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Abstract

We review several segmentation algorithms, qualita-
tively highlighting their strengths and weaknesses. We
also provide a detailed quantitative evaluation of two
existing approaches, Temperley’s Grouper and Cam-
bouropoulos’ Local Boundary Detection Model. In or-
der to facilitate the comparison of an algorithm’s per-
formance with human behavior, we compiled a corpus
of melodic excerpts in different musical styles and col-
lected individual segmentations from 19 musicians. We
then empirically assessed the algorithms’ performance
by observing how well they can predict both the mu-
sicians’ segmentations and data taken from the Essen
folk song collection.

1 Introduction
Segmenting or parsing a melody means imposing a

temporal structure on a sequence of discrete pitch sym-
bols. This structure is defined by pairs of boundaries
that break the sequence up into various subsequences.
It may involve different levels of hierarchy (Lerdahl
and Jackendoff 1983), overlapping boundaries (Craw-
ford et al. 1998), and unclassified areas not belonging
to any segment. From a computational point of view
it makes sense to simplify the task, to focus on break-
ing a melody into asegment stream, which we define
as a series of non-overlapping, contiguous fragments.
In addition, rather than explicitly dealing with hierar-
chy, we consider segment streams on two different lev-
els of granularity, thephrase leveland thesub-phrase
level. Phrases capture large scale structure of a piece,
whereas sub-phrases are more fine-grained, providing
additional structure at “the next level down.”

An algorithm that automatically produces a musi-
cally reasonable segment stream provides an invalu-
able tool for melodic modeling. The higher-level struc-
ture emerging from the melodic surface can be used as
an input for further investigations which is what moti-
vates our interest in the subject. For example, H¨othker
is exploring what higher-level features are required to
adequately represent structure in melodies within and
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across different musical styles. She needs a general-
purpose segmentation algorithm in order to consider
features that can extend beyond fixed-size contexts.
Thom also intends to integrate such an algorithm into
BoB(Thom 2001) – a real-time agent designed to trade
customized solos with an improvising musician – so
that she may investigate whether or not the agent’s in-
teraction with a user will noticeably improve when its
melodic representation is no longer limited to a per-bar
representation.

Melodic segmentation and representation are inher-
ently intertwined. What appears salient in a melodic
surface will depend on a sequence’s encoding – e.g. is
the focus rhythmic, intervallic? – and on the way a
melody is locally divided when building higher-level
features. Ultimately, the development of a melody’s
encoding, its segmentation, and its higher-level ab-
stractions should be combined into a single algorithm,
which could explicitly consider the cooperation and
conflict between these different components. However,
in the meantime, as such an algorithm has yet to be
invented, we strive to understand the components in
isolation. For fixed-size melody segments, a detailed
investigation of clustering algorithms and melodic en-
codings is already available (H¨othker et al. 2001). This
paper is intended to accompany the other, focusing on
general-purpose segmentation algorithms.

In Section 2, we begin by reviewing some seg-
mentation algorithms,qualitatively highlighting their
strengths and weaknesses. The remaining sections fo-
cus onquantitativeevaluation, exploring the behavior
of Cambouropoulos’Local Boundary Detection Model
(LBDM) and Temperley’sGrouperin a variety of mu-
sical settings. Note that our ultimate goal is not to de-
termine which algorithm is better but to obtain a feel
for how these algorithms might perform when used off-
the-shelf in our applications. As described in Section 4,
we ran four quantitative experiments (Exp A through
D). The results are interpreted in Section 5.

One reason that quantitative evaluation is challeng-
ing is that the segmentation task isambiguous– there
might be several or even many musically plausible out-
put segmentations for a given input melody. This situa-
tion arises because many different factors influence the
perception of salient melodic chunks: local structure
(e.g. gestalt principles), higher-level structure (e.g. re-
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curring motives, harmony), style-dependent norms and
the breaking of these norms, etc.

If a meaningful quantitative assessment of an algo-
rithm’s performance is to be made, melodic ambigu-
ity should be considered. As an important precursor to
quantitative investigation, therefore, we had 19 musi-
cians hand-segment melodic excerpts in different mu-
sical styles (Section 3). This data is referred to as the
musician corpus. We quantify how ambiguous a par-
ticular excerpt is computing the average dissimilarity
within the musicians’ solutions (Exp A). This measure
provides an upper-bound on how well a computer al-
gorithm can be expected to perform.

LBDM and Grouper both have adjustable parame-
ters that allow a user application to control, for exam-
ple, to which extent rests or large intervals influence
the determination of segment boundaries. An obvious
practical question is how to set these parameters, which
we explore along two dimensions.Flexibility consid-
ers how well an algorithm could perform inprinciple,
which depends upon how rich its underlying hypothe-
sis space is and how well this can capture the segmen-
tation processes that operate in realistic musical situa-
tions. An algorithm’sstability, on the other hand, con-
siders how practical an algorithmmightbe, evaluating
to what extent the performance obtained in one musical
domain (a particular style) or circumstance (a partic-
ular song) depends upon a specific parameter setting.
There is no guarantee that a more flexible algorithm
will necessarily be more stable. Musically plausible
behavior in one situation will only perform well in an-
other provided that, in spite of fixed parameters, the al-
gorithm can still make the necessary distinctions when
segmenting new melodies. We investigate flexibility by
observing how well an algorithm can do when its pa-
rameters are tuned to two kinds of domain data – large,
relatively homogeneous subsets of the Essen folk song
collection (Exp D) and the ambiguous data in our mu-
sician corpus (Exp B). Stability (Exp C) is measured by
observing how well an algorithm can do when its pa-
rameters are tuned to a large Essen subset even though
its performance evaluation takes place over the data in
the musician corpus.

2 Segmentation Algorithms
Various segmentation algorithms have been pro-

posed: rule- vs. memory-based, lower- vs. higher-level,
real- vs. non-real-time, etc. In this section, we review
several different types, considering both their strengths
and weaknesses.

An algorithm’s input typically includes a melodic
line, encoded as a note list, where each note is de-
fined by a discrete pitch and an onset and offset time.
In this paper, we use the following notation: poten-
tial boundary locations are indexed by the second in-
dex of a successive note pair. As such, an algo-
rithm’s output – encoded by asegmentation vector,
� � ���� ���� ��� ���� ��� � ������ – contains a bound-

ary between notes�� � and� if and only if � � � �. An
algorithm might also extract higher-level features from
its input. For instance, a list of inter-onset intervals
(IOIs) measures the duration between onsets of succes-
sive pitches; a list of offset-to-onset intervals(OOIs)
measures the rests between successive note pairs; and
a list of absolute pitch intervals(APIs) measures the
absolutedifference between adjacent pitches in semi-
tones regardless of the interval’s direction.

2.1 Grouper
Grouper, a part of the Melisma Music Analyzer,1

was designed to extract melodic phrase structure from
a monophonic piece of music. A fundamental assump-
tion in Melisma is that intelligent music analysis can
be computationally simulated using a purely rule-based
approach. Grouper is based on a set of phrase struc-
ture preference rules adapted from Lerdahl and Jack-
endoff (1983). AGap Ruleprefers to insert bound-
aries at large IOIs and OOIs, aPhrase Length Rule
prefers phrases to have a predefined number of notes,
and aMetrical Parallelism Ruleprefers to begin suc-
cessive groups at parallel points in the metric struc-
ture. The first rule depends on the note list, and the
second depends upon the structure of a given solution.
The last rule, in contrast, requires an additional input, a
beat list, which specifies the melody’s metric structure.
Because duration values are normalized, tempo is not
used. Grouper also ignores a melody’s pitch content.

Grouper begins by calculating a gap score for each
pair of notes, summing their IOI and OOI values.
Next, a logarithmically scaled penalty is assigned to
all boundaries that deviate from some ideal length. An-
other penalty is assigned to successive phrases that start
at different metrical positions.2 The optimal segmenta-
tion is the solution with the lowest sum of penalties.
The penalties are controlled by five user-adjustable pa-
rameters: a gap weight, an ideal phrase length, a length
penalty, and two metric penalties. With�� possible
segmentations, dynamic programming is used to effi-
ciently calculate an optimal solution.

2.2 LBDM
LBDM is motivated by the gestalt principles of

similarity and proximity. It assigns a boundary strength
to each pair of notes in a melody, quantifying how dis-
continuous each note pair is. Peaks in the sequence of
strengths suggest where boundaries should be inserted.
Cambouropoulos (2001) points out that LBDM is not
a complete model of grouping in itself because issues
like musical parallelism (Cambouropoulos 1998) are
not explicitly handled. Nonetheless, we consider the
model as is because of its elegant simplicity, which

1Ready-to-use software is available atwww.links.cs.cmu.
edu/music-analysis.

2Melisma provides a module for inferring a beat list from a note
list. To ensure that this input is error free in our experiments, we
generate it directly using a song’s meter.
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should make it straightforward to apply in real-time
MIDI environments. As a result of the model’s par-
simony, it was also fairly easy to implement.3

LBDM begins by transforming its note list into
three interval profiles: APIs, IOIs, and OOIs. Per pro-
file, two rules control how the discontinuity associated
with each interval is calculated. AChange Ruleassigns
to each interval a value that is proportional to the rate
of change between successive interval pairs. AProxim-
ity Rulefurther scales each value proportionally to the
size of the corresponding interval. Before combining
the profiles into an overall weighted sum, each is nor-
malized over its length. Boundaries are then inserted
between those notes whose overall profile values cor-
respond to local maxima. Six user-adjustable parame-
ters include: three profile weights, two offset values,4

and a threshold parameter. The threshold, which con-
trols how large a maximum must be before it is con-
sidered as a potential boundary, has great impact on
LBDM’s output. It was not specified how to determine
the threshold. We chose to define it as a real-valued
fraction of the profile’s global maximum. Only the
highest peak in any region that crossed this cutoff was
assigned a boundary. Other schemes, such as returning
a fixed number of peaks, are also worth considering.

In the context of content-based musical information
retrieval, a segmentation algorithm based on LBDM
has been developed as a pre-processing tool for in-
dexing melodies in the music data base SMILE. The
algorithm has been tested on a corpus of 20 hand-
segmented melodies from four composers and is re-
ported to compute segmentations which are reasonably
similar to the musicians’ solutions (Melucci, Orio, and
Gambalunga 2000).

2.3 Other Approaches
Bod argues for a memory-based approach to seg-

mentation and implemented such a system using prob-
abilistic grammar techniques (Bod 2001). His most so-
phisticated and successful grammar performs data ori-
ented parsing (DOP), wherein probabilistic trees are
learned from a large training set of Essen data. Mu-
sically, DOP is interesting because it imposes a higher-
level structural definition upon the model that is to
be learned, biasing it to prefer solutions that contain
some ideal number of segments. Trees are learned di-
rectly from melodies encoded in the Essen Associative
Code(EsAC)(Schaffrath 1997). Pitch, in relation to
the tonic, and note length features are used. To imple-
ment DOP would involve significantly more work than
LBDM, and because we did not have access to a com-
plete ready-to-use version, we do not consider it in our
empirical experiments.

3Our implementation of LBDM is available ati11www.ira.
uka.de/˜musik/segmentation.

4These shift the API and OOI profiles above zero and were sug-
gested in the N.B. comment in Figure 1 of Cambouropoulos (2001).
IOIs do not need an offset because in realistic settings they will al-
ways be larger than zero.

Some algorithms also explicitly consider harmonic
structure. One example is the phrase boundary agent
used in the interactive music systemCypher (Rowe
1993). This agent collects information about disconti-
nuities from a complex set of features (including regis-
ter, dynamics, duration, harmony and beat) in real-time
and calculates a weighted sum for each event. When
the sum exceeds a threshold, the respective event is
considered the beginning of a new phrase. This thresh-
old can be adjusted dynamically according to the mu-
sical context.

Two other relevant algorithms, one a rule-based
system and the other based on a multi-layer neural net-
work, were developed for automatic musical punctu-
ation of a score (Friberg et al. 1998). Both systems
receive information about pitch, duration, and melodic
tension (determined with respect to the underlying har-
monies) and both operate on a local context of up to
five notes. A primary way in which our research differs
from Friberg’s approach is that we focus on ambiguity
whereas they focused on handling a single musician’s
interpretation.

We also do not consider any models that rely on
harmonic analysis because, for our purposes, it made
sense to decouple this analysis from the segmentation
process. One practical reason for this decision is that
the Essen database does not provide harmonic infor-
mation. Furthermore, in BoB, harmonic information
may not always be available, and in H¨othker’s research,
where a modular, exploratory approach is sought, one
could imagine needing segmentation as a preprocess-
ing step for harmonic analysis.

2.4 Discussion
LBDM is a local algorithm in the following sense:

its two rules never consider more than four and two
adjacent notes, respectively. An attractive aspect of
LBDM is that can operate on raw MIDI data, meaning
that rhythmic transcription is not required. As a result,
only online peak estimation would need to be added
before the algorithm could be used in real time. Using
raw MIDI data is also advantageous because it provides
performedIOIs and OOIs, articulation data that we ex-
pect to be relevant in many situations. Another advan-
tage is that the algorithm’s boundary strength calcula-
tions can provide insight into why certain boundaries
were chosen over others. Although it would be non-
trivial to convert this data into a probabilistic measure
(Spevak, Thom, and H¨othker 2002), this information
might prove valuable when evaluating LBDM’s perfor-
mance in musically ambiguous situations.

The Grouper algorithm explicitly combines a local
view, i.e. the current proposed segment, with higher-
level metric structure. Grouper is able to handle raw
MIDI data using additional tools provided in the Me-
lisma package. To use Grouper in real-time would re-
quire a paradigm shift however, since dynamic pro-
gramming must scan an entire melody before return-
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ing an optimal solution. For some parameter settings
and melodies, we have found Grouper hard to under-
stand (Spevak, Thom, and H¨othker 2002). One cause
is that Grouper’s combination of local and more long-
term knowledge is fairly complex – dynamic program-
ming allows a solution’s fitness to efficiently depend
upon its most recent previous boundary as well as lo-
cal metric information and duration content. We would
have found it useful if Grouper had output a profile that
indicated how relevant each segment was to its overall
solution.

DOP also explicitly combines local and higher-
level structure by simultaneously considering an arbi-
trary-length sequence of most recent notes and a pre-
ferred total number of phrases. Given a fairly large
training set (around 4000 songs), this algorithm can
learn to segment similar unseen melodies (Bod 2001).
Learning is an asset – it certainly makes DOP more
flexible than a hard-wired algorithm – but reliance on
a large, hand-segmented training set is costly. In or-
der for such a scheme to be of practical use, one would
need to demonstrate that a model trained in one setting
(e.g. Essen folk tunes) might also generalize well in
other settings (e.g. music analysis, live performance).
Another drawback is DOP’s reliance on EsAC, a score-
based encoding that precludes the use of raw MIDI
data. Although raw MIDI could be transcribed, this
would preclude the use of potentially relevant articula-
tion data. We believe DOP’s greatest asset is its proba-
bilistic basis, which provides a mechanism for explic-
itly handling ambiguity. For example, with this model,
one should be able to estimate how likely orfit a so-
lution is. This fitness could then be used to penalize
a solution based on the discrepancy between the algo-
rithm’s assessment of its fitness and an external mea-
sure that quantifies its musical plausibility.

In contrast to Grouper, LBDM considers pitch con-
tent but ignores metric content. Since our present need
is to use an algorithm off-the-shelf, we resisted modify-
ing either algorithms’ underlying representation, even
though one might argue that this would provide a bet-
ter comparison of thecore concepts. The results in
Section 5 for the unmodified algorithms suggest that
in practical situations, pitch content might be less rele-
vant for segmentation of melodies than metric informa-
tion. However, this conjecture needs to be investigated
more closely to be validated. From a user’s point of
view, when choosing among existing algorithms, the
time necessary for parameter tuning is a practical con-
sideration. Here, the expected effort is balanced be-
tween Grouper (5 parameters) and LBDM (6 param-
eters). Since the complexity of optimizing parame-
ters increases exponentially in their number, extending
LBDM would have seriously affected this balance.

It is worth noting that much inconvenience can be
hidden in a user-adjustable parameter, and it is easy to
gloss over important free parameters that need to be
specified when an algorithm is extended. For example,
with one additional parameter (a weight for integrating

a profile that indicates where similar motives occur),
one could integrate motivic parallelism into LBDM
(Cambouropoulos 1998). To implement this change,
however, would require a motive clustering algorithm
which would introduce its own set of adjustable param-
eters. A similar situation arises when learning is used.
For example, as opposed to the brute-force search we
use to tune LBDM’s and Grouper’s parameters to a spe-
cific dataset, one could imagine using an explicit learn-
ing procedure like gradient descent. We would like to
see Grouper and LBDM extended in this way, but to do
so would require the specification of additional meta-
parameters for controlling the learning process (when
to stop learning, how much change to incorporate per
learning iteration, etc.).

When learning is not incorporated, all degrees of
freedom are provided by the model’s user-adjustable
parameters. Learning introduces more freedom, but
it still relies on a hard-wired set of meta-parameters,
a fixed input representation, and so on. Certainly,
some aspects of the segmentation process are hard-
wired (e.g. primitive, gestalt-based), while others rely
on cultural or stylistic norms (e.g. familiarity of cer-
tain a genre, motive, or musical pattern). Given this
realization, perhaps the most promising future direc-
tion for algorithmic segmentation is to combine the
musically more informative features used by the more
hard-wired algorithms (e.g. LBDM, Grouper, Cypher)
with the more flexible, probabilistic approach taken in
DOP. The motivation for this suggestion is that with
better features, less data may be needed to configure a
model’s free parameters.

3 Segmentation Data
The Essen Folk Song Collection. Essen is a

large corpus of mostly European folk songs initiated
by Schaffrath (1997) and maintained by Dahlig.5 The
Essen data is encoded in EsAC format, recording meter
and key, and a sequence of discrete pitches and dura-
tions for each folk song. Phrase boundary locations
for each song are also included. These are typically
modeled after a song’s text phrases. Essen data has al-
ready been used to assess the performance of DOP and
Grouper (Bod 2001; Temperley 2001), but not in a uni-
form setting.

We use the Essen phrase marks as a reference to
benchmark the algorithms’ performance because it pro-
vides an unambiguous, single-layer segmentation. A
better understanding of how the segments were ob-
tained is instructive. Dahlig (2002) outlined the Essen
segmentation process as follows:

“When we encode a tune without knowing its text,
we do it just intuitively, using musical experience
and sense of the structure. The idea is to make
the phrase not too short (then it is a motive rather

5Approximately 6000 songs are publicly available atwww.
esac-data.org.
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Subset �� Notes per song Notes per phrase
Kinder 208 39.1� 20.9 7.0� 1.3
Fink 554 58.7� 24.4 8.3� 1.6
Ballad 869 37.9� 14.2 9.2� 1.7
Kaszuby 981 45.6� 29.4 11.5� 2.9
All 2612 45.3� 22.6 9.7� 2.1

Table 1: Properties of the Essen data subsets (average� standard
deviation).�� is the number of songs in a subset.

than a phrase) and not too long (then it becomes a
musical period with cadence etc.). But, of course,
there are no rules, the division is and will be sub-
jective.”

Nothing about this definition precludes the musical ap-
propriateness of more ambiguous segmentations. In
Essen, the primary focus, rather, was to capture a
phrase-based level of granularity.

Essen melodies are divided into subsets with dif-
ferent characteristics, such as Polish folk songs and
German children’s songs, which allows us to investi-
gate algorithmic performance as a function of genre.
In our experiments, the subsets specified in Table 1
were used. These sets are interesting because, per set,
their melodic content is quite different. The subsets
are also fairly large and exhibit characteristic average
values for notes per song and notes per phrase. For a
given subset, the number of songs reported in this ta-
ble is smaller than the number available in the original
collection because only those songs with simple me-
ters were included.6 TheAll subset was constructed by
merging the other four together.

The Musician Corpus. Ten musical excerpts in
very different styles were chosen as the basis of the
musician corpus (Table 2).7 Nineteen musicians with
various levels of expertise – including professionals,
musicologists, music teachers, and amateurs – were
asked to identify salient melodic chunks for each ex-
cerpt at thephrase leveland thesub-phraselevel. Sub-
phrases were only required to be more fine-grained
than phrases, providing additional structure at “the next
level down.” Instructions were kept deliberately vague.
For instance, the term motive was not used because we
wanted the musicians to draw upon their musical in-
tuition rather than perform explicit melodic analysis.
Subjects were instructed to identify each segment by
placing a mark above its first note. In this way, each
segment was defined as ending just before the next
mark, which ensured that a musician’s solution was
always a segment stream. For each excerpt, subjects
were given a minimal score of the monophonic melody
including its meter and a dead-pan MIDI file.

Some excerpts were selected because of their am-
biguous musical structure (e.g. Excerpt 5 and 6), others
because of their noticeable lack of structure (i.e. Ex-
cerpt 7). Essen tunes were included in order to explore

6Meters 4/4, 3/4, 2/4, 3/8, 6/8 were chosen to enable a straight-
forward automatic generation of the corresponding beat lists.

7This data is available ati11www.ira.uka.de/˜musik/
segmentation.

Excerpt Source �� ��

1 Essen songE0356 17 52
2 Essen songE0547 14 39
3 Essen songQ0034 12 57
4 Essen songF0927 8 45
5 WTC I, Fugue XV (J. S. Bach) 13 90
6 String Quartet op. 76/4, 1st mvt. (J. Haydn) 21 87
7 Parsival, Karfreitagszauber(R. Wagner) 11 30
8 Grey Eagle(Bluegrass Standard) 8 121
9 Saving all my love for you(Goffin & Masser) 11 52
10 KoKo (C. Parker) 32 190

Table 2: Properties of the musician corpus.�� and�� are the
number of bars and notes per excerpt respectively.

how unambiguous a simple folk song might or might
not be. Finally, Excerpts 8 through 10 (an improvi-
sation over a Bluegrass standard, a Pop standard, and
a Bebop jazz solo) were chosen for practical reasons.
When building interactive musical agents, one could
imagine people wanting to be able to interact in these
kinds of settings.

4 Experimental Methodology
4.1 Comparing Solutions

The typical way to evaluate an algorithm is to com-
pare its output,�, to some correspondingreference so-
lution, ��. For instance, in Figure 1, this would amount
to calculating afitness valuethat reflects how good
LBDM’s segmentation vector is with respect to the Es-
sen reference. When considering ambiguity, however,
the reference may or may not be “completely right” in
a given situation, and several or many segmentations
may be equally good or bad. In fact, our musician cor-
pus was motivated by the observation that it seems in-
adequate to evaluate an algorithm by merely comparing
its output to a single “correct” answer. A comparison
must also consider the issue ofclass inequality, which
arises because the reference solution will typically con-
tain many fewer boundaries than non-boundaries. For
example, in the reference segmentations of theAll sub-
set, on average there are 8.7 non-boundaries per bound-
ary (cf. Table 1).

Mus.

Essen

LBDM

Figure 1: Part of Excerpt 2. Below the score, Essen and LBDM
segmentation vectors are displayed. Above, a histogram illustrates
the corresponding frequencies with which musicians inserted phrase
(gray bars) and sub-phrase (gray and white bars) boundaries between
note pairs.

Assuming that each potential segment location can
be independently modeled, the difference between two
segmentation vectors can be completely described by
four simple numbers (Manning and Sch¨utze 2001).
The true positives, TP, and true negatives, TN, record
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the number of locations in which both vectors contain
a value of 1 or 0 respectively. Similarly, the number of
false positives, FP, and false negatives, FN, record the
number of locations where the algorithm falsely pre-
dicts a value of 1 or 0. Each of these types are identified
in Figure 1.

A fitness rating for a segmentation can be obtained
by combining these numbers into one. However, if
one simply counted the proportion of correctly clas-
sified locations, i.e.�������� � �

�
�������, an algo-

rithm might look good even if it never inserted a seg-
ment. This situation arises, because the reference vec-
tor will typically contain many more zeros than ones.
The F scoremeasure eliminates this problem by ig-
noring TN altogether. It is the harmonic mean of
	�
������ � ��

�����
and�
��

 � ��

�����
:

���� ��� �
�� �������	
� ������

�������	
� ������
�

F score maps onto the range��� �	, a 1 correspond-
ing to identical sequences and a 0 corresponding to
no matches. It balances two conflicting properties:
	�
������, which increases as the number of false posi-
tives decrease, and�
��

, which increases as the num-
ber of false negatives decrease. This is why in Fig-
ure 1,� equals���, a value that lies in between both
the	�
������ (���) and the�
��

 (��
). 8

An obvious problem with F score is that mis-
matches are treated in the same way regardless of their
location. For example, a segment of length one, which
arises when two boundaries are placed right next to
each other, might have the same impact on F score as
two 1’s that are separated by some musically reason-
able number of 0’s. The underlying issue – a direct
result of our independence assumption – is that TP,
FP, and FN do not consider a segment’s position and
length. Another serious problem with F score is that it
provides no mention of how to handle ambiguity. Ide-
ally, ambiguity might be handled with a probabilistic
model that explicitly considered segment position and
length. This idea is further pursued in Spevak, Thom,
and Höthker (2002). In our experiments, rather, a seg-
mentation’s ambiguity and location dependence are im-
plicitly considered by calculating an average F score.
For example, in Exp B and Exp C, a single segmen-
tation�� is compared to the musicians’ reference seg-
mentations��� ����� as follows:

�� �
�

�

��

���

����� ����

Average F score is appropriately adapted in other set-
tings. For measuring the homogeneity within the musi-
cian corpus, the average F score between pairs of musi-
cians’ segmentations is computed (Exp A). When eval-
uating an algorithm’s performance on a subset of the

8In this example we have included the initial true positive (� � �)
so that TP was not 0. In our experiments, we ignore this value be-
cause it contains no useful information, i.e. the first segment always
begins at the first note.

Essen collection, the average F score between pairs of
computed segmentations and reference segmentations
across the subset is used. In this case, the ambiguity
of different potential segmentations per melody is not
considered, because Essen provides only one reference
segmentation per melody.

4.2 Tuning Parameters
LBDM and Grouper were fit to particular melody

sets by varying their adjustable parameters. Suitable
parameter sets were searched among a fixed grid of
candididates, retaining a setting that produced the best
average F score. One important difference between ex-
periments is whether the algorithms were tuned to the
Essen or the musician data. Since the Essen subsets
are quite large, over-fitting was unlikely to occur. The
number of musicians’ solutions, on the other hand, was
much smaller. Because the musicians’ solutions for a
given excerpt might not adequately represent all mu-
sically reasonable solutions, over-fitting becomes more
likely. However this is only an issue when investigating
stability, i.e. how well an algorithm with parameters fit-
ted on a training set generalizes on a testing set. When
focusing on flexibility, rather, one asks how much a
particular algorithm can be fit to a specific situation.

4.3 Experiments
Our quantitative experiments are outlined below:

Exp A: The purpose here was to evaluate the perfor-
mance of each musician with respect to the oth-
ers. Per excerpt, average F score was calculated
over all pairs of musician solutions. The results
are shown in the left-hand portion of Table 3.

Exp B: The purpose of this experiment was to investi-
gate how well an algorithm could perform in prin-
ciple. Grouper and LBDM were tuned so as to
maximize average F score for each excerpt with
respect to the musicians’ solutions. The best aver-
age F scores are reported in the middle portion of
Table 3.

Exp C: The purpose here was to investigate how sta-
ble the algorithms could be. Each algorithm was
configured using the best parameters obtained in
Exp D for theAll subset. Performance was eval-
uated over each excerpt of the musician corpus.
Results are displayed the right portion of Table 3.

Exp D: The purpose of this experiment was to in-
vestigate how each algorithm could perform when
applied to large, relatively homogeneous sets of
melodies. Grouper and LBDM were tuned to all
five Essen subsets. The best average F scores ob-
tained for each subset are reported in Table 4.
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Exp A: Ambiguity Exp B: Optimal Parameters Exp C: Fixed Parameters
Musicians Grouper LBDM Grouper LBDM

Exc Phrase Sub-phrase Phrase Sub-
phrase

Phrase Sub-phrase Phrase Sub-
phrase

Phrase Sub-
phrase

1 .70� .27 .80� .16 .78� .25 .88� .15 .36� .15 .39� .15 .27� .17 .56� .14 .17� .22 .29� .16
2 .66� .30 .80� .31 .56� .23 .90� .24 .14� .16 .41� .10 .09� .25 .04� .14 .08� .17 .07� .21
3 .76� .16 .79� .24 .82� .14 .89� .19 .82� .19 .89� .19 .64� .09 .49� .14 .81� .15 .40� .11
4 .57� .36 .75� .32 .72� .31 .77� .22 .43� .19 .74� .19 .72� .31 .65� .20 .02� .09 .01� .05
5 .42� .27 .50� .23 .37� .16 .43� .09 .39� .20 .39� .19 .28� .19 .34� .10 .20� .20 .11� .09
6 .61� .22 .56� .29 .48� .11 .68� .32 .75� .22 .66� .33 .42� .11 .52� .21 .46� .18 .14� .04
7 .14� .25 .35� .26 .28� .23 .54� .29 .21� .31 .46� .27 .16� .23 .34� .23 .30� .26 .45� .25
8 .41� .25 .36� .19 .43� .21 .44� .21 .39� .28 .45� .15 .23� .13 .28� .15 .42� .15 .41� .18
9 .82� .14 .76� .16 .89� .12 .84� .13 .84� .12 .73� .11 .89� .12 .59� .10 .65� .13 .36� .06
10 .82� .12 .58� .17 .71� .09 .64� .13 .88� .10 .62� .30 .67� .08 .62� .12 .81� .12 .52� .19

Table 3: Qualitative experimental results (average F score� standard deviation).

Exp D: Optimal Parameters
Subset Grouper LBDM
Kinder .64� .32 .51� .30
Kaszuby .70� .35 .49� .34
Ballad .60� .36 .51� .31
Fink .65� .28 .56� .25
All .62 � .34 .50� .31

Table 4: Quantitative experimental results (average F score� stan-
dard deviation).

5 Discussion
How ambiguous is the segmentation task? Exp A

shows that the melody excerpts in the musician cor-
pus are ambiguous to a varying extent. Table 3
(left) presents the average inter-expert F score for each
excerpt. Results range considerably, from 0.14 for
the phrase segmentation of the Wagner melody (Ex-
cerpt 7) to 0.82 forSaving all my love(Excerpt 9) and
KoKo (Excerpt 10). Wagner’s melodic surface is very
smooth, which makes it difficult to segment. The con-
tents of the other two are much less ambiguous.Saving
all my lovehas a repetitive structure and rests at verse
boundaries. InKoKo, the lines are broken up by rests
which coincide with phrase boundaries in most musi-
cian segmentations.�� � ��
� for sub-phrases indi-
cates that finding structure withinKoKo’s improvised
lines was more difficult.

If the musicians disagree on the segmentation of a
particular excerpt (a low�� in Exp A), an algorithm can-
not possibly agree with all of them simultaneously. For
this reason, the results obtained in Exp B and C should
be interpreted with respect to the baselines reported in
Exp A.

How flexible is an algorithm? Exp B provides
insight into how flexible each algorithm is (Table 3,
middle). Grouper tends to compute segmentations that
agree better with the musicians’ segmentations than
those computed by LBDM (Excerpt 1 and 2), although
LBDM outperforms Grouper in some cases (Excerpt 6,
phrases). In Excerpt 2, phrase data , LBDM received
a low value (�� � ���
) even though the musicians
agreed on the locations of the phrase boundaries much
more often (�� � ����). In this example, the gestalt
principle of proximity conflicts with the higher level

melodic arch structure. The song starts with two iden-
tical arch-shaped phrases (cf. Figure 1), each begin-
ning and ending with the same pitch. There are, there-
fore, no contour-based cues in the phrase boundaries of
this score. Another difficulty is that the longest dura-
tions occur in the middle of a phrase, a situation that
will confuse any algorithm that relies only on the lo-
cal features of the melodic surface. Were articulation
data also used, perhaps LBDM would have more dis-
criminatory power in this setting. Grouper performs
somewhat better on excerpt 2 (�� � ��
�) because the
melody exhibits a regular phrase structure that is cap-
tured by the Metrical Parallelism Rule. Furthermore,
pitch information is ignored.

At first glance, it might seem puzzling that, in some
cases, the sum of�� plus or minus its standard deviation
is larger than 1 or less than 0. This effect is likely due to
a non-symmetric� distribution and to the small num-
ber of musician segments that were used to compute
the average. In Table 4, which is based on larger data
sets, this effect is less noticeable.

How stable is an algorithm? Exp C and D provide
insight into how practical each algorithm might be in
the case where its parameters cannot be adjusted to a
particular situation in advance. For example, consider
a real-time performance setting or a situation in which
there is not enough relevant hand-segmented data avail-
able for parameter tuning. In Exp C, performance was
measured for individual corpus excerpts even though
the parameters were tuned on the largeAll Essen sub-
set (Table 3, right). As expected, the performance of
the algorithms decreases in comparison with Exp B. In-
terestingly, this decrease is particularly noticeable for
sub-phrases (0.26 and 0.30 on average for Grouper and
LBDM, respectively). For phrases, it is less significant
(0.17 and 0.15), a reasonable explanation being that
the phrase granularity in the Essen database might bet-
ter capture the musicians’ notion of phrases than sub-
phrases.

In Exp D, Grouper performs better than LBDM,
supporting the idea that metrical parallelism has signif-
icant influence on the Essen folk songs’ phrase struc-
ture. However, the standard deviation is high for both
algorithms and all subsets. Even with tuned parame-
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ters, the minimum F score in a subset is usually zero,
meaning that it contains at least one melody for which
no boundaries were successfully identified. More to the
point, average F score assesses an algorithm’s general
stability but is not a reliable measure for predicting its
behaviour on individual melodies.

Parameters. In general, our tuned LBDM param-
eters tend to confirm those recommended by Cam-
bouropoulos (e.g. use a pitch and rest weight of�

�
and

an IOI weight of �
�
). Notably, the inter-onset stream

appears to be the most relevant parameter. Part of the
reason for this might be that we used score-data (as
opposed to performance data). In Grouper, the length
related parameters play an important role: in the best
parameter settings, the length weight was never zero.
Not surprisingly, in Exp D, the optimal length param-
eter is correlated with the number of notes per phrase
shown in Table 1.

6 Conclusion
In this paper, we reviewed several segmentation

stream algorithms and qualitatively highlighted their
strengths and weaknesses. Algorithms tend to differ
across their temporal processing (local vs. global), the
required inputs (score vs. MIDI, real-time vs. batch,
harmonic or metric information, training data), their
flexibility (hard-wired vs. learned), and their ease-of-
use (availability, setup time). For offline applications,
Temperley’s Grouper provides a well-balanced choice.
Although an LBDM-style approach would be ideal
in online settings, as is, it performs less well than
Grouper. Performance might significantly improve if
metric information were included. For such an exten-
sion to be of practical use, however, a ready-to-use im-
plementation would be required.

In the remaining sections, we quantified how am-
biguous specific segmentation tasks were and used this
as a baseline from which to compare Grouper’s and
LBDM’s performance. A notable aspect of our eval-
uation is that two radically different types of hand-
segmented data were used. The first type was made up
of large, relatively homogeneous subsets of folk tunes.
The second, obtained from a small number of musi-
cians, was composed of relatively distinct segmenta-
tions for the same melody. The first type has many
stylistically similar songs, but individually, each song
had its own distinctive melody and “correct” segmen-
tation. Thus, while an algorithm’s user-adjustable pa-
rameters can provide the flexibility needed to signifi-
cantly improve itsaverageperformance, the variance
across songs is impractically large. The second type
of dataset, on the other hand, demonstrates that even
for “simple” folk songs, ambiguity is substantial, sug-
gesting that measurements made using the first type of
dataset should be interpreted cautiously. In particular,
when ambiguity is not considered, the obtained nea-
surements might appear overly pessimistic.
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Appendix A: Selecting Significant Local Maxima
In LBDM, Cambouropoulos (2001) specifies that:

“...the peaks in the resulting sequence of boundary strengths are taken to bepotentialboundaries.” (emphasis ours;
page 290)

Because LBDM produces a finite and countable sequence, it is trivial to find all local maxima. This does not mean, however, that
LBDM’s computational inner workings are thus completely specified. For example, on page 291, Cambouropoulos mentions
that adjusting the cutoff threshold for the important peaks can improve LBDM’s performance. Unfortunately, from this simple-
sounding idea, a large number of algorithmic instantiations could be imagined.

For instance, the threshold could be defined so that its value is context dependent, meaning that its actual value can vary
as some function of the melody’s overall profile shape. Our implementation falls into this category, introducing a very simple
heuristic: define the threshold as some fraction of the overall global maximum. Another context-dependent option would arise
if we had defined the threshold so that it resulted in at most some fixed number of peaks crossing it, a scheme that would
make LBDM behave a bit more like DOP or Grouper. In order for an algorithm to identify which peaks are important, it needs
a bias. As a result, if the profile shapes that an algorithm might see vary considerably, one cannot expect a general-purpose
strategy to always perform well. Furthermore, as profiles become more jagged, a robust peak detection strategy becomes all
the more important. Unfortunately, in different musical situations, the shapes produced by LBDM can vary significantly (c.f.
Appendix 6).

The peak-selection strategy that we implemented is motivated by the following observation: in both our corpus and the
Essen collection, segments rarely contains but a single note or two. At the same time, it is not uncommon for LBDM to produce
a profile that contains within it the type of contour displayed in the left plot of Figure 6. In this example, it makes perfect sense
to insert a boundary between the location of note pair 11 while ignoring the peak at location 13. Provided that the threshold
parameter lies below the value at location 12, our threshold will make this distinction. In contrast, the middle and right plots
demonstrate some of the weaknesses in our strategy. For example, in the middle plot, it makes sense to select one and only
one peak for each of three adjacent regions (between locations 1 through 5, 6 through 11, and 12 through 17). Although the
threshold that is displayed identifies the important peak in the middle region, it simultaneously looses its ability to behave
reasonably in the other two regions. What is interesting about this example is that adjacent local peaks are divided by exactly
two notes — a fairly unlikely segment length. In addition, within the left and right regions, adjacent peaks have relatively
similar heights, further complicating which one should be perceived as “more important.” The fundamental problem is that a
single, vertical threshold is not powerful enough to make these kinds of distinctions. The right plot further demonstrates the
difficulty of identifying “important” local peaks. Between locations 1 and 6, the threshold behaves just as we had argued that
it should in the leftmost plot. However, when considered with respect to the peak at location 7, location 5 becomes more vital.
By extending ones view to cover locations 1 through 17, however, it can be argued that only 11 and 14 (and perhaps 2) are key.
At the same time, if we were to lower the threshold to eliminate the boundary at location 7, the only peak in this entire profile
that would be identified would be peak 11. The point to take away from this discussion is that local peak-finding is difficult,
and the performance of any algorithm that relies on such a procedure strongly depends on the biases that are introduced.
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Figure 2: LBDM boundary strength profile examples. The x-axis identifies note pairs and the y-axis identifies boundary strength values. The
threshold (dashed line) was chosen for LBDM by tuning to the musicians’ data for a given excerpt. Asterisks demonstrate where the boundaries
were inserted based on LBDM’s profile (solid line).
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Appendix B: Tuned Parameters
The parameters that were obtained by tuning the musician corpus (Exp B) and to the Essen subsets (Exp D) are specified

in Tables 5 and 6 for LBDM and in Tables 7 and 8 for Grouper respectively.

Excerpt data pitch wt IOI wt OOI wt pitch offset OOI offset thresh
1 phrase 0.167 0.667 0.167 0.250 0.000 0.250
2 phrase 0.500 0.250 0.250 0.250 0.000 0.100
3 phrase 0.333 0.333 0.333 0.000 0.000 0.250
4 phrase 0.667 0.167 0.167 0.000 0.000 0.500
5 phrase 0.167 0.667 0.167 0.000 0.000 0.160
6 phrase 0.333 0.333 0.333 0.000 0.000 0.130
7 phrase 0.333 0.333 0.333 0.000 0.000 0.280
8 phrase 0.500 0.167 0.333 0.250 0.000 0.550
9 phrase 0.333 0.333 0.333 0.000 0.000 0.130
10 phrase 0.333 0.333 0.333 0.000 0.000 0.130
1 motive 0.167 0.667 0.167 0.250 0.000 0.250
2 motive 0.500 0.333 0.167 0.500 0.000 0.130
3 motive 0.250 0.500 0.250 0.000 0.000 0.160
4 motive 0.667 0.167 0.167 0.000 0.000 0.500
5 motive 0.167 0.500 0.333 0.000 0.000 0.100
6 motive 0.167 0.667 0.167 0.000 0.000 0.050
7 motive 0.250 0.500 0.250 0.000 0.000 0.250
8 motive 0.333 0.333 0.333 0.000 0.000 0.190
9 motive 0.250 0.500 0.250 0.000 0.000 0.100
10 motive 0.333 0.333 0.333 0.000 0.000 0.130

Table 5: LBDM tuned parameters in Exp B.

essen subset pitch wt IOI wt OOI wt pitch offset OOI offset thresh
All 0.167 0.333 0.500 0.500 0.000 0.400

Ballad 0.167 0.500 0.333 0.250 0.000 0.450
Fink 0.167 0.333 0.500 0.000 0.000 0.280

Kaszuby 0.167 0.333 0.500 0.000 0.250 0.450
Kinder 0.167 0.667 0.167 0.000 0.000 0.220

Table 6: LBDM tuned parameters in Exp D.
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Excerpt data optimal length length weight gap weight phase3 penalty phase4 penalty average fscore
� std. deviation

1 phrase 12 300 100 100 100 0.779�0.248
2 phrase 2 100 100 500 300 0.561�0.229
3 phrase 14 500 300 100 100 0.817�0.143
4 phrase 8 300 100 300 300 0.723�0.312
5 phrase 2 100 500 700 300 0.374�0.163
6 phrase 14 500 300 100 100 0.478�0.111
7 phrase 8 300 900 300 100 0.285�0.226
8 phrase 12 900 100 700 700 0.429�0.205
9 phrase 10 100 100 100 100 0.893�0.121
10 phrase 10 700 500 100 100 0.707�0.087
1 motive 4 300 100 300 300 0.876�0.154
2 motive 2 100 100 500 300 0.895�0.240
3 motive 6 500 700 300 100 0.886�0.187
4 motive 4 300 100 500 100 0.766�0.222
5 motive 10 100 900 500 100 0.431�0.088
6 motive 6 300 100 100 100 0.684�0.316
7 motive 4 300 300 100 300 0.544�0.293
8 motive 12 900 100 700 700 0.436�0.213
9 motive 6 100 300 100 300 0.841�0.126
10 motive 12 900 500 300 300 0.642�0.131

Table 7: Grouper tuned parameters in Exp B.

essen subset optimal length length weight gap weight phase3 penalty phase4 penalty average fscore
� std. deviation

All 10 700 400 300 600 0.616� 0.339
Ballad 10 700 600 300 300 0.595� 0.358
Fink 10 500 500 300 300 0.645� 0.282

Kaszuby 11 700 400 600 600 0.697� 0.351
Kinder 8 600 600 600 300 0.636� 0.323

Table 8: Grouper tuned parameters in Exp D.

Appendix C: LBDM Profiles for Exp B
This appendix presents the LBDM boundary strength profiles generated using each parameter sets outlined in Table 5.

Per excerpt, two plots are given, one displaying LBDM’s behavior when it was tuned on the phrase-based data and another
when tuned on motive-based data. Dashed lines indicate the threshold value that was chosen when tuning LBDM, solid lines
identify LBDM’s boundary strength profile, and asterisks identify which boundaries were selected from this profile. The dotted
line, on the other hand, illustrates the corresponding frequencies with which musicians inserted their boundaries. Given that
the musician data was used to tune LBDM’s parameters, it might seem surprising that the dotted and solid lines are often not
aligned on the same locations. This situation is explained by the fact that, at times, the structure that is driving the melodic
segmentation process cannot be teased out from a mere local view of a melody’s surface.
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Appendix D: Probabilistic Interpretations of Segmentation Solutions
When musicians segment the same note list input into different output solutions, the mapping – no longer a mathematical

function – can be stochastically described. It makes sense to consider modeling a solution’s goodness – i.e. itsfitness– from
within the a probabilistic framework. Ideally, we would develop a model that, given a musically plausible segmentation,
returns a higher likelihood than when given a less plausible solution as input. Although our population of musician solutions
provides an excellent base from which to configure such a model, two difficulties arise in using this data. First, the class
inequality between 1’s and 0’s makes it hard to build a model that is not overwhelmed by the number of 0’s. Second, because
musicians tend to structure the locations of their 1’s in complex ways, the assumption that individual boundary locations can be
independently modeled breaks down.

The first issue is best appreciated by evaluating some musician data. Consider the data collected for Excerpt 1 (Figure 3). A
simple but naive approach would combine this data into a probabilistic model by normalizing over the total number of counts,
resulting in�� (Figure 4, top). This distribution could be used to weight each 1 in a solution as:

��� � ��

�����
�� �9

This fitness has the desirable property that it will be larger for those solutions that have their 1’s aligned in locations that the
musicians preferred. A big problem with this weighting scheme is that, for each 1, another multiplicative decreasing factor is
introduced. As a result, solutions are penalized according to the number of segments they contain. One way to decouple fitness
from the total number of 1’s would be to also weigh each 0 in a solution. For example, consider the following fitness:

��� � ��

�����
����

��� ����

where�� � ����. Unfortunately, the large�� values that result (Figure 4 middle) mean that this scheme still prefers 0’s to 1’s.
Normalizing over�� (Figure 4, bottom),

�
�
� �

��

��

�����
�

would solve this problem, producing higher fitnesses for those solutions whose boundaries coincide with peaks in��. The
unfortunate aspect of this normalization is that it deemphasizes the peaks in��� to the point where apt distinguishing between
common versus uncommon 0 locations cannot be made.

Figure 3: Part of the sub-phrase data collected for Excerpt 1. The histogram illustrates the corresponding frequencies with which musicians
inserted phrase (gray bars) and sub-phrase (gray and white bars) boundaries. The number enclosing each count identifies which musician
inserted it.
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Figure 4: Three transformations of the histogram in Figure 3. The x-axes identify note pairs and their corresponding y-axes identify various
weights – top:��; middle:��; bottom:���.

A closer look at Figure 3 also demonstrates why the complex, underlying structure of the musicians solutions invalidates
the use of a simple histogram-based weighting scheme. The product in the preceding fitness schemes all rely on the assumption
that different locations� and�� can be treated independently. For example consider the relative preference (14 to 5) musicians
had for inserting boundaries between note pairs 8 and 9. Although no musician placed two counts right next to each other, with
our independence assumption, a solution that had a count in both location 8 and 9 would look better than a solution that had a
count in 8 and 13. Nonetheless, musical segments of length one are not very common.

9The ‘�’ indicates that��� must still be normalized if it is to have a probabilistic interpretation.
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