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Abstract

Background: Globally plants are the primary sink of atmospheric CO2, but are also the major contributor of a large spectrum
of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds
(BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory
and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C
allocation and translocation in both plants and ecosystems are important.

Methodology: We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass
spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens)
saplings. This was achieved by feeding either 13CO2 to leaves or 13C-glucose to shoots via xylem uptake. The translocation of
13CO2 from the source to other plant parts could be traced by 13C-labeled isoprene and respiratory 13CO2 emission.

Principal Finding: In intact plants, assimilated 13CO2 was rapidly translocated via the phloem to the roots within 1 hour,
with an average phloem transport velocity of 20.362.5 cm h21. 13C label was stored in the roots and partially reallocated to
the plants’ apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged
between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of
the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76–78%) from
recently fixed CO2, to a minor extent from xylem-transported sugars (7–11%) and from photosynthetic intermediates with
slower turnover rates (8–11%).

Conclusion: We quantified the plants’ C loss as respiratory CO2 and BVOC emissions, allowing in tandem with metabolic
analysis to deepen our understanding of ecosystem C flux.
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Introduction

Plant CO2 assimilation is a fundamental sink for atmospheric

CO2 in the global carbon (C) cycle, amounting to a gross CO2

uptake of approximately 120 Gt C per year by terrestrial plants

[1]. This amounts to 15–20 times more than is currently emitted

as CO2 in the course of anthropogenic activities [2]. A substantial

part of the photosynthetically fixed C is not stored in plant tissues,

but re-emitted to the atmosphere as a wide range of volatile C

substances, including respired CO2 and biogenic volatile organic

compounds (BVOC, e.g., isoprene). In addition, roots excrete

labile C compounds, which can be used by microorganisms and

in turn be re-emitted back to the atmosphere, mainly as CO2 or

methane. Due to the reactive nature, plant BVOC have a

significant impact on atmospheric chemistry. The influence of

plant BVOC on atmospheric chemistry includes the formation of

tropospheric ozone, carbon monoxide and hydroxyl radical

levels, methane half-life, and secondary aerosols [3,4,5,6]. Thus,

due to their importance for air quality and climate dynamics

there is much interest to understand their biosynthesis and

regulation [7].

Part of the assimilated C is translocated from net sources (e.g.,

mature leaves) to net sinks (e.g., roots, apical buds, growing tissues)

in order to sustain plant development, growth and metabolism in

both green and non-green tissues. Understanding how these

allocation and translocation patterns are affected by environmen-

tal constraints is crucial for predicting the future C uptake capacity

of terrestrial ecosystems.

In poplar, 2–5% of the assimilated C is instantaneously re-

emitted to the atmosphere as isoprene [8]. Although isoprene is

the most important BVOC emitted by poplar, other BVOC (e.g.,

aldehydes, alcohols, mono- and sesquiterpenes) might contribute
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significantly to the overall C loss of poplars, but are often ignored

due to technical limitations of VOC analysis.

Light-dependent emission of isoprene is closely related to

photosynthesis, which provides the required C precursors and

energy and redox equivalents for the plastidic isoprenoid pathway

(e.g.: [9,10]). Under unstressed conditions, atmospheric CO2 is the

main (approximately 80%) C source of isoprene formation. Other

‘‘old’’ C, such as xylem sap sugars, starch and re-fixation of CO2

originating from mitochondrial metabolism [9,11,12,13] act as

‘‘alternative’’ C source [13] and therefore contribute significantly

to isoprene biosynthesis. When photosynthesis is impaired by

environmental stresses (e.g., drought, salinity), isoprene biosynthe-

sis becomes transiently uncoupled from direct atmospheric CO2

uptake [7]. Under these circumstances, C previously allocated to

storage reservoirs (starch) or transported soluble C might sustain

isoprene formation, supplying the plastidic isoprenoid pathway

during impaired photosynthetic activity [14].

Up to now, information on the contribution of C fixed within a

leaf, relative to C fixed in other leaves, on isoprene formation is

missing. There is evidence that C translocation within the plant is

an immediate process following the fixation of atmospheric CO2.

Photosynthetic activity affects soil-respired CO2 within a few hours

in non-woody plants such as grasses [15], and within a few days

(1–5 d) in mature trees [16,17,18,19,20]. Studies on pedunculate

oak (Quercus robur L.) [21] and grey poplar (Populus canescens (Aiton)

Sm.) [22] saplings demonstrated that a significant amount of C is

translocated via the transpiration stream, particularly at enhanced

carbon demand or reduced photosynthesis. There is indication

that xylem-transported C can serve as an alternative C source for

isoprene biosynthesis as showed previously by feeding single

detached poplar leaves with 13C-glucose via the petiole [13].

However, no information is available how this xylem source truly

contributes to isoprene biosynthesis in plant, where leaves have not

been detached from their stem. Also, it has not been investigated

whether source or sink of photosynthates (i.e. mature leaves

against young and developing leaves) equally benefit from this

additional C source or not.

Here we perform a 13C-labeling experiment on poplar plants

and we aim to: i) monitor online plant C fluxes as markers of C

translocation processes; ii) determinate C allocation in different

plant parts; iii) test the hypothesis that recently translocated C

might be immediately used as ‘‘alternative’’ C sources for isoprene

and its precursor dimethylallyl pyrophosphate (DMADP) biosyn-

thesis; iv) quantify the contribution of xylem-derived sugars; and v)

understand the xylem-mediated source of isoprene formation; vi)

obtain a comprehensive picture of most of the volatile organic

compounds emitted from poplar trees.

In order to achieve our goals, we used a new non-destructive
13C-labeling approach by combining a tunable diode laser

absorption spectrometer (TDLAS) and a proton transfer reaction

mass spectrometry (PTR-MS) to measure respiratory CO2 and

BVOC emission from different plant parts in real time. To achieve

this, the roots, mature leaves, young leaves and the apical part

were enclosed in a system of four parallel cuvettes [10]. We

applied the combination of both techniques for tracing 13C fluxes

in real time from the site of 13CO2 fixation in a mature poplar leaf,

into isoprene and respiratory CO2 emitted from different plant

parts. In addition we labeled cut shoots in parallel by fumigating

leaves with 13CO2 or feeding the shoots with 13C-glucose via

xylem uptake.

Thus, the incorporation of 13C into respiratory CO2 was used as

an isotopic marker of the C translocation process. The effects of

exposure to 13C-labeling were investigated on the level of isoprene

biosynthesis. Finally, in order to investigate the effects on isoprene

biosynthesis in absence of its main C source, we deprived plant

parts of atmospheric CO2. Under this unnatural stress condition,

we followed the alteration of C fluxes, CO2 respiration, and

BVOC emissions.

Materials and Methods

Plant material and growth conditions
All experiments were performed with one-year-old grey poplar

saplings (hybrid of Populus tremula x P. alba, syn. Populus x canescens

(Aiton) Sm.). Cultivation procedure and growing conditions are

described elsewhere [23,24].

Experimental design
The general schematic overview of the experimental setup is

illustrated in Fig. 1. Experiments were conducted on either i) intact

plants in hydroponic culture, or ii) shoots without a root system.

Hydroponic cultures were established 7–10 d prior to the start of

the experiments. Soil was carefully removed from the roots, which

were planted in 100% perlite substrate with sterile Long Ashton

nutrient solution [25]. For experiments with shoots, the root

systems were cut off the same morning of the experiment. In order

to avoid embolism during cutting, plant transpiration was lowered

by keeping the plants for 2–4 h in a cold room in the dark.

Branches were then cut under water and transferred to 50-mL

flasks containing autoclaved Long Ashton nutrient solution with

10 mM unlabeled glucose (12Glc). The poplar stems were inserted

into the glucose-containing flasks, which were sealed with

parafilm, by punching through the parafilm.

All experiments were performed using dynamic leaf cuvette

systems made of aluminum and perspex glass [10]. For CO2

released from roots, the hydroponic culture was enclosed by a

bigger perspex cuvette (volume = 5670 cm3) than the pot

containing the hydroponic culture (volume = 2000 cm3). Leaves,

apical bud and the root system were placed in the cuvettes the day

before 13C-labeling. Inside each cuvette, leaf temperature was

measured with a thermocouple touching the bottom of the

enclosed leaf, and maintained at 30uC with computer-controlled

Peltier elements. Light at 1000 mmol m22 s21 PPFD was supplied

by an LED array on top of each cuvette during light phase

measurements (06:00–22:00 CET). Experiments were conducted

inside a phytochamber. The entire phytochamber was kept at the

same conditions as prevailing inside the cuvettes.

The 13C label was applied in two different ways: either (i) 13CO2

was fed to a fully mature source leaf of intact plants or cut shoots

by replacing CO2 with natural 13C abundance with 13CO2 (99

atom% 13C; Air Liquide, Krefeld, Germany) at the same

concentration (385 ppmv), or (ii) 13C-glucose (13Glc) was supplied

to the transpiration stream via the xylem of cut shoots by replacing

a Glc solution containing 13C at natural abundance (10 mM) with

an equimolar universal labeled 13Glc solution (99 atom% 13C;

Cambridge Isotope Laboratories, Andover, MA, USA).

In experiments with intact plants, the four cuvettes were run in

parallel on a single plant to detect exchange of 13C between

mature leaves, the apex and the root system. Leaves were

numbered starting at the apex and counting down towards the

bottom. One cuvette enclosed a fully expanded mature leaf (leaf #
14–16), which was exposed to 13CO2 during the labeling period. A

second cuvette enclosed the apical bud plus the topmost 3–4

developing leaves. The third cuvette monitored a fully expanded

leaf between the 13CO2 exposed leaf and the plant apex (leaf # 7–

10). The last cuvette enclosed the root system. In shoot

experiments, two shoots were analyzed in parallel. Each shoot

was monitored with two cuvettes: one for a fully expanded mature
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Figure 1. Scheme of the experimental design. Ten liter per minute of synthetic VOC-free air (BASI Schöberl, Germany) were mixed with CO2

(38,000 ppmv) to a final concentration (in the cuvette) of 385 ppmv, passing a 20 L equilibration tank before being completely humidified by
bubbling the airstream through pure, distilled water. A dew point unit assured a stable humidity level before the airflow entered each of the four
cuvettes through flow controllers, set at 2 L min21. One cuvette (# 1) could be connected via a 3-port valve to a separate 13CO2-tank for 13C-labeling.
The gas was purchased already mixed at 385 ppmv 13CO2 and humidified separately using a portable dew point generator (Li-610, Licor, Lincoln, NE,
USA). Another cuvette (# 4) was connected to a VOC standard mixture for the calibration of the PTR-MS. Inlet and outlet of the cuvettes were
directed sequentially via electronic, computer controlled 3-port valves to the three gas analyzers (LI-7000, Licor; or GFS-3000, Heinz Walz, Germany;
TDLAS; PTR-MS), while the excess flow was directed to a vent which was periodically checked for flow rate in order to ensure that the whole system
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leaf (leaf # 9–13); and the other one for the apical bud plus 3–4

young developing leaves. One shoot was labeled with 13C-glucose

and the other shoot was labeled with 13CO2, as described above.

The solution of the latter shoot was continuously sampled for sugar

analysis every 2 h during and after 13C-labeling. Leaf measure-

ments were related to leaf area, whereas root measurements were

related to fresh weight.

Experiments were conducted using long day conditions with

the light phase starting at 6:00 CET and ending at 22:00 CET.

Measurements were taken throughout the experiment, which

lasted until 18:00 CET on the third day. All experiments

followed the same sequence: the day before labeling (day 1),

plants were adapted to the new environment for 4 h (18:00–

22:00 CET) before the lights were switched off (22:00–06:00

CET). In order to ensure steady-state conditions of net CO2

assimilation and isoprene emission, the plants were monitored

for 4 h after the lights were switched on (06:00–10:00 CET)

before labeling was started. Intact plants were labeled with
13CO2 for 8 h (10:00–18:00 CET). In experiments with shoots,

the 13C- labeling time was extended by 4 h (10:00–22:00 CET),

synchronizing the start of the post-labeling phase with the dark

period (22:00–06:00 CET). On day 3, 6 h after the start of the

light phase (06:00–12:00 CET), CO2-free air was applied by

shutting off the CO2 supply. After 2 h (12:00–14:00 CET), the

lights were switched off for 1 h (14:00–15:00 CET). For the first

hour after the lights were switched on again, CO2 free air was

applied to the shoot experiments, while 12CO2 containing air

was applied to the intact plants (15:00–16:00 CET). Then,
12CO2 was provided again in all experiments, and the measure-

ments were continued until 18:00 CET of day 3, monitoring

post-stress behavior. At the end of the experiment, all leaves

were immediately frozen in liquid nitrogen and stored at –80uC
for metabolic analysis.

Each cuvette was flushed with 2 L min-1 of synthetic, VOC-free

and humidified (dew point: +1uC) air containing 385 ppmv CO2.

The cuvette outlets were connected to electronic valves switching

automatically between the cuvettes. The outlet air was directed

through a cross junction to a PTR-MS to determine the isotopic

composition of the BVOC, and a TDLAS for online analysis of
12C16O2 and 13C16O2. The last port of the cross junction served as

a vent for the surplus cuvette air, which was monitored frequently

for gas-tightness of the whole system.

TDLAS measurements of 12CO2 and 13CO2

For online quantification of 12C16O2 and 13C16O2 mixing ratios

we used a TDLAS (TGA100A, Campbell Scientific, Inc., Logan,

UT, USA). Instrumentation and measurement procedures have

been described elsewhere [15]. Inlet and outlet air of each cuvette

was measured for 105 s each, of which the first 45 s were omitted,

before switching to the next cuvette. After sampling two cuvettes,

two intervals of 90 s each were added for TDLAS calibration with

low (335 ppmv) and high (540 ppmv) CO2 concentrations of

reference gases (Basi Schöberl, Rastatt, Germany), of which the

first 30 s were omitted. Thus, the entire cycle for measuring all

four cuvettes was 20 min. Data points shown are 60 s averages

within each 20 min cycle.

Net fluxes of 12CO2 and 13CO2 were related to projected leaf

area and calculated as follows:

Flux~
(cout{cin) � flow

LeafArea

Furthermore, in the absence of net CO2 assimilation d13C of

plant respiratory CO2 was calculated as follows:

d13Cplant~
d13Cout½CO2�out{d13Cin½CO2�in

½CO2�out{½CO2�in

where d13Cout, d
13Cin, [CO2]out and [CO2]in are referred to d13C

values and CO2 concentrations of the cuvette outlet and inlet air,

respectively; d13C [%] = (Rsa/Rref 2 1)61000, related to Vienna

Pee Dee Belemnite (VPDB), with Rsa and Rref as the sample and

reference isotope ratios, respectively. No CO2 flux measurements

for the fumigated mature leaf were possible during the 13CO2

labeling periods, as 13C/12C isotope ratio of the 13CO2 used was

far beyond the detection range of the instrument. For experiments

with intact plants, a 13C memory effect was observed in the

TDLAS measurements of the other plant parts during the period

of 13CO2 labeling. Therefore, respiratory d13C of roots could not

be precisely determined during fumigation and, thus, data were

omitted (see Fig. 2A). Net CO2 assimilation rates were calculated

according to von Caemmerer & Farquhar [26].

Measurement of BVOC emissions with PTR-MS
For online monitoring of BVOC a PTR-MS (Ionicon Analytik

GmbH, Innsbruck, Austria) was used [27]. Prior to the analysis,

cuvette background signals were determined and used for

individual background correction of each cuvette. Calibration of

the instrument was performed using a mixture of 11 VOC in N2

(Apel-Riemer Environmental, Denver, CO, USA) passed through

the whole gas exchange system at different concentrations (4–52

ppbv).

Protonated isotopologues masses of emitted BVOC were

monitored at m/z (in the following ‘‘m’’ for short) of m33–m34

(methanol), m45–m47 (acetaldehyde), m47–m49 (ethanol), m69–

m74 (isoprene), m137–m147 (monoterpenes), m149 and m205

(sesquiterpenes). BVOC produced within the octadecanoid

pathway (so called ‘‘LOX products’’) were monitored at m81

and m99 for hexenal products, and at m83, m101 and m143 for

hexenols, hexanal and hexenyl acetate, respectively (for details see

[28]).

The percentage of 13C incorporated into BVOC was calculated

as described in Ghirardo et al. [10]. Protonated 13C labeled masses

of acetaldehyde at m47 overlapped with the mass of unlabeled

protonated ethanol. Thus, analysis of 13C incorporation into

acetaldehyde was possible only when ethanol did not become

significantly labeled (i.e. increase of m48 and m49) or ethanol

emission was constant. Under these circumstances, the m47 signal

originating from ethanol was taken as background, and the

increase of m47 (with corresponding increase of m46 and decrease

of m45) was assumed to originate from the incorporation of two
13C into acetaldehyde. We checked that the total (13C-labeled and

unlabeled) acetaldehyde emissions were coherent with acetalde-

hyde emission during the pre-labeling phase, thus avoiding

erroneous interpretation of an increase of the signal at m47 due

was gas-tight. The grey boxes display the two different experimental designs: either with intact plant placed into hydroponic solution where one
single mature leaf was labeled with 13CO2 or with two parallel shoots labeled either with 13CO2 or 13Glc.
doi:10.1371/journal.pone.0017393.g001
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to a simple increase of unlabeled ethanol emission as 13C

incorporation into acetaldehyde. Ions with m81 might originate

also from fragments of monoterpenes. However, the contribution of

monoterpenes to m81 was found marginal due to the very low

monoterpene emission. Nevertheless, ions with m81 were consid-

ered as hexenal derivatives only when paired with ions at m99.

Total C emitted as BVOC was calculated by multiplying the

emission of individual BVOC species with the number of C atoms

they contain, and then summing up the values of all compounds.

The daily C loss as BVOC was calculated as percentage of total C

emitted as BVOC per day divided by the daily net assimilated C,

which was determined after subtracting the night respiratory C

loss from the assimilated C.

Data for each cuvette were recorded every 20 minutes for 210 s

cycle (10 s of flushing plus 200 s of measurements), before switching

to the next cuvette. Data of the first 70 s were omitted, and data of

the remaining 140 s were aggregated to 20 min means.

Analysis of 13C in bulk plant material, sugars and DMADP,
and determination of 13C fluxes

An elemental analyzer (Flash EA1110, Thermo Fisher Scien-

tific, Bremen, Germany) coupled to an isotope ratio mass

spectrometer (IRMS) (DELTA plus XP, Thermo Fisher Scientific,

Bremen, Germany) was used to measure carbon content and
13/12C-ratios of the different plant parts. For analysis, 2 mg of

dried and homogenized leaf or root material was placed into tin

capsules (HeKAtech, Wegberg, Germany). The d13C was

measured as described elsewhere [29,30]. The system was

calibrated using three standards (IAEA-CH-3, cellulose; IAEA-

CH-6, sucrose; IAEA-CH-7, polyethylene), purchased from the

International Atomic Energy Agency (IAEA, Vienna, Austria), and

monitored every 11 samples using urea (Sigma Aldrich, Germany)

as working standard.

The 13C fluxes from the 13CO2 labeled mature leaf into the

nutrient solution containing the unlabeled 12Glc (shoot experi-

ments) were calculated as follows:

13C flux ~ 13Ct2
13Ct1

� �
� area of labeled leafð Þ{1 � Dt{1

where t1 and t2 are the two sampling times and Dt the difference

(in seconds) between the two sampling times. Because the plants

continuously took up nutrient solution via the xylem stream, the

initial volume was restored before each sampling by adding fresh

nutrient solution. Thus, for flux calculation the added carbon at t2
(13C + 12C) was subtracted from the total carbon sampled at t1.

The difference (Dd13C) between the d13C of the solution before

labeling (d13C0) and the d13C determined every 2 h during and after

labeling (excluding the night) (d13Cs) was calculated as follows:

Dd13C~d13Cs{d13C0 ð4Þ

13C/12C ratios of the sampled solutions were measured using

liquid chromatography coupled to an IRMS (LC-Isolink with

DELTA V PLUS, Thermo Fisher Scientific, Bremen, Germany).

The IRMS system was calibrated with three reference materials

(IAEA C6, sucrose; USGS40, L-glutamic acid; USGS41, L-

glutamic acid) purchased from IAEA (Vienna, Austria). Prior to

analysis, the aliquots were filtered with a polyvinylidene fluoride

(pore size 0.22 mm) filter (Carl Roth GmbH, Karlsruhe,

Germany). Due to 13C/12C fractionation on the filter surface,

each individual filter was rinsed with 20 ml of distilled water, and

the values were corrected (circa +1% vs. VPDB) by means of

IAEA reference standards. Drift correction [29] was achieved by

interspersing one reference sample (benzoic acid, Sigma Aldrich,

Germany) every six samples. The average d13C drift was +0.2%
within 16 h.

Concentration of sugars (as glucose equivalents) in the solution

samples was measured with a phenol-sulfuric acid assay [31]

calibrated with six different glucose concentrations (0–20 mM).

Positive C flux values indicate downward flux (phloem transport)

from the mature leaf to the nutrient solution, whereas negative

values indicate the upward transport (to the leaves/apical bud

through xylem transport). Leaf DMADP content and relative 13C

abundance (atom% of total DMADP carbon) was assayed as

described elsewhere [10]. Positive C flux values are defined as

downward flux (phloem transport) from the mature leaf to the

nutrient solution and negative values as the upward transport (to

the leaves/apical bud, i.e. xylem transport).

Statistical Analysis
All labeling experiments were performed in triplicate with the

results shown as averages 6 s.e. Chemical analyses were

performed with three technical replicates. Statistical analyses (t-

test, ANOVA) were performed using the Software packages

Origin (version 7.0) and Microcal Origin (release 7.0, Microcal

Software, Inc., Northampton, MA, USA).

Results

13C translocation and allocation in intact plants
In intact plants, 13C-labeled photosynthates were translocated

from the site of 13C fumigation within a few hours, mostly down to

the roots, and to a minor extent up to the apex and to the leaves

above the 13C source leaf, as indicated by the increase in d13C of

the respired CO2 (Fig. 2A). Root-respired CO2 became signifi-

cantly 13C-labeled (d13C value of unlabeled root-respired CO2: –

24.4 6 4.3%) already 1 h after the onset of 13CO2 fumigation,

and followed a sigmoidal increase (R2 = 0.9997), which continued

during the following dark period until the next day, when the light

was switched on again. Based on the length of the stem between

the 13CO2-fumigated leaf and the root system (15–25 cm) and the

appearance of the 13C-label in root-respired CO2 after about 1 h,

a phloem transport velocity of 20.362.5 cm h21 was estimated.

In the 13CO2-fumigated leaf, the maximum of respired 13CO2

appeared approximately 2 h after switching off the lights (Fig. 2B).

Application of CO2-free air caused a second, strong increase of the
13C signal in the CO2 released from the labeled leaf, whereas a

decrease of 13C was observed for root respiration (Fig. 2A),

accompanied by a cessation of leaf net CO2 assimilation due to the

Figure 2. Net assimilation and respiratory CO2 emissions of intact poplar plants upon 13CO2 feeding. (A) Calculated d13C of respired CO2

in the absence of net CO2 assimilation, assimilation rate of (B) 13CO2 and (C) 12CO2 of the mature 13CO2-fumigated leaf (black symbols), a younger fully
expanded leaf (red), the apical bud with enclosed young leaves (green) of intact plants. (B) Release of CO2 from root systems immersed in hydroponic
solution (blue). Calculated respiratory d13C of roots during the period of 13CO2 labeling could not be presented (see Materials and Methods), they
were replaced instead by sigmoidal fitted data (SigmaPlot v9.0, CA, USA; equation ‘‘sigmoid, 3 parameters’’; R2 = 0.9997) shown in black. The labeling
period is shown in orange, the period of stress (absence of CO2) by a blue background, and the dark periods are marked grey. Note that the stress
period and the last dark period overlap. Data represent the mean of 3 experiments 6 s.e.
doi:10.1371/journal.pone.0017393.g002
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absence of CO2 (Fig. 2B, C). Although the 13C signal in younger

leaves and the apex during dark and CO2-free air conditions was

not as strong as in the 13C-labeled leaf and the roots, the detection

of 13C provided clear evidence for a significant 13C translocation

also to these plant parts (Fig. 2A).

Analyses of the 13C content of bulk plant material revealed that
13C was, in decreasing order, allocated to and incorporated into (i)

the labeled leaf (leaf # 14–16), (ii) the root system, (iii) the apex,

and (iv) the mature leaf (leaf # 7–10) (Fig. 3A).

13C translocation and allocation in shoots
Fumigation of a mature leaf of root-free shoots with 13CO2 led

to a slow 13C enrichment of the nutrient solution already during

the 13CO2-labeling period. The 13C signal further increased

during the following night and the subsequent morning (Fig. 4).

Also the 13CO2 emitted from the apex increased already during

the labeling period (Fig. 5B), and the d13C value of respired CO2

was higher during the dark phase that increased over time

(Fig. 5A).

In shoots labeled with 13Glc, 13CO2 emitted from mature leaves

and the apex increased already 20 min after the onset of 13C-

labeling (Fig. 5E). Respiratory d13C as well as emission of 13CO2

(Fig. 5D, E) were higher in the apex than in the mature leaf,

indicating that the plant apex was the stronger C sink. An increase

of 13CO2 emission was observed in all plant parts during CO2-free

conditions (Fig. 5B, E).
13C label in the 13CO2 fumigation treatment was highest in the

13C-labeled leaf itself, but was also detectable in the apex tissue.

When the 13C label was supplied as 13Glc, 13C was dominantly

allocated to the young apex leaves (Fig. 3C).

BVOC emissions, 13C incorporation into isoprene and its
precursor DMADP

In intact plants, fumigation of an individual leaf with 13CO2

resulted in a very rapid incorporation of 13C into isoprene

molecules emitted from the same leaf already during the 13CO2

fumigation period and, to a lower extent, during the post-labeling

period (Fig. 6C). Only a weak incorporation of 13C was detectable

in root-emitted isoprene. Moreover, we observed no incorporation

of 13C into isoprene molecules emitted from the apex and younger

leaves. In additional experiments, no significant incorporation of
13C into isoprene in leaves at position +1, +4, +7, +8, +11, +14,

+16 higher than the 13C-labeled leaf could be detected (data not

shown). Nevertheless, when CO2-free atmosphere was applied on

day 3, isoprene molecules emitted from the formerly 13CO2-

fumigated leaf became rapidly enriched in 13C, and after

approximately 1 h also isoprene molecules emitted from the apex

showed an increased incorporation of 13C (Fig. 6C and A,

respectively). In contrast, isoprene originating from younger

unlabeled leaves was not significantly labeled (Fig. 6B). Immedi-

ately after restoring normal 12CO2 and light conditions, the 13C

signature of isoprene returned to its initial pattern (Fig. 6).

In shoots, continuous fumigation with 13CO2 for 12 h or 13Glc

application for 12 h resulted in a partial incorporation of 13C into

isoprene emitted from the apex of 4.461.6% and 10.860.8%,

respectively (Fig. 7A, C). In leaves of root-free shoots, 13Glc

contributed 7.461.1% to the total isoprene carbon release after

1 h, and 9.360.6% after 12 h of 13C-labeling (Fig. 7D).

Feeding intact poplar plants and detached shoots with the two

main C sources for isoprene biosynthesis resulted in different

fractions of 13C-labeled isoprene molecules (Fig. 6, 7). After 1 h of

labeling with 13CO2, fumigated leaves of intact plants and

detached shoots incorporated 76–78% 13C into isoprene (Fig. 6C,

7B). The remaining 22–24% originated from C sources other than

recently fixed atmospheric CO2. Over 8 h of 13CO2-labeling, the
13C incorporation into isoprene molecules increased continuously

up to 86.360.2% (Fig. 6C), indicating that also alternative C

sources became partially 13C-labeled. Isoprene molecules became

gradually enriched in m74 (Fig. 8). This indicated that a fraction of

one or both precursors of chloroplastic isoprene, pyruvate (PYR)

and glyceraldehyde 3-phosphate (GAP) originated from plant/

leaf-internal C pools with slow turnover. As an indication of the

depletion of unlabeled carbon pools, the isoprene fraction with

m71 decreased over the 8 h labeling period from 1862.3% down

to 8.260.4%, inversely proportionally to m74, which increased

from 5463.1% to 6563.1% (Fig. 8). Therefore, we estimate that

about 10% of carbon was derived from ‘‘older’’ C not originating

from recent 13CO2 fixation. Subjecting the previously 13CO2-

labeled leaves to CO2-free atmosphere and darkness led to a

significant (P,0.01) increase of isoprene molecules with m70–m73

(containing one to four 13C atoms) (Fig. 8D, E). In contrast, in
13Glc-fed shoots only isoprene molecules containing one or two
13C-atoms (m70 and m71) could be detected (Fig. 8F).

In experiments with detached shoots, total isoprene emission as

well as net CO2 assimilation rates decreased by 20–50% over the

measurement period (Fig. 5B–C, 5E–F, 7B, and 7D). The initial

incorporation of 75.862.7% 13C into isoprene decreased over

time down to 63.364.0% in shoots fumigated with 13CO2 and fed

with 12Glc (Fig. 7B), whereas in the inverse experiment the fraction

of 13C-labeled isoprene molecules increased over time from

6.561.1% up to 9.461.0% during 13Glc feeding and 12CO2

fumigation (Fig. 7C).

Our dataset documented an age-dependent accumulation

pattern of the isoprene precursor DMADP (Fig. 9), concomitant

with an age-dependent emission rate of isoprene (Fig. 6, 10E).

Figure 3. Analysis of d13C in bulk material of poplar. (A) Intact
plants labeled with 13CO2, (B) shoots labeled with 13CO2, and (C) shoots
fed with 13Glc. Data represent the mean of 3 experiments 6 s.e.
doi:10.1371/journal.pone.0017393.g003
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Young developing leaves (leaves # 1–4) reached emission levels of

only 15–30% compared to emission rates of mature leaves (leaves

# 7–10; Fig. 6A, B). The isoprene emission slightly decreased with

leaf age or lower position in the plant canopy (leaves # 14–16;

Fig 6C). The leaf position (i.e. age) effect was also visible over the

duration of the experiment, with an increase of isoprene emission

in young leaves and decrease in mature leaves (Fig. 6A, B, C). In

experiments with detached shoots, lower DMADP pools were

accompanied by lower isoprene emission rates (Fig. 7 and 9). We

also observed a very low, but still detectable emission of isoprene

from the root system (Fig. 6C), which might have resulted from

chemical conversion of DMADP into isoprene, since no isoprene

synthase activity was detectable in root protein extracts (data not

shown).

In contrast to the rest of the plant, the DMADP pool in the

labeled leaves of intact plants was still remarkably enriched in 13C

at the time of harvest (3.461.2% 13C; Fig. 9A), whereas isoprene

emitted from these leaves was less enriched in 13C at the end of the

experiment (0.860.1%). In all detached shoots, the DMADP pools

of both the apex and the mature leaves were found to be 13C-

labeled (Fig. 9B, C). The total DMADP content was similar and

highest (187625 pmol mg21 dw) in unlabeled and 13C-labeled

mature leaves of intact plants, but was significantly lower in other

parts of intact plants and in detached shoots (Fig. 9).

Analysis of plant BVOC emissions with PTR-MS allowed

quantification of all volatile compounds emitted by poplar.

Isoprene was the dominant – though not the only – BVOC

emitted in mature leaves (emissions of individual BVOC are

summarized in Fig. 10). Young developing leaves emitted

significantly higher amounts of methanol and monoterpenes and

lower amounts of isoprene as compared to mature leaves (Fig. 10A,

F, E). Emission of sesquiterpenes, a group of semi-volatile terpenes,

was not detectable in all measurements (data not shown).

Overall, we calculated a daily C loss as BVOC relative to daily

net CO2 assimilation of 7.360.7% for developing leaves and

1.960.3% for mature leaves (Fig. 10H). In young developing

leaves, other non-isoprene BVOC accounted to approximately

50% of total C loss as BVOC during the light phase, whereas their

contribution in mature leaves was only 27% (Table 1). During

darkness, when light-dependent emission of isoprene was negligi-

ble (4–5%, Table 1), we calculated that total C loss as BVOC was

still 43% and 24% of the daily C loss in young leaves and mature

leaves, respectively. Thus, non-isoprene BVOC (e.g. methanol)

became the major species of plant C loss during the night.

Significant 13C-labeling was found in methanol emitted from

both the apices (8.962.7%) and mature leaves (7.460.1%) of

shoots labeled with 13Glc, whereas no significant incorporation of
13C could be detected in shoots fumigated with 13CO2. The

immediate start of the dark period after 13C labeling revealed an

incorporation of 13C into acetaldehyde during the post-illumina-

tion peak [28] of 2767%. In all other non-isoprene BVOC no

significant 13C label was detected.

Discussion

13C translocation and allocation in intact plants
Our data reveal the dynamics of C translocation from mature

leaves of intact and unstressed grey poplar plants. The export of

photoassimilates was directed primarily downward to the root

system via the phloem. This agrees with a former 14C-labeling

study with Populus deltoides [32], where the 14C label was primarily

found in the roots after 72 h. However, the present analysis

showed that this allocation of C in the roots was a very fast process

that occurred already in a few hours, and because of the real-time

measurements, the analysis allowed assessing the phloem velocity,

information which is scarcely reported in the literature. The

estimated phloem velocity of 20.362.5 cm h21 in our experiment

can explain the link of photosynthesis and ecosystem respiration

observed in other recent studies. In a coniferous forest, soil

respiration was linked to net CO2 assimilation with a time lag of 1–

4 d [16]. A time lag of 4–5 d for the C transfer of recently fixed

assimilates down to the root stock was reported for a deciduous

Figure 4. Calculated fluxes of 13C-labeled sugars into the nutrient solutions of detached poplar shoots. 13C enrichment (black circles)
and fluxes (open triangles) of sugars into (positive values) and out of (negative) the nutrient solution of shoots labeled with 13CO2. The dark phase is
indicated with dark grey color. Data represent the mean of 3 experiments 6 s.e.
doi:10.1371/journal.pone.0017393.g004
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forest [17]. Högberg et al. [19] and Subke et al. [20] observed lag

times of 2–4 d between 13CO2-labeling of whole pine trees and the

appearance of 13C in soil CO2 efflux. Furthermore, the present

data show that the downward transport of C from mature leaves to

the root system of poplar was highest during the night.

We used hydroponics with plants immersed in a sterile nutrient

solution to avoid bacterial respiration. Therefore, we are quite

certain that the magnitude of the CO2 release reflects root

respiration. Because half of the soil CO2 efflux might originate

from recent photoassimilates [18], the C loss of the plant as root

exudates is another important aspect in constraining ecosystem C

fluxes and C budgets.

Freshly fixed C was partly converted to compounds for storage

and transport, very likely starch and sucrose, the main storage and

transport forms in plants [33]. Accumulation of starch granula in

chloroplasts and amyloplasts varies diurnally during net CO2

Figure 5. Net assimilation and respiratory CO2 emissions of detached poplar shoots upon 13CO2 and 13C-glucose feeding. (A, D)
Calculated d13C of respired CO2 in the absence of net CO2 assimilation, assimilation rate of (B, E) 13CO2 and (C, F) 12CO2 in apical buds (red and blue
symbols) and mature leaves (black and green symbols) from shoots labeled with (A, B) 13CO2 or (C, D) 13Glc. The labeling period is shown in orange,
stress (absence of CO2) condition is indicated by a blue background, and dark conditions are marked grey. Note that the stress period and the last
dark period overlap. Data represent the mean of 3 experiments 6 s.e.
doi:10.1371/journal.pone.0017393.g005

Figure 6. Isoprene emission of intact poplar plants and incorporation of label of upon 13CO2 feeding. Total isoprene emission (black
symbols), its 13C incorporation (black line) and isotopic composition (m74, light blue; m73, magenta; m72, dark blue; m71, yellow; m70, green; m69,
red) from (A) the apex, (B) a fully expanded leaf, (C) 13CO2-labeled mature leaf, (D) and the root system of intact plants. The labeling period is shown in
orange, stress (absence of CO2) is indicated by a blue background, and dark conditions are marked in grey. Details of the experimental phases can be
found in the Materials and Methods section. Data represent the mean of 3 experiments 6 s.e. (omitted for isotopic composition).
doi:10.1371/journal.pone.0017393.g006
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assimilation, whereas starch degradation to sucrose happens in the

absence of net photosynthesis (e.g., at night) in order to sustain

plant growth and metabolism [22,34,35]. For the 13CO2-labeled

leaf, the observed time pattern of 13CO2 release might be well

explained by an intermediate storage of 13C as starch during 13C-

labeling that served as carbon and energy source during the

following dark period or during increased energy demand (stress)

[36]. Starch grain synthesis occurs in layers, of which those that

were accumulated last are remobilized first [37]. Thus, we

speculate that the ‘‘onionskin’’ structure might explain the

observed dynamics of 13CO2 emission during the dark period

after labeling. Since the saplings were exposed to unlabeled CO2

Figure 7. Isoprene emission of detached poplar shoots and 13C incorporation upon 13CO2 and 13C-glucose feeding. Total isoprene
emission (black symbols), its 13C incorporation (black line) and isotopic composition (m74, light blue; m73, magenta; m72, dark blue; m71, yellow;
m70, green; m69, red) in (A, C) apical buds and (B, D) mature leaves from shoots labeled with (A, B) 13CO2 or (C, D) 13Glc. The labeling period is shown
in orange, stress (absence of CO2) is indicated by a blue background, and dark conditions are marked in grey. Details of the experimental phases can
be found in the Materials and Methods section. Data represent the mean of three experiments 6 s.e. (omitted for isotopic composition).
doi:10.1371/journal.pone.0017393.g007
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for 4 h between the end of the 13C-labeling phase and the

following night, leading to synthesis of unlabeled starch, the 13C

content of respired CO2 gradually increased after switching off the

light. Once solely 13C-labeled starch started to be remobilized, the
13C content of the CO2 emitted increased to its maximum,

approximately after 2 h of darkness, i.e. half of the time of

assimilation of unlabeled CO2 between the two phases. This time

response agrees well with the diurnal carbon balance of starch

accumulation during the light phase and starch mobilization

during nighttime, where the diurnally accumulated starch pool is

linearly consumed during the night until the starch is almost

completely utilized at the end of the night [36]. Thus, probably

due to the selected photoperiod of 16/8 h light/dark cycle, the 13C

peak in CO2 2 h after onset of darkness occurred exactly after half

of the time of the unlabeled phase before darkening. When the

13C-labeled starch layers of the grains were consumed, unlabeled

starch layers were mobilized, consequently leading to a decrease in

the 13CO2 signal of respiration.

In poplar, sucrose is the major sugar form of the phloem sap,

whereas glucose and fructose are the dominating sugars trans-

ported in the xylem [22]. A significant proportion of C was

translocated via the phloem from mature 13C-labeled source leaves

down to the root system where most of the 13C was stored and

used only partially for root catabolism at night. This observation

proves clearly the function of roots as carbohydrate reserves [38].

13C translocation and allocation in shoots
The experiments with root-free poplar shoots confirmed that

assimilated 13C was translocated downward via the phloem,

reflected by the increased 13C content of the sugars found in the

Figure 8. Isotopic composition of isoprene molecules and the corresponding 13C-incorporation during 13C-labeling of intact poplar
plants and detached shoots. Pattern of isoprene isotopologues (m74, light blue; m73, magenta; m72, dark blue; m71, yellow; m70, green; m69,
white) and 13C-incorporation (open circles) in (A) intact plants, (B) shoots labeled with 13CO2, and (C) shoots labeled with 13Glc. Panels (D), (E), and (F)
show the isotopic composition of isoprene emitted by the same plants during the period with CO2-free air. Details of the experimental phases can be
found in the Materials and Methods section. Data represent the mean of 3 experiments 6 s.e.
doi:10.1371/journal.pone.0017393.g008
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nutrient solution of the shoots over time. Contrary to intact plants,

the deprivation of the root system short-circuited the process of C

storage in the roots, and labeled 13C could be transported directly

to the apical part of the plant. The 13C-labeled sugars entering the

nutrient solution could immediately enter the xylem stream again

and be transported upward, mainly to the C sink tissue of the

apex.

In poplar shoots fed with 13Glc via the transpiration stream,
13Glc was allocated to all leaves, but mainly to the strong C sink

tissue of the apex in the absence of net photosynthesis. In contrast,

in intact poplar saplings, the 13C flux from mature, 13C-labeled

leaves was directed mainly downward.

In the same way as for intact plants, the diurnal dynamics of
13C-labeled starch synthesis in shoots and its successive degrada-

tion during the dark phase well explain also the 13CO2 release

pattern during our experiments. Immediate mobilization of

labeled starch caused an initial maximum release of 13CO2, which

exponentially decreased over time, since in the case of detached

shoots the 13C-labeling period had been extended until the onset

of darkness.

Incorporation of 13C into isoprene and its alternative C
sources

Potential alternative, xylem-dependent C sources of isoprene

biosynthesis [13] were not directly influenced by recently fixed C

of a single mature leaf. After feeding 13CO2 to leaves, no

appreciable 13C signal appeared in isoprene molecules emitted

from adjacent upper leaves. Although we observed a slight

increase of 13CO2 release from the upper younger leaves, no such
13C incorporation was found in isoprene molecules emitted from

the same leaves. Because the whole poplar sapling contributed

directly or indirectly to source-sink reallocation, the portion of C

allocated from one single mature labeled leaf [32] might have been

too small to be detectable in isoprene molecules with PTR-MS.

The xylem-transported sugars contributed only as a minor C

source to isoprene formation. Nevertheless, the fraction found in

the present study was significantly higher than the 4% (in absence

of stomatal closure) reported in a previous study with poplar [13].

This might be explained either by the higher concentration of
13Glc applied in the present study (here 10 mM, compared to

5 mM in [13]), or by the different way of application (here via

shoots, in [13] via the petioles). However, we have to mention

that in both studies total isoprene emission and net CO2

assimilation rates dropped significantly, probably due to a

wounding response because of cutting. In the present study, this

decline amounted to 20–50% over the measurement period,

whereas a larger decrease of 80% occurred during the

experiment with cut petioles [13]. We cannot exclude that this

Figure 9. Concentration of the isoprene precursor DMADP and
incorporation of 13C in DMADP molecules in different plant
parts of intact poplar plants and detached shoots. DMADP
content (grey bars) and 13C-incorporation into DMADP (black bars) in
(A) apex, mature leaf, labeled leaf and root of intact plants labeled with
13CO2, in (B) apex and leaves of shoots labeled with 13CO2, and in (C)
labeled with 13Glc. Leaf DMADP content and relative 13C-abundance (%
of 13C in total DMADP carbon) was assayed as described by Ghirardo
et al. [10]. Data represent the mean of 3 experiments 6 s.d. (n.s.: no
significant 13C-enrichment).
doi:10.1371/journal.pone.0017393.g009

Figure 10. Tissue specific emission rates of BVOC from poplar
plants. Summary of (A) methanol, (B) ethanol, (C) LOX products, (D)
acetaldehyde, (E) isoprene, (F) monoterpene, (G) total quantity of C loss
as BVOC, average emissions during night (dark grey bars) and light
(light grey bars) from (A) apex, (M) mature leaves younger than (L)
labeled leaves, (R) root system in intact plants. The daily percentage of
C loss (H) as BVOC related to daily net assimilation was calculated
during day 2 (excluded for R). Data represent the mean of 3
experiments 6 s.e. (n.d. = not detectable). Statistical significant
differences (t-test with p,0.05) of emissions between A, M, L and R are
given with different minuscule or capital letters for dark or light
emissions, respectively.
doi:10.1371/journal.pone.0017393.g010
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effect might also have had consequences for the magnitude of the

alternative xylem-dependent C source.

Isoprene was not fully labeled even after prolonged exposure of

the leaves to 13CO2. However, 13C incorporation increased

constantly during 8 h of 13C-labeling. Together with our findings

from both 13CO2- and 13Glc-labeling experiments and the related

isotopologue composition of isoprene, we have indications that

alternative C sources of isoprene formation are not only based on

xylem-transported sugars. A significant fraction is also related to

metabolic pools with longer turnover times, for example starch

degradation and re-fixation of mitochondrial CO2. In the present

study the origin of C emitted as isoprene was (i) 76–78% from

recent photosynthesis, (ii) about 8–11% from photosynthates with

slower turnover rates, and (iii) about 9–10% from xylem-

transported sugars. Overall, we were able to account for 93–

99% of the C sources of isoprene formation. The remaining 1–7%

might originate from chloroplastic degradation of starch occurring

simultaneously to starch biosynthesis, as isoprene was still 1–2%

labeled the day after 13CO2-labeling of leaves. Another possibility

might be due to re-fixation of mitochondrial C [13] or simply part

of the experimental error.

The observed isoprene emission potential in different plant parts

perfectly matches the developmental activation pattern of the

promoter of isoprene synthase (PcISPS) [24]. However, we

observed only a marginal emission of isoprene from the root

stock, albeit the promoter of the PcISPS gene was activated [24].

Although the amount of DMADP found in the roots was lower

compared to other plant parts, the root DMADP pool was five

orders of magnitude higher than the associated isoprene emission,

compared to the DMADP to isoprene ratio in leaves. Thus,

isoprene emission from roots can be likely explained as a

consequence of natural, enzyme-independent DMADP decay to

isoprene at physiological pH [10,39,40] of cytosolic DMADP pool.

Isoprene biosynthesis is located in chloroplasts and closely

related to photosynthesis. The cytosolic DMADP pool sustains the

mevalonate pathway and accounts for circa 75–90% of the total

(chloroplastic plus cytosolic) pool, whereas the chloroplastic

DMADP pool is rapidly depleted during darkness [41,42]. The

isotopic composition of isoprene molecules reflected the isotopic

composition of chloroplastic DMADP [10]. After a short time of
13CO2-labeling, the incorporation into isoprene was higher than in

total DMADP due to the cytosolic DMADP pool. At the end of

the experiment, the day after 13C-labeling, we found higher

incorporation of 13C in the total DMADP pool than in emitted

isoprene molecules. Thus, we have to assume (i) that to a certain

extent chloroplastic 13C-labeled intermediates were transported

into the cytosol, and (ii) that the chloroplastic DMADP pool of the

MEP pathway undergoes a faster turnover than the cytosolic

DMADP pool of the mevalonate pathway.

With our setup it is possible to measure most of significant

volatile carbon molecules, (except volatiles with lower proton

affinity than H2O, [27]), CO2 and BVOC of grey poplar plants. In

addition to isoprene, we observed monoterpene emission from

young developing tissue as earlier reported for young leaves of

Populus tremula [43] and Populus euroamericana [44]. However, the

biological reason(s) for the decrease of monoterpene and increase

of isoprene emission with leaf aging is still unclear. The strong

emission of methanol in young tissue [45] is attributed to the

activity of pectin methylesterases [46], which among other

functions, demethoxylate pectin during cell expansion in all types

of plant tissue. The metabolic origin of acetaldehyde, e.g.

appearing for a short period after switching off the lights, and

ethanol emitted by trees is still a matter of debate [7]. However,

the relatively high emission of ethanol and acetaldehyde at all leaf

levels of poplar might result from somehow anoxic conditions in

the hydroponic solutions since flooding has been shown to

stimulate ethanol production which, after transport to the leaves,

is oxidized to acetaldehyde [47].

In our study, we successfully traced online the dynamics of C

fluxes and we determined C allocation within the poplar plants.

We showed that for the biosynthesis of isoprene, part of the

‘‘alternative C sources’’ originated from a transport of C via the

root system. Overall, the present dataset proves that the

combination of isotope-specific analysis (TDLAS and PTR-MS),

in conjunction with tissue-specific 13C-labeling, allows online

quantification of the plants’ respiratory CO2 and BVOC

emissions, which in turn can be used to infer the translocation of

C in poplar. Together with metabolic analysis, it paves the way for

comprehensively analyzing metabolic shifts in plants under various

environmental conditions.
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