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Chapter 1

Geometry of generalized Severi
varieties

1.1 Introduction

A plane curve of degree d is a subscheme of P2 given by a homogeneous

polynomial
∑

0≤i,j,i+j≤d

ai jx
iyjzd−i−j.

The Hilbert scheme Hilb(d) parametrizing those is isomorphic to

P
N = {(. . . : ai j : . . . )}, N :=

(d+ 1)(d+ 2)

2
− 1,

where the point (. . . : ai j : . . .) corresponds to the plane curve given
by the polynomial with coefficients ai j. The locus of reduced curves in
Hilb(d) allows a stratification, that is a partition in finitely many Zariski

locally closed subsets. Each stratum is characterized by the property to
contain all curves of a certain topological singularity type. This is called

the equisingular stratification of Hilb(d). In the literature, the smoothness
and irreducibility of such strata are broadly investigated. But not much is

known about how these loci fit together. In the present thesis we consider
these questions for a certain class of strata.

At the origin of this field of research stands the so called Severi variety Vd,g.

This is the locus in Hilb(d) of integral curves of given geometric genus g,
which have only nodes as singularities. Therefore it is a component of an

equisingular stratum. In his in 1921 published book on Algebraic Geome-
try, Severi gave a proof for the irreducibility of this locus ([Sev], Anhang F).
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Unfortunately his arguments can not be considered satisfying . A first com-
plete proof was given only in the eighties by J. Harris ([Har]), who in the

sequel, together with S. Diaz, also investigated the geometry of the Zariski
closure of Vd,g up to codimension two ([DiaHar1] and [DiaHar2]). In the

present work, we consider the locus Vd,g,m of integral curves of geometric
genus g, with an ordinary m-fold point at (0 : 0 : 1) ∈ P2 and at most

nodes otherwise. This ”generalized Severi variety” is a subvariety of V d,g

of codimension m. In Theorems 2 and 4 we generalize the results of Diaz

and Harris to Vd,g,m. Furthermore, in Theorem 1 we characterize all the
curves in the Zariski closure V d,g,m of Vd,g,m in Hilb(d), following work of A.
Nobile ([No87]), where the case m = 0 is considered (this is the only pub-

lished result characterizing curves in the Zariski closure of an equisingular
stratum we know).

In the course of our studies we came across two problematic places in the
literature. One is Fact (4.13) in [DiaHar2], which Diaz and Harris gave

as statement in the category of schemes over C. While it is correct in
the category of analytic varieties, we can give a counter example for the
Zariski topology. In Prop. 4.12 we prove a modified statement, which

holds for schemes. The other statement in question is Remark (1.8) in
[Ta1]. Tannenbaum claims, that the existence of an algebraization for

the functor of semi-locally trivial deformations can be proven with the
help of Artin’s Algebraization Theorem. After studying thoroughly this

approach, we came to the conclusion that this argument doesn’t suffice.
With different methods we prove the existence of an algebraization under
stronger assumptions (Prop. 4.12). This algebraization exists in all cases

which occur in [Ta1], Chapter 2.

At this place I want to use the occasion to thank everyone whose support

has contributed to the coming into being of this dissertation. First I wish
to thank my advisor Frank Herrlich for the friendly and open manner in

which he at all times responds to the concerns of his students. Particularly
I am grateful to him for revising my work parallel to me writing it down.
Without that I wouldn’t have been able to get finished in time. The many

fruitful discussions which I had with Frank, Volker Braungardt and Martin
Möller I remember with pleasure. For reading the proofs I thank Stefan

Kühnlein and particularly Martin, whose very careful reading helped to
improve the presentation considerably. Prof. C.-G. Schmidt I thank for
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acting as a referee. Last my gratitude is to Prof. Dr. Kronmüller, whose
fellowship secured my subsistence for almost a year.

1.2 Notation

We mainly work over the field of complex numbers, the only exemption
being the beginning of chapter 4, where an arbitrary algebraically closed

field of characteristic zero is allowed. Let C ⊂ P
2 be a plane curve. If

C is reduced and C̃ its normalization, then let g(C) := dim H1(C̃,OC̃)

denote the geometric genus of C. For P ∈ P
2 let µP (C) be the multiplicity

of C in P . If Ci = V (fi) are closed subschemes of P2 given by homo-

geneous polynomials fi, then let
∑k

i=0 niCi (ni ≥ 1; i = 1, . . . , k) denote
V (

∏k
i=0 f

ni

i ).

By abuse of notation we don’t distinguish between curves over C and the

corresponding moduli points in the Hilbert scheme.

Let Ci be a reduced curve on the smooth complex surface Si and pi a sin-

gular point of Ci (i = 1, 2). Then the two singularities (Ci, pi) are called
topological equivalent, if there exist open neighboorhoods Ui in the analytic
topology and an homeomorphism ϕ : U1 → U2, such that ϕ(p1) = p2 and

ϕ(C1∩U1) = C2∩U2. An equivalence class is called equisingularity type. It
can be described by the system of multiplicity sequences or the resolution

graph (compare [dJoPfi]). If a reduced curve C on a smooth surface has
singularities p1, . . . , pn, then the (not ordered) tuple ((C, p1), . . . , (C, pn))

of the topological equivalence classes of its singularities is called equisin-
gularity type of C. A family C ⊆ S × B of reduced curves on the surface
S over the base variety B is equisingular, if for all points b ∈ B the fibers

Cb over b have the same equisingularity type.

1.3 Statement of results

We begin with some more notation. A triple (d, g,m) of natural numbers

is called admissible iff 0 ≤ g ≤ (d−1)(d−2)
2 − m(m−1)

2 . Hence an admissible
triple satisfies 0 ≤ m ≤ d − 1 or (d, g,m) = (1, 0, 1). Vd,g,m is known to
be nonempty iff (d, g,m) is admissible. Furthermore it is irreducible and
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smooth of dimension 3d+g−m−1 (compare [HarMo], p. 30, [Har], [Ran],
[GrLoShu]).

Our first result gives a characterization of the curves in the Zariski closure

of Vd,g,m:

Theorem 1. The Zariski closure V d,g,m of Vd,g,m in Hilb(d) consists of

the curves
∑k

i=0 niCi where the Ci are integral and satisfy the following
inequalities:

(1)
∑k

i=0 ni deg(Ci) = d

(2)
∑k

i=0 ni µ(0:0:1)(Ci) ≥ m

(3)
∑k

i=0 εi(ni g(Ci)− (ni − 1)) ≤ g, where εi :=

{

0 , g(Ci) = 0

1 , g(Ci) > 0
.

Next we describe the equisingular strata in the boundary of V d,g,m which
have codimension one. We are able to give a complete list of those strata.

First there is for any two admissible triples (di, gi,mi) (i = 1, 2) with

(d1, g1,m1) + (d2, g2,m2) = (d, g,m) an irreducible stratum of codimension
one which parametrizes the curves C = C1 + C2 with Ci ∈ Vdi,gi,mi

such

that C has an ordinary m-fold point at (0 : 0 : 1) ∈ P
2 and at most nodes

in addition.

The table on the next page gives beside the generic stratum Vd,g,m (in the
first line) a complete list of the codimension one strata corresponding to

irreducible curves (n := n(d, g,m) := (d−1)(d−2)
2

− m(m−1)
2
− g is the number

of nodes of a curve in Vd,g,m).

Let Ud,g,m be the union of the generic stratum with all the codimension

one strata. Then we get

Theorem 2. Any equisingular stratum of V d,g,m of codimension less than
or equal to 1 is contained in Ud,g,m.

At points of Ud,g,m we can describe the local geometry of V d,g,m:

Theorem 3. Let D be in Ud,g,m.

1. If D has geometric genus g and all the branches of all the singularities
are smooth, then V d,g,m is smooth at the point corresponding to D.
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Geometric
Genus

Number of
Nodes

Singularity in (0:0:1) Other Singulari-
ties

g n ordinary m-fold point ——

g − 1 n+ 1 ordinary m-fold point ——

g n− 1 ordinary m-fold point one cusp

g n− 2 ordinary m-fold point one tacnode

g n− 3 ordinary m-fold point one ordinary
triple point

g n m−2 smooth branches and one cusp,
the tangent cone consists of m − 1
pairwise distinct lines

——

g n− 1 m smooth branches, two of them
have contact of order one, the re-
maining ones intersect transversally

——

g n−m ordinary (m+ 1)-fold point ——
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2. V d,g,m is also smooth at points corresponding to integral curves D with
a singularity at (0 : 0 : 1) which has m − 2 smooth branches and one
cusp such that the tangent cone consists of m − 1 distinct lines and

with only nodes otherwise.

3. If D has an ordinary m-fold point at (0 : 0 : 1), one cusp and only

nodes moreover, then V d,g,m looks near D like the product of a cusp
with a smooth variety.

4. If the geometric genus of D is g − 1 and it has n + 1 nodes and no
other singularities, then V d,g,m intersects itself in n+ 1 smooth sheets

at D.

5. If D = D1 + D2 with Di ∈ Vdi,gi,mi
has an ordinary m-fold point at

(0 : 0 : 1) and only nodes in addition, then V d,g,m intersects itself in
(D1.D2) smooth sheets at D.

Last we want to describe the local geometry of the normalization of V d,g,m.

This is achieved over Ud,g,m. To that end we need some more notation: the
pullback of the universal family over Hilb(d) to Vd,g,0 is given by

F :=
∑

0≤i,j,i+j≤d

ai jx
iyjzd−i−j ∈ C[Vd,g,0][x, y, z].

We get a flat family of zerodimensional subschemes of P2 of length n :=
n(d, g, 0) over Vd,g,0 by setting Cd,g,0 := V (F, Fx, Fy, Fz), the fiber over C

corresponding to the nodes of C. This provides us with a morphism

σ : Vd,g,0 → Hilbn(P2)→ Symn(P2),

where Hilbn(P2) is the Hilbert scheme for zerodimensional subschemes of
P2 of length n and Symn(P2) is the n-fold symmetric product of P2. We

define Σd,g,0 to be the closure of the graph of σ in V d,g,0 × Symn(P2) and
set

Σd,g,m := Σd,g,0 ∩ (V d,g,m × Symn(P2)).

Theorem 4. We have a V d,g,m-morphism of Σd,g,m onto the normalization

of V d,g,m which is an isomorphism over Ud,g,m. Moreover both are smooth
at points over Ud,g,m.
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Chapter 2

Curves in the Zariski closure of Vd,g,m

2.1 Characterization of curves in V d,g,m

In this section we will give the proof of Theorem 1. If
∑k

i=0 niCi is in

V d,g,m, where the Ci are integral curves, then inequalities (1) and (2) are
obvious and (3) holds by Theorem (1.2) in [No87]. What is left to show

is, given the inequalities, that
∑k

i=0 niCi belongs to V d,g,m. This is an
easy consequence of the following lemmas (the proofs of two of them are
postponed to the subsequent sections):

Lemma 2.1. Let C ∈ Hilb(d) be an integral curve of geometric genus g

and with multiplicity m in (0 : 0 : 1). Then C is contained in V d,g,m.

Proof: In the case m = 0, this is Theorem (2.1) of [No87]. Hence we

can assume m > 0. Choose a line L through (0 : 0 : 1), which is not
contained in the tangent cone of C at (0 : 0 : 1). C lies in a component

W of the closure of the locus of reduced curves of geometric genus g in
Hilb(d), having intersection number m with L at (0 : 0 : 1). As L does not

lie in the tangent cone of a generic element of W , we infer from Lemma
(2.4) in [Har], that the generic element of W lies in Vd,g,m. By that the
assertion follows. 2

Lemma 2.2. Let (di, gi,mi) (i = 1, . . . , k) be admissible triples, not all of

them equal to (1, 0, 1). If (d, g,m) with
∑k

i=0 di = d,
∑k

i=0mi ≥ m and
∑k

i=0 gi ≤ g is an admissible triple, then

k
∑

i=0

V di,gi,mi
⊆ V d,g,m.
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Lemma 2.3. Let C ∈ Hilb(d) be an integral plane curve with µ(0:0:1)(C) =
m. If g := g(C) ≥ 1 then nC is in V nd,ng−(n−1),nm (n ≥ 1).

As the triple (nd, ng − (n − 1), nm) of Lemma 2.3 is admissible, we can

apply Lemma 2.2 and the proof of Theorem 1 is finished, provided not all
triples are equal to (1, 0, 1). If all triples are equal to (1, 0, 1) we have to

consider two cases:

k = 1 : V 1,0,1 is the set of all lines through (0 : 0 : 1); Theorem 1 holds.

k ≥ 2 : as V 1,0,1 + V 1,0,1 ⊆ V 2,0,1 we can apply Lemma 2.2. 2

2.2 Proof of Lemma 2.2

In this section we use Tannenbaum’s deformation technique of smoothing
nodes of a curve on a rational surface to proof Lemma 2.2 ([Ta1]; a basic

example is the family V (xy − t) ⊇ V (xy)). Here the rational surface will
be P2

(0:0:1), the blowing-up of P2 in (0 : 0 : 1). To apply Tannenbaum’s

results it is necessary that each of the curves under consideration lies in
the complete linear system of a smooth curve. Whenever we need such

a smooth curve, we get it the following way: the linear system will be
|d · L̃−m ·E|, where L̃ is the strict transform of a line in P2 and E is the
exceptional divisor of the blowing-up π : P2

(0:0:1) → P2. Take a curve X in

Vd,G,m with G := (d−1)(d−2)
2 − m(m−1)

2 . The strict transform X̃ of X will be

a smooth curve with |X̃ | = |d · L̃−m · E|, as required.

Lemma 2.4. If (d, g,m) and (d, g,m+ 1) are admissible, then

V d,g,m+1 ⊆ V d,g,m.

Proof: Let C be arbitrary in Vd,g,m+1. It suffices to show, that C ∈ V d,g,m.
Denote by C̃ the strict transform of C. Note that C̃+E has only nodes as

singularities, at least one of them lying on E. Choose one node of C̃ + E
on E and let all others be assigned in the sense of [Ta1], Def. (2.8) (the

assigned nodes are those which stay nodes in the deformed curve, while
all the others are smoothed). C̃ + E with this assignment is virtually

connected (this means, that we get irreducible curves; compare [Ta1], Def.
(2.12)). Let K be the canonical divisor of P2

(0:0:1) (recall that K is linearly
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equivalent to −3 · L̃+E). As K.(C̃+E) < 0 we get by Lemma (2.2), Prop.
(2.11) and Thm. (2.13) of [Ta1] that C̃+E is the specialization of a family
of integral curves in |d · L̃−m · E| with

(d− 1)(d− 2)

2
−

(m+ 1)m

2
−g+(m+1)−1 =

(d− 1)(d− 2)

2
−
m(m− 1)

2
−g

nodes and no other singularities. For a curve F̃ of this family we have

F̃ .E = (C̃ + E).E = m and therefore π(F̃ ) ∈ V d,g,m by Lemma 2.3. 2

Lemma 2.2 now follows with Lemma 2.4 by

Lemma 2.5. Lemma 2.2 is true in the case
∑k

i=0mi = m.

Proof: Let
∑k

i=0Ci be generic in
∑k

i=0 Vdi,gi,mi
, that is with an ordinary

m-fold point in (0 : 0 : 1) and only nodes as further singularities. The

strict transform
∑k

i=0 C̃i under π has

∑k
i=0(

(di−1)(di−2)
2

− mi(mi−1)
2

− gi) +
∑

i<j(didj −mimj)

= (d−1)(d−2)
2

− m(m−1)
2
− g + (g −

∑k
i=0 gi + k − 1)

nodes. To g−
∑k

i=0 gi+k−1 ≥ 1 of them we apply the smoothing technique

of Tannenbaum: There is an i0 such that (di0, gi0,mi0) 6= (1, 0, 1). Choose
for every i 6= i0 a node of Ci∩Ci0 and further g−

∑k
i=0 gi nodes on

∑k
i=0 C̃i.

We assign the remaining ones (to ensure the virtual connectedness). Again

K.
∑k

i=0 C̃i < 0 and as before we get by Lemma (2.2), Prop. (2.11) and
Thm. (2.13) of [Ta1] that

∑k
i=0 C̃i is the specialization of a family of integral

curves F̃ in |d·L̃−m·E| with only nodes as singularities and with F̃ .E = m,
that is π(F̃ ) ∈ V d,g,m by Lemma 2.1. 2

2.3 Proof of Lemma 2.3

In the sequel we show Lemma 2.3. The central idea stems from A. Nobile,
who proved the case m = 0 ([No87], Thm. (2.6)): choose an unramified

covering D̃ → C̃ of degree n of the normalization C̃ of C (note that the
genus of D̃ is g̃ := ng − (n − 1)) and consider it as an element of the
spaceMg̃(nd) of maps from smooth curves of genus g̃ to P2 such that the
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push-forward of the fundamental class has degree nd. Then by dimension
estimates the generic push-forward is a reduced curve.

As we prescribe multiplicity nm in (0 : 0 : 1), we have to give some

additional arguments. It will be helpful to consider curves of V nd,g̃,0 which
intersect the line L := V (x) ⊆ P2 with order ≥ nm at (0 : 0 : 1). If
∑

0≤i,j,i+j≤nd ai jx
iyjzd−i−j is the equation of a curve, then to intersect L

at (0 : 0 : 1) with order ≥ nm is equivalent to a0 0 = · · · = a0 nm−1 = 0.

Without loss of generality we may assume, that L is not contained in the
tangent cone of C at (0 : 0 : 1).

For a precise definition of Mg(d) we refer the reader to [No87]. We only

recall those of its properties, that we want to use:

1. The existence is known for maps from regular curves of genus g ≥ 1
to P2.

2. It is an irreducible quasi-projective variety.

3.

dim(Mg(d)) ≥

{

3d+ g − 1 if g ≥ 2
3d+ 1 if g = 1

4. We have a naturally defined morphism Ψd,g :Mg(d)→ Hilb(d), which
pointwise is the push-forward of the fundamental cycle.

5. The Zariski closure of Ψd,g(Mg(d)) is V d,g,0.

6.

dim(Ψ−1
nd,g̃(nC)) =

{

0 if g ≥ 2
1 if g = 1

In the following we set

M :=Mg̃(nd), Ψ := Ψnd,g̃ and Mm := Ψ−1(V (a0 0, . . . , a0 nm−1)),

where
V (a0 0, . . . , a0 nm−1) ⊆ Hilb(nd) = {(. . . : ai j : . . . )}.

Note that

dim(Mm) ≥

{

n(3d+ g −m− 1) if g ≥ 2
n(3d−m) + 1 if g = 1

.
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Lemma 2.6. Let (Ẽ, ϕẼ) ∈ Mm be generic (Ẽ a smooth curve, ϕẼ :
Ẽ → P2 a morphism). Then E := Ψ((Ẽ, ϕẼ)) is an integral curve, which
intersects L at (0 : 0 : 1) with order ≥ nm.

Proof: As the image of a smooth curve is irreducible, it suffices to show
that the generic element E of Ψ(Mm)) is reduced. Assume that E is not

reduced. Therefore it is of the form k · E ′ with k ≥ 2 and E ′ an integral
plane curve of degree nd

k . The geometric genus g′ of E ′ is ≤ n
k (g − 1) + 1

by Riemann-Hurwitz. It intersects L with order m′ ≥ nm
k at (0 : 0 : 1).

Note that the locus in Hilb(nd) of such curves lies in a set H(k,m) of
dimension 3nd

k
+ g′− 1−m′: the universal family over Hilb(nd

k
) is given by

F (ai j, x, y, z) :=
∑

0≤i,j,i+j≤nd
k

ai jx
iyjz

nd
k
−i−j.

The family of curves of degree nd given by F k induces a finite morphism

κ : Hilb(nd
k )→ Hilb(nd). We define H(k,m) to be the Zariski closure of the

image of V (k,m) := V nd
k

,g′,0 ∩ V (a0 0, . . . , a0 m′−1) under κ. The dimension

of V (k,m) is 3nd
k + g′ − 1−m′ by Lemma (2.4) in [Har].

But this leads to a contradiction:

0 ≤ dim(H(k,m))− dim(Ψ(Mm)))
≤ n(1

k − 1)(3d+ g −m− 1)− 1 < 0

2

Recall that we assumed that L is not contained in the tangent cone to C

at (0 : 0 : 1). Therefore L can not be contained in the tangent cone at
(0 : 0 : 1) of a generic element E of Ψ(Mm)). By Lemma (2.4) in [Har]

E has an ordinary nm-fold point in (0 : 0 : 1) and only nodes otherwise.
This proves Lemma 2.3. 2
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Chapter 3

The equisingular strata in
codimension one

In this section we determine the equisingular strata in codimension one of
the generalized Severi variety V d,g,m. Our proof is based on the observation
that

V d,g,m ∩ V (a0 0, . . . , a0 d) = V d−1,g̃,m−1 + L,

where

g̃ :=

{

g if g ≤ G

G if g ≥ G

(L := V (x) and G := (d−2)(d−3)
2 − (m−1)(m−2)

2 is the maximal genus, that a
curve of degree d − 1 with ordinary (m − 1)-fold point at (0 : 0 : 1) can

have). This follows directly from Theorem 1, as a0 0 = · · · = a0 d = 0 is
equivalent to

L = V (x) ⊆ V (
∑

0≤i,j,i+j≤d

ai jx
iyjzd−i−j) (ai j ∈ C).

Therefore we can prove Theorem 2 by induction on the multiplicity m in

(0 : 0 : 1): if we intersect the Zariski closure E of an equisingular stratum
of codimension one in V d,g,m with V d−1,g̃,m−1 + L, then we get either all of

V d−1,g̃,m−1 + L or we get a Zariski closed subset V ⊆ V d−1,g̃,m−1 such that
V + L is of codimension one. As the case m = 0 is treated in [DiaHar1],

we only have to care about the step m− 1→ m.

Before we begin with the discussion, we explain an argument, that will
be implicitely used several times([KasSchl]): Let D be a reduced curve

on a nonsingular surface X (we apply it only to P2 and P2
(0:0:1)) and let

13



D ⊆ X × B be a flat family of curves on X over an analytic variety B
with special fiber Db

∼= D over some b ∈ B. Then for a singularity p of

D there exist open analytic neighbourhoods U ⊆ B of b and A ⊆ X of
p and a morphism ϕ : U → Def into the versal deformation space Def

for singularities analytically equivalent to (D, p), such that there is an
isomorphism onto its image U ×A→ U ×A2 which is compatible with the

embeddings of the families D and ϕ∗C (pull-back of the versal family C):

D ∩ (U ×A) ↪→ U × A → U

↓ 2 ↓ ↓ idU

ϕ∗C ↪→ U × A2 → U
↓ 2 ↓ 2 ↓ ϕ
C ↪→ Def × A

2 → Def

This has the consequence, that singularities of D|U near p can only be

singularities which occur in the versal family. In the versal families of
node, cusp, ordinary triple point or tacnode for example, all other fibers

contain at most nodes.

There is a second argument, that we need a few times:

Remark 3.1. Given an integral curve C ⊆ P2, there are only finitely many

lines through (0 : 0 : 1), which are contained in the tangent cone to some
point of C.

Proof: The projection from the point (0 : 0 : 1) to P
1 ∼= V (z) ⊆ P

2

provides us with a morphism from the normalization of C to P1, which has
only finitely many ramification points. Our statement follows, as every line

through (0 : 0 : 1), which is contained in the tangent cone to some point
of C induces at least one ramification point. 2

Now we begin with the proof of Theorem 2. Let V ⊆ V d−1,g̃,m−1 be as
above. Note that for a family of plane curves over an irreducible base vari-

ety there exists a Zariski open subset over which the fibers are equisingular
to the generic fiber ([Z], p. 213). Therefore we are able to choose a curve
B ⊆ E which runs through a generic subset of E and meets a generic

subset of V +L in a point b. Pull back the universal family of Hilb(d) to B
and let D := C+L be the fiber over b. We investigate which deformations

of D are possible. That the strata we tell are the only ones lying in V d,g,m

can be checked in each case with Theorem 1.
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Case 0: V = V d−1,g̃,m−1 (hence C ∈ Vd−1,g̃,m−1 and D has an ordinary
m-fold point at (0 : 0 : 1) and only nodes elsewhere). Here we have to
distinguish two possibilities: if g̃ = g, then V + L has codimension two in

V d,g,m. As we demand multiplicity ≥ m at (0 : 0 : 1), the fibers over B
near b still have an ordinary m-fold point in (0 : 0 : 1) by [dJoPfi], Thm.

6.4.3. Hence the only thing that can happen, is the smoothing of nodes.
But if we smooth a node, we are either in the generic stratum or outside

V d,g,m. Therefore E = V d−1,g,m−1 + V 1,0,1. If g̃ < g, then we can smooth
g − g̃ nodes and get E = V d,g−1,m.

Next we consider the case, that V contains the Zariski closure of one of
the equisingular strata of the list.

Case 1: C ∈ Vd1,g1,m1
+ Vd2,g2,m2

((d1, g1,m1) + (d2, g2,m2) = (d− 1, g̃,m−
1)). As D is generic, we have that C := C1 +C2 has an ordinary (m− 1)-
fold point at (0 : 0 : 1) and only nodes otherwise. Moreover, D has an

ordinary m-fold point at (0 : 0 : 1) and only nodes otherwise by Remark
3.1. As we demand multiplicity ≥ m at (0 : 0 : 1), the fibers over B

near b still have an ordinary m-fold point in (0 : 0 : 1) by [dJoPfi], Thm.
6.4.3. Hence the only thing that can happen, is the smoothing of nodes.
By Lemma (2.2) in [Ta1] we have to smooth g− g̃+1 nodes to get a curve

which belongs to an equisingular stratum of codimension 1. Hence we get
E = V d′1,g

′

1,m
′

1
+ V d′2,g

′

2,m
′

2
, where (d′1, g

′
1,m

′
1) + (d′2, g

′
2,m

′
2) = (d, g,m) are

admissible.

Case 2: C is integral of geometric genus g̃ − 1, has an ordinary (m− 1)-

fold point at (0 : 0 : 1) and only nodes elsewhere. By Remark 3.1 D has
an ordinary m-fold point and elsewhere only nodes. Smoothing g − g̃ + 1
nodes leads to E = V d,g−1,m.

Case 3: C is integral of geometric genus g̃, with ordinary (m−1)-fold point
at (0 : 0 : 1), with one additional singularity which is either a cusp or an

ordinary triple point or a tacnode and at most nodes elsewhere. In analogy
to the second case, we get the stratum of integral curves of geometric genus

g with ordinary m-fold point, with either a cusp or an ordinary triple point
or a tacnode and at most nodes moreover.

Case 4: C is integral of geometric genus g̃. D has only nodes outside

(0 : 0 : 1) and one of the following additional singularities at (0 : 0 : 1):

• m − 2 smooth branches and one cusp, the tangent cone consists of
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m− 1 pairwise distinct lines

• m smooth branches, two of them having contact of order one, the
remaining intersect transversally

• ordinary (m+ 1)-fold point

We take the strict transform of the family over B in B×P
2
(0:0:1). Again we

have to smooth g− g̃+ 1 nodes. We get integral curves of geometric genus

g, of degree d, with only nodes outside (0 : 0 : 1) and one of the above
singularities at (0 : 0 : 1).

What remains to be discussed, is that the generic element of V lies in

Vd−1,g̃,m−1. It may be special in the way it intersects L.

Case 5: D has an ordinary m-fold point at (0 : 0 : 1) and only nodes
otherwise. This case does not occur (compare case 0).

Case 6: (C.L)(0:0:1) = m (hence L lies in the tangent cone of C at (0 :

0 : 1)). Consider the strict transform of the family over B in B × P
2
(0:0:1).

We get a curve with at most nodes outside (0 : 0 : 1) and which has at
(0 : 0 : 1) a singularity with m smooth branches, two of them having

contact of order one, the remaining ones are intersecting transversally.

Case 7: (C.L)(0:0:1) = m − 1 and there are other points p on L with
(C.L)p ≥ 2. By Lemma (2.5) in [Har] there is only one point p 6= (0 : 0 : 1)

on L with (C.L)p = 2. Hence D has an ordinary triple point or a tacnode
at p. If we smooth nodes on the strict transform, we get a curve with

ordinary m-fold point at (0 : 0 : 1), either an ordinary triple point or a
tacnode in addition and elsewhere only nodes.

Finally by Lemma (2.4) in [Har] the locus of curves in V d−1,g̃,m−1 +L with

(C.L)(0:0:1) > m has codimension ≥ 2.

We have now proven, that there can be no other strata of codimension
one, than those of our list. It remains to be shown, that they are not of

greater codimension. This is clear for Vd1,g1,m1
+ Vd2,g2,m2

, Vd,g,m, Vd,g−1,m

and for Vd,g,m+1. Later we will see that it is also true for the strata, which

have either a cusp, a tacnode or an ordinary triple point beside the m-fold
point and the nodes (Remark 5.4). That the remaining two strata have
codimension one follows from the proof to Lemma (2.4) in [Har]. The proof

of Theorem 2 is now complete. 2
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Chapter 4

Deformations of curves with simple
singularities

4.1 Some deformation theory

In the following we discuss the claims of the first chapter of [Ta1] and

give the lacking proofs. At the beginning of this section we work over an
arbitrary algebraically closed field k of characteristic 0.

Let X be a smooth irreducible surface, D ⊆ X a reduced curve and A a

finite local artinian k-scheme. Then we define contravariant functors from
the category Art of local artinian k-algebras to the category Set of sets

by

HX,D(A):={ subschemes of X × Spec(A) flat over A, inducing D on X}

(the functor of infinitesimal embedded deformations) and by

H′X,D(A):= { D ∈ HX,D(A) which are locally trivial deformations of D}.

Definition 4.1. Let Sing(D) := {p1, . . . , pn} be the singular points of D
and S ⊆ Sing(D) a fixed subset. We say that D ∈ HX,D(A) is semi-locally

trivial with respect to S if for every open affine U ⊆ X \S the deformation
D ∩ U ×Spec k Spec(A) of D ∩ U is equivalent to the trivial deformation.

Remark 4.2. For S = ∅ we get the definition of ”locally trivial deforma-

tion”.

By setting

HS
X,D(A):={ D ∈ HX,D(A), D semi-locally trivial with respect to S}

we get for every S a functor.
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LetND := T 1(D|X,OD) be the normal sheaf ofD inX (for the notation see
[LiSchl]). Using the Lichtenbaum-Schlessinger cotangent complex define

N ′D := Ker(ND → T 1(D|k,OD)). If we choose an open affine cover {Ui} of
D such that each singularity of D is contained in only one Ui, then

ND|Ui ∩ Uj = N ′D|Ui ∩ Uj for i 6= j

by Theorem 3.1.5 (5) in [LiSchl]. It follows that the sheaves

NS
D(i) :=

{

ND|Ui , Ui ∩ S 6= ∅
N ′D|Ui , Ui ∩ S = ∅

glue to a sheaf NS
D on D, which does not depend on the chosen covering.

Proposition 4.3. The functor HS
X,D is pro-representable with tangent space

HS
X,D(C[ε]) = H0(D,NS

D) (C[ε] is the ring of dual numbers). It is smooth
if H1(D,NS

D) = 0.

After typing our proof, we discovered, that a proof for the smoothness
similar to ours can be found in the literature ([GrLo], Thm. (3.6)).

Proof: Let {Ui} be an open affine cover of X such that each Ui contains
at most one of the singularities of D. Set H := HS

X,D, Hi := HS∩Ui

Ui,D∩Ui
and

Hi,j := H
S∩Ui∩Uj

Ui∩Uj ,D∩Ui∩Uj
. For A,A′, A′′ ∈ Art we get a commutative diagram

with exact rows:

H(A′ ×A A
′′) ↪→

∏

i

Hi(A
′ ×A A

′′) ⇒
∏

i,j

Hi,j(A
′ ×A A

′′)

↓ ↓ ↓
H(A′)×H(A) H(A′′) ↪→

∏

i

Hi(A
′)×H(A) H(A′′) ⇒

∏

i,j

Hi,j(A
′)×H(A) H(A′′)

As the Hi and Hi,j are pro-representable by [Wa1] 1.4.4, 1.4.7 and 1.4.8,
the pro-representability of H follows with the diagram by Schlessinger’s

criterion ([Wa1], p. 532 or [Schl] Theorem 2.11). The same references give
the identification of the tangent space with H0(D,NS

D).

The proof of smoothness is almost the same as in the case S = Sing(D)
(compare [Mum], p. 157-159), so we only give the lacking arguments. It

suffices to show that given q : A → A ∈ Art, A a quotient of A by a
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principal ideal (η) with η mA = 0 (mA the maximal ideal of A), for every
D ∈ H(A) there is D ∈ H(A) extending D, i.e. H(q)(D) = D. Let {Ui}

be an open affine cover of X as above, F
(0)
i and F i equations for D on

Ui and for D on U i := Ui × A and let Gij ∈ Γ(Ui ∩ Uj, (OX ⊗ A)∗) with
F i = GijF j . As the Hi are smooth (once again [Wa1] 1.4.4, 1.4.7), we get

Di ∈ Hi(A) with equations Fi such that Fi ≡ F i mod (η). Furthermore
we can choose Gij ∈ Γ(Ui ∩ Uj, (OX ⊗ A)∗) with Gij ≡ Gij mod (η). Then

Fi−Gij Fj = hij η with hij ∈ Γ(Ui ∩Uj,OX) and we have to show that for
suitable choice of Fi and Gij the hij are equal to 0.

Now by the proof in [Mum] we know that the Gij may be chosen such that

Gij Gjk = Gik and that { hij

F
(0)
i

} is a 1-Čech cocycle. As H1(D,NS
D) = 0

we get fi

F
(0)
i

∈ NS
D(Ui) ⊆ T 1(OD|OX ,OD)(Ui) ∼= (OX(D)/OX)(Ui) such

that
hij

F
(0)
i

=
fj

F
(0)
j

− fi

F
(0)
i

modOX(Ui ∩ Uj). Therefore we find gij ∈ Γ(Ui ∩

Uj,OX) with gij F
(0)
j = hij + fi − fj G

(0)
ij , where G

(0)
ij ≡ Gij modmA. Then

one achieves that h′ij = 0 for F ′i := Fi + fi η and G′ij := Gij + gij η. A
straightforward computation shows G′ij G

′
jk = G′ik.

Finally, we have to verify that the F ′i are trivial deformations if Ui∩S = ∅.
In that case the image of fi

F
(0)
i

in T 1(D∩Ui|k,OD(Ui)) vanishes by definition.

From the exactness of the cotangent complex we get a derivation di ∈
Derk(OX(Ui),OD(Ui)) which maps to fi

F
(0)
i

under

a2 : Derk(OX(Ui),OD(Ui)) ∼= T 0(OX |k,OD)(Ui)→ T 1(OD|OX ,OD)(Ui)

(compare [Wa1] 1.4.4, 1.4.8). Checking the construction of a2 we find

a2(di) =
di(F

(0)
i )

F
(0)
i

, that is it exists ∂i ∈ Derk(OX(Ui),OX(Ui)) with ∂i(F
(0)
i ) ≡

fi mod (F
(0)
i ) and we get F ′i = e(η, ∂i)Fi, where the automorphism e(η, ∂i)

deforms Fi trivially ([Wa1] p. 536 bottom). 2

Let X be projective. In the following we assume that HS
X,D is smooth.

This has the consequence that it is pro-represented by a pro-couple (P̂ , ξ),
where P̂ is the completion of a finitely generated polynomial ring P = k[xi]

with respect to the maximal ideal mP := (xi) ([Schl], Rem. 2.10 and Thm.
2.11). Pro-represented by (P̂ , ξ) means that we get every C ∈ HS

X,D(A) from
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ξ = (ξ(n)) ∈ limnH
S
X,D(P̂ /mn

P̂
) by a unique local morphism α : P̂ → A.

More precisely α factorizes over αn : P̂ /mn
P̂
→ A for n with mn

A = 0 and

C = HS
X,D(αn)(ξ

(n)). Furthermore the universal property of the Hilbert

scheme for curves on X yields the effectiveness of (P̂ , ξ), that is ξ is ac-
tually a family on Spec(P̂ ). Our aim will be to find an algebraization of

(P̂ , ξ). By this we mean a flat family C ↪→ XB of curves on X (where
B := Spec(R) is of finite type over k), together with a k-rational point b
on B such that we have an isomorphism ÔB,b

∼= P̂ under which C pulls

back to ξ. Unfortunately we haven’t been able to prove the existence of an
algebraization based on the technique of Artin’s Algebraization Theorem

([A73], p. 68 or more generally [A69]), as Tannenbaum suggests. We failed
to show that there exists a finitely generated sub-k-algebra ϕ : R ↪→ P̂ and

a family ξ′ semi-locally trivial with respect to S on Spec(R) such that it
induces ξ under the assumptions of [Ta1]. The reason is that we might be

in a situation as in the following example: ψ : k[x, y]→ k[[t]], with x 7→ t
and y 7→ sin(t). In our setting: over the complex numbers there exists an
analytic subspace of the Hilbert scheme which represents the functor of

semi-locally trivial deformations, but we don’t know it to be locally closed
in the Zariski topology. Therefore it suggests itself to allow only singular-

ities for which equisingular and equianalytic deformations coincide. These
are the simple singularities (equal to the ADE-singularities). Furthermore

we require that X is a rational surface. Under these prerequisites we can
shut in the scheme theoretic image of Spec(P̂ ) in the Hilbert scheme in
a Zariski closed subset of dimension h0(NS

D). From that we will get an

algebraization in the next section.

In order to achieve this we consider the flattening stratification (see [Mum],

p. 55) of the component Hilb of the Hilbert scheme which contains D with
respect to the coherent sheaf T 1(U|Hilb,OU) (U denotes the universal fam-

ily over Hilb). The strata which contain curves with only simple singular-
ities will be equisingular strata, as for those the flatness of T 1(U|Hilb,OU)
is equivalent to equisingularity. There are only finitely many equisingular

strata and they are locally closed in the Zariski topology ([GrLo], Prop.
(2.1)).

Definition 4.4. A stratum Σ of the flattening stratification of Hilb with
respect to T 1(U|Hilb,OU) is called relevant with respect to D and S, if there
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exists an integral algebraic curve C ⊆ Hilb with the following properties:

1. it contains D

2. all but finitely many points of C lie in the regular locus of the reduced
scheme Σred

3. let p1, . . . , pk be the singular points of D not contained in S; we require
that the curve D∗ obtained by pulling back U to the generic point of

C has singular points p∗1, . . . , p
∗
k which specialize to p1, . . . , pk and are

equisingular to them

Lemma 4.5. Let X be a smooth projective rational surface, D a reduced
curve on it with only simple singularities, S ⊆ Sing(D) a fixed subset and
H1(D,NS

D) = 0. Then dim(Σ) ≤ h0(NS
D) for all strata Σ which are relevant

with respect to D and S.

Before we begin with the proof we introduce some notation and make some

preliminary remarks. Let C ⊆ XB be a family of curves onX over a smooth
base B. From the sequence of OB-modules

OB →OXB
→ OC

we get an exact sequence

T 0(OXB
|OB,OC)→ T 1(OC|OXB

,OC)→ T 1(OC|OB,OC)→ 0

(compare [LiSchl]). The subschemes of the form Spec(k[x, y]g) give a base

of the topology of the rational surface X (k[x, y]g := { f
gk |f ∈ k[x, y], k ∈

N}). If Spec(A) is an affine open subset of B, then Spec(A[x, y]g) is an

affine open subset of XB and as R := A[x, y]g is regular in codimension
one, we find F ∈ R such that C ∩ Spec(R) is isomorphic to Spec(R/(F )).

By [Wa1] Prop. 1.4.4 and (1.4.8) our exact sequence restricted to Spec(R)
looks like

HomR(ΩR|A, R/(F ))→ HomR((F )/(F 2), R/(F )) � HomR((F )/(F 2), R/(F, Fx, Fy)).

From this we draw some conclusions that we will use in the proof of the

lemma:
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1. For every closed point b ∈ Spec(A) corresponding to a maximal ideal
m�A we get (with k = k(b) := A/m) a commutative diagram

T 0(OXB
|OB,OC)⊗ k → T 1(OC|OXB

,OC)⊗ k � T 1(OC|OB,OC)⊗ k
∼= ↓ ∼= ↓ ∼= ↓

T 0(OX |k,OCb) → T 1(OCb|OX ,OCb) � T 1(OCb|k,OCb)
.

2. T 1(OC|OXB
,OC) is a flat OB-module because OC is.

3. The support V of T 1(OC|OB,OC) is finite over the base B (the fibers
are quasi-finite).

Remark 4.6. We restrict ourselves to rational surfaces because for those
we arrive easily at the preceding conclusions.

Let B be the normalization of the curve C in Definition 4.4 and let C be

the pullback of U to B. By removing points of B we may assume that for
all b ∈ B and for every specialization p ∈ Cb of a p∗i the singularity at p
is equisingular to p∗i and that the family over B \ {d} is formally locally

trivial, d a point mapping to D. Let VS := ∪ p∗i be the union of the Zariski
closures of the p∗i in C. Then VS ⊆ V and V \ VS is closed in C. Hence we

get two new sheaves on XB by setting

T S := T 1
S(OC|OB,OC) :=

{

T 1(OC|OB,OC) on C \ (V \ VS)
0 on C \ VS

and
NS
C := Ker(T 1(OC|OXB

,OC)→ T S).

Note that for every b ∈ B the OX-module

T S(b) := T 1
S(OCb|k(b),OCb) :=

{

T 1(OCb|k(b),OCb) on Cb \ (V \ VS)
0 on Cb \ VS

is isomorphic to the restriction T S
b of T S to Cb and that

NS
Cb := Ker(T 1(OCb|OX ,OCb)→ T S(b))

is isomorphic to NS
C,b.

Proof of 4.5: T 1
S is a flat OB-module by definition of the stratification.

As the same holds for T 1(OC|OXB
,OC) we infer that NS

C is also a flat OB-
module. Semicontinuity ([Ha] III, Thm. 12.8) tells us that

dimkH
0(NS

C,b) ≤ dimkH
0(NS

C,d)
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(d the point on B which maps to D). From the exact sequence

0→ N ′Cb → NS
Cb → T 1(OCb|k,OCb)/T

S(b)→ 0

we get
dimkH

0(N ′Cb) ≤ dimkH
0(NS

Cb).

But N ′Cb is the sheaf describing locally trivial deformations of Cb. As being

simple is an open condition, the singularities of Cb are all simple. By the
following Remark 4.8 we conclude that there is an open subscheme of Σ

which is a component of the scheme representing the functor of formally
locally trivial deformations of curves with the same singularity type and the

same Hilbert polynomial as those of Cb for b generic. Hence the dimension
of the tangent space to Σ at Cb is equal to dimkH

0(N ′Cb) and we conclude

dim(Σ) ≤ dimkH
0(N ′Cb) ≤ dimkH

0(NS
D).

2

To formulate the next statement we introduce a functor JP,τ from the
category of algebraic k-schemes to Set. Here τ = (f1, . . . , fs) (fi ∈ k[x, y])
is a singularity type, where the fi describe simple singularities and P is a

polynomial. A reduced curve C on X is said to be of singularity type τ , if
for Sing(C) = {p1, . . . , ps} we have ÔC,pi

∼= k[[x, y]]/(fi) (i = 1, . . . , s). We

define

JP,τ (T ) :=







flat relative Cartier divisors D ↪→ X × T which are
formally locally trivial at all t ∈ T and such that all
geometric fibers are of type τ with Hilbert polynomial P







.

Lemma 4.7. Let X be a smooth projective rational surface, τ a simple

singularity type. Then JP,τ is representable by a subscheme of Hilb.

Proof: Combine the proof of Thm. 3.3.5 in [Wa1] with the arguments in
the proof of the proposition on p. 91 in [GrKar]. 2

Remark 4.8. The subscheme of Hilb representing JP,τ consists of open
subschemes of those strata of the flattening stratification of Hilb with re-

spect to T 1(U|Hilb,OU) which contain closed points C of singularity type
τ .
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Proposition 4.9. Let X be a smooth projective rational surface over the
complex numbers, D a reduced curve on it with only simple singularities

and S ⊆ Sing(D) a fixed subset. Then the following holds:

1. H1(NS
D) = 0 if and only if HX,D →

∏

p∈Sing(D)\S Def (D,p) is surjective

(Def (D,p) denotes the functor of isomorphism classes of deformations
of the analytic germ (D, p)).

2. If H1(NS
D) = 0 then there exists a submanifold M := MS

X,D of Hilb
containing D such that: if HM,D denotes the local ring of holomorphic
functions on M at D, then the morphism OHilb,D → P̂ induced by the

universal property factorizes over the natural morphism OHilb,D ↪→
HHilb,D � HM,D and the completion with respect to the maximal ideal

ĤM,D is isomorphic to P̂ .

Proof: alteration of [GrLo] Prop. 3.11; compare also [GrKar]. 2

Proposition 4.10. Let X be a smooth projective rational surface over
the complex numbers, D a reduced curve on it with only simple singular-
ities, S ⊆ Sing(D) a fixed subset and H1(D,NS

D) = 0. Then there exists

an integral subscheme ZS
D of Hilb of dimension dimCH

0(NS
D) over which

Spec(P̂S)→ Hilb factorizes.

Proof: Let M be the manifold of Prop. 4.9 and {Σ} the flattening stratifi-
cation of Hilb with respect to T 1(U|Hilb,OU). Let {σ} be the stratification

of M consisting of the connected components of the Σ ∩M . If for some σ
D lies in the closure σ with respect of the analytic topology on M , then
the unique Σ, which contains σ, is relevant. Thus the component M ′ of

M \ ∪D/∈σ σ containing D still satisfies the property of Prop. 4.9. Let ZS
D

be the Zariski closure of M ′. As M ′ is covered by relevant strata the di-

mension of ZS
D is equal to dimCH

0(NS
D) = dim(M ′) by Lemma 4.5. Then

the natural morphism η : OZS
D,D → HM ′,D is injective: any element of

OZS
D,D can be written as quotient f

g of two polynomials in the coordinate

ring of AN ⊆ PN ∼= Hilb. As η(f
g
) = 0 iff f = 0 on an open subset U of

D in M ′, f = 0 on the Zariski closure ZS
D of U and hence in OZS

D,D. Set

I := Kernel(OHilb,D → P̂S). Then from the following commutative diagram
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we get OZS
D ,D
∼= OHilb,D/I and hence the assertion:

I → OHilb,D → P̂S

↙ ↓ l∼=
OZS

D,D → HM ′,D → ĤM ′,D

2

4.2 Correction of Fact (4.13) in [DiaHar2]

In this section we work again over the field of complex numbers. Let D
be a reduced projective curve of degree d in P2 and let p1, . . . , pn be the

singular points of D. Let S be a fixed subset of p1, . . . , pn. We define a
sheaf of ideals J(D,S) on P2 as follows: for any open set U ⊆ P2,

J(D,S)(U) :=







f ∈ OP2(U) such that ∀pi ∈ U ∩ (Sing(D) \ S)

the image of f in the complete local ring of P
2

in pi lies in the Jacobian ideal of D at pi







.

Remark 4.11. Recall that if Ui ∩ S = ∅ then NS
D(Ui) is the image of

a2 : Derk(OP2(Ui),OD(Ui))→ T 1(OD|OP2,OD)(Ui) ∼= (OP2(D)/OP2)(Ui),

where a2(di) = di(Fi)
Fi

for an equation Fi for D on Ui. Hence NS
D is isomor-

phic to OD(d)⊗ J(D,S).

If H1(D,OD(d) ⊗ J(D,S)) = 0, then fact (4.13) in [DiaHar2] claims the
existence of a subscheme Z of Hilb(d) with the following properties:

1. it contains the point q corresponding to D

2. Z is reduced and smooth with tangent space naturally identified with
H0(D,OD(d)⊗ J(D,S))

3. the restriction C of the universal family to Z is formally locally trivial
with respect to S at q in the Zariski topology

4. if Z ′ is any other subscheme of Hilb(d) satisfying 1. and 2. then, in
some Zariski neighborhood of q, Z ′ ⊆ Z.
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It is at least misleading to speak here of a subscheme as the following ex-
ample illustrates: take D ∈ Vd,g−1,0 such that it has n ≥ 2 nodes p1, . . . , pn

and let S := {p2, . . . , pn}. By applying Tannenbaum’s technique to D
(H1 = 0 by Prop. 5.2), we see that V d,g,0 near q looks like n smooth sheets

intersecting in Vd,g−1,0, each of them corresponding to the smoothing of
one of the nodes of D. Obviously, the restriction of the universal family

to V d,g,0 is not formally locally trivial with respect to S at q in the Zariski
topology, but (viewed analytically) the restriction to the sheet correspond-

ing to the smoothing of p1 is. So it suggests itself to replace “subscheme”
by “analytic subspace” (see Prop. 4.9). We give a proof for a modified
statement in the category of schemes (this is the announced algebraization

for the pro-couple (P̂ , ξ)):

Proposition 4.12. Let X be a smooth projective rational surface, D a

reduced curve on it with only simple singularities, S ⊆ Sing(D) a fixed
subset and H1(D,NS

D) = 0. Then there exists an integral subscheme Z

of the Hilbert scheme together with a closed point q on the normalization
Z̃, such that the pullback of the universal family to Spec(ÔZ̃,q) defines a

pro-couple for HS
X,D. In particular Z̃ is smooth at q with tangent space

naturally identified with H0(D,NS
D).

Proof: Let (P̂ , ξ) be a pro-couple for HS
X,D, Spec(R0) ⊆ Hilb an open

affine subset of the Hilbert scheme such that ξ is induced by the morphism
ϕ0 : R0 → P̂ . Set R := R0/Ker(ϕ0) (R is integral). Prop. 4.10 implies
ZS

D = Spec(R). Let ϕ : R → P̂ be the morphism induced by ϕ0 and

mR := ϕ−1(mP̂ ). First we prove

(∗) mRP̂ = mP̂ .

Let ηj : P̂ ∼= C[[xi]] → C[ε] be the morphism onto the dual numbers
declared by

ηj(xi) :=

{

ε , if i = j

0 , if i 6= j
.

Due to the versality of (P̂ , ξ), the family on Spec(C[ε]) induced by ηj from
ξ is not the constant family. On the other hand we also get it via ηj ◦ ϕ
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from the universal family on Hilb. Hence ηj ◦ ϕ has to be surjective for
every j, that is the generators xi of mP̂ are contained in the image of ϕ.

Next let R̃ be the integral closure of R in its quotient field. Then we can
extend ϕ to ϕ̃ : R̃→ P̂ , as P̂ is normal. The prime ideal mR̃ := (ϕ̃)−1(mP̂ )

lies over mR, so it is maximal. We extend ϕ̃ to Φ : R̃mR̃
→ P̂ , where R̃mR̃

denotes the localization of R̃ at mR̃. Let R̂ be the completion of R̃mR̃
with

respect to its maximal ideal and Φ̂ : R̂ → P̂ the extension of Φ. Then
Φ̂ is surjective by (∗). We can take Z = ZS

D and q the point in Spec(R̃)
corresponding to mR̃, if we show that Ker(Φ̂) = (0) holds. It follows from

Prop. 4.10 that dim(R) = dim(P̂ ). Hence we get

dim(R̂) = dim(R) = dim(P̂ ) = dim(R̂/Ker(Φ̂)),

from which we infer Ker(Φ̂) = (0). 2
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Chapter 5

On the geometry of V d,g,m

5.1 The local geometry of V d,g,m

Our aim for this section is to describe the local geometry of V d,g,m at least
at the points of Ud,g,m.

We begin with a general observation which holds for any projective rational

surface X over the field of complex numbers. Let N ′D := N∅D be the sheaf
describing formally locally trivial deformations of a reduced curve D on

X and assume h1(N ′D) = 0. Then by Prop. 4.9 the morphism of functors
HX,D →

∏

p∈Sing(D)Def (D,p) is surjective. That means that we have a mor-

phism ψ = (. . . , ψp, . . . ) of the analytic germ of Hilb at D to the product of
the versal deformation spaces

∏

p∈Sing(D) Def(D,p) of the singularities, which

is smooth at D. For a partition Sing(D) = Sarb ∪ Ses ∪ Sea ∪ Seg we can

therefore describe the subgerm corresponding to arbitrary deformations of
the p ∈ Sarb, equisingular deformations of the p ∈ Ses, equianalytic defor-

mations of the p ∈ Sea and equigeneric deformations of the p ∈ Seg: it is
the preimage under ψ of the product of the respective loci in the versal
deformation spaces. More precisely, because ψ is smooth, it has smooth

fibers and the germ is isomorphic to the product of the target germ with
the smooth fiber.

In the sequel we use the versal deformation spaces of the node, the cusp,
the tacnode and the ordinary triple point to describe the local geometry

of V d,g,m. Therefore we give them here as examples:

• As versal deformation space Def (V (xy),(0,0)) of the node V (xy) ⊆ A2 we
may take the affine line A1 with family V (xy − t) ⊆ A2 × A1. The
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equisingular and equigeneric locus coincide: for t = 0 the fiber is a
node. For t 6= 0 the fibers are smooth.

• In the case of the cusp V (y2−x3) ⊆ A2 we take Def(V (y2−x3),(0,0)) := A2

with family V (y2− x3− ax− b) ⊆ A
2 ×A

2. The equisingular locus is
the point (a, b) = (0, 0), with the cusp as fiber. The equigeneric locus

is V (4a3 + 27b2), where for (a, b) 6= (0, 0) the fiber is a node. The
fibers over D(4a3 + 27b2) are smooth.

• The tacnode V (y2 − x4) ⊆ A2 has versal deformation space A3 with
versal family V (y2 − x4 − ax2 − bx − c) ⊆ A2 × A3. The equigeneric

locus is V (b, a2− 4c). The fibers over V (b, a2− 4c) have two nodes, if
a 6= 0 and the tacnode sits over (0, 0, 0).

• The ordinary triple point V (x2y+xy2) has versal deformation space A2

with versal family V (x2y+xy2+ txy+sx) ⊆ A2×A2. The equigeneric

locus is given by s = 0. The fibers over the equigeneric locus have
three nodes for t 6= 0 and the ordinary triple point at (0, 0).

We will apply this to the study of the scheme V
′
d,g,m, which is the closure

of the locus of integral curves of geometric genus g on P2
(0:0:1) in Hilb(d,m).

Here Hilb(d,m) is the Hilbert scheme of curves linearly equivalent to the
divisor d · L̃−m ·E, where L̃ is the strict transform of a line in P2 and E

is the exceptional divisor. Note that Hilb(d,m) is canonically isomorphic
to the linear system |d · L̃ − m · E| ([Mum] p. 94 and 96). The reason

for investigating V
′
d,g,m is, that nailing down the ordinary m-fold point at

(0 : 0 : 1) yields

Lemma 5.1. V
′
d,g,m is naturally isomorphic to V d,g,m.

Proof: We can naturally identify Hilb(d,m) with the linear subspace

V (ai j|0 ≤ i, j, i + j < m) of Hilb(d) = {(· · · : ai j : . . . )}: The pull
back of the universal family U ⊆ P2 ×Hilb(d) to V (ai j|0 ≤ i, j, i+ j < m)
is given by the polynomial

∑

0≤i,j ∧ m≤i+j≤d

ai jx
iyjzd−i−j.

Restricting it to D(z)× V (ai j|0 ≤ i, j, i+ j < m) gives
∑

0≤i,j ∧ m≤i+j≤d

ai jx
iyj .
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The strict transform under (u, v) 7→ (v, uv) is
∑

0≤i,j ∧ m≤i+j≤d

ai ju
jvi+j−m.

But this is just the family on Hilb(d,m) ∼= |d · L̃ − m · E| restricted
to the open affine subset we’ve considered. Now the claim follows, as

V d,g,m ⊆ V (ai j|0 ≤ i, j, i+ j < m) maps to V
′
d,g,m ⊆ Hilb(d,m) under this

identification (see Thm. 1). 2

Let D ∈ |d ·L̃−m ·E| be a reduced curve of geometric genus g with n nodes
and c cusps as only singularities and irreducible components D1, . . . , Dk.
Further let D̃ = D̃1∪· · ·∪ D̃k be the normalization of D, let π : D̃ → D be

the normalization map and let R be its ramification divisor. From [Ta2],
p. 172-173 it follows that h1(N ′D) = 0 if

(∗) (K.Di) + deg(R|D̃i
) < 0 for i = 1, . . . , k

(K the canonical divisor on P
2
(0:0:1)). In that case, the germ of V

′
d,g,m near

D looks like the germ at zero of

V (4a3
1 + 27b21, . . . , 4a

3
c + 27b2c, t1, . . . , tn) ⊆ A

3d+g−m−1+c+n

where

A
3d+g−m−1+c+n ∼=

c
∏

i=1

Def(V (y2−x3),(0,0)) ×
n

∏

j=1

Def(V (xy),(0,0)) × A
3d+g−m−1−c

(for all singularities we allow equigeneric deformations, that is Seg :=

Sing(D)).

Proposition 5.2. For irreducible D and c ∈ {0, 1} condition (∗) is always

satisfied.

Proof: One has K ∼ −3 · L̃+E, D ∼ d · L̃−m ·E and deg(R) = c. Hence

(K.D) + deg(R) = −3d+m+ c < 0 2

Proposition 5.3. Let D ∈ |d · L̃ −m · E| be integral, corresponding to a

plane curve with ordinary m-fold point at (0 : 0 : 1), either one tacnode
or one ordinary triple point and only nodes otherwise. Then h1(N ′D) = 0
holds.
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Proof: We consider only the tacnode, as the computation for the ordinary
triple point is similar. Let ν : D̃ → D be the normalization map. Then we

have a short exact sequence

0→ N ′D → ν∗ν
∗N ′D → Q→ 0

of sheaves onD, whereQ is a skyscraper sheaf whose support is the tacnode
(the cohomology of ν∗N ′D is easier to compute). Locally we may assume

N ′D
∼= C[x, y]/(f) ⊗ (fx, fy), where f is a local equation for D (compare

Remark 4.11). To investigate the local behaviour near the tacnode, we are

allowed to consider C[x, y]/(y2+x4) and its normalization C[u]⊕C[v], where
x 7→ (u, v) and y 7→ (iu2,−iv2) determine the inclusion corresponding to ν.

Then ν∗N ′D corresponds to the ideal ((u2, 0), (0, v2)) and the image ofN ′D in
ν∗ν

∗N ′D corresponds to the subvectorspace C · (iu2,−iv2)+ ((u3, 0), (0, v3))

therein. Hence ν∗N ′D is isomorphic to

ν∗OD(D)(−2t1 − 2t2 − p1 − q1 − . . .− pn − qn),

where t1 and t2 are the preimages of the tacnode and the pi and qi are the
preimages of the nodes. From

2g − 2− deg(ν∗N ′D(−t1 − t2))

= [(d− 1)(d− 2)−m(m− 1)− 2(n+ 2)]− 2− [d2 −m2 − 6− 2n]

= −[3d− 2−m] < 0

we infer one after another

h1(ν∗N ′D) = h1(ν∗N ′D(−t1 − t2)) = 0,

h0(ν∗N ′D) = h0(ν∗N ′D(−t1 − t2)) + 2

and that H0(ν∗N ′D) contains an element which in C[u] ⊕ C[v] looks like

(u2 + u3 g(u), v2 + v3 h(v)). Therefore H0(ν∗ν
∗N ′D) surjects onto H0(Q)

and the long exact cohomology sequence yields h1(N ′D) = 0. 2

Remark 5.4. The loci of nodal curves in |d·L̃−m·E| with either one cusp,

one tacnode or one ordinary triple point have codimension one in V
′
d,g,m,

as the equianalytic locus has codimension one in the equigeneric locus in
the versal deformation space of each of those singularities.
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Remark 5.5. In the same way we want to describe the geometry of V
′
d,g,m

near D where D ∈ |d · L̃ − m · E| is a reduced curve of geometric genus

g − 1 with n + 1 nodes and no other singularities. First assume that D
is irreducible. Then condition (∗) holds and the germ of V

′
d,g,m at D is

isomorphic to the germ at (0, . . . , 0) of

V (titj|i 6= j) ⊆ A
3d+g−m−1+n,

where

A
3d+g−m−1+n ∼=

n+1
∏

j=1

Def(V (xy),(0,0)) × A
3d+g−m−1−1

(we allow that any specified node is deformed arbitrarily, while the re-

maining ones are deformed equisingularly). V (titj |i 6= j) ⊆ A
n+1 ∼=

∏n+1
j=1 Def(V (xy),(0,0)) is the union of the ti-axes, each axis corresponding to

the deformation of the respective specified node.

Remark 5.6. Secondly we consider D with two irreducible components

D1 and D2. Again (∗) is satisfied and hence the germ of V
′
d,g,m at D is

isomorphic to the germ at (0, . . . , 0) of

V (
∏

pi,pj∈D1∩D2, pi 6=pj

titj) ⊆ A
3d+g−m−2+(D1.D2),

where this time

A
3d+g−m−2+(D1.D2) ∼=

∏

p∈D1∩D2

Def(V (xy),(0,0)) × A
3d+g−m−2

(we allow that any specified node in D1 ∩D2 is deformed arbitrarily, while
the remaining ones are deformed equisingularly). We see that in both cases

V
′
d,g,m near such a D looks like the transversal intersection of n + 1, re-

spectively (D1.D2) smooth sheets.

Finally we investigate the geometry of V d,g,m at points D, where D is an
integral curve of geometric genus g with the property that all the branches
of all of its singularities are smooth. It’s a classical result, that V d,g,0 is

smooth at those points ([AC83], p. 486-487). We will show that the same
is true for V d,g,m. We use the theory from [Ho1] and therefore work in the

category of complex manifolds. Our notation is as follows:
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D̃ normalization of D

ϕ : D̃ → P2
(0:0:1) the map to the strict transform of D

β : P2
(0:0:1) → P2 blowing up of P2

θX tangent sheaf of X
Nϕ := ϕ∗θP2

(0:0:1)
/θD̃

Nβ◦ϕ := β∗ϕ∗θP2/θD̃

The idea of the proof is, that a complete deformation of ϕ is smooth and

gives locally an embedding into a complete deformation of β ◦ ϕ, which is
locally isomorphic to V d,g,0.

As ϕ is unramified it follows from [Ta2], p. 172-173 that h0(D̃,N ′ϕ) =

3d+ g−m− 1 and that h1(D̃,N ′ϕ) = 0. Hence Thm. 2.1 and Thm. 3.1 of
[Ho1] give us a family (Cm,Dm, πm,Φm) of morphisms to P2

(0:0:1), m ≥ 1, of

dimension 3d + g −m − 1 with the following properties (terminology see
[Ho1] §1):

• it is complete at a point 0 of Dm

• π−1
m (0) = D̃ and Φm|π−1

m (0) = ϕ

• the diagram

D̃ → Cm
Φm→ P

2
(0:0:1) ×Dm

↓ πm ↓ ↓
{0} → Dm = Dm

is commutative

β ◦ ϕ is also unramified. As in the case m ≥ 1 we get a complete family
(C0,D0, π0,Φ0) of morphisms to P2 with analogous properties (in particular

π−1
0 (0) = D̃ and Φ0|π−1

0 (0) = β ◦ ϕ).

As V d,g,0 is smooth at D we may assume D0 ⊆ V d,g,0: let Ṽd,g,0 denote the
open subset of V d,g,0 whose closed points correspond to integral curves of

geometric genus g, let C̃d,g,0 be the normalization of the pull back of the
family over V d,g,0 (note that this is a flat family whose fibers are smooth

irreducible curves of genus g ([DiaHar2], Thm. (2.5)). Let π denote the
morphism C̃d,g,0 → Ṽd,g,0 and let Φ be the morphism of C̃d,g,0 to P2× Ṽd,g,0.

By the completeness of D0 we get a morphism from a complex analytic
neighbourhood U of D in Ṽd,g,0 to D0 under which (C0,D0, π0,Φ0) pulls back
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to the restriction of (C̃d,g,0, Ṽd,g,0, π,Φ). This morphism is injective between
complex manifolds of the same dimension and therefore an isomorphism
on its image.

We will show that Dm embeds into D0 which entails

Proposition 5.7. V d,g,m is smooth at points D, where D is an integral

curve of geometric genus g with the property that all the branches of each
of its singularities are smooth.

Proof: First we argue why it would help us that Dm embeds into D0:

let Ṽd,g,m denote the open subset of V
′
d,g,m whose closed points corre-

spond to integral curves of geometric genus g, let C̃d,g,m be the normal-

ization of the pull back of the family over V
′
d,g,m, let π̃m be the morphism

C̃d,g,m → Ṽd,g,m and let Φ̃m be the morphism of C̃d,g,m to P2
(0:0:1) × Ṽd,g,m.

Pull (C̃d,g,m, Ṽd,g,m, π̃m, Φ̃m) back to a desingularization X of Ṽd,g,m. For a
preimage x ∈ X of D we find a morphism of an open neighbourhood Um

of x to Dm, such that the tuple restricted to Um is equivalent to the pull
back of (Cm,Dm, πm,Φm). Therefore we have a commutative diagram

Um → Ṽd,g,m

↓ ↓
Dm → V d,g,0

and Ṽd,g,m ⊆ Dm holds in a neighboorhood of D. If ι : Dm → Ṽd,g,0 would
be an embedding at D, we were finished as they have the same dimension.
But this holds, as the differential δ : TDm,0 → TD0,0 is an inclusion (follows

from the next lemma). 2

By [Ho1], Thm. 3.1 the characteristic maps τm : TDm,0 → H0(D̃,Nϕ) and

τ0 : TD0,0 → H0(D̃,Nβ◦ϕ) are isomorphisms (for the definition of τ see [Ho1]
(1.3)). Let η : H0(D̃,Nϕ)→ H0(D̃,Nβ◦ϕ) be the natural map.

Lemma 5.8. The diagram

TDm,0
τm→ H0(D̃,Nϕ)

δ ↓ ↓ η

TD0,0
τ0→ H0(D̃,Nβ◦ϕ)

is commutative and η is an inclusion.
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Remark 5.9. The proof shows the functoriality of the characteristic map.

Proof: We infer the injectivity of η from the injectivity of the sheaf mor-

phism Nϕ → Nβ◦ϕ. It suffices to check this on an open covering of D̃. We
do that for one affine open subset U to give the idea. Locally on P2

(0:0:1) the

blowing up is given by β(u, v) := (v, uv). That is θP2
(0:0:1)
→ β∗θP2 is given

by
∂
∂u 7→ v · ∂

∂y
∂
∂v 7→

∂
∂x + u · ∂

∂y

.

As u and v pull back to nonzerodivisors in OD̃(ϕ−1(U)) the assertion fol-

lows.

Before we start to proof the commutativity, we introduce some more no-
tation. We have a commutative diagram

Dm ←− Cm
Φm−→ P2

(0:0:1) ×Dm

h ↓ 2 H ↓ ↓ β × h

D0 ←− C0
Φ0−→ P

2 ×D0

,

where h and H are the morphisms induced by the completeness of D0. As
the left hand square is cartesian, we may choose local coordinates xi on
Dm, yj on D0, yj, zk on C0 and xi, zk on Cm such that

H((xi, zk)i,k) = (Hj((xi, zk)i,k), Hk((xi, zk))i,k)j,k = (hj((xi, zk)i,k), zk)j,k

holds. Further we choose local coordinates vµ on P2
(0:0:1) and wν on P2.

Then we get

τ0 ◦ δ(
∂

∂xi
) =

∑

j

∂hj

∂xi
(0) τ0(

∂

∂yj
),

where

τ0(
∂

∂yj
) =

∑

ν

∂Φ0,ν

∂yj
◦ i0 ·

∂

∂wν

by definition (i0 denotes the inclusion of D̃ into C0). On the other hand we

have

η ◦ τm(
∂

∂xi
) =

∑

µ

∂Φm,µ

∂xi
◦ im · η(

∂

∂vµ
)

with

η(
∂

∂vµ
) =

∑

ν

∂βν

∂vµ
◦ ϕ ·

∂

∂wν
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by definition (im denotes the inclusion of D̃ into Cm). Hence τ0 ◦ δ = η ◦ τm
is equivalent to

∑

j

∂hj

∂xi
(0) ·

∂Φ0,ν

∂yj
◦ i0 =

∑

µ

∂Φm,µ

∂xi
◦ im ·

∂βν

∂vµ
◦ ϕ

for all i and all ν. This results from the following computation:

∑

j

∂hj

∂xi
(0) · ∂Φ0,ν

∂yj
◦ i0 =

∑

j

∂hj

∂xi
(0) · ∂Φ0,ν

∂yj
◦H ◦ im

=
∑

j

∂Hj

∂xi
(0) · ∂Φ0,ν

∂yj
◦H ◦ im

=
∂(Φ0,ν◦H)

∂xi
◦ im

= ∂((β×h)ν◦Φm)
∂xi

◦ im

=
∑

µ

∂Φm,µ

∂xi
◦ im ·

∂βν

∂vµ
◦ Φm ◦ im

=
∑

µ

∂Φm,µ

∂xi
◦ im ·

∂βν

∂vµ
◦ ϕ

2

Remark 5.10. Note that we have proved Theorem 3 in this section: 1. is
Proposition 5.7, 2. and 3. follow from Proposition 5.2, 4. is Remark 5.5

and 5. is Remark 5.6.

5.2 The normalization of V d,g,m

In this section we give the proof of Theorem 4. First we introduce a
scheme Σd,g,m which is, as we will see, almost the normalization of V d,g,m.

Let σ : Vd,g,o → Hilbn(P2) → Symn(P2) be the morphism that assigns to

C ∈ Vd,g,0 the cycle p1 + · · · + pn of its n := (d−1)(d−2)
2 − g nodes. More

precisely: let
F (x, y, z, aij) :=

∑

0≤i,j,i+j≤d

aijx
iyjzd−i−j

be the polynomial describing the universal curve over Hilb(d). Then the

pull back of the family V (F, Fx, Fy, Fz) to Vd,g,o is a flat family of zero
dimensional length n schemes on P2. Hence we get a unique morphism
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to the Hilbert scheme Hilbn(P2) for such families. The morphism to the
n-fold symmetric product of P2 is canonical. We define Σd,g := Σd,g,0 to

be the closure of the graph of σ in V d,g,0 × Symn(P2). Now Σd,g,m shall be
given by the requirement that

Σd,g,m ↪→ V d,g,m × Symn(P2)
↓ 2 ↓

Σd,g ↪→ V d,g × Symn(P2)

is a cartesian diagram. Let V ′d,g,m ⊆ V
′
d,g,m be the locus of integral curves

of geometric genus g with only nodes. In analogy to the construction of
Σd,g we define Σ′d,g,m to be the closure of the graph of the map

V ′d,g,m → Hilbn(P2
(0:0:1))→ Symn(P2

(0:0:1)) in V
′
d,g,m × Symn(P2

(0:0:1)).

Lemma 5.11. We have a commutative diagram

Σ′d,g,m ↪→ V
′
d,g,m × Symn(P2

(0:0:1))

ς ↓ ↓
Σd,g,m ↪→ V d,g,m × Symn(P2)

and there exists an open subset U of Σd,g,m containing all strata of Ud,g,m

such that ς−1(U)→ U is an isomorphism.

Proof: We define U to be the union of two open sets: The first one is the
intersection of Σd,g,m with V d,g,m×Symn(P2 \{(0 : 0 : 1)}). Here ς restricts

to an isomorphism as

V
′
d,g,m × Symn(P2

(0:0:1) \E)→ V d,g,m × Symn(P2 \ {(0 : 0 : 1)})

is an isomorphism. Secondly we take the preimage U2 in Σd,g,m of the locus
W2 ⊆ V d,g,m of integral curves of geometric genus g all of whose singularities

have only smooth branches. Let W ′
2 be the corresponding locus in V

′
d,g,m.

Then we have a commutative diagram

ς−1(U2) → W ′
2

ς ↓ ↓
U2 → W2

all of whose arrows are isomorphisms: the horizontal ones, because they

are bijective onto smooth varieties (Prop. 5.7), the one on the right hand
side by Lemma 5.1.
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By the principle of conservation of number ([dJoPfi], Thm. 6.4.3) the only
strata of Ud,g,m not in the first set are the one with ordinary (m + 1)-fold

point in (0 : 0 : 1) and the one where the singularity in (0 : 0 : 1) has
m smooth branches, two of them having first order contact. But they are
both contained in U2. 2

Next, we want to show, that Σd,g,m is the normalization of V d,g,m at points

D, where D is integral of geometric genus g with ordinary m-fold point at
(0 : 0 : 1), one cusp and only nodes apart from that. This follows with
Lemma 5.1 and Lemma 5.11 from

Proposition 5.12. Let D ∈ V
′
d,g,m be an integral curve of geometric genus

g with one cusp and only nodes otherwise. Then Σ′d,g,m is the normalization

of V
′
d,g,m at D and is smooth there.

Proof: We work in the complex analytic category. Let C ′d,g,m ⊆ V
′
d,g,m ×

P2
(0:0:1) be the family over V

′
d,g,m. Without loss of generality, we may assume

that the cusp sits at (0, 0) ∈ A2 ⊆ P2
(0:0:1). The theorem of [KasSchl] gives

us open neighbourhoods U of D and A ⊆ A2 ⊆ P2
(0:0:1) of the cusp, a

morphism ϕ : U → V (4a3 + 27b2) (which is smooth, recall section 5.1),

and an isomorphism U × A → U × A
2 onto its image, which respects the

embedded families:

V ↪→ V (4a3 + 27b2)× A2 → V (4a3 + 27b2)
↑ 2 ↑ 2 ↑

ϕ∗V ↪→ U × A2 → U
↑ 2 ↑

C ′d,g,m ∩ (U × A) ↪→ U ×A

(where V := V (4a3 + 27b2, y2 − x3 + ax + b)). The crucial observation is
that the variety

(∗)
{((a, b), (x0, y0)) : V (y2 − x3 + ax+ b) is singular at (x0, y0)}

= {((a, b), (x0, y0)) : y0 = 0, a = −3x2
0, b = 2x3

0}
∼= A

1

is just the normalization of V (4a3 + 27b2). Therefore the variety U ∗ in the

commutative diagram

U∗ ↪→ U ×A → U

↓ 2 ↓ ↓ ϕ
A1 ↪→ V (4a3 + 27b2)× A2 → V (4a3 + 27b2)
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is smooth because ϕ is. Furthermore it is isomorphic to the normalization
Ũ of U : it is normal, so there is a unique morphism to U ∗ → Ũ . Conversely,

as Ũ is normal, we get a unique morphism from Ũ to A1 and hence to U ∗.
By the universal property of normalization, these have to be isomorphisms.

Let D′ be the preimage of D in Σ′d,g,m. Define Σ∗d,g,m by the cartesian
diagram

Σ∗d,g,m ↪→ U × ((A2)n \∆)

↓ 2 ↓

Σ′d,g,m ↪→ V
′
d,g,m × Symn(P2

(0:0:1))

,

where ∆ := {(x1, . . . , xn) ∈ (A2)n|∃ i 6= j : xi = xj} is the coincidence
locus. We choose a neighbourhood W of a preimage of D′ in such a way,

that W → Σ′d,g,m is an isomorphism onto its image (note that the arrow
on the right hand is étale). Let π : W → U × A2 be the projection, where

the points of A
2 correspond to the position of the cusp. π factorizes over

U∗, as we may choose W small enough. But this map is injective between
varieties of the same dimension, so it is an isomorphism onto its image, as

U∗ is smooth. 2

From the subsequent proposition, it follows in a completely analogous way,

that Σd,g,m is the normalization of V d,g,m at points corresponding to curves
of geometric genus g−1, which have an ordinary m-fold point at (0 : 0 : 1)

and at most nodes elsewhere and which are either integral or are reduced
with two irreducible components.

Proposition 5.13. Let D ∈ V
′
d,g,m be of geometric genus g − 1 with only

nodes and such that it is either integral or reduced with two irreducible
components. Then Σ′d,g,m is the normalization of V

′
d,g,m at D and is smooth

there.

Proof: This is essentially the same proof as in Prop. 5.12. Without

loss of generality, we may assume that all nodes lie in A
2 ∼= P

2
(0:0:1) \ E.

The theorem of [KasSchl] gives us open neighbourhoods Ui of D and
open neighbourhoods Ai ⊆ A2 ⊆ P2

(0:0:1) of the n + 1 nodes, morphisms

ϕi : Ui → Defi := Def(V (xy),(0,0)), and isomorphisms αi : Ui × Ai → Ui × A2

onto their images, which respect the embedded families. Let U ⊆ ∩iUi be
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an open neighbourhood of D.

U × Ai
αi→ U × A2 ϕi×id

A2

→ Def i × A2

↓ ↓

U
ϕi→ Def i

Recall from section 5.1, that

Φ := (ϕ1, . . . , ϕk) : U → V (titj|i 6= j ∧ i, j ∈ I) ⊆
∏

i∈I

Defi

is smooth, where I := {1, . . . , k} is an index set enumerating all nodes in
the case thatD is integral and enumerating those inD1∩D2 ifD = D1∪D2.

Let D′ be a preimage of D in Σ′d,g,m. We find an open neighbourhood

W ⊆ U × ((A2)n \∆) of a preimage of D′, which maps isomorphically onto
its image in Σ′d,g,m. We may assume thatW is contained in U×

∏

i∈N\{j}Ai,

where N is an index set for all nodes of D and where j ∈ I is the index of
the node that does not occur in the cycle of D′. Observe that pi ◦αi(W ) =

{(0, 0)}, where pi : Ui × A
2 → A

2 is the projection onto the second factor.
Let π : W → U be the projection onto the first factor. We infer that

ϕi ◦ π = 0 for i 6= j. Consequently π factorizes over Vj := Φ−1(V (ti|i 6= j).
Φ|Vj

is smooth, as Φ is. Therefore Vj is smooth and hence W is, as π is an
injective morphism between varieties of the same dimension. 2
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