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1 Introduction

Speech recognition has advanced considerably, but has been limited almost entirely either to sit-
uations in which close speaking microphones are natural and acceptable (telephone, dictation,
command&control, etc.) or in which high-quality recordings are ensured. Furthermore, most
recognition applications involve controlled recording environments, in which the user turns the
recognition event on and off and speaks cooperatively for the purpose of being recognized.

Unfortunately, the majority of situations in which humans speak with each other fall outside
of these limitations. When we meet with others, we speak without turning on or off equipment,
or we don’t require precise positioning vis a vis the listener. Recognition of speech during human
encounters, or “meeting recognition”, therefore represents the ultimate frontier for speech recogni-
tion, as it forces 1.) robustness, 2.) knowledge of context, and 3.) integration in an environment
and/or human experience.

2 Challenges

Over the last 3 years we have explored meeting recognition at the Interactive Systems Laboratories.
Meeting recognition is performed as one of the components of a “meeting browser”; a search re-
trieval and summarization tool that provides information access to unrestricted human interactions
and encounters. The system is capable of automatically constructing a searchable and browsable
audiovisual database of meetings. The meetings can be described and indexed in somewhat un-
orthodox ways, including by what has been said (speech), but also by who said it (speaker&face
ID), where (face, pose, gaze, and sound source tracking), how (emotion tracking), and why, and
other meta-level descriptions such as the purpose and style of the interaction, the focus of attention,
the relationships between the participants, to name a few (see [1, 2, 3, 4]).

The problem of speech recognition in unrestricted human meetings is formidable. Error rates
for standard recognizers are 5-10 times higher than for dictation tasks. Our explorations based on
LVCSR systems trained on BN, reveal that several types of mismatches are to blame [5]:

1. Mismatched and/or degraded recording conditions (remote, different microphone types),

2. Mismatched dictionaries and language models (typically ideosynchratic discussions highly
specialized on a topic of interest for a small group and therefore very different from other
existing tasks),

3. Mismatched speaking-style (informal, sloppy, multiple speakers talking in a conversational
style instead of single speakers reading prepared text).

In the following sections, we describe experiments and improvements based on our Janus Speech
Recognition Toolkit JRTk [6] applied to transcribing meeting speech robustly.
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3 Experimental Setup

As a first step towards unrestricted human meetings each speaker is equipped with a clip-on lapel
microphone for recording. By this choice interferences can be reduced but are not ruled out com-
pletely. Compared to a close-talking headset, there is significant channel cross-talk. Quite often
one can hear multiple speakers on a single channel. Since meetings consist of highly specialized
topics, we face the problem of a lack of training data. Large databases are hard to collect and can
not be provided on demand. As a consequence we have focused on building LVCSR systems that
are robust against mismatched conditions as described above. For the purpose of building a speech
recognition engine on the meeting task, we combined a limited set of meeting data with English
speech and text data from various sources, namely Wall Street Journal (WSJ), English Sponta-
neous Scheduling Task (ESST), Broadcast News (BN), Crossfire and Newshour TV news shows.
The meeting data consists of a number of internal group meeting recordings (about one hour long
each), of which fourteen are used for experiments in this paper. A subset of three meetings were
chosen as the test set.

4 Speech Recognition Engine

To achieve robust performance over a range of different tasks, we trained our baseline system on
Broadcast News (BN). The system deploys a quinphone model with 6000 distributions sharing 2000
codebooks. There are about 105K Gaussians in the system. Vocal Tract Length Normalization
and cluster-based Cepstral Mean Normalization are used to compensate for speaker and channel
variations. Linear Discriminant Analysis is applied to reduce feature dimensionality to 42, followed
by a diagonalization transform (Maximum Likelihood Linear Transform). A 40k vocabulary and
trigram language model are used. The baseline language model is trained on the BN corpus.

Our baseline system has been evaluated across the above mentioned tasks resulting in the word
error rates shown in Table 1. While we achieve a first pass WER of 18.5% on all F-conditions and
9.6% on the F0-conditions in the Broadcast News task, the word error rate of 44.2% on meeting
data is quite high, reflecting the challenges of this task. Results on the ESST system [7] are even
worse with a WER of 54.1% which results from the fact that ESST is a highly specialized system
trained on noise-free but spontaneous speech in the travel domain.

4.1 Acoustic and Language Model Adaptation

The BN acoustic models have been adapted to the meeting data thru Viterbi training, MLLR
(Maximum Likelihood Linear Regression), and MAP (Maximum A Posteriori) adaptation. To
improve the robustness towards the unseen channel conditions, speaking mode and training/test
mismatch, we trained a system “BN-+ESST” using a mixed training corpus. The comparison of
the results indicate that the mixed system is more robust (44.2% — 42.2%), without loosing the
good performance on the original BN test set (18.5% vs. 18.4%).

To tackle the lack of training corpus, we investigated linear interpolation of the BN and the
meeting (MT) language model. Based on a cross-validation test we calculated the optimal inter-
polation weight and achieved a perplexity reduction of 21.5% relative compared to the MT-LM
and more than 50% relative compared to the BN-LM. The new language model gave a significant
improvement decreasing the word error rate to 38.7%. Overall the error rate was reduced by 12.4%
relative (44.2% — 38.7%) compared to the BN baseline system.



System WER on Different Tasks [%]
BN (h4e98_1) F0-condition 9.6
BN (h4e98_1) all F-conditions 18.5
BN+ESST (h4e98_1) all F-conditions 18.4
Newshour 20.8
Crossfire 25.6
Improvements on Meeting Recognition

Baseline ESST system 54.1
Baseline BN system 44.2
+ acoustic training BN+ESST 42.2
+ language model interpolation (14 meetings) 39.0
Baseline BN system

+ acoustic MAP Adaptation (10h meeting data) 40.4
+ language model interpolation (14 meetings) 38.7

Table 1: Recognition Results

4.2 Model Combination based Acoustic Mapping (MAM)

For the experiments on meeting data reported above we have used comparable recording condi-
tions as each speaker in the meeting has been wearing his or her own lapel microphone. Frequently
however this assumption does not apply. We have also carried out experiments aimed at producing
robust recognition when microphones are positioned at varying distances from the speaker. In this
case data, specific for the microphone distance and SNR found in the test condition is unavail-
able. We therefore apply a new method, Model Combination based Acoustic Mapping (MAM) to
the recognition of speech at different distances. MAM was originally proposed for recognition in
different car noise environments, please refer to [8, 9] for details.

| Word Error Rate [%] || Close | Distant |
Baseline Speaker 1 || 35.2 46.1
MAM Speaker 1 || - 38.2
Baseline Speaker 2 || 13.8 31.2
MAM Speaker 2 || 14.4 26.1

Table 2: Recognition results on Model Combination based Acoustic Mapping (MAM)

MAM estimates an acoustic mapping on the log-spectral domain in order to compensate for
noise condition mismatches between training and test. During training, the generic acoustic models
Ak (k=1,2,...,n) and a variable noise model N are estimated. Then, model combination is applied
to get new generic models A, = A\, + N, which correspond to noisy speech. During decoding of
a given input x, the mapping process requires a classification as a first step. The score for each
class(model) is computed as gi(z) = P(k|x, \y). In the second step z is reconstructed according
to the calculated score, where u refers to the mean vector: & =z + > 3 gr(x) (1 — fik)-

We applied MAM to data that was recorded simultaneously by an array of microphones positions
at different distances from the speaker. Each speaker read several paragraphs of text from the
Broadcast News corpus. The results of experiments with two speakers are summarized in Table 2.
Experiments suggest that MAM effectively models the signal condition found in the test resulting
in substantial performance improvements.
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Conclusions

In this paper we have reviewed work on speech recognition systems applied to data from human-
to-human interaction as encountered in meetings. The task is surprisingly challenging with error
rates of 5-10 times higher than read speech (BN F0-condition). Our experiments using different
training data, language modeling interpolation, adaptation and signal mapping yield more than
20% relative improvements in error rate.
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