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Abstract

Camera-laser calibration is necessary for many
robotics and computer vision applications.
However, existing calibration toolboxes still re-
quire laborious effort from the operator in order
to achieve reliable and accurate results. This
paper proposes algorithms that augment two
existing trustful calibration methods with an
automatic extraction of the calibration object
from the sensor data. The result is a complete
procedure that allows for automatic camera-
laser calibration. The first stage of the pro-
cedure is automatic camera calibration which
is useful in its own right for many applica-
tions. The chessboard extraction algorithm it
provides is shown to outperform openly avail-
able techniques. The second stage completes
the procedure by providing automatic camera-
laser calibration. The procedure has been ver-
ified by extensive experimental tests with the
proposed algorithms providing a major reduc-
tion in time required from an operator in com-
parison to manual methods.

1 Introduction

Despite being extensively carried out across different
robotics and computer vision applications, camera-laser
calibration remains a challenging problem. Existing cal-
ibration toolboxes still require laborious effort from the
operator in order to achieve reliable and accurate re-
sults. This paper presents an automatic, robust and
complete procedure for the calibration of a perspective
camera with a 2D laser range finder. The goal of the
procedure is to find accurate estimates of the intrinsic
parameters of the camera and the rigid transformation
between the camera and the laser under the assump-
tion of known intrinsic parameters of the laser. The
work has been divided into two stages: automatic cam-
era calibration and automatic extrinsic camera-laser cal-
ibration. Rather than pursue self-calibration methods,

the paper presents algorithms that automate two exist-
ing trustful calibration methods which rely on observing
a calibration object and which jointly achieve complete
camera-laser calibration: Bouguet’s Camera Calibration
Toolbox [Bouguet, 2010] and Zhang and Pless’s extrin-
sic camera-laser calibration technique [Zhang and Pless,
2004b]. To use these techniques, the operator is required
to obtain a calibration dataset, which is a set of syn-
chronised pairs of images and laser scans, containing a
chessboard and taken from different poses. The chess-
board acts as the calibration object and the size of its
squares needs to be measured. For the camera calibra-
tion, the corners of the chessboard squares need to be ex-
tracted from the images. In the toolbox, this is attained
by the outer corners being selected manually. The tool-
box outputs the camera intrinsic parameters as well as
the rigid transformation from the camera to the chess-
board for each image. The transformation is necessary
for the camera-laser calibration technique cited above.
The camera-laser calibration then uses the points orig-
inating from the chessboard which appear in the laser
scans to find the camera-to-laser rigid transformation.
Typically, these points have to be extracted manually.
In both cases, the extraction process is the key time
consuming task for the operator. Aimed at automat-
ing the entire procedure, two algorithms are presented:
the first automatically extracts the chessboard corners
from each image and the second extracts the chessboard
points from the laser scans. With the aid of these al-
gorithms, the required operator time is reduced to what
is needed for acquiring the calibration dataset and mea-
suring the size of the chessboard squares. The procedure
has been verified by extensive experimental tests. The
automatic chessboard extraction algorithm is shown to
produce improved results over existing methods. The au-
tomatic camera-laser calibration method demonstrates
accuracy while significantly reducing operator time when
compared to manual methods.

Section 2 details the proposed method for the auto-
matic calibration of the camera alone. It first examines



existing automatic camera calibration techniques, then
explains the proposed chessboard extraction algorithm.
Section 3 describes the automatic camera-laser trans-
formation estimation method. A concise survey is pre-
sented followed by the suggested chessboard extraction
from laser algorithm. Finally, Section 4 draws conclu-
sions and directions for future work.

2 Automatic Camera Calibration

2.1 Existing Methods

Camera self-calibration, which is a calibration process
that does not require an explicit calibration object,
has been studied extensively by researchers [Faugeras
et al., 1992; Hartley, 1994; Luong and Faugeras, 1997;
Pollefeys, 1999]. However, a fully automatic version
of self-calibration is yet to become reliable due to the
point correspondence problem and restrictive assump-
tions [Bougnoux, 1998; Remondino and Fraser, 2006].
Moreover, self-calibration does not provide the extrinsic
parameters required for the extrinsic camera-laser cali-
bration.

Meanwhile, numerous algorithms for automatically ex-
tracting the chessboard grid from an image exist with
varying degrees of automation and reliability. OpenCV
offers an automatic extraction function using Vezhn-
evets’s algorithm [Vezhnevets, 2010]. Rufli [Rufli et
al., 2008] suggests an improved version of the algo-
rithm which is provided in the OCamCalib Matlab Tool-
box [Scaramuzza, 2009]. The two algorithms rely on de-
tecting quadrangles obtained through the erosion of the
binarised image. Since they rely on the separation of
the chessboard quadrangles, they are sensitive to image
blur. Moreover, they do not automatically deal with
cases where the full grid was not found.

Another group of algorithms relies on detecting Har-
ris corners or feature points which are then arranged
into a grid. Some of these algorithms apply a classifier
to filter out non-chessboard corners, such as [Ha, 2009;
Zhou and Fang, 2010; Wang et al., 2010] while others
do not, such as [Douskos, 2008]. Without the use of a
classifier or filter, performance is greatly degraded by
clutter. It has been noticed that existing algorithms are
complementary in some sense. For instance, the chess-
board corner filter in [Ha, 2007] could aid the algorithm
suggested in [Douskos, 2008]. This complementariness
was exploited in this work to produce a robust extrac-
tion algorithm.

DLR CalDe [Strobl et al., 2009] is another piece of soft-
ware which offers automatic chessboard corner detection;
it requires a chessboard with three solid circles at its cen-
tre. In some cases, it also requires erroneous points to
manually be removed. Algorithms in [Wang et al., 2010;
Zhou and Fang, 2010; de la Escalera and Armingol, 2010]

rely on line fitting or the Hough transform. It is sus-
pected that such algorithms will be greatly affected by
nonlinear distortion. The algorithm in [Ha, 2009] is
an improved version of the original algorithm described
in [Ha, 2007]. The latter introduced an interesting chess-
board corner filter. Unfortunately, neither this algorithm
nor any of the previously mentioned discuss the effect of
image conditions, such as scale and illumination for ex-
ample, on tools used such as the Harris corner finder
or the Hough transform. On the other hand, the algo-
rithm introduced below introduces feedback which deals
with the problem of scale. It also suggests a means to
automatically select a region for the chessboard corner
filter.

2.2 The Algorithm

As with any image feature extraction algorithm, the per-
formance of an automatic chessboard extraction algo-
rithm needs to be examined under different conditions.
If the issues associated with the change in conditions are
carefully addressed and the algorithm is tested with a
large number of images from different datasets, a reliable
algorithm can be obtained. The algorithm introduced
below is focused on addressing the following issues:

• Illumination invariance

• Scale invariance

• Clutter immunity

• Minimising the number of user tuned parameters

By addressing these issues, the algorithm’s capability su-
persedes that of any of the openly available existing al-
gorithms as summarised in Table 1. Our algorithm man-
ages to encompass necessary features missed by existing
algorithms. This is achieved mainly through the careful
choice of a combination of detection tools in addition to
introducing feedback.

The steps of the algorithm are listed below. The first
step is adaptive contrast enhancement which is detailed
in Section 2.3. This is followed by a Harris corner finder
using three different window sizes. For each size, the
Harris corners are passed through a chessboard corner
filter similar to that suggested in [Ha, 2007]. Out of
the sets of corners obtained for each window size, the
one with largest number of corners remaining after the
filter is chosen for the next step. This process is ex-
plained in Section 2.4. This set of candidate corners is
then arranged into a grid. The grid arrangement step is
comparable to that used by [Douskos, 2008]. The grid is
then filtered for outliers and missing corners are linearly
interpolated. Grid extraction is described in Section 2.6.
The grid is finally fed into Bouguet’s calibration optimi-
sation routine. In the following sections, the steps of the
algorithm will be described with further detail, highlight-



Table 1: Comparison of features offered with existing toolboxes

Scale invari-
ance

Lightness
invariance

Clutter
immunity

Distortion
invariance

Limited use
of thresholds

OCamCalib 3 3 8 3 3

FAUCCAL 8 3 8 3 3

OpenCV 3 8 8 3 3

Ha’s Method 8 3 3 8 8

Our Algorithm 3 3 3 3 3

ing the approach taken to solve each of the issues listed
earlier.

Automatic Chessboard Extraction Algorithm

1. Apply adaptive contrast enhancement.

2. Choose three different window sizes for the Harris
corner finder.

3. For each window size, apply the corner finder then
run the detected corners through the chessboard
corner filter.

4. Choose the largest set of corners for the next step.

5. Arrange the corners into a grid.

6. Remove grid outliers and interpolate missing cor-
ners.

7. Run Bouguet’s calibration routine.

2.3 Adaptive Contrast Enhancement

An image taken under poor lighting conditions lacks high
contrast within the chessboard and hence will decline
the quality of the Harris transform, which relies on in-
tensity differences. Nevertheless, the intensity difference
between the chessboard’s black and white squares can
be exploited through adaptive contrast enhancement.
Global contrast enhancement investigates the properties
of an image as a whole and then applies the same inten-
sity transformation for all pixels, while adaptive contrast
enhancement looks at the local properties of the image.
The version of adaptive contrast enhancement used here
adjusts the intensity of each pixel based on the mean
and standard deviation of the intensities inside a win-
dow around that pixel. Taking into account different
possible image sizes, the window size is chosen propor-
tional to the image size. Adaptive contrast enhancement
achieves the required illumination invariance. After the
Harris transform of an image is obtained, a thresholding
mechanism is utilized to obtain blobs around the cor-
ners. The centroids of the blobs are extracted as pixels
representing the Harris corners.

2.4 Harris Transform Window Size

The window size chosen for the Harris transform affects
its performance. The window has to be large enough in
order to detect a corner in the region as opposed to an
edge. However, if the window size becomes comparable
to the size of the chessboard squares in the image, adja-
cent corners can get fused together. Therefore, choosing
the right window size is essential for the successful ex-
traction of the chessboard corners. In order for the algo-
rithm to be able to automatically select the appropriate
window size, it needs a metric or a reward. Once that
is available, it can simply choose the window size with
the highest reward. The proposed reward is the number
of corners that pass the chessboard corner filter. This
introduces feedback into the algorithm. To the best of
our knowledge, none of the existing algorithms employ
this feedback to improve the performance of the Harris
corner detector. This feature of the algorithm introduces
reliable scale invariance.

2.5 Chessboard Corner Filter

Constructing the chessboard grid crudely from the Har-
ris corners can result in failure on cluttered images.
The chessboard corner filter is the key to clutter immu-
nity. It provides a distinctive advantage over methods
that do not employ such a filter, e.g. [Vezhnevets, 2010;
Rufli et al., 2008; Douskos, 2008; Strobl et al., 2009].
The design of this filter is based on the method described
by Ha [Ha, 2007]. The filter classifies corners using two
criteria:

1. A chessboard corner lies at the intersection of two
edges.

2. The area around the corner consists of alternating
white and black or high and low intensity regions
corresponding to the chessboard squares.

The chessboard corner filter serves to classify corners
either as part of a chessboard or as a corner in the back-
ground. The filter checks the properties of the region
around the corner pixel. The filter in [Ha, 2007] re-
lies on user-selected parameters to define the test re-
gion. To achieve the goal of minimising the number of



user-defined parameters, our algorithm automatically se-
lects the region by expanding a square window until it
approaches neighbouring Harris corners. The main as-
sumption is that most chessboard corners were success-
fully detected by the Harris corner finder and that no
Harris corners other than those corners exist inside the
chessboard area. Based on this assumption, the region
chosen for the filter is the largest square region centred
at the corner not including any other corners. Fig. 1
shows the selected region marked in yellow for a certain
corner.

Figure 1: Automatic selection of test region. A square
region (yellow box) centred at a Harris corner is ex-
panded until it hits other Harris corners (red circles).

2.6 Grid Extraction

Grid extraction is a critical step in the algorithm. The
input to this step is the candidate corners which passed
the filter. The output of this step is an array of cor-
ners whose rows and columns correspond to the rows
and columns of the chessboard grid. The grid extraction
algorithm used here is adapted from [Douskos, 2008]. A
feature characteristic of a chessboard pattern is that ev-
ery non-diagonal pair of adjacent corners is connected to-
gether by an edge that has a constant gradient direction.
In other words, along the connecting edge, one side is
white and the other side is black. The gradient direction
can easily be obtained from the Sobel edge transform.
Given any chessboard corner, the other four adjacent
corners can be found using the criteria mentioned. The
starting point is chosen as the candidate corner which is
closest to the mean of the candidate corners’ (u, v) co-
ordinates. The steps of the grid arrangement algorithm
are listed below. Grid arrangement corresponds to step
5 of the automatic chessboard extraction algorithm.

Grid Arrangement Algorithm

1. Get the corner closest to the mean of the candidate
corners’ (u, v) coordinates.

2. Place this corner in the middle of a large empty
array. This corner becomes the current corner.

3. From the current corner, obtain the nearest 8 cor-
ners, in Euclidean distance sense, from the list of
candidate corners.

4. Sweep the region in the edge image around the cur-
rent corner to obtain the direction of the four peaks.

5. For each peak, choose the corner, out of the nearest
8, that occurs along the direction corresponding to
the peak. These should be the adjacent corners.

6. Arrange the adjacent corners according to their an-
gle, to be placed in the array around the current
corner. If the current corner is the first corner in
the array, then choose a random reference direction.
Otherwise, look for corners already existing on the
array and match to make the direction consistent.

7. If a match is found or if the current corner is the
first corner in the array, place the adjacent corners
in the array, mark the current corner as expanded
and mark the adjacent corners as unexpanded; oth-
erwise, if no match is found, remove the current
corner from the array.

8. If there still are unexpanded corners, move on to the
next unexpanded corner which becomes the current
corner and go to step 3. Else, end.

Corners not belonging to the chessboard might pass
the filter and erroneously tag to the grid during grid
arrangement. Therefore, starting from the border lines,
lines are removed if the number of corners existing is less
than half the total length of that line. This is applied
continuously until no more lines are removed. Once the
grid is filtered, the remaining lines are checked for gaps.
When a gap is located, the position of the correspond-
ing point is interpolated. A line is fit, in a least squares
sense, to the column and row to which it belongs. The
point is then estimated to be at the intersection of the
two lines. Finally, the sub-pixel corner finder provided
by Bouguet is used to find the sub-pixel location of all
the corners in the extracted grid. The grid is then ready
to be fed into the calibration routine of Bouguet’s tool-
box which runs an optimisation to retrieve the camera
calibration parameters.

Results and comparison of the extraction algorithm in
addition to a comparison of calibration results are shown
in Section 2.7.

2.7 Experimental Results

The automatic chessboard extraction algorithm has been
tested on more than 200 images acquired by different
cameras under different scale, lighting, clutter and dis-
tortion conditions. Fig. 2 illustrates scale invariance



where the ratio of the size of squares between the im-
ages is approximately 6:1. The image on the right also
shows the immunity against clutter. Fig. 3 illustrates
the algorithm’s performance under distortion.

For the purpose of comparison, we have chosen 99 im-
ages from 6 different datasets. The test datasets include
all the sample images provided by the toolboxes listed in
Table 2 in addition to three of our own. The images were
sorted into categories according to their scale, illumina-
tion, clutter and distortion properties. Table 2 displays
the comparison with the other toolboxes. The values in
the table are the percentage of the images from which the
toolboxes extracted a grid which is useful for calibration.
The values in the table show a significant advantage for
our algorithm in regards to illumination conditions and
scale. This can be attributed to the feedback in the al-
gorithm. As mentioned in Section 2.1, existing methods
fail to address the issue of scale. This is confirmed in the
results as the table shows extremely low scores for im-
ages with poor scale. Also evident from the table is the
improvement in performance under clutter compared to
FAUCCAL due to the use of a chessboard corner filter.
Another interesting observation is the excellent perfor-
mance of our algorithm under distortion.

Table 3 shows a comparison of the calibration re-
sults obtained via both manual and automatic extraction
using Bouguet’s sample dataset and another from the
Marulan datasets [Peynot et al., 2010]. The results show
no degradation in the quality of calibration for Bouguet’s
dataset and a minute effect on the results for the Maru-
lan dataset. In either case, the RMS pixel reprojection
error was below 0.2 pixel.

The automatic extraction of the chessboard grid has a
reasonable runtime of 9 seconds per 1.3 megapixel image
on a standard 2.1GHz dual-core PC. Manual extraction
achieved by an operator has been estimated to take an
average of 20 seconds per image. Consequently, by us-
ing our automatic extraction, at least 10 minutes of de-
manding operator time are substituted by 4.5 minutes of
computer time for a 30-image dataset.

By augmenting the automatic chessboard detection al-
gorithm to Bouguet’s toolbox, automatic camera calibra-
tion is achieved. Besides the acquisition of the calibra-
tion images, the only required effort from the operator
is to provide the toolbox with the size of the squares.
Contrary to some existing methods, this automatic ex-
traction does not require the number of squares along
each dimension of the chessboard. However, if the size
of the chessboard squares is not the same along each
dimension, the chessboard direction should be consis-
tent throughout the dataset. Automatic camera calibra-
tion can be useful in its own right for many applications.
Nevertheless, it is a necessary step towards automating
camera-laser calibration. Section 3 discusses the second

step of the procedure.

3 Automatic Camera-Laser Calibration

3.1 Existing Methods

Most of the work in the area of automating camera-
laser calibration focuses on self-calibration. Zhang and
Pless [Zhang and Pless, 2004a] presented a method for
the self-calibration of a camera with a laser range finder.
The method uses motion information from the sensors
and epipolar constraints to optimise the calibration, all
of which are heavily reliant on establishing point corre-
spondences. Moreover, the results in the paper are not
comprehensive enough to establish confidence. Scara-
muzza [Scaramuzza et al., 2007] presents another self-
calibration method using a 3D laser range finder where
the operator is required to manually select corresponding
features. Self-calibration methods still require point cor-
respondence establishment from the sensor data and lack
the required accuracy for most applications in robotics.
Therefore, we have chosen to automate the manual ex-
trinsic camera-laser calibration method by Zhang and
Pless [Zhang and Pless, 2004b].

3.2 The Algorithm

Through a similar approach to Section 2, the algorithm
here is designed for the automatic extraction of the chess-
board from the 2D laser dataset. A single 2D laser scan
gives very little information about the location of the
chessboard line. Much more information can be gained
by the integration of information from the entire dataset.
Therefore, in the algorithm described in this section,
chessboard extraction is achieved by using the entire
dataset to estimate the length of the chessboard in the
laser scans and through the iterative refinement of the
transformation estimate (Section 3.4).

The flow of the algorithm is shown in Fig. 4. The algo-
rithm begins with straight line extraction, explained in
Section 3.3. Once the straight lines are extracted, they
need to be classified into chessboard or background lines.
From the classified lines, an estimate of the camera-laser
rigid transformation is obtained. This transformation is
then further used to aid in the classification. Iteratively,
the transformation is refined until the same lines are re-
selected indicating convergence of the classification. At
this point, the final calculation of the camera-laser trans-
formation is performed.

3.3 Straight Line Extraction

Many algorithms exist for extracting straight lines from
2D laser scans. [Nguyen et al., 2007] contains an exten-
sive survey of existing line extraction algorithms. Unfor-
tunately, experimentation with these existing algorithms
failed to produce satisfactory results for the purpose of
our algorithm. The standard Hough transform suffers



(a) (b)

Figure 2: Illustration of the algorithm’s scale invariance. The size of the chessboard squares in pixels has a ratio of
6:1 between the two images. The coloured dots represent the extracted chessboard corners.

(a) (Original image from LAAS-CRNS) (b) (Original image from [Scaramuzza, 2009])

Figure 3: Illustration of the algorithm’s performance under distortion. The coloured dots represent the extracted
chessboard corners.

Table 2: The performance of algorithms under different image conditions. A total of 99 images from 6 different
datasets were used. The images were categorised as follows: poor illumination (45 images), poor scale (chessboard
covers less than 1/5 of the image)(25), cluttered (70), high distortion (36). The values in the table are the percentage
of successful grid extractions from each category.

Images with
poor illumina-
tion

Images with
poor scale

Images with
clutter

Images with high dis-
tortion

Total

OCamCalib 4.44% 8% 67.14% 100% 56.56%
FAUCCAL 44% 0% 37.14% 72% 55.55%
OpenCV 4.44% 0% 62.85% 97.22% 55%
Our Algorithm 97.77% 96% 98.5% 100% 98.98%



Table 3: Comparison between the calibration results from the manual corner extraction and our automatic chessboard
corner extraction (Error: 3 times the standard deviation).

Bouguet’s Dataset Marulan Dataset
Automatic Corner

Extraction
Manual Corner

Extraction
Automatic Corner

Extraction
Manual Corner

Extraction
Focal length ± Error

(in pixels)
[657.37, 657.74] ±

[0.347, 0.371]
[657.39, 657.76] ±

[0.346, 0.371]
[1024.74, 1022.31] ±

[2.679, 2.625]
[1023.91, 1020.98]
± [3.779, 3.7]

Principal point ±
Error (in pixels)

[302.98, 242.59] ±
[0.706, 0.646]

[302.98, 242.61] ±
[0.705, 0.645]

[659.46, 475.13] ±
[3.839, 4.001]

[665.17, 476.52] ±
[5.756, 6.112]

RMS Pixel Error (in
pixels)

[0.126, 0.126] [0.126, 0.126] [0.154,0.146] [0.141,0.118]

Get laser scan dataset

Extract straight lines from
scans

Classify lines into
board/background

Compute a transformation
from the board lines

Has the transformation
converged?

Run final calibration
optimisation

No

Yes

Figure 4: Algorithm for the automatic chessboard ex-
traction from laser scans

from its dependence on the density of points which varies
with the variation of the line angle in a 2D laser scan.
Iterative or successive algorithms are susceptible to com-
promising longer lines for shorter ones. Since length is a
classification metric used in subsequent steps, a different
method which ensures the longest lines are extracted had
to be introduced. To simplify the problem, we make the
following assumptions. Occlusions or gaps are not con-
sidered and a straight line for a set of points is simply
the line connecting the end points. These assumptions
are reasonable for the purpose of calibration since no ob-
jects are expected to be in front of the calibration board.
The selected straightness criterion for the set of points is
the maximum perpendicular distance from the points to
the line. The key idea of the algorithm is to recursively
test every combination of two points in the scan with
the straight line criterion and then recursively take out
the longest line. The search has a computational com-
plexity of O(n2) for each scan with n being the number
of laser points in the scan. However, the runtime is re-
duced by introducing a heuristic. Before the algorithm
begins searching for lines, the scan is dissected at range
jumps larger than a certain threshold. The heuristic also
enforces the no-gap assumption.

3.4 Classification

Other lines in the laser scans, which we call background
lines, might come from walls, tables and other elements
in a structured environment. Thus, to distinguish those
corresponding to the chessboard, the extracted lines are
subject to a classification process. Three metrics are
used for the classification process:

1. The frequency of occurrence.

2. The difference in length with the estimated length
of the board.

3. The distance from the estimated position using the
transformation estimate (once available).

Since the calibration process requires the calibration
board to be moved to different poses throughout the cal-



ibration dataset, positions in the laser scan which occur
quite frequently throughout the dataset are most likely
to correspond to the background or irrelevant objects
in the foreground. Therefore, the frequency of occur-
rence is the first metric used. It should be noted that
the classification process is an iterative process in which
the output of the classification step is used to compute
a transformation estimate which is then used to refine
the classification and henceforth. Unless provided by
the user, the length of the board and an estimate of the
camera-laser rigid transformation do not exist a priori.
Therefore, for the initial iteration, the algorithm marks
the line with the lowest frequency value in each scan. Its
value needs to be below a certain threshold to be consid-
ered as it might be the case that all the lines in a scan
have a low value, if the board does not exist in the scan
for example. Using these marked lines, the length of
the board is estimated and then used to remove outliers.
In this way, lines which differ by more than a certain
threshold from the estimated length of the board are
removed. Then, a transformation estimate is obtained.
For subsequent iterations, the transformation values are
used to measure the distance of the lines from the esti-
mated location of the board which is also thresholded.
Collectively, and after a few iterations, the three metrics
are used to successfully choose the right line from each
scan.

The use of thresholds is only valid if the metrics are
normalised. Otherwise, each dataset will have its own
threshold. Therefore, the frequency metric is normalised
over the number of scans, the length metric over the es-
timated length and the transformation metric over the
maximum distance found. In terms of the threshold val-
ues, 0.9 was chosen for frequency and transformation.
This value was chosen conservatively to ensure that only
valid calibration lines are selected while sacrificing un-
certain lines. A threshold value of 0.5 was chosen for
length, meaning lines which differ by more than half of
the estimated length of the board are discarded. The
length threshold is not entirely critical since it is only
used to remove extremely short or long lines.

Section 3.5 contains experimental results in regard to
both the algorithm’s classification performance and the
quality of calibration obtained using the algorithm.

3.5 Experimental Results

Successful automatic camera-laser calibration has been
performed for at least 6 different camera-laser setups.
Fig. 5 shows a sample of a chessboard automatically ex-
tracted out of a laser scan. Three different calibration
datasets have been chosen for the results in this sec-
tion: Dataset1, Dataset2 and Dataset3. Dataset1 in-
cludes 53 scan-image pairs, all laser scans contained a
board line and the camera-laser setup was stationary

throughout the data acquisition. Dataset2 was sourced
from the Marulan datasets [Peynot et al., 2010]. It in-
cludes 74 scan-image pairs, out of which 64 contained
a board line. The setup was stationary throughout the
dataset. Dataset3 includes 71 scan-image pairs, out of
which 50 contained a board line, yet the setup was moved
a few times (about 3 times) throughout the data ac-
quisition. Extraction results for the three datasets are
summarised in Table 4 in terms of precision and recall.
Note that the thresholds of the algorithm were chosen to
sacrifice recall for precision. The 100% precision is desir-
able since including outlier data points affects the accu-
racy of the calibration results much more than removing
some valid calibration points, especially if the dataset
is large enough. Table 5 compares camera-to-laser rigid
transformation estimation obtained via both manual and
automatic extraction for the last two datasets. The pa-
rameter error estimates were obtained using the method
described in [Peynot and Kassir, 2010]. The table shows
only minute discrepancies in the transformation param-
eters and error.

The automatic extraction of the chessboard from the
laser scans has a runtime of less than 40 seconds for a
dataset of 50 laser scans. Consequently, through this
algorithm, both the operator and calibration times are
highly reduced.

By augmenting this automatic extraction algorithm to
Zhang and Pless’s calibration method, automatic extrin-
sic camera-laser calibration can be achieved. To ensure
successful operation, the camera-laser setup should re-
main stationary with respect to the background, with
the possible exception of a few movements, while the
chessboard is relocated throughout the dataset.

Table 4: Performance of the chessboard extraction from
laser scans in terms of precision and recall

Number of scans Precision Recall
Dataset1 53 100% 100%
Dataset2 74 100% 100%
Dataset3 71 100% 86%

4 Conclusion

In this paper, we have proposed an automatic and com-
plete procedure for the calibration of a camera with a
laser. This work was divided into two parts. The first
part attains automatic camera calibration through an
algorithm that extracts chessboard corners from the im-
ages of a calibration dataset. This algorithm can be
used independently for many applications merely re-
quiring camera calibration. Given the results of the
first part, the second part attains automatic extrin-



Table 5: Comparison of the camera-laser rigid transformations obtained after the automatic and manual extractions
(Dataset2: 74 scan-image pairs, stationary setup, Dataset3: 71 scan-image pairs, setup moved a few times, Error:
one standard deviation, ∆: translation offset, R: Euler angles)

Dataset2 Dataset3
Automatic Extraction Manual Extraction Automatic Extraction Manual Extraction

∆±
Error (in

m)

[0.0002, 0.528, 0.061] ±
[0.0126, 0.0044, 0.0081]

[0.0024, 0.527, 0.0607]
± [0.0077, 0.004,

0.0037]

[-0.415, 0.292, 0.037]
± [0.004, 0.004,

0.0018]

[-0.416, 0.292, 0.037] ±
[0.0042, 0.0043, 0.0012]

R±
Error (in

deg.)

[-0.027, 0.469, 180] ±
[0.143, 0.179, 0.147]

[0, 0.405, 180] ±
[0.144, 0.132, 0.155]

[4.73, 0.37, 0.44] ±
[0.1, 0.053, 0.144]

[4.72, 0.39, 0.49] ±
[0.104, 0.06, 0.201]

RMS
Error (in

m)

0.00796 0.00704 0.00755 0.00743

(a)

(b)

Figure 5: Sample of a successful board extraction. (a)
shows the extracted points in red. (b) is the scan’s cor-
responding image. (Scan and image from [Peynot et al.,
2010])

sic camera-laser calibration through an algorithm which
extracts the chessboard from the laser scans of the
calibration dataset. Jointly, the two algorithms pro-
vide automatic camera-laser calibration. The two Mat-
lab toolboxes implementing these algorithms are avail-
able online at http://www-personal.acfr.usyd.edu.

au/akas9185/AutoCalib/index.html. Extensive test-
ing has been applied to both algorithms with results dis-
playing significant levels of performance and accuracy
especially when compared to existing automatic meth-
ods.

Future work will investigate extending the automatic
camera calibration to a stereo camera pair and extending
the automatic camera-laser calibration to 3D laser range
finders.
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tinelli, N. Tomatis, and R. Siegwart. A comparison
of line extraction algorithms using 2D range data for
indoor mobile robotics. Autonomous Robots, 23(2),
2007.

[Peynot and Kassir, 2010] T. Peynot and A. Kassir.
Laser-camera data discrepancies and reliable percep-
tion in outdoor robotics. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010.

[Peynot et al., 2010] T. Peynot, S. Scheding, and
S. Terho. The Marulan Data Sets: Multi-Sensor
Perception in Natural Environment with Challeng-
ing Conditions. International Journal of Robotics Re-
search, 29(13), 2010.

[Pollefeys, 1999] M. Pollefeys. Self-calibration and met-
ric 3D reconstruction from uncalibrated image se-
quences. PhD thesis, ESAT-PSI, Katholieke Univer-
siteit Leuven, 1999.

[Remondino and Fraser, 2006] F. Remondino and
C. Fraser. Digital camera calibration methods:
considerations and comparisons. In International
Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, Dresden, Germany,
2006.

[Rufli et al., 2008] M. Rufli, D. Scaramuzza, and
R. Siegwart. Automatic detection of checkerboards on
blurred and distorted images. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
2008.

[Scaramuzza et al., 2007] D. Scaramuzza, A. Harati,
and R. Siegwart. Extrinsic self calibration of a cam-
era and a 3D laser range finder from natural scenes.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007.

[Scaramuzza, 2009] D. Scaramuzza. OCamCalib tool-
box: Omnidirectional camera and calibration toolbox
for matlab, 2009. http://asl.epfl.ch/~scaramuz/

research/Davide_Scaramuzza_files/Research/

OcamCalib_Tutorial.htm.

[Strobl et al., 2009] K. Strobl, W. Sepp, S. Fuchs,
C. Paredes, and K. Arbter. DLR CalLab and
CalDe - The DLR Camera Calibration Toolbox,
2009. http://www.dlr.de/rm/desktopdefault.

aspx/tabid-4853/.

[Vezhnevets, 2010] V. Vezhnevets. OpenCV and Mat-
Lab camera calibration toolboxes enhancement,
2010. http://graphicon.ru/oldgr/en/research/

calibration/index.html.

[Wang et al., 2010] Z. Wang, Z. Wang, and Y. Wu.
Recognition of corners of planar pattern image. In
8th World Congress on Intelligent Control and Au-
tomation (WCICA), 2010.

[Zhang and Pless, 2004a] Q. Zhang and R. Pless. Con-
straints for heterogeneous sensor auto-calibration. In
Computer Vision and Pattern Recognition Workshop,
2004.

[Zhang and Pless, 2004b] Q. Zhang and R. Pless. Ex-
trinsic calibration of a camera and laser range finder
(improves camera calibration). In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
2004.

[Zhou and Fang, 2010] D.-S. Zhou and X.-Y. Fang.
Multi-chessboards localisation based on FCM and
radon transform algorithm. International Journal of
Computer Applications in Technology, 38, 2010.

http://asl.epfl.ch/~scaramuz/research/Davide_Scaramuzza_files/Research/OcamCalib_Tutorial.htm
http://asl.epfl.ch/~scaramuz/research/Davide_Scaramuzza_files/Research/OcamCalib_Tutorial.htm
http://asl.epfl.ch/~scaramuz/research/Davide_Scaramuzza_files/Research/OcamCalib_Tutorial.htm
http://www.dlr.de/rm/desktopdefault.aspx/tabid-4853/
http://www.dlr.de/rm/desktopdefault.aspx/tabid-4853/
http://graphicon.ru/oldgr/en/research/calibration/index.html
http://graphicon.ru/oldgr/en/research/calibration/index.html

