 1 − ζ 1 − ζ2


 . (9)

Thus one additional degree of freedom β at each node belonging to a hierarchical thick-
ness interpolation is employed (n = 1 in equation (2)), which is identical to a quadratic
displacement approximation, and consequently a linear Eζζ strain approximation in thick-
ness direction is achieved. This additional degree of freedom is usually treated as global
nodal degree of freedom.

Approach 2: The constant normal strain in thickness direction is enhanced with a
linear extension over the thickness and bilinear in in-plane direction according to the
EAS method, as proposed in [24] and [5]:

EEAS
ζζ = Ec

ζζ + M̃α̃ = Ec
ζζ +

1

detJ
ζ

[
1 ξ η ξη

]



α̃1

α̃2

α̃3

α̃4


 . (10)

Herein Ec
ζζ denotes the constant thickness strain which is compatible to the displacements,

detJ is the determinant of the Jacobian of the isoparametric map, calculated at each Gauss
point, and the vector α̃ consists of incompatible parameters, so-called element variables,
that are condensed out on element level.

3.4 Volumetric locking

If nearly incompressible material behavior is considered, e.g. rubber elasticity or metal
plasticity, the elements often suffer from so - called volumetric locking. Here two ap-
proaches are considered. The objective of both approaches is to fulfill the incompressibility
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condition

det F = det(1 + H) = 1 + trH +
1

2
[(trH)2 − tr(H2)] + det H = 1, (11)

within the full range of the nonlinear behavior. The first approach is based on the use
of different numerical integration points, where the constraint (11) is only fulfilled for a
special material law. The second approach is based on the fulfillment of the linear part of
eqn. (11) at the standard integration points and neglects the higher order terms.

Approach 1: If an isochoric-volumetric decoupled material behavior can be assumed,
the stress tensor and tangent moduli tensor can be split into deviatoric and volumetric
parts:

S = Sdev + Svol and C = Cdev + Cvol.

It is well known [19] and [26] that the assumption of a constant dilatation is necessary to
remove the artificial volumetric locking effect. Thus all integrals of the stiffness matrix and
internal force vector containing volumetric terms Svol and Cvol are numerically integrated
with an order of integration below the standard order, the so called selective reduced
integration (SRI):

∫

sri

(. . .)voldV instead of

∫

full

(. . .)voldV. (12)

For solid-shells the SRI for the volumetric terms is employed only in in-plane direction,
i.e. 1× 1 integration instead of 2× 2 (full) integration, while the integration in thickness
direction remains unchanged. Further details are given in [11] and [17]. The disadvantage
of such an approach is the restriction to an isochoric-volumetric decoupled material law.

Approach 2: In the theory of small strains the incompressibility constraint (11) reduces
to

trE = 0. (13)

Using the concepts to avoid thickness locking (see section 3.3) the interpolation of all
normal strains is identical in ζ direction. In order to investigate the approximation of
the normal strains in in-plane direction they are rewritten in terms of the local ξ and η
coordinates:

Eξξ = a1 + a2η,
Eηη = b1 + b2ξ,
Eζζ = c1 + c2ξ + c3η + c4ξη.

(14)

For a detailed discussion of this aspect for plane elements we refer to [4]. It is obvious
that for the solid shells the counterparts ξ and ξη respectively η and ξη of the normal
strain in thickness direction Eζζ are missing for the in-plane strains Eξξ and Eηη. The
volumetric locking can be reduced by adopting the EAS approach as shown in eqn. (6) in
combination with the matrix

6



M. Harnau, K. Schweizerhof, and R. Hauptmann

M̂2 =




ξ 0 0 0 ξη 0
0 η 0 0 0 ξη
0 0 ξ η 0 0


 . (15)

Then condition (13) can be fulfilled. The enhancement in (15) is an extension of the
enhancement (8). The advantage of approach 2 is that no restrictions concerning material
laws are imposed.

It is rather obvious that due to the nonlinear terms for H in equation (11) the com-
pressibility constraint cannot be fulfilled exactly with the EAS approach of equation (15).
Thus it is a rather interesting aspect to show how large the influence of the nonlinear
terms on the volumetric locking is for different problems. This can be e.g. numerically
checked by employing the isochoric-volumetric decoupled material and the selective re-
duced integration for the inplane terms as a further option.

3.5 Trapezoidal locking

The phenomenon of trapezoidal locking appears for distorted element meshes, presum-
ing the directors at the element edges - resp. the vector pointing from the lower node to
the upper node of the edges - are not in a 90 degree angle to the element mid-surface.
These oblique directors activate incompatible normal strains in thickness direction and
may lead to locking. To a avoid this locking behavior an assumed transverse normal strain
distribution was proposed by [27]. A closer look shows that it is very close to the sug-
gestions in [2] and [3] to avoid artificial thickness straining. Thus the strains resulting
from the displacements in thickness direction are evaluated at the element edges and
a bilinear strain interpolation is achieved using the standard Lagrange shape functions
Ni(ξ, η) = 1

4
(1 + ξiξ)(1 + ηiη), i = 1 . . . 4, which leads to the following equation:

ε̃zz = N1(ξ,η) εzz(ξ1=−1,η1=−1) + N2(ξ,η) εzz(ξ2=1,η2=−1) + N3(ξ,η) εzz(ξ3=1,η3=1) +

N4(ξ,η) εzz(ξ4=−1,η4=1) . (16)

The strains εzz are the normal strains in thickness direction refering to a local cartesian
coordinate system with the z-axis vertical to the mid surface.

3.6 Algorithmic treatment of the material law

In section 2 the material law is interpreted using a strain-driven algorithmic box. If
the Green-Lagrange strain tensor E is the driving strain tensor, then the modified strains
E∗ resulting from the assumed and enhanced strain concept (5), (10), (6), (15) and (16)
are the input values of the algorithmic box. If the deformation gradient F is the driving
tensor, then the modified deformation gradient

F ∗ = RU ∗ with R = FU−1 and U ∗ = (2E∗ + 1)1/2

has to be computed consistently to the modified strains E∗. Then F ∗ can be directly
used as input of the algorithmic material box (see also Eberlein [12] and Doll [10]). These
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assumptions allow to treat the mixed type elements concerning large deformations in an
identical fashion as a pure displacement approach independently of the type of strain
interpolation.

3.7 Nomenclature

For a better distinction of the developed bilinear elements a special nomenclature is
introduced, see Table 1. The structure of the notation is ’xxx3Dyyy’, where ’xxx’ repre-
sents the in-plane approximation and ’yyy’ represents the thickness approximation. The
abbreviation ’3D’, which is identical for all elements, indicates the three-dimensionality
of the solid-shell formulation. An additional extension -rv denotes selective reduced inte-
gration of the volumetric terms following eqn. (12), the extension -at denotes an assumed
strain interpolation of the transverse normal strain after equation (16).

Elementname bilinear in-plane approximation thickness approximation
ANS3Dq (5) (9)
ANS3DEAS (5) (3), (10)
EAS3DEAS (5), (6) with (8) (3), (10)
eas3DEAS (5), (6) with (15) (3), (10)
eas3Dq (5), (6) with (15) (9)
xxx3Dyyy-rv selective reduced integration of volumetric term, see (12)
xxx3Dyyy-at assumed strain interpolation of the transverse normal strain (16)

Table 1: Nomenclature of the bilinear elements.

4 BIQUADRATIC ELEMENTS

Within this section only the additions concerning solid-shell elements with biquadratic
Lagrangian interpolation in in-plane direction are presented. The upper shell surface and
the lower shell surface are discretized each using 9 nodes.

4.1 Transverse shear locking and membrane locking

To suppress transverse shear locking and membrane locking the assumed natural strain
method as proposed by Bathe and Bucalem [9] is employed. The assumed membrane
strains

EANS
ξξ (ξ, η, ζ) =

3∑

i=1

2∑

j=1

Pi(η)Qj(ξ) Eξξ(ξj, ηi, ζ) ,

EANS
ηη (ξ, η, ζ) =

3∑

i=1

2∑

j=1

Pi(ξ)Qj(η) Eηη(ξi, ηj, ζ) ,

EANS
ξη (ξ, η, ζ) =

2∑

i=1

2∑

j=1

Qi(ξ)Qj(η) Eξη(ξi, ηj , ζ)

(17)
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 ξξE   ,E ξζ E    ,Eηη ηζ

(3,1)

(3,2) (2,2)

(2,1) (1,1)

(1,2)

a

a

b b
η

ξ

Eξη

(2,1)

(2,2) (1,2)

(1,1)

a

a

a

a
η

ξ(2,1)

η
a

b

b

(3,2)

(2,2)

(1,2)

(3,1)

(1,1)

a

ξ
a =

1
√

3
b = 1.0

Figure 1: Evaluation points for strain interpolation functions

and the assumed transverse shear strains

EANS
ξζ (ξ, η, ζ) =

3∑

i=1

2∑

j=1

Pi(η)Qj(ξ) Eξζ(ξj, ηi, ζ) ,

EANS
ηζ (ξ, η, ζ) =

3∑

i=1

2∑

j=1

Pi(ξ)Qj(η) Eηζ(ξi, ηj , ζ)

(18)

result from the interpolation

P1(θ) =
θ

2
(θ + 1), P2(θ) = 1 − θ2, P3(θ) =

θ

2
(θ − 1),

Q1(θ) =
1

2
(1 +

√
3θ), Q2(θ) =

1

2
(1 −

√
3θ) with θ = ξ, η

of the compatible strains at the points

θ1,2,3 = +1, 0,−1 and θ1,2 = +
1
√

3
,−

1
√

3
.

As only minor adaptations are performed for the solid shell concept, for brevity reasons
no further details on this approach are discussed here.

An alternative for improving the membrane behavior would be to use enhanced strains
also for the membrane direction as proposed by Bischoff [6] and [7] in analogy as for the
elements with linear interpolation. However, as the effort required for a static condensation
increases with the number of parameters in addition to the effort needed for the handling
of these rather large number of parameters in a nonlinear analysis, this alternative is not
followed here.

4.2 Thickness locking

If the linear interpolation matrix eqn.(3) in thickness direction is used, thickness locking
may appear. This phenomenon described in section 3.3 is identical for the solid elements

9
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based on bilinear and biquadratic shape functions. Both approaches, following eqn.(9)
and eqn.(10), to avoid thickness locking can be used for the biquadratic solid-shells.

Approach 1: The hierarchical interpolation is performed with an additional degree of
freedom at each location of the nine in-plane nodes, thus a biquadratic inplane interpola-
tion is used for these hierarchical degrees of freedom in analogy to the displacements.

Approach 2: As the corresponding interpolation to avoid thickness locking with the
EAS approach contains also quadratic terms in ξ and η, nine parameters are necessary
for a consistent enhancement:

EEAS
ζζ = Ec

ζζ + M̃α̃

= Ec
ζζ +

1

detJ
ζ t233

[
1 ξ η ξη ξ2 η2 ξ2η ξη2 ξ2η2

]



α̃1
...

α̃9


 . (19)

The arguments are identical to those for the bilinear elements. The factor

t33 = G3(ξ, η, ζ) · G3(0, 0, 0) (20)

is, in analogy to eqn.(6), needed for a transformation of the enhanced strains to the
covariant coordinate system at the element mid-point.

It is obvious that the number of parameters for the incompatible strains is increasing
considerably. Thus the efficiency of the biquadratic solid shell elements is considerably
affected, as the static condensation requires an inversion of a 9/9-matrix per element,
already for this part of the EAS approach.

4.3 Volumetric locking

To reduce the volumetric locking behavior within this study only the selective reduced
integration of the volumetric terms is employed for the biquadratic elements, as introduced
as first approach in section 3.4. The selective reduced integration (12) is applied in in-
plane direction. However contrary to the bilinear elements SRI means 2 × 2 integration
instead of 3×3 integration. The integration rule in thickness direction remains unchanged.
It has to be noted again that the application of the SRI requires an isochoric-volumetric
decoupled material law.

In this contribution an EAS approach, comparable to the second approach in section
3.4, is not included for the biquadratic elements. For this we refer to [6] and [7].

4.4 Trapezoidal locking

To avoid the trapezoidal locking effect for the biquadratic elements also an assumed
strain interpolation for the normal strain in thickness direction is used. Therefore the
biquadratic Lagrange functions

Ni(ξ, η) =

(
1

2
ξξi (1 + ξξi) +

(
1 − ξ2

) (
1 − ξ2

i

))

10
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(
1

2
ηηi (1 + ηηi) +

(
1 − η2

) (
1 − η2

i

))
, i = 1 . . . 9 . (21)

are used as follows:

ε̃zz = N1(ξ,η) εzz(ξ1=−1,η1=−1) + N2(ξ,η) εzz(ξ2=1,η2=−1) + N3(ξ,η) εzz(ξ3=1,η3=1) +

N4(ξ,η) εzz(ξ4=−1,η4=1) + N5(ξ,η) εzz(ξ5=0,η5=−1) + N6(ξ,η) εzz(ξ6=1,η6=0) +

N7(ξ,η) εzz(ξ7=0,η7=1) + N8(ξ,η) εzz(ξ8=−1,η8=0) + N9(ξ,η) εzz(ξ9=0,η9=0) . (22)

In analogy to the bilinear elements the strains εzz are the normal strains in thickness
direction transformed to a local cartesian coordinate system.

4.5 Nomenclature

The nomenclature for the biquadratic elements is introduced in Table 2. The only dif-
ference between the elements is due to the thickness interpolation. An additional extension
-rv denotes selective reduced integration of the volumetric terms, based on equation (12)
and section 4.3, the extension -at denotes an assumed strain interpolation of the transverse
normal strain following equation (22).

Elementname biquadratic in-plane approximation thickness approximation
MI9k3Dq (17), (18) (9)
MI9k3DEAS (17), (18) (3), (10)
xxx3Dyyy-rv selective reduced integration of volumetric term, see (12)
xxx3Dyyy-at assumed strain interpolation of the transverse normal strain (22)

Table 2: Nomenclature of the biquadratic elements.

5 ANALYTICAL STABILITY INVESTIGATIONS

In this section a single element under a homogenous compressions/tension state is
investigated presuming a plane strain state, as such a loading combination proved to be
critical for the elements and the behavior can be tested with a small number of degrees
of freedom and deformation nodes. For this investigation only the linear elements are
considered, for the biquadratic elements we refer to a forth coming paper. Because large
deformations are treated in this example a linear elastic material law should no longer be
valid, therefore a material of the Neo Hookean type is used.

5.1 Basics

The geometrical and material data are shown in figure (2). All nodes are fixed in
z-direction, thus a plane strain case is generated. As a consequence of the boundary
conditions shown in figure (2) the number of degrees of freedom for the whole system is
reduced to eight.

11
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x,u

y,v
l

l

Geometry :
l = 2
t = 2

Neo Hooke material:
κ = 1.0 · 105

µ = 20

Uniform displacment in y-direction

Figure 2: Geometry and material data of the investigated element

For further simplification the upper four nodes are linked together in y-direction and
as loading a uniform displacement v is prescribed for these nodes. As a nearly incompress-
ible material is presumed, the displacement u for the nodes on the right hand side can be
calculated approximately. The degree of conservation of the element volume is indicated
through the determinant of the deformation gradient J , therefore for J a value between
0.999 for compression and 1.001 for tension is chosen to describe the incompressible ma-
terial behavior. Thus the following equation for the displacement u is valid:

u =
−1.9995v

2 + v
. (23)

Using this expression it becomes possible to generate the displacement vector de with only
one unknown variable u. Introducing the Matrix D, which contains the shape functions,
the element displacement can be represented as

u = D de. (24)

The axes of the given coordinate system are equal to the principal strain axes, thus the
principal parts of the deformation gradient can be computed:

λ1 =
∂u

∂x
+ 1 =

∂D

∂x
de + 1, (25)

λ2 =
∂u

∂y
+ 1 =

∂D

∂y
de + 1, (26)

λ3 = 1, (27)

and the the principal stresses and the coefficients of the constitutive tangent tensor are
obtained.

Consequently the Green Lagrange strain tensor is written directly as a function of the
deformation gradient:

E =
1

2

(
F T F − I

)
. (28)

Finally the tangent stiffness matrix is given as:

Ke
tang =

∫

V

(
ET

,de
CE ,de

+ ET
,dede

S
)
dV − LT

e P−1
e Le. (29)

12
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The matrices Le and P e appear, if the EAS method is applied. They include the consti-
tutive tensor C, the compatible strains E and the enhanced assumed strains EEAS:

L =

∫

V

EEAST

,αe
CE,de

dV, (30)

P =

∫

V

EEAST

,αe
CEEAST

,αe
dV. (31)

The terms (29), (30) and (31) are integrated with the standard 2×2×2 Gauss integration.
To avoid volumetric locking a selective reduced integration for the volumetric parts using
1 × 1 × 2 Gauss points can be performed.

5.2 Eigenmodes

Because the number of degrees of freedom is reduced to four, only four eigenmodes
have to be investigated. From these only the three eigenmodes represented in figure 3 are
of any interest for the ’stability’ considerations, whereas the fourth possible eigenmode
always remains stable, resp. has always a positiv eigenvalue.

mode 1 mode 2 mode 3

Figure 3: Investigated eigenmodes of 8-node-element

5.3 Results

Figure 4 shows that using a pure displacement formulation the investigated eigenvalues
remain stable. If in addition selective reduced integration is applied for the volumetric
parts the eigenvalues of mode 1 and mode 2 become very small. This was expected,
because locking effects should be obviated. Nevertheless, the eigenvalues still remain in
the positive range, even for high compression.

In figure 4 and 5 the eigenvalues are depicted for the displacement formulation com-
bined with the ANS-method. It is clearly visible that for the ANS3DL element the eigen-
modes 1 and 2 become unstable in the case of very large compressive strains. But it must
also be noted that this state of about 90% compression is hardly found in a realistic
problem. If in addition selective reduced integration of the volumetric parts is applied the
eigenvalues of mode 1 and mode 3 become very small for the complete deformation range
and mode 1 is appearing at about 75% compression.
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Figure 4: Eigenvalues of Eigenmodes 1, 2 and 3 as a function of the deformation v
in y-direction; DISP3D element (left side) and DISP3D-rV element (middle);
ANS3DL element (right side); + tension, - compression
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Figure 5: Eigenvalues of Eigenmodes 1, 2 and 3 as a function of the deformation v in
y-direction; ANS3DL element (zoomed to −2.0 < v < −1.2 on left side);
ANS3DL-rV element (full range in the middle and zoomed to −2.0 < v < −1.2
on right side)

In the ANS3DEAS element an enhanced assumed strain interpolation is added for the
strains in thickness direction (Figure 6). This enhancement leads to unstable modes 1 and
2 at compressive loading of lower value than the ANS3DL element and additionally the
eigenvalue of mode 1 becomes very small for the complete deformation range considered.
A small eigenvalue for mode 3 is obained, too, if selective reduced integration of the
volumetric parts is used in addition.

If the EAS-method is further applied to enhance the inplane strains, hourglassing starts
already at a compression of about 45% (see figure 7). If selective reduced integration of the
volumetric parts is used for the eas**-elements, the hourglass eigenmode is also present
in the tension case, in a similar deformation range as for compression. In general, all
eigenvalues are rather small for this combination of element enhancements.

Similar observations have been made for the biquadratic elements. As a conclusion
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Figure 6: Eigenvalues of Eigenmodes 1, 2 and 3 as a function of the deformation v in
y-direction; ANS3DEAS element (left side) and ANS3DEAS-rV element (right
side)
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Figure 7: Eigenvalues of Eigenmodes 1, 2 and 3; eas3DEAS element (left side) and
eas3DEAS-rV element (right side)

it must be noted that all mixed type enhancements of the low order interpolated solid-
shell elements lead to artificial element kinematics under homogenous loading in the large
deformation regime.

6 NUMERICAL EXAMPLES

The following numerical analyses are performed with 8-node and 18-node hexahedron
elements with bilinear resp. biquadratic inplane interpolation.

6.1 Bending problem with distorted director angle

In this section a cantilever beam is investigated varying the angle for an element edge
director and normals. The geometry and material data are given in figure 8. These in-
vestigations were performed using all present types of element formulations. The angle Θ
was varied between 0o resp. 45o. The results are presented in table 3.
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F=1

1 1 1 1 1 1

0.2
w

θ E = 1.0 · 106

ν = 0.0/0.3

Θ = 0o/450

Figure 8: Geometry, boundary conditions and material data of the cantilever beam

The trapezoidal locking effect is clearly visible for the elements without modification
to avoid trapezoidal locking, independent of the in-plane interpolation. If an angle of
Θ = 45o is chosen the displacement w is only between 14 and 23% of the displacement
obtained for an angle of Θ = 0o. It is also visible from table 3 that the interpolation of
the normal strain in thickness direction, as specified in eqn. (16) and (22), eliminates the
locking effect completely.

displacement w Θ = 0o Θ = 0o Θ = 45o Θ = 45o

ν = 0.0 ν = 0.3 ν = 0.0 ν = 0.3

ANS3DEAS 0.1073 0.1073 0.0166 0.0156
EAS3DEAS 0.1073 0.1073 0.0166 0.0159
eas3DEAS 0.1073 0.1073 0.0166 0.0159
ANS3Dq 0.1073 0.1071 0.0167 0.0147
eas3Dq 0.1073 0.1071 0.0167 0.0151
MI9k3DEAS 0.1081 0.1064 0.0244 0.0235
MI9k3Dq 0.1081 0.1064 0.0244 0.0236

ANS3DEAS-at 0.1073 0.1073 0.1074 0.1072
EAS3DEAS-at 0.1073 0.1073 0.1074 0.1072
eas3DEAS-at 0.1073 0.1073 0.1074 0.1072
ANS3Dq-at 0.1073 0.1071 0.1074 0.1071
eas3Dq-at 0.1073 0.1071 0.1074 0.1071
MI9k3DEAS-at 0.1081 0.1065 0.1076 0.1061
MI9k3Dq-at 0.1081 0.1064 0.1076 0.1061

Table 3: Deflection of a cantilever beam for varied director angles Θ = 0o and Θ = 45o

and different Poisson ratio.

6.2 Square plate undergoing large elastoplastic deformations

In this section a square plate which is subjected to uniform loading q0 (deadload) with
the geometry and material data given in figure 9 is analyzed. The material behavior is
described by the Hencky material law for the elastic part with von Mises plasticity. This
problem is chosen to compare the behavior of the different elements for large deformations
involving plasticity.

At the edges the lower boundary of the plate is fixed in vertical direction whereas the
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Geometry: Material:
l = 508 κ = 57500
t = 2.54 µ = 26538

Loading: y0 = 248
q0 = 10−2

Figure 9: Square plate geometry, material data and loading

displacements tangential to the plate and the upper boundary are free.
Due to symmetry only a quarter of the plate is discretized with 1 element over the

thickness and 32x32 elements in tangent plane for the bilinear elements. Using the bi-
quadratic elements the structure is discretized with a mesh of 16x16 elements only. For
the integration in thickness direction six Gauss points are used.

As expected the curves for the center displacement - depicted in figure 10 - coincide
for displacements smaller than about wC = 25 whereas full integration of the volumetric
terms leads to a clearly stiffer behavior in the larger displacement range. This is a conse-
quence of the incompressibility locking occurring in the plastic zones. The enhancement
of the in-plane strains included in the EAS3DEAS element and the eas3DEAS element
is responsible for the first visible differences in the results, with little difference between
the results for the different in-plane enhancements. It becomes also apparent that even
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Figure 10: Square plate; load deflection diagram; displacement of center point for ’bilin-
ear’ solid shell elements with different enhancements

the 6-parameter enhancement (eas..) does not remove the volumetric locking completely.
Selective reduced integration leads to almost coincident results for all 8-node solid shells.
All the mentioned effects are more pronounced for coarser - non converged - meshes.

The results obtained with 16x16 ’biquadratic’ 18-node elements are very close to the
results obtained with 32x32 ’bilinear’ 8-node elements depicted in figure 11. There appears
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Figure 11: Square plate; load deflection diagram; displacement of center point for ’bi-
quadratic’ solid shell elements with different enhancements

to be no volumetric locking effect for the ’biquadratic’ elements in this example.

7 CONCLUSIONS

Various approaches to avoid volumetric locking in the case of incompressibility were
presented for the solid-shell concept, concerning the influence of the different enhance-
ments the behavior of the solid-shell elements with bilinear form functions was compared
to the behavior of solid-shell elements with biquadratic form functions. The latter are
known to provide better results for curved structures.

Concerning volumetric locking it was shown that enhancements of the in-plane strains
according to the enhanced assumed strain method for the ’bilinear’ type elements do not
lead to a complete locking removal. The elements with selective reduced integration of
the volumetric term appear to deliver better results in such cases without leading to any
kinematics.

The example of the cantilever beam with a distorted element mesh shows clearly the
effect of so-called trapezoidal locking and the complete removal of this effect using an
assumed strain interpolation for the normal strain in thickness direction.

It should also be noted that using the EAS-method - as known from Wriggers/Reese [22]
- as well as using the selective reduced integration of volumetric parts can lead to artificial
unstable eigenmodes of the investigated structure under some kinds of loading in the case
of large deformations. Even the enhancement with the ANS-method leads to artificial
unstable eigenmodes in some cases. Future developments are directed to a proper method
to eliminate these unstable eigenvalues. Different proposals to resolve such problems are
already suggested in the literature [11], [13], [21] and [29], however they all appear not to
be generally applicable.
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