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Abstract 

Text clustering typically involves clustering in a high dimensional space, which appears 
difficult with regard to virtually all practical settings. In addition, given a particular clustering 
result it is typically very hard to come up with a good explanation of why the text clusters have 
been constructed the way they are. In this paper, we propose a new approach for applying 
background knowledge during preprocessing in order to improve clustering results and allow for 
selection between results. We preprocess our input data applying an ontology-based heuristics for 
feature selection and feature aggregation. Thus, we construct a number of alternative text 
representations. Based on these representations, we compute multiple clustering results using K-
Means. The results may be distinguished and explained by the corresponding selection of 
concepts in the ontology. Our results compare favourably with a sophisticated baseline 
preprocessing strategy. 

 
 
1 Introduction 
 
With the abundance of text documents available through the Web or corporate document management 
systems, the dynamic partitioning of document sets into previously unseen categories ranks high on 
the priority list for many applications like business intelligence systems. However, current text 
clustering approaches tend to neglect several major aspects that greatly limit their practical 
applicability. 

First, text document clustering is mostly seen as an objective method, which delivers one clearly 
defined result, which needs to be "optimal" in some way. This, however, runs contrary to the fact that 
different people have quite different needs with regard to clustering of texts because they may view 
the same documents from completely different perspectives (e.g., a business view vs. a technical view; 
also cf. (Macskassy et al., 1998)). Thus, what is needed are document clustering methods that provide 
multiple subjective perspectives onto the same document set.  

Second, text document clustering typically is a machine learning task taking place in a high-
dimensional space of word vectors, where each word, i.e. each entry of a vector, is seen as a potential 
attribute for a text. Empirical and mathematical analysis, however, has shown that – in addition to 
computational ineffiencies – clustering in high-dimensional spaces is very difficult because every data 
point tends to have the same distance from all other data points (cf. (Beyer et al., 1999)). 

Third, text document clustering per se is often rather useless, unless it is combined with an 
explanation of why particular texts were categorized into a particular cluster. I.e. one output desired 
from clustering in practical settings is the explanation of why a particular cluster result was produced 
besides of the result itself. A common method for producing explanations is the learning of rules based 
on the cluster results. Again, however, this approach suffers from the high number of features chosen 
for computing clusters. 

Though there are of course different approaches for clustering, simple ones like K-Means or 
sophisticated ones (like (Bradley et al., 1998)), based on the consideration just mentioned we found 
that virtually all algorithms working on large feature vectors will eventually face the same principal 
problems regarding high-dimensional space without really approaching the matters of subjectivity and 
explainability. Therefore, our objective has been the consideration of different views of the data, i.e. 
different representations1 of the same set of text documents, from which alternative clustering results 
may be derived. 

The principal idea of our approach, COSA (Concept Selection and Aggregation), is based on the 
usage of a simple, core ontology for generating alternative representations of the given document set 
such that from the various representations multiple clustering result may be constructed by standard 

                                                           
1 Motivated by the database point of view, we also call derived text representations "aggregations". 
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clustering algorithms like K-Means. The single representations are construed by aggregating the 
original term vector representation in various ways. More precisely, we have compiled a heterarchy of 
concepts2. The heterarchy is navigated top-down by COSA in order to select document features (i.e. 
concepts) for an aggregated vector representation. Thereby, COSA considers that features are neither 
too frequent (i.e. COSA would split them into their subconcepts) nor too infrequent (i.e. COSA would 
abandon them in favor of more frequent ones) to be meaningful for clustering. 

Thus, a set of clustering results is produced without interaction by a human user of the system. 
The user may then decide to prefer the one over the other clustering result based on the actual concepts 
used for clustering as well as on standard quality measures (such as the silhouette measure (Kaufman 
& Rousseeuw, 1990)). 

In this paper, we first formalize our notion of ontology (Section 2). Then, we describe COSA as 
well as two baseline preprocessing strategies (Section 3). These three preprocessing strategies 
constitute the basis for our application of K-Means in the experimental evaluation of Section 4. From 
our experiments we have derived some informal experiences that we describe in our "Lessons 
Learned" Section. 
 
2 Heterarchy and Core Ontology 
 
A core ontology in our framework is defined by: 
 
Definition 1 (Core Ontology) A core ontology is a sign system O := (LLLL, F F F F, C* , H H H H, ROOT), which 
consists of 
 

• A lexicon: The lexicon LLLL contains a set of natural language terms. 
 
• A set of concepts C*. 

 
• The reference function FFFF with F F F F : 2LLLL  2C* . FFFF  links sets of terms {Li } ⊂  LLLL to the set of 

concepts they refer to. In general, one term may refer to several concepts and one concept 
may be refered to by several terms. The inverse of F F F F is F F F F -1. 

 
• A heterarchy HHHH: Concepts are taxonomically related by the directed, acyclic, transitive, 

reflexive relation HHHH, (H H H H ⊂  C* ×  C*).  
 

• A top concept ROOT ∈  C*. For all C ∈  C* it holds: HHHH (C, ROOT). 
  
Example 1 (Example Ontology)  
 

• lexicon LLLL     = {Hotel, Grand Hotel, Hotel Schwarzer Adler, Accommodation, ...) 
• concepts C* = {ROOT, HOTEL, ACCOMMODATION, …} 
• reference function FFFF  = {(Hotel, HOTEL), (Grand Hotel, HOTEL), (Hotel Schwarzer Adler, 

HOTEL), …}, i.e. "Hotel", "Grand Hotel" and "Hotel Schwarzer Adler" refer to the concept 
HOTEL . 

• heterarchy HHHH = {(HOTEL, ACCOMMODATION), (ACCOMMODATION, ROOT), …} 
 

The core ontology defines the background knowledge used for preprocessing and selection of 
relevant views (i.e. aggregations) onto the set of texts. The formulation we have used here roughly 
corresponds to the basic structures used in the famous WordNet (Miller, 1995), but the actual ontology 
we have used is domain-specific rather than general as WordNet. 

 
 

                                                           
2 A heterarchy of concepts is a kind of "taxonomy" where each term may have multiple children and multiple 
parents 
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3 Document Preprocessing 
 
Documents may be represented by a wide range of different feature descriptions. The most straight-
forward description of documents relies on term vectors. A term vector for one document specifies 
how often each term from the document set occurs in that document. The immediate drawback of this 
approach for clustering is the size of the feature vectors. In our example evaluation, the feature vectors 
computed by this method were of size 46,947, which made clustering inefficient and difficult in 
principle, as described above. 

While for supervised learning tasks there exist quite a number of evaluations of how document 
preprocessing strategies perform (cf., e.g., (Fuernkranz et al., 1998)), there are only few corresponding 
results for unsupervised knowledge discovery tasks like document clustering (cf. Section 6). 

To evaluate our approach, which takes advantage of the background knowledge we provide with 
our core ontology, we have compared against that approach for document preprocessing (referred to 
by Simple Vector Representation or SiVeR in the following). We were aware that due to the problems 
with clustering in high dimensional space, SiVeR would be handicapped from the very beginning. In 
order to perform a more competitive comparison, we have decided to include another preprocessing 
approach in the evaluation. 

Hence, in the following we develop, (i), a preprocessing strategy (cf. Section 3.1) based on term 
vectors reduced to terms considered "important" by information retrieval measures, viz. a 
preprocessing strategy based on term selection; (ii), a more comprehensive approach using the 
background knowledge available in the ontology. In particular, we apply techniques from natural 
language processing to map terms to concepts (cf. Section 3.2) and we select between various 
aggregations navigating top-down in the heterarchy. 

 
3.1 Preprocessing Strategy: Term Selection (TES) 
 
Term selection, the second approach we use here for preprocessing, is based on the feature vectors 
from SiVeR, but focuses on few terms, hence, it produces a low dimensional representation. Selection 
of terms is based on the information retrieval measure tfidf: 
 
Definition 2 (tfidf) Let tf(i,j) be the term frequency of term j in a document di ∈  D*, i= 1,…,N. Let df(j) 
be the document frequency of term j that counts in how many documents term j appears. Then tfidf 
(term frequency / inverted document frequency) of term j in document is defined by: 
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Tfidf weighs the frequency of a term in a document with a factor that discounts its importance when it 
appears in almost all documents. Therefore terms that appear too rarely or too frequently are ranked 
lower than terms that hold the balance and, hence, are expected to be better able to contribute to 
clustering results. 

For TES, we produce the list of all terms contained in one of the documents from the corpus D* 
except of terms that appear in a standard list of stopwords. Then, TES selects the dim best terms j that 
maximize W(j), 
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and produces a dim dimensional vector for document di containing the tfidf values, tfidf(i,j) for the dim 
best terms. 
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3.2 Preprocessing Strategy: Concept Selection and Aggregation (COSA) 
 
Our approach for preprocessing, concept selection and aggregation (COSA), involves two stages. 
First, COSA maps terms onto concepts using a shallow and efficient natural language processing 
system. Second, COSA uses the concept heterarchy to propose good aggregations for subsequent 
clustering. 
 
3.2.1 Mapping Terms to Concepts 
 
The mapping of terms to concepts in our approach relies on some modules of SMES (Saarbrücken 
Message Extraction System), a shallow text processor for German (cf. (Neumann et al., 1997)). SMES 
components exploited by COSA comprise a tokenizer based on regular expressions and a lexical 
analysis component including a word and a so-called domain lexicon (the domain specific part of the 
lexicon partially defines F F F F ). 

The tokenizer scans the text in order to identify boundaries of words and complex expressions 
like "$20.00" or "United States of America", and to expand abbreviations. The word lexicon contains 
more than 120,000 stem entries. Lexical analysis uses the word lexicon, (i), to perform morphological 
analysis of terms, i. e. the identification of the canonical common stem of a set of related word forms 
and the analysis of compounds and, (ii), to recognize named entities. Thus, LLLL    as described in 
Definition 1 is a set defined by the tokenizer, the word lexicon and the analysis procedures of the 
lexical analysis component. The domain lexicon contains the mappings from word stems to concepts, 
i.e. together with the other modules it represents the function FFFF as defined in Definition 1. By this way, 
e.g., the expression "Hotel Schwarzer Adler" is associated with the concept HOTEL.During the 
mapping process we do not resolve ambiguities of terms. This means, if we find several concepts with 
the same lexical entry we map the term to all related concepts. Based on this input, each document is 
represented by a vector of concepts, each entry specifying 
the frequency that a concept occurs in the document. 
 
 
3.2.2 A heuristic for generating good aggregations 
 
Because synonyms are mapped to common concepts and because in all realistic document sets there 
are more terms than concepts, the size of concept vectors representing documents is already 
considerably smaller than the size of term vectors produced by SiVeR. Still, realistic settings require at 
least some hundreds or thousands of concepts, which yields simply too many dimensions for practical 
clustering and explantion. 

Therefore, we have looked for heuristics to further reduce the number of features. The principal 
idea of our algorithm GENERATECONCEPTVIEWS lies in navigating the heterarchy top-down splitting 
the concepts with most support (cf. (4)) into their subconcepts and abandoning the concepts with least 
support. (cf. Algorithm 1 below). Thus, the algorithm generates lists of concepts that appear neither 
too often nor too rarely. The rationale is that too (in-)frequent concept occurences are not appropriate 
for clustering.  
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The variable Agenda is defined to describe the current list of concepts used to generate a 

particular representation from the given document set. For instance, the current Agenda could be 
[ACCOMODATION, VACATION, SIGHT-SEEING]. An aggregation is altered, by taking the frontmost, 
i.e. the concept with the most support, from the agenda (lines 4 and 5) and branching – if it is not a 
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leaf concept – into its subconcepts (line 10). In order to restrict branching, we only perform binary 
splits at a time. Continuing the example just given, the first feature for the input space is described by 
the concept ACCOMODATION and when ACCOMODATION has the subconcepts [HOTEL, GUEST-
HOUSE,YOUTH-HOSTEL], we will select the immediate subconcept that has the highest support of 
these three (line 11), e.g. HOTEL, and aggregate the other two subconcepts into one feature, viz. 
[GUEST-HOUSE, YOUTH-HOSTEL] (line 12). The list [GUEST-HOUSE, YOUTH-HOSTEL] is then 
treated almost like a proper atomic concept. HOTEL and [GUEST-HOUSE, YOUTH-HOSTEL] are both 
inserted into Agenda ordering all elements according to their support (lines 13-14). The result might 
be, e.g., [VACATION, [GUEST-HOUSE, YOUTH-HOSTEL], HOTEL, SIGHT-SEEING]. 

Thereby, direct support of a concept C in a document di is defined by the concept frequency 
cf(i,C) that one of the terms FFFF -1({C}) appears in di (cf. (3)). Complete support includes also 
consideration of all the subconcepts (cf. (3)). 

If the Agenda has length dim + 1 due to the last binary split of one of its elements, Agenda is 
shortened by the element with least support (line 15). If the Agenda has the correct number of features, 
it is added to the output set describing a selection of concepts, hence an aggregation that represents 
documents by dim-dimensional concept vectors (line 17). 

Thus, Algorithm 1 zooms into those concepts that exhibit strongest support, while taking into 
account the support of subconcepts. Finally, it proposes sets of aggregations for clustering that imply a 
dim-dimensional representation of documents by concept vectors. Each entry of a vector specifies how 
often the concept (or its subconcepts) appears in the corresponding document. 
 
3.3 A note on absolute vs. logarithmic values and normalized vectors 
 
The document representations described so far use absolute frequency values for concepts or terms 
(possibly weighted by idf). Considering that the occurrence of terms forms a hyperbolic distribution 
and, hence, most terms appear only rarely, using the logarithmic value log(x+1) instead of the 
absolute value x itself seemed reasonable to improve clustering results. Indeed, for all preprocessing 
strategies given here, we found that results were only improved compared to absolute values. Hence, 
all results presented subsequently assume the logarithmic representation of term or concept 
frequencies. Furthermore, we compared normalized vector representations against absolute or 
logarithmic values. For this latter comparison, we could not find any interesting differences, with 
respect to our measure (cf. sec. 4). 
 
Algorithm 1 (GENERATECONCEPTVIEWS) 
Input: number of dimensions dim, Ontology OOOO with top concept ROOT  document set D* 
  
 1   begin 
 2    Agenda := [ROOT]; 
 3    repeat 
 4     Elem := First(Agenda); 
 5     Agenda := Rest(Agenda); 
 6     if Leaf(Elem) 
 7      then continue := FALSE; 
 8      else 
 9     if Atom(Elem) then Elem := Subconcepts(Elem); fi; 
 10     NewElem := BestSupportElem(Elem); 
 11     RestElem := Elem \ NewElem; 
 12     if Not Empty(RestElem) then Agenda := SortInto(RestElem, Agenda); fi; 
 13     Agenda := SortInto(NewElem, Agenda); 
 14     if Length(Agenda) > dim then Agenda := Butlast(Agenda); fi; 
 15   fi; 
 16   if Length(Agenda) = dim then Output(Agenda); fi;  
 17  until continue = FALSE; 
 18 end 
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Output: Set of lists consisting of single concepts and lists of concepts, which describe feature 
selections corresponding to different representations of the document corpus D*. 
 
Auxiliary functions used: 
Subconcepts(C)    returns an arbitrarily ordered list of direct subconcepts of C. 
Support(C)  cf. equation 4. 
Support(ListC)  is the sum over all concepts C  in ListC of Support(C). 
SortInto(Element, List2)  sorts Element , which may be a single concept or a list of 
   concepts, as a whole into List2 ordering according to 
   Support(Element) and removing redundant elements. 
BestSupportElem(List)  returns the Element of List with maximal Support(Element). 
[Element]  constructs list with one Element. 
[Element, List]  list constructor extending List such that Element is first. 
First(List), Rest(List)   are the common list processing functions. 
Atom(E)  returns true when E is not a list. 
Leaf(E)  returns true when E  is a concept without subconcepts. 
List \ E   removes element E from List. 
Length(List)  returns the length of List. 
Butlast(List)   returns a list identical to List, but excluding the last element. 
 
 
4 Evaluation 
 
This section describes the evaluation of applying K-Means to the preprocessing strategies SiVeR, 
TES, and COSA introduced above. 
 
Setting 
 
We have performed all evaluations on a document set from the tourism domain (cf. (Klettke et al., 
2001)). For this purpose, we have manually modeled an ontology OOOO consisting of a set of concepts C    
( 1030=C ), and a word lexicon consisting of 1950 stem entries (the coverage of different terms LLLL by 
SMES is much larger!). The heterarchy HHHH has an average depth of 4.6, the longest uni-directed path 
from root to leaf is of length 9. 

Our document corpus D* has been crawled from a WWW provider for tourist information 
(URL: http://www.all-in-all.de) consisting now of 2234 HTML documents with a total sum of over 16 
million terms. The documents in this corpus describe actual objects, like locations, accomodations, 
facilities of accomodations, administrative information, and cultural events. 

Because of our aim of producing multiple subjective clustering results, it was difficult to 
compare objectively, e.g. with a uniquely categorized set of documents. Therefore we have resorted to 
a mathematical evaluation of the clustering results only - which, of course, is only possible for 
approaches that work in the same or a comparable representation space. Thus, our aim was to compare 
SiVeR, TES, and COSA – and not, e.g., Latent Semantic Indexing – for a wide range of parameter 
settings. 

 
Silhouette Coefficient 
 
In order to be rather independent from the number of features used for clustering and the number of 
clusters produced as result, our main comparisons refer to the silhouette coefficient (cf. (Kaufman & 
Rousseeuw, 1990)): 
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Definition 3 (Silhouette Coefficient) Let },...,{ 1 kDDDM =  describe  a clustering result, i.e. it is an 
exhaustive partitioning of the set of documents D*. The distance3 of a document d ∈     D* to a cluster 

Mi DD ∈  is given as 
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The silhouette ),( MDdϑ  of a document d    is then defined as: 
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The silhouette coefficient is a measure for the clustering quality, that is rather independent from 

the number of clusters, k. Experiences, such as documented in (Kaufman & Rousseeuw, 1990), show 
that values between 0.7 and 1.0 indicate clustering results with excellent separation between clusters, 
viz. data points are very close to the center of their cluster and remote from the next nearest cluster. 
For the range from 0.5 to 0.7 one finds that data points are clearly assigned to cluster centers. Values 
from 0.25 to 0.5 indicate that cluster centers can be found, though there is considerable "noise", i.e. 
there are many data points that cannot be clearly assigned to clusters. Below a value of 0.25 it 
becomes practically impossible to find significant cluster centers and to definitely assign the majority 
of data points. 

For comparison of the three different preprocessing methods we have used standard K-Means4. 
However, we are well aware that for high-dimensional data approaches like (Bradley et al., 1998) may 
improve results – very likely for all three preprocessing strategies. However, in preliminary tests we 
found that in the low-dimensional realms where the silhouette coefficient indicated reasonable 
separation between clusters, quality measures for standard and improved K-Means coincided. 

The general result of our evaluation using the silhouette measure was that K-Means based on 
COSA preprocessing excelled the comparison baseline, viz. K-Means based on TES, to a large extent. 
K-Means based on SiVeR was so strongly handicapped by having to cope with overly many 
dimensions that its silhouette coefficient always approached 0 – indicating that no reasonable 
clustering structures could be found. 

One exemplary, but overall characteristic diagramm depicted in Figure 1 shows the silhouette 
coefficient for a fixed number of features used (namely 15) and a fixed number of clusters produced 
(namely 10). It does so for K-Means based on SiVeR, for K-Means based on TES, and for K-Means 
based on COSA. The results for SiVeR are strictly disappointing. TES is considerably better, but it 
still yields a silhouette coefficient that indicates practically non-existent distinctions between clusters. 
COSA produces for this parameter setting 89 aggregations. We found that the best aggregations 
produced from COSA delivered clustering results with silhouette measures of up to 0.48 – indicating 
indeed very reasonable separation between clusters. The second part of figure 1 shows the 
corresponding MSE (means square error) value for every aggregation and for TES. 

                                                           
3 We use the standard euclidean distance for computing the silhouette coefficient. 
4 We use several well know heuristics to derive a good starting solution for K-Means. 
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Figure 1: Comparing TES with 89 aggregations produced by COSA for k =10; dim = 15. 

 
Varying number of features dim and clusters k    
 

Then we explored how COSA and TES would fare when varying the number of features used 
and the number of clusters produced by K-Means. 
 

 
Figure 2: a) Comparing TES and the best aggregation of COSA; k =10; dim = 15= 10, 15, 30, 50, 100. 

b) Comparing TES and the best aggregation produced by COSA; k = 2…100; dim = 15. 
 
 

Figure 2a depicts the dependency between the number of features, dim, used and the 
preprocessing method for a fixed number of clusters, viz. k = 10. The line for COSA shows the 
silhouette coefficient for the best aggregation from the ones generated by GENERATECONCEPTVIEWS. 
We see that for TES and COSA the quality of results decreases – as expected – for the higher 
dimensions (cf. (Beyer et al., 1999)), though COSA still compares favorably against TES. 

We have not included the lower bound of COSA in Figure 2a. The reason is that – so far – we 
have not been very attentive to optimize GENERATECONCEPTVIEWS in order to eliminate the worst 
aggregations up front. This, however, should be easily possible, because we observed that the bad 
results are produced by aggregations that contain too many overly general concepts like 
MATERIALTHING or INTANGIBLE. 

In our real-world application we experienced that it is useful to include the users viewpoint for 
deriving the number of dimensions with respect to the actual problem. In general one may propose the 
following upper bound for the number of useable dimensions: The silhouette coefficient decreases 
below 0.25 using more than 30 dimensions. Thus, using more than 30 dimensions may not be useful, 
because no meaningful clustering structure may be discovered. 

In the next experiments, we have varied the number of clusters, k, between 2 and 100, while dim 
remained at 15 (cf. Figure 2b). The general result is that the number of clusters does not affect the 
results produced by COSA and TES very much. The silhouette coefficient grows slightly with the 
number of clusters, because of a growing number of documents that cluster exactly at one point. 
 
Example for Interpretation 
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In order to provide a more concrete intuition of the type of results returned by 
GENERATECONCEPTVIEWS, we here show the list of concepts that corresponds to the best aggregation 
for parameters  k = 10 and dim = 10 and a silhouette coefficient of 0.598: 
 

SAUNA, SOLARIUM, TERRACE, BEACH, SEA_RESSORT, ACTION_AT_OBJECT, 
OVERNIGHT_STAY, WATER_SPORTS, TRAVELING, HOTEL_CATEGORY 

 
Comparing some plain lists may already give the user an intuition of how clustering results 

might be distinguishable (or not distinguishable if the aggregations are very similar!). A better grip at 
interpretation is however achieved by depicting the relevant parts of the heterarchy as shown in Figure 
3. 

Here, one may recognize that NONPRIVATE_FACILITIES_OF_ACCOMODATION and ACTIONs 
were important concepts used for clustering and distinguishing documents. Interpreting results, we 
may conjecture that HOTEL_CATEGORY (three, four, five star hotels, etc.) is a concept, which might 
perhaps correlate with facilities of the accomodation – a correlation that happens to be not described in 
the given ontology. Finally, we see SEA RESSORT in this aggregation, which might play a role for 
clustering or which might occur just because of uninterpretable "noise". 
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Event
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Human_Action

Traveling

Thing

Material_Thing

Facilities_of
Accomodation

Terrace

Action_at_Object

Overnight Stay
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Hotel_Category

........

........
........

 
Figure 3: An example aggregation generated by COSA 

 
 

We currently explore GUI possibilities in order to tie the interpretation of clustering results with 
the navigation of the heterarchy in order to give the user a good grip at different clustering 
aggregations. 
 
5 Lessons Learned 
 
From our experiments we have learned quite a number of interesting lessons that may be summarized 
as follows. First of all, a number of expectations we had, e.g., based on our literature research were 
fulfilled: 
 

• Clustering in high-dimensional space is worse than in fewer dimensions. 
 
• Clustering results produced in high-dimensional space are hard to interpret for humans. Every 

effort at producing interpretations from there seemed to require projections, aggregation or 
any other techniques for reducing the dimensions in the end – even though these techniques 
may incur a loss of information. 
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• The labelling of clustering results with selected concepts seems to facilitate the interpretation 
task for the user. Though we have not performed usability studies to prove this claim, we 
believe our experiences are strong enough to warrant plausibility. 

 
 
Some results were not at all obvious from the beginning: 
 

• Aggregations into a low-dimension space do not improve clustering per se. Bad evaluation 
results have been due to aggregations with too many overly general concepts (like 
MATERIAL_THING or INTANGIBLE). 

 
• Aggregations based on leaf of near-leaf concepts yield good evaluation results. For these 

aggregations we find that a substantial share of documents are represented by 0 , a concept 
vector where all entries are 0. The reason is that in particular aggregations, i.e. seen from a 
particular part of the ontology, this share of documents is simply irrelevant. 

 
• Analyzing single clusters that stem from COSA clustering results with the silhouette 

coefficient, we find clusters that are very well separated from the rest. However, quite 
regularly we find clusters that cannot be separated from the rest with good quality. We assume 
that texts in such clusters can only be reasonably interpreted in alternative views. 

 
Our results support the general statement that structure can mostly be found in a low dimensional 

space (cf. (Beyer et al., 1999)). Our proposal is well suited to provide a selected number of 
aggregations in subspaces exploiting standard K-Means and comparing favorably with baselines, like 
clustering based on dim terms ranked by tfidf measures. The selected concepts may be used to indicate 
to the user, which text features were most relevant for the particular clustering results and to 
distinguish different aggregations. 
 
6 Related Work 
 
All clustering approaches based on frequencies of terms/concepts and similarities of data points suffer 
from the same mathematical properties of the underlying spaces (cf. (Beyer et al., 1999; Hinneburg et 
al., 2000)). These properties imply that even when "good" clusters with relatively small mean squared 
errors can be built, these clusters do not exhibit significant structural information as their data points 
are not really more similar to each other than to many other data points. Therefore, we derive the high 
level requirement for text clustering approaches that they either rely on much more background 
knowledge (and thus can come up with new measures for similarity) or that they cluster in subspaces 
of the input space. 

In general, existing approaches (e.g., (Agrawal et al., 1998; Hinneburg & Keim, 1999)) on sub-
space clustering face the dual nature of "good quality". On the one hand, there are sound statistical 
measures for judging quality. State-of-the-art methods use them in order to produce "good" projections 
and, hence, "good" clustering results, for instance: 
 

• Hinneburg & Keim (Hinneburg & Keim, 1999) show how projections improve the 
effectiveness and efficiency of the clustering process. Their work shows that projections are 
important for improving the performance of clustering algorithms. In contrast to our work, 
they do not focus on cluster quality with respect to the internal structures contained in the 
clustering. 

 
• The problem of clustering high-dimensional data sets has been researched by Agrawal et al. 

(Agrawal et al., 1998): They present a clustering algorithm called CLIQUE that identifies 
dense clusters in subspaces of maximum dimensionality. Cluster descriptions are generated in 
the form of minimized DNF expressions. 
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• A straightforward preprocessing strategy may be derived from multivariate statistical data 
analysis known under the name principal component analysis (PCA). PCA reduces the 
number of features by replacing a set of features by a new feature representing their 
combination. 

 
• In (Schuetze & Silverstein, 1997), Schuetze and Silverstein have researched and evaluated 

projection techniques for efficient document clustering. They show how different projection 
techniques significantly improve performance for clustering, not accompanied by a loss of 
cluster quality. They distinguish between local and global projection, where local projection 
maps each document onto a different subspace, and, global projection selects the relevant 
terms for all documents using latent semantic indexing (introduced by (Deerwester et al., 
1990)). 

 
 

Now, on the other hand, in real-world applications the statistically optimal projection, such as used 
in the approaches just cited, often does not coincide with the projection most suitable for humans to 
solve a particular task, such as finding the right piece of knowledge in a large set of documents. Users 
typically prefer explicit background knowledge that indicates the foundations on which a clustering 
result has been achieved. 

Hinneburg et al. (Hinneburg et al., 1999) consider this general problem a domain specific 
optimization task. Therefore, they propose to use a visual and interactive environment to derive 
meaningful projections involving the user. Our approach may be seen to automatically solve some part 
of the task they assign to the user environment, while giving the user some first means to explore the 
result space interactively in order to select the projection most relevant for her particular objectives. 

Finally, we want to mention an interesting proposal for feature selection made in (Devaney & 
Ram, 1998). Devaney and Ram describe feature selection for an unsupervised learning task, namely 
conceptual clustering. They discuss a sequential feature selection strategy based on an existing 
COBWEB conceptual clustering system. In their evaluation they show that feature selection 
significantly improves the results of COBWEB. The drawback that Devaney and Ram face, however, 
is that COBWEB is not scalable like K-Means. Hence, for practical purposes of clustering in large 
document repositories, COSA seems better suited. 
 
7 Conclusion 
 
In this paper we have shown how to include background knowledge in form of a heterarchy in order to 
generate different clustering aggregations from a set of documents. We have compared our approach 
against a sophisticated baseline, achieving a result favourable for our approach. In addition, we have 
shown that it is possible to automatically produce results for diverging views of the same input. 
Thereby, the user can rely on a heterarchy to control and possibly interpret clustering results. 

The preprocessing method, COSA, that we propose is a very general one. We have applied our 
techniques on a high-dimensional data set that is not based on text documents, but on a real-world 
customer database with 24,156 customers in the telecommunications domain Preliminary results of 
applying our method on this complex transaction-oriented database show similar positive results as 
could be presented here for text clustering. 

Further work will also compare our results with an other low dimensional baseline taken from 
latent semantic indexing. 
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