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"Discovery consists of seeing what everybody has 

seen and thinking what nobody has thought." 

Albert Szent-Györgyi in Irving Good, The 

Scientist Speculates (1962) 

http://www.quotationspage.com/quotes/Albert_Szent-Gyorgyi/
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SUMMARY 

 
Clinical studies have suggested a link between the sensory trigeminal system and the 

parasympathetic ganglia. Calcitonin gene-related peptide (CGRP) is a sensory 

neuropeptide which plays an important role in vasodilatation and pain transmission in the 

trigeminovascular system.  

Our work was performed to examine the expression of the parasympathetic signaling 

transmitters and their receptors in human and rat sphenopalatine ganglion (SPG), and  if 

CGRP and CGRP receptor components are present in the human SPG in order to reveal an 

interaction between the sensory and parasympathetic systems.  

Indirect immunofluorescence technique was used for immunohistochemical 

demonstration of vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating 

peptide (PACAP), nitric oxide synthase (NOS), glutamine synthetase (GS), glial fibrillary 

acidic protein (GFAP), VIP and PACAP common receptors (VPAC1, VPAC2), PACAP 

receptor (PAC1), CGRP, the CGRP receptor components as the calcitonin receptor-like 

receptor (CLR) and the receptor activity modifying protein 1 (RAMP1) in human and rat 

SPG. In addition, double labeling was carried out to reveal the co-localization of 

neurotransmitters. Cryostat sections were examined and images were obtained using a 

light- and epifluorescence microscope coupled to a camera to visualize co-labeling by 

superimposing the digital images. In addition,Western blot technique was used to 

demonstrate the existence of VIP/PACAP receptors and CGRP receptor components in rat 

SPG.  

In human SPG VIP immunoreactive neurons as well as fibers were frequently found. 

Many, homogenously stained NOS immunoreactive cells were found, but no positive 

fibers. In addition, PACAP immunoreactivity was observed in some of the neurons and in 

fibers. Co-localization was found between VIP/NOS and PACAP/NOS in human. In rat 

VIP, NOS and PACAP immunoreactivity were found in many neurons and fibers. Co-

localization of PACAP and NOS was observed in rat neurons. PACAP and GS double 

staining revealed that the PACAP immunoreactivity was localized in/close to the cell 

membrane, but not in the satellite glial cells (SGCs). PAC1 and VPAC1 immunoreactivity 

was found in the SGCs, in addition, VPAC1 and VPAC2 in fibers of both human and rat. 

Western blot revealed protein expression of PAC1, VPAC1 and VPAC2 in rat SPG. CGRP 

immunoreactive fibers were frequently found intraganglionic in both human and rat SPG in 

the vicinity of neurons, and in neurons in rat SPG. CLR immunoreactivity was observed in 
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SGCs as well as in nerve fibers, but not in neurons in both human and rat. RAMP1 

immunoreactivity was localized in many neurons (in both human and rat), SGCs (in 

human) and nerve fibers (in rat). Thus, the two CGRP receptor components together were 

found in the SGCs in human and in the nerve fibers in rat. Western blot confirmed the 

presence of RAMP1 and CLR in rat SPG.  

We hypothesized that VIP, PACAP, NOS, PAC1, VPAC1, and VPAC2 play a role in 

the activation of parasympathetic cranial outflow during trigeminal-autonomic reflex. We 

have revealed that the trigeminal CGRP-containing fibers project to the SPG and act on 

CGRP receptors on SGCs in human. Therefore, our results suggest a functional coupling 

between the trigeminal (sensory) and the sphenopalatinal (parasympathetic) system. 
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1. INTRODUCTION 

The head and neck regions and the intracranial circulation are innervated by 

parasympathetic nerve fibers from the SPG, otic and internal carotid ganglia (Suzuki et al., 

1988). The central control emanates in the superior salivary nucleus (CN VII, the facial 

nerve) with cholinergic fibers that synapse in the SPG. Tracing and denervation studies 

have revealed that the majority of the intracranial vascular parasympathetic innervation 

originates in the otic ganglion and SPG (Hara and Weir, 1988, Suzuki et al., 1988, 

Edvinsson et al., 1989, Hara et al., 1993, Edvinsson et al., 2001). The neuronal cell bodies 

in the human SPG contain VIP, PACAP and NOS as the main parasympathetic signaling 

transmitters (Uddman et al., 1999). Traditionally the cell bodies have been considered to be 

cholinergic, but only a minor subpopulation of cells in the SPG have been reported to 

contain acetylcholine transferase (Lee et al., 1984). In addition, a large number of VIP and 

PACAP immunoreactive cell bodies have been shown to co-localize with NOS in rat 

(Uddman et al., 1999, Edvinsson et al., 2001).  

VIP and PACAP belong to the secretin/glucagon/VIP superfamily of neuropeptides. 

VIP was first isolated from the ovine intestine and found to be a very potent neuropeptide 

(Said and Mutt, 1970) that consists of 28 amino acids. VIP is widely distributed in central 

and peripheral nervous system (Loren et al., 1979, Said, 1984). The peptide has various 

biological effects in mammals such as embryonic brain development, pain perception and 

inflammation (Harmar et al., 1998). PACAP, the newest member of this family of peptides 

was originally isolated from the ovine hypothalamus (Miyata et al., 1989), and occurs in 

two forms: C-terminally truncated PACAP-27 and PACAP-38 (27 or 38 amino acids). 

PACAP shares two-third sequence homology with the N-terminal domain of VIP. Both 

forms of PACAP exert a large variety of biological effects including vasodilatation, 

relaxation of lower airways, immune modulation, stimulation of cell proliferation and 

differentiation, control of neurotransmitter release and pain transmission (Harmar et al., 

1998, Vaudry and Laburthe, 2006). PACAP-38 predominates over PACAP-27 in most 

studied tissues (Sundler et al., 1996). Both forms are derived from the same precursor and 

are amidated in the C-terminal. 

The actions of VIP and PACAP are mediated through the family of 7 transmembrane G 

protein-coupled receptors (GPCRs) (Vaudry and Laburthe, 2006, Dickson and Finlayson, 

2009). Classically, the GPCR superfamily is divided into three main classes - A, B, and C - 

with no shared sequence homology between the classes. The largest class by far is class A, 

which accounts for nearly 85% of the GPCR genes. Uniquely, the VIP and PACAP 
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receptors belong to the class B family of GPCR. VIP and PACAP act via VPAC1 and 

VPAC2 receptors with equally high affinity, while PACAP is more potent than VIP at the 

PAC1 receptor (Harmar et al., 1998).  

During the investigation on primary headache pathophysiology a close correlation 

between the calcitonin gene-related peptide (CGRP) and the head pain was observed in 

acute attacks of migraine (Juhasz et al., 2005, Ho et al., 2010).  

In some cases of migraine and in all cluster headache cases, additional facial symptoms 

(reddening of sclera, rhinorrhea, nasal congestion, etc.) were associated with co-release of 

the sensory neuropeptide CGRP from the trigeminal system and VIP from the cranial 

parasympathetic system into the cranial venous outflow (Goadsby and Edvinsson, 1994a). 

CGRP consists of 37 amino acids and plays an important role in vasodilatation and pain 

transmission in craniocervical structures (Ho et al., 2010). Sumatriptan, acting on 

5-hydroxytryptamine type 1B/1D subtypes of receptors, aborts not only the CGRP release 

and the head pain, but also the VIP release and the parasympathetic symptoms (Goadsby 

and Edvinsson, 1994a). The mechanisms involved are not clear, however, experimental 

studies have provided some support of a link between the two systems (Goadsby and 

Edvinsson, 1994b). 

Based on experiments in cats, it has been hypothesized that this is an effect at the brain 

stem level (Goadsby and Edvinsson, 1994b). On the other hand, according to a recent 

study 5-hydroxytryptamine 1D receptor immunoreactive fibers were found in rat SPG. 

Double-immunolabelling with CGRP and vesicular acetylcholine transporter, revealed 

CGRP, but not vesicular acetylcholine transporter immunoreactivity, suggesting a sensory 

origin (Ivanusic et al., 2011). 

The receptor for CGRP was elucidated over a decade ago and belongs to the family of 

G-protein-coupled receptor of the B-subtype (Hay et al., 2008). The functional CGRP 

receptor consists of three proteins: (i) the calcitonin receptor-like receptor (CLR) which 

forms the ligand binding site with (ii) receptor activity modifying protein 1 (RAMP1), and 

together they determine  the specificity of the receptor (McLatchie et al., 1998, Heroux et 

al., 2007). (iii) The CGRP-receptor component protein (RCP) is essential in coupling the 

receptor to intracellular signal-transduction pathways and, in particular, to adenylyl cyclase 

(Evans et al., 2000). 
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2. AIMS 

(i) Reveal the presence and distribution of VIP/PACAP receptors in human and rat SPG 

using indirect immunofluorescence and Western blot techniques. 

(ii) Examine the SGCs and their relation to neurons both in human and rat SPG. 

(iii) Study CGRP and CGRP receptor elements (CLR and RAMP1) in human and rat 

SPG neurons, nerve fibers and SGCs as an indication of putative local function. 

(iv) Compare the distribution of examined neurotransmitters between human and rat 

SPG, using immunofluorescence technique. 

 

 

3. EXPERIMENTAL PROCEDURES 

 
3.1. Tissue material 

3.1.1. Human 

Human SPG were obtained at autopsy from 5 adult subjects with an average age of 72.6 

years (range 60-81 years). The collection of tissue samples was done in accordance with 

the University of Szeged, Faculty of Medicine guidelines for ethics in human tissue 

experiments (6/1996 – 13/12/2010). 

For preparation of human SPG, a standardized method was used. After removal of the 

brain, the overlying dura was removed from the trigeminal impression area in the medial 

cranial fossa. The trigeminal ganglion was separated and gently excised. Then a 20x25 mm 

bone window was made, including the trigeminal fossa together with foramina rotundum 

and ovale. Following the mandibular and maxillary nerve into the infratemporal and 

pterygopalatinal fossa, the SPG was gently excised. The ganglia were collected within 48 

hours of dead. Cause of death was related to cardiac disease and none of the subjects were 

suffering from central nervous diseases.  

The human subjects took antibiotics, cardiovascular drugs (cardiac glycosides, 

antianginal agents, antiarrhythmic agents, antihypertensive agents, platelet aggregation 

inhibitors and statins), gastrointestinal drugs (antiulcer drugs and antispasmodics), insulin, 

and central nervous system agents (analgetics and anxiolytics). 

SPG were immersed overnight in a mixture of 2% paraformaldehyde and 0.2% picric 

acid in phosphate buffer (pH 7.2). After fixation, specimens were rinsed repeatedly in 

sucrose-enriched (10%) Tyrode solution, snap frozen, embedded in Tissue Tek (Sakura 

Finetek, Europe) and stored at -80ºC. 
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3.1.2. Rat 

SPG were collected from eight adult male Sprague-Dawley rats (weighing 300-400 g). 

The animals were raised and maintained under standard laboratory conditions. The study 

followed the guidelines of the European Communities Council (86/609/ECC) and was 

approved by the Ethics Committee of The Faculty of Medicine, University of Szeged. 

The rats were deeply anesthetized with chloral hydrate (0.4 g/kg bodyweight, Fluka 

Analytical, Buchs, Switzerland, 23100) and perfused transcardial with 100 mL phosphate-

buffered saline (PBS, 0.1M, pH 7.4) followed by 500 mL a mixture of 2% 

paraformaldehyde and 0.2% picric acid in phosphate buffer (pH 7.2). 

After extraction of the rat eye and cut across the zygomatic arch, the maxillary branch 

of the trigeminal nerve was seen in the posterior part of the cavity. The SPG lies in the 

pterygopalatine fossa beneath the maxillary branch of the trigeminal nerve. This fossa is 

localized between the nasal orbital wall and the medial surface of the maxillary branch of 

the trigeminal nerve. The schematic drawing and detailed anatomical description of rat 

SPG published by Suzuki N et al. in 1988 was used. 

The ganglia were removed and post-fixed overnight in 4% paraformaldehyde. After 

fixation rat specimens were rinsed repeatedly in sucrose-enriched (10%) Tyrode solution. 

The ganglia were frozen on dry ice and stored at -80ºC. 

 

Both human and rat specimens were embedded in gelatin medium (30% egg albumin 

and 3% gelatin in distilled water), cryosectioned at 10 µm, mounted on Superfrost Plus 

coated slides (Menzel GmbH Co KG, Braunschweig, Germany) and stored at -20ºC until 

use.  

 

3.2. Regular tissue staining 

3.2.1. Hematoxylin-Eosin 

For orientation and examination of the tissue condition, human and rat sections were 

stained with Hematoxylin-Eosin (Htx-Eosin) using a standard protocol (Htx 4 min, water 

rinse, Eosin 30 sec). 

 

3.3. Immunohistochemistry 

Briefly, the sections were rehydrated for 2 x 15 minutes in PBS containing 0.25% 

Triton X-100 (PBS-T, Chemicon, Sweden), and thereafter exposed to primary antisera 

(details of the antibodies are given in Table 1) in PBS-T containing 1% bovine serum 
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albumin (BSA) overnight in a moist chamber at +4ºC. Sections were then rinsed in PBS-T 

for 2 x 15 min followed by incubation with secondary antibodies (Table 2) for 1 h in dark 

at room temperature. In addition, double immunohistochemistry was performed using 

VIP/NOS, PACAP/NOS and PACAP/Vimentin, PACAP/GS, CGRP/CLR, CGRP/RAMP1 

and CLR/RAMP1 primary antibodies following the same protocol consecutively repeated 

twice.  

 

Thereafter, sections were rinsed in PBS-T for 3 x 10 min in room temperature and 

mounted with mounting medium (Glycerol, Sigma-Aldrich, Munich, Germany) or 

Vectashield (Vector Laboratories, Burlingame, CA, USA). Vectashield medium containing 

4’,6-diamino-2-phenylindole (DAPI, nucleus staining) was used in some sections. 

Omission of the primary antibody served as negative controls. All antibodies were applied 

at least three independent staining sessions in order to validate reproducibility. The VIP 

and PACAP immunoreactivity were blocked by addition of 100 µm of VIP or PACAP38, 

both obtained from Sigma-Aldrich. 

 

 

Table 1. Details of primary antibodies used for immunohistochemistry 

Name Product code Host Dilution Detect Source 
VIP (M19) sc-7841 goat 1:100 C-terminus of VIP of mouse Santa Cruz Biotech, Santa Cruz, 

CA, USA 
VPAC1  
(H-130) 

sc-30019 rabbit 1:150 N-terminus of VPAC1 of 
human 

Santa Cruz Biotech, Santa Cruz, 
CA, USA 

VPAC2  
(H-50) 

Sc-30020 rabbit 1:150 Internal region of VPAC2 of 
human 

Santa Cruz Biotech, Santa Cruz, 
CA, USA 

PACAP-
38 

T-4473 rabbit 1:500 Human and rat PACAP-38 Peninsula Laboratories, LLC, 
San Carlos, CA, USA 

PAC1 ab28670 rabbit 1:800 Human amino-acids 506-525 
PAC1 

Abcam, Cambridge Science 
Park, Cambridge, UK 

bNOS N2280 mouse 1:2500 Human and rat bNOS Sigma-Aldrich, St Louis, MO, 
USA 

GS MAB302 mouse 1:150 Sheep and rat glial cells Chemicon Internatonal, 
Temecula, CA, USA 

GFAP Z0334 rabbit 1:1500 Cytoskeleton in glial cells  Dako, Coppenhagen, Denmark 
CGRP B47-1 rabbit 1:800 Rat CGRP Europroxima, Arnhem, The 

Netherlands 
CGRP ab81887 mouse 1:100 Rat α-CGRP Abcam; Cambridge, UK 
RAMP1 844 goat 1:100 C-terminal of human 

RAMP1 
Merck & Co., Inc 

CLR 3152 rabbit 1:800a C-terminal of human CLR Merck & Co., Inc 
a Cross-reacts with rat receptor at 1:100 dilution. 
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Table 2. Secondary antibodies used for immunohistochemistry 

Conjugate and host Against Dilution Source 

FITC (goat) Anti-rabbit 1:100 Cayman Chemical, Ann Arbor, MI, USA 

FITC (donkey) Anti-rabbit 1:100 Jackson Immunoresearch, West Grove, PA, USA 

Alexa 488 (donkey) Anti-goat 1:400 Invitrogen, La Jolla, CA, USA 

Texas-Red (donkey) Anti-mouse 1:200 Jackson Immunoresearch, West Grove, PA, USA 

Texas-Red (donkey) Anti-rabbit 1:200 Jackson Immunoresearch, West Grove, PA, USA 

DyLight 549 (donkey) Anti-mouse 1:200 Jackson Immunoresearch, West Grove, PA, USA 

DyLight 488 (donkey) Anti-rabbit 1:200 Jackson Immunoresearch, West Grove, PA, USA 

Cy2 (donkey) Anti-goat 1:100 Jackson Immunoresearch, West Grove, PA, USA 

 
 
 
3.4. Image analysis 

Sections were examined and images were obtained using a light- and epifluorescence 

microscope (Nikon 80i, Tokyo, Japan) coupled to a Nikon DS-2 MV camera. FITC 

(480/30X), TRITC (540/24X) and DAPI (360/40X) filters were used (filter specifications 

are given in nanometers and X denotes excitation center wavelength/bandwidth). Adobe 

Photoshop CS3 (v.8.0, Adobe Systems, Mountain View, CA, USA) was used to visualize 

co-labeling by superimposing the digital images. 

 

 

3.5. Western blot 

Adult male Sprague-Dawley rats (500-600g; n=8) were deeply anaesthetized with 4% 

chloral hydrate and perfused transcardially with 150 ml PBS. Following perfusion, SPG 

from both sides were dissected and stored at -80°C until use. All collected ganglia were 

homogenized in cold lysis buffer containing 50 mM Tris-HCl, 150 mM NaCl, 0.1% igepal, 

0.1% cholic acid, 2 μg/ml leupeptin, 2 mM phenylmethylsulphonyl fluoride (PMSF), 1 

μg/ml pepstatin, 2 mM EDTA and 0.1% sodium dodecyl sulphate (SDS) with ultra-thurrax 

appliance (all chemicals were from Sigma-Aldrich, Germany). Lysates were separated by 

centrifugation and supernatants were stored in aliquots at -20°C until total protein 

concentration was determined according to BCA protein assay method (Novagen®, 

Germany), with bovine serum albumin (BSA) as a standard.  
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Protein (10 μg/lanes) were diluted in 2X Laemmli sample buffer and heated at 75°C for 

5 min. Thereafter, the samples were separated by 10% SDS polyacrylamide gel 

electrophoresis (SDS-PAGE) along with a standard 10-170 kDa molecular weight marker 

(Fermentas, Germany). The proteins were transferred to a nitrocellulose membrane 

(Amersham™, England,) followed by incubation in 5% non-fat dry milk in TBS-T for 1 h 

to avoid unspecific binding. The membrane was then washed for 3 x 5 min in TBS-T and 

incubated for 2 h at room temperature with PACAP receptors (PAC1, VPAC1 and 

VPAC2) and CGRP receptor components (CLR and RAMP1) primary antibodies (sc-

30018, sc-52794, sc-30020, sc-30028, sc-11379), diluted 1:300 in 1% not-fat dry milk in 

TBS-T followed by washing in TBS-T 5 x 5 min. Then goat anti-rabbit IgG-HRP 

conjugated (sc-2030, for PAC1, VPAC2, CLR and RAMP1) and goat anti-mouse IgG-

HRP (sc-2031, for VPAC1) at 1:3000 dilution in 1% non-fat dry milk in TBS-T were used 

as secondary antibody for 1 h at room temperature (all antibodies were from Santa Cruz 

Biotechnology, Inc., Germany). 5 x 5 min TBS-T washing was followed. The membranes 

were incubated in enhanced chemiluminescent substrate (Pierce Protein Research Product, 

Thermo Scientific, Germany) and developed using KODAK light film and reagents 

(Sigma-Aldrich, Germany). 

Omission of primary antibodies were used as negative controls. 
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4. RESULTS 

 

4.1. Regular tissue staining 

4.1.1. Hematoxylin-Eosin 

Most of the human material displayed qualitatively adequate morphology as visualized 

with Htx-Eosin staining (Figures 1a-b). The SPG were found as well-defined ganglia with 

neurons intermingled within the sphenopalatine branches of the maxillary nerve. Ganglia 

consisted of neurons of various size enveloped by SGCs (Figure 1b). Minor cell shrinkage 

was observed. 

Rat SPG showed similar morphology with neurons of various size surrounded by SGCs 

(Figure 1c).  

 

Figure 1 Htx-Eosin staining of human and rat SPG. (a) Overview of a well-defined human SPG. (b) 
Higher magnification of human SPG demonstrates neurons and satellite glial cells (arrows) 
surrounding the neurons. (c) Rat SPG showed similar morphology, with satellite glial cells (arrows) 
enveloping around single neurons forming distinct units. 

 

4.2. Immunohistochemistry  

4.2.1. Human SPG 

Due to the subject’s old age, many neurons in the human material contained lipofuscin 

granulae in their cytoplasm. 

VIP immunoreactive neurons as well as fibers were frequently found in human SPG 

(Figures 2a-d). The immunoreactivity was granular-like in both neurons (Figure 2d) and 

fibers. Many NOS (homogenously stained) immunoreactive neurons were found, but no 

positive fibers (Figures 2e-h). In addition, PACAP immunoreactivity was found in some of 

the neurons and in fibers (Figures 2i-o). As for VIP, the PACAP staining displayed 

granular-like immunoreactivity. The neuronal staining was often localized to, or close to, 

the cell surface (Figures 2m, 2o). In order to reveal if the peptide only was localized to the 

neurons, and not the SGCs, double-staining with different glial cell specific antibodies 
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were performed. Double staining with PACAP/Vimentin revealed that PACAP staining 

was not localized in the SGCs (Figures 3m, 3o). 

Double stainings of human SPG – VIP/NOS (Figures 3a-f), PACAP/ NOS (Figures 3g-

l) and VIP/PACAP – were carried out. In our hands, co-localization was found between 

VIP/NOS, and PACAP/NOS. We were not able to establish, with the methods used, if the 

peptides were present in different neuronal subpopulations.  

 

 
Figure 2 In the montage, TRITC or FITC (depending on the secondary antibody) filters were used 

to visualize lipofuscin and thereby differentiate the pigment from antibody immunoreactivity. a-d 
VIP (green) immunoreactive neurons (arrows) as well as fibers (arrow heads) were frequently found 
in human SPG. The immunoreactivity was granular-like in both neurons and fibers. Superimposing 
green and red images revealed yellowish lipofuscin (thick arrow in 2d). e-h Many NOS (red), 
homogenously stained, immunoreactive cells (arrows) were found in human SPG, but no positive 
fibers. Thick arrow (h) shows lipofuscin. i-k PACAP (green) granular-like immunoreactivity was 
found in fibers (arrow). l-n Some of the neurons (thin arrows) also displayed PACAP 
immunoreactivity. The neuronal staining was often localized to, or close to, the cell surface (small, 
thick arrows). Arrow head points at a cell resembling a satellite glial cell seemingly positive for 
PACAP. However, double staining with glial cell markers could not confirm PACAP expression in 
satellite glial cell. o Higher magnification of a PACAP positive cell (thin arrow). Thick arrow points 
at lipofuscin. 
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Figure 3 Double stainings VIP/NOS, PACAP/NOS and PACAP/Vimentin. a-f VIP 

(green) and NOS (red) double immunohistochemistry revealed neurons that were only 
VIP positive (arrow heads), only NOS positive (thin arrows) or double stained (thick 
arrows). Asterisk - VIP positive fiber. g-i The montage demonstrates PACAP (green) 
and NOS (red) double immunohistochemistry. Thin arrows point at NOS, but not 
PACAP, positive cells. Thick arrows point at double stained cells. Arrow heads point 
at PACAP positive fibers. j –l The montage shows a double stained neuron. m-o 
Double staining with PACAP/Vimentin reveals that PCAP staining is not localized in 
the satellite glial cells. Arrows point at PACAP immunoreactive cells and arrow heads 
at vimentin immunoreactive satellite glial cells. 
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Pearl-like CGRP immunoreactive fibers were frequently found in human SPG (Figures 

4a-b). In order to scrutinize the CGRP immunoreactivity, we used different primary 

(anti-rabbit and anti-mouse) and secondary (FITC, DyLight 549 and Texas Red) 

antibodies. More CGRP positive fibers were visible with the use of CGRP anti-mouse 

primary and DyLight 549 secondary antibodies (Figure 4b) relative to CGRP anti-rabbit 

and FITC anti-rabbit (Figure 4a). Texas Red secondary antibody revealed the same 

staining patterns as DyLight 549 (data not shown). CGRP immunoreactivity was not 

observed in human SPG neurons or SGCs using either of the combination of antibodies. 

 
Figure 4 Expression of CGRP in human SPG. (a) Some CGRP positive fibers (arrows) were 

found using CGRP anti-rabbit (green) primary antibody. (b) CGRP anti-mouse (red) antibody 
revealed more CGRP immunoreactive fibers (arrows). The immunoreactivity was granular-like 
with both primary antibodies. There were no CGRP immunopositive neurons. In the montage, both 
TRITC and FITC filters were used to differentiate the lipofuscin (arrowheads) from antibody 
immunoreactivity. 
 

Many CLR immunoreactive SGCs and fibers were found (Figure 5). For the 

demonstration of CLR, FITC (Figures 5a-b) or DyLight 488 (Figures 5c-e) was used as 

secondary antibody. Both antibodies visualized immunoreactive SGCs, but only FITC 

revealed immunoreactive fibers in the SPG. No CLR immunoreactive neurons were found. 

For the visualization of RAMP1, the use of Cy2 secondary antibodies (Figure 6a) 

revealed RAMP1 immunoreactive neurons (homogenously stained). Some large and 

medium-sized neurons were positive for RAMP1. Furthermore, RAMP1 positive SGCs 
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were detected with Alexa 488 secondary antibodies (Figure 6b-c). There was no RAMP1 

immunoreactivity in the fibers. 

In order to examine co-localization between CGRP, CLR and RAMP1, double stainings 

were performed (Figure 7a-f). No co-localization was found.  

 
Figure 5 CLR staining in human SPG. (a) CLR (green), homogenously stained, 

immunoreactive fibers (arrows) were visualized with FITC secondary antibody. (b) Some 
CLR positive satellite glial cells (arrows) were found using FITC secondary antibody. (c-e) 
CLR immunoreactivity is shown in lower and higher magnification using DyLight 488 
secondary antibody. DyLight 488 disclosed the presence of CLR positive SGCs (arrows), 
but no immunoreactive fibers. No CLR positive neurons were found. The anti-CLR 
antibody revealed some nonspecific nuclear staining. Autofluorescent lipofuscin 
(arrowheads) was demonstrated by superimposing images from both FITC and TRITC 
filters. 
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Figure 6 RAMP1 immunoreactivity in human SPG. (a) Cy2 secondary antibody revealed 

RAMP1 (green) immunoreactivity in large and medium-sized neurons (arrows). Thin 
arrowhead points to a negative neuron. Vectashield with DAPI was not used together with 
Cy2 secondary antibody. (b-c) RAMP1 (green) positive satellite glial cells (arrows) were 
found using Alexa 488. Thick arrowheads show lipofuscin, visible in both FITC and 
TRITC filters. 

 

 
Figure 7 Double staining with CGRP/CLR (a-c) and CGRP/RAMP1 (d-f). There was no 

co-localization of CGRP and CLR or RAMP1. (a) CLR (green) immunoreactive satellite 
glial cells (thin arrowheads) were found. (d) RAMP1 (green) satellite glial cells (thin 
arrowheads) were seen. (b, e) CGRP (red) positive, granular-like fibers (arrows) are shown. 
Lipofuscin (thick arrowheads) is present using FITC and TRITC filters. 
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4.2.2. Rat SPG 

In the rat material, VIP, NOS and PACAP immunoreactivity were found in many 

neurons and fibers (Figures 8a-i). PACAP immunoreactivity was often localized close to 

the cell membrane (Figure 9), whereas VIP and NOS stainings were more evenly 

visualized within the cell soma, although somewhat granular-like for VIP (Figure 8). We 

were also able to observe co-localization of PACAP and NOS (Figures 9a-c), but not 

between VIP/NOS or PACAP/VIP. PACAP and GS double staining revealed that the 

PACAP immunoreactivity was localized in or close to the cell membrane, but not in the 

SGCs (Figures 9d-f).  

 

 
Figure 8 Montage of VIP (a-c), PACAP (d-f) and NOS (g-i) immunoreactivity in rat 

SPG. a-f Many cells (arrows) and fibers (arrowheads) showed VIP and PACAP 
immunoractivity. g-i Most cells (arrow heads) were NOS positive. Few cells were negative 
(arrows). Long arrows point at NOS positive fibers. 
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Figure 9 Double stainings PACAP/NOS and PACAP/GS of rat SPG. a-c The montage 

demonstrates PACAP (green)/NOS (red) double immunohistochemistry. Short arrows point 
at PACAP positive cell, arrow heads at NOS positive and long arrows at a double stained 
cell. Asterisk – PACAP positive fibers. d-f PACAP (green) and GS (red) double staining 
revealed that the PACAP immunoreactivity was localized in/close to the cell membrane, 
but not in the satellite glial cells. Arrows point at areas where green PACAP positivity is 
clearly separated from the GS positivity. 

 

 

In rat SPG, anti-rabbit and anti-mouse CGRP primary antibodies were used to 

demonstrate CGRP immunoreactivity. In both cases, CGRP immunoreactive fibers were 

frequently found (Figures 10a-b). CGRP anti-rabbit antibody disclosed many 

homogenously stained neurons (Figure 10a), while CGRP anti-mouse antibody revealed 

only few CGRP positive neurons (Figure 10b). CLR immunoreactive fibers and SGCs 

were found using FITC anti-rabbit, but not noted in neurons (Figure 10c). Both Cy2 (data 

not shown) and Alexa 488 secondary antibodies revealed RAMP1 positive fibers and some 

homogenously stained neurons (Figure 10d). Double staining with RAMP1 and CLR 

revealed co-localization of the immunoreactive fibers (Figures 11a-c). 
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Figure 10 Montage of CGRP, CLR and RAMP1 immunoreactivity in rat SPG. (a) Using 

CGRP anti-rabbit primary antibody, CGRP (green) positive neurons (thin arrows) and 
fibers (thick arrows) were frequently found. Some neurons were negative (arrowheads). (b) 
Using CGRP anti-mouse primary antibody, a few CGRP (red) immunoreactive neurons 
(thin arrows) and many fibers (thick arrows) were visualized. Majority of the neurons were 
negative (thin arrowheads). In both cases, CGRP positive fibers were granular-like and 
CGRP immunoreactive neurons were homogenously stained. (c) CLR (green) positive 
fibers (thick arrows) and satellite glial cells (thick arrowheads) were revealed. (d) RAMP1 
(green) positivity was found in fibers (thick arrows) and in many neurons (thin arrows). 
Both neurons and fibers showed homogenous staining patterns. Some of the neurons were 
negative (thin arrowheads). 

 

 
Figure 11 Montage of CLR / RAMP1 double stainings in rat SPG (a-c). Co-localization 

(c) of RAMP1 (green) (a) and CLR (red) (b) positive fibers (thick arrows). 



24 
 

4.2.3. Human and rat SPG 

Distribution of the receptors PAC1, VPAC1 and VPAC2 was investigated in both 

human and rat. PAC1 and VPAC1 immunoreactivity was found in the SGCs (Figures 12a-

f). VPAC1 immunoreactivity was also observed in few fibers in both the human (Figures 

12d-f) and rat SPG (Figures 12k). In addition, we observed VPAC2 immunoreactive fibers 

in both human (Figures 12g-i) and rat specimens (Figure 12l). However, the staining was 

not as distinct as for PAC1 and VPAC1. No co-localization between the peptides and the 

receptors were found. 

 

 
Figure 12 Distribution of receptors PAC1, VPAC1 and VPAC2 in human and rat SPG. 

Human material a-c PAC1 immunoreactivity was found in the satellite glial cells (arrows). 
Insert: higher magnification of a neuron enveloped by PAC1 positive satellite glial cells. d-
f VPAC1 immunoreactive satellite glial cells (arrows) were found. Insert: VPAC1 positive 
fibers (arrowheads). g-i Arrows point at VPAC2 positive fibers. Rat material j PAC1 
immunoreactivity was found in the satellite glial cells (arrows). k In addition to VPAC1 
positive satellite glial cells (arrowheads), fibers were found positive (arrows). l Arrows 
point at VPAC2 positive fibers. 
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Overview of CGRP, CLR and RAMP1 immunoreactivity in human and rat SPG is 

shown in Table 3. 

 
Table 3. Summary of PACAP, VIP, NOS, PAC1, VPAC1, VPAC2, CGRP, CLR and 
RAMP1 results in human and rat SPG 
 

 Neurons Satellite glial cells Nerve fibers 
Human Rat Human Rat Human Rat 

PACAP + + - - + + 
VIP + + - - + + 
NOS + + - - - + 
PAC1 - - + + - - 
VPAC1 - - + + + + 
VPAC2 - - - - + + 
CGRP - + - - + + 
CLR - - + + + + 
RAMP1 + + + - - + 

 

 

4.2.4. Negative controls 

Negative controls (omission of primary antibodies) displayed no immunoreactivity, 

except for autofluorescent lipofuscin.  

 

4.3. Western blot 

Western blot revealed protein expression of PAC1, VPAC1, VPAC2, RAMP1 and CLR 

in rat SPG. As shown in Figure 13, PAC1 receptor gave a 60 kDa band with anti-PAC1 

rabbit polyclonal antibody, VPAC1 receptor a 58 kDa band with anti-VPAC1 mouse 

monoclonal antibody and VPAC2 receptor was visualized as a 65 kDa band with anti-

VPAC2 rabbit polyclonal antibody. The homodimeric form of RAMP1 was visualized as a 

30 kDa band with anti-RAMP1 polyclonal antibody (Figure 14a). A 60 kDa specific band 

was observed with anti-CLR polyclonal antibody (Figure 14b). All receptors were analysed 

in duplicate. Bands were identified by protein molecular weight marker. No bands were 

visualized after omission of primary antibodies (data not shown).  
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Figure 13 Expression of PACAP receptors in rat SPG. 
 

 

 
Figure 14 Western blot analysis of RAMP1 (a) and CLR (b) expressed in rat SPG.  
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5. DISCUSSION 

In our knowledge we were the first who have revealed that VIP/PACAP/NOS co-

localize in a large proportion of the human SPG neurons and, in addition, can be seen in 

some nerve fibers within the ganglion. Furthermore, Western blot revealed that the SPG 

contains the VPAC1, VPAC2 and PAC1 subtypes of receptor proteins. 

Immunohistochemistry provided a clear cut demonstration that the PAC1 is localized to the 

SGCs and VPAC1 receptor to SGCs and fibers. The VPAC2 staining was much weaker 

than that of the other receptors, although the results were in agreement with Western blot 

receptor protein results. Moreover, our work has for the first time demonstrated the 

presence of thin CGRP containing fibers, probably originating from the trigeminal 

ganglion as C-fibers (Eftekhari et al., 2010), in human and rat SPG. The fibers may 

modulate the activity in the SPG via CGRP receptors since we in addition found CLR and 

RAMP1 immunoreactive nerve fibers in rat and immunoreactive SGCs in man. 

In recent years there has been considerable interest in the pathomechanism of migraine 

(Tajti et al., 2011a, Tajti et al., 2011b, Tajti et al., 2012, Vecsei et al., 2013). Clinical 

observations and experimental studies have suggested a possible role for the SPG in the 

pathophysiology of migraine (Barbanti et al., 2002, Tepper et al., 2009). Interestingly, 

systemic administration of PACAP but not VIP has been found to induce “migraine-like” 

headache in migraine patients, although both peptides elicited similar changes in the vessel 

tone (Rahmann et al., 2008, Schytz et al., 2009). The present results do not, however, 

suggest a morphological reason for this differential response. In addition, vascular studies 

have revealed that VIP is by far a stronger and more potent vasodilator than PACAP of 

human and rat cerebral and meningeal arteries (Jansen-Olesen et al., 2004, Boni et al., 

2009, Chan et al., 2011). In vivo studies in man also showed relaxation of cranial vessels 

by VIP (Hansen et al., 2006, Rahmann et al., 2008) and PACAP (Birk et al., 2007, Schytz 

et al., 2009). It was argued that dilatation alone could not be the direct cause of the 

migraine-like attacks after the PACAP-38 infusion but perhaps this response could involve 

neurons or other cells that contain VIP/PACAP receptors such as cranial ganglia (Schytz et 

al., 2009). It has been revealed that PACAP-38 is expressed in the trigeminal ganglion 

(Tajti et al., 1999) and in the caudal trigeminal nucleus (Tajti et al., 2001). It has been 

demonstrated that blood plasma PACAP-38-like immunoreactivity is increased following 

the electrical stimulation of the trigeminal ganglion in rat (Tuka et al., 2012). Furthermore, 

it has been suggested that PACAP is one of the mediators of light aversion, because it 

elicited photophobia in wild-type mice, while it did not in PACAP-gene deficient mice 
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(Markovics et al., 2012). Recent data showed that the concentration of PACAP-38 together 

with CGRP was elevated during the migraine attack period versus to the attack-free 

periods (Tuka et al., 2013). It has been postulated that elevation of cellular cyclic 

adenosine monophosphate (cAMP) plays a role in the development of delayed headache 

via sensitization of trigeminal neurons after CGRP or cGMP since cilostazol 

administration elicited migraine-like attacks without vascular effects on intracranial vessels 

(Ingram and Williams, 1996, Lassen et al., 2002, Birk et al., 2004, Birk et al., 2006). 

PACAP activates VPAC1-2 and PAC1 receptors, which induces cAMP level elevation 

(Dickson et al., 2006), which more resembles the mode of action of CGRP (Walker et al., 

2010). 

The cranial parasympathetic outflow is mediated in part through the SPG and in part via 

the otic ganglion. Cerebral and dural blood vessels are innervated by parasympathetic 

fibers (from SPG and otic ganglion) and by unmyelinated sensory nerve fibers (from 

trigeminal ganglion) (Edvinsson and Uddman, 1981, Nozaki et al., 1993, Minami et al., 

1994, Edvinsson and Uddman, 2005). The activation of parasympathetic fibers can alter 

the status of the perivascular sensory pain fibers (Delepine and Aubineau, 1997). During 

this process acetylcholine (Ach), VIP and nitric oxide are released from the 

parasympathetic nerve fibers. Ach can activate C fibers which subsequently can modify the 

sensory nerve release of CGRP and substance P (Tanelian, 1991, Yarnitsky et al., 2003) 

via muscarinic and nicotinic cholinergic receptors of the peripheral nociceptors (Steen and 

Reeh, 1993, Hua et al., 1994) and possibly activating or sensitizing (or both) the 

nociceptors (Yarnitsky et al., 2003).  

It has been demonstrated that postganglionic parasympathetic fibers from the SPG 

mediate meningeal blood flow elevations and meningeal vasodilatation (Bolay et al., 2002) 

and, in addition, neurogenic inflammation which in turn may sensitize meningeal 

nociceptors (Burstein and Jakubowski, 2005). The preganglionic fibers to the SPG 

originate from the superior salivatory nucleus (SSN) and synapse in the SPG. The SSN can 

be activated/modified by trigeminal sensory nerve fibers. This is a trigeminal-autonomic 

reflex which may be active in migraine attacks (Zagami et al., 1990). 

It seems that the fundament for a trigeminal action is at place by the presence of CGRP 

receptor components. The role of the SGCs in the SPG is largely unknown. However, 

increasing glial cell research suggests a ganglion function at many levels (Hanani, 2010), 

especially the characterized SGCs and neurons forming a morphological unite in the SPG. 
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There are some functional data which suggest an interaction between the trigeminal and 

sphenopalatine ganglia. Cluster headache is associated with activation of both ganglia 

since there is co-release of CGRP and VIP (Goadsby and Edvinsson, 1994a). Treatment 

with sumatriptan aborts both symptoms of parasympathetic activation and neuropeptide 

release, presumably by the triptan acting as inhibitor on the sensory nervous system via a 

presynaptic mechanism or the formation of CGRP (Durham and Russo, 1999). Further, 

experimental activation of the superior sagittal sinus results in co-release of VIP and 

CGRP (Zagami et al., 1990). Cutting of the trigeminal nerve abolished not only the CGRP 

release but also that of VIP which supports an interaction between the two systems. It is 

tempting to speculate that the present finding reveals a direct link between the trigeminal 

ganglion CGRP-containing fibers and the SPG. The nature of this is unclear but available 

data would imply that intense activation of the trigeminal ganglion can result in 

parasympathetic symptoms (cluster headache, red eye, rhinorrhea, conjunctival injection, 

and tearing) associated with VIP release (Goadsby and Edvinsson, 1994a). Our data 

suggest that the CGRP containing fibers end on neurons and SGCs, and, in addition, SGCs 

express both parts of the functional CGRP receptor, CLR and RAMP1.  

There are some immunohistochemical differences between human and rat SPG. CGRP 

immunoreactive neurons were found in rat and not in human. These results suggest that 

CGRP can be produced or stored in rat SPG neurons, while in human it is more plausible 

that CGRP is produced by the trigeminal neurons and transmitted to the SPG through 

CGRP nerve fibers. In addition, RAMP1 is expressed in human SGCs, while it is 

expressed in nerve fibers in rat. The data from human material suggest that CGRP acts on 

the SGCs, since both of the CGRP receptor components are present. In the rat material, 

RAMP1 was expressed in the nerve fibers together with CLR.  

We also show that fibers express CLR and neurons RAMP1 in man; this could suggest 

that other receptors are involved as RAMP1, with calcitonin receptor (CTR), forms a high 

affinity amylin receptor (Muff et al., 1999). Dimerization of CLR with RAMP2 or RAMP3 

may form adrenomedullin receptors (Hay et al., 2008). 

Moreover, we observed distinct PAC1 and VPAC1 receptor immunoreactive SGCs in 

both human and rat SPG. 

According to a recent review (Hanani, 2010), few data have been published on the 

subject of the properties of SGCs in parasympathetic ganglia. The reason might be that 

parasympathetic ganglia are located near or within their target and as a result, the access to 

most of them is difficult. Parasympathetic ganglia in general contain SGCs (Pomeroy and 
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Purves, 1988). The available data suggest that SGCs are involved in synaptic maintenance 

and remodeling. In guinea-pig intrinsic ganglia of the urinary bladder, Hanani et al. (1999) 

reported that the SGCs were positive for S100 and glutamine synthetase but not for GFAP. 

In the intrinsic ganglia of the cat urinary bladder, SGCs were seen to possess P2X and P2Y 

receptors but no function was revealed (Ruan et al., 2006). Electrophysiology has 

demonstrated a higher resting membrane potential in SGCs than in the accompanying 

neurons (Sha et al., 1996). When nerve trunks were electrically stimulated, a 

frequency-dependent membrane depolarization was observed in the SGCs (King et al., 

1989). It is well-known that in sympathetic ganglia neurons can release ATP, to which 

SGCs respond via P2Y (metabotropic) and P2X (ionotropic) receptors and releasing ATP 

and TNF-α (Vizi et al., 1997). These mediators act on neurons, causing profound 

functional changes in them, e.g. uptake mechanisms controlling the microenvironment 

(Zhang et al., 2007). The data emphasize that the SGCs are more than cells surrounding the 

neurons. Our study is the first that examines SGCs in cranial parasympathetic ganglion in 

man. Future may provide more insight on how SGCs may influence synaptic transmission, 

and information processing in autonomic and sensory ganglia. 

 

5.1. Methodological considerations 

We used anti-human CLR and RAMP1 antibodies in human and rat SPG. These 

antibodies have been characterized in human and rat trigeminal ganglion (Eftekhari et al., 

2010). The study revealed no immunoreactivity with preabsorbed CLR or RAMP1 

antibodies, using their respective blocking peptides. In addition, the CGRP 

immunoreactivity was abolished if pretreated with an excess of unlabeled CGRP (Eftekhari 

et al., 2010). Thus, these antibodies were considered as specific for the epitope they were 

raised against. Whether our results reflect difficulties for the antibodies to recognize their 

epitope in human SPG (which is reflected by the discrepancies in our results using 

combination of different antibodies), the complexity of protein expression or accurate 

depiction of CGRP and its receptor components are not known. Nevertheless, we 

demonstrate CGRP and receptor components in human SPG which may indicate an 

interaction between parasympathetic and sensory ganglia. 
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5.2. Conclusion 

The present work has revealed the presence of VIP, PACAP and NOS in nerve fibers 

within the ganglion, in addition, VIP/NOS and PACAP/NOS show co-localization in the 

human SPG neurons. Western blot verified the presence of VPAC1, VPAC2 and PAC1 

receptors in rat SPG. Immunohistochemistry showed that PAC1 and VPAC1 are localized 

in the SGCs, while VPAC1 and VPAC2 in the nerve fibers in both human and rat SPG. 

These results suggest that the peptides may be involved in intraganglionic activity. 

Moreover, the present finding demonstrates that CGRP-positive fibers, probably 

originating from the trigeminal ganglion as C-fibers, are present in both human and rat 

SPG. In rat CGRP positive neurons are found. Since both components of the CGRP 

receptor, CLR and RAMP1, are present in the ganglion (Western blot) and these are 

localized to SGCs (human) and fibers (rat), an interaction between parasympathetic and 

sensory ganglia is plausible. 

The immunohistochemical differences between human and rat SPG suggest that in 

human CGRP is produced by the trigeminal neurons, transmitted to the SPG through 

CGRP positive nerve fibers and acts on the SGCs in the SPG, since both of the CGRP 

receptor components are present. In rat CGRP can be produced or stored in SPG neurons 

and act through the nerve fibers, where both of the receptor components are present. 

 

 

6. SUMMARY OF NEW FINDINGS 

(i) Our work has revealed VIP and PACAP immunoreactivity in nerve fibers besides the 

neurons but not in satellite glial cells both in human and rat SPG.  

(ii) We disclose that the SPG contains the VPAC1, VPAC2 and PAC1 subtypes of 

receptor proteins. We found PAC1 and VPAC1 immunoreactivity in the satellite glial cells 

and VPAC1 and VPAC2 immunoreactive nerve fibers of both human and rat. 

(iii) We demonstrate that CGRP-positive fibers are present in human and rat SPG and 

CGRP immunoreactive neurons in rat.  

(iv) CGRP receptor components (CLR and RAMP1) are localized to SGCs in human 

and to fibers in rat SPG.  

  
 



32 
 

7. ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to those who have supported me during my 

scientific work. 

 

János Tajti, Associate Professor at the Department of Neurology, University of Szeged 

my supervisor. Thank you for your never-ending energy and support during our scientific 

work. You always had the time and the patience to discuss the research and to give me 

priceless ideas. Your enthusiasm and encouragement were indispensable during my Ph.D. 

years. 

László Vécsei, Professor and Head of the Department of Neurology, University of 

Szeged, and Member of the Hungarian Academy of Sciences. With your huge knowledge 

and continuous support, you gave me a secure background in my research work. Thank 

you for your excellent scientific guidance since my undergraduate years. 

Lars Edvinsson, Professor at the Department of Internal Medicine and Head of the 

Division of Experimental Vascular Research, Department of Clinical Sciences, University 

of Lund, Sweden. I am expressly grateful to you for giving me the opportunity to work in 

your laboratory. You provided me with enormous support in improving my scientific 

knowledge and also helped me in my everyday life. 

Karin Warfvinge, Professor in Experimental Ophthalmology and at the Division of 

Experimental Vascular Research, Department of Clinical Sciences, Lund University, 

Sweden. Thank you for teaching me how to carry out high-quality immunohistochemistry. 

Your essential accuracy showed me the right way in scientific research. 

 

My colleagues and friends 

Bernadett Tuka, my co-author. Thank you for all your help, especially in Western 

blotting during our project. Anikó Kuris, my other co-author from Lund. I am indebted to 

you for your friendship and assistance. We made a good team, particularly during the late 

nights and weekends in the laboratory and in Malmö. Lilla Tar, you have been a great 

friend during the years. Your cheerful attitude was a life-saver in the animal house. Enikő 

Vámos, my first mentor. I am so glad you introduced me to immunohistochemistry and 

behaviour tests. Andrea Varga and Valéria Széll Vékonyné, thank you for the technical 

assistance.  

My Swedish colleagues and friends, Sajedeh Eftekhari, Hilda Ahnstedt, Lei Cao, 

Roya Waldsee, Aida Maddahi, Cang-Bao Xu, Frank Blixt, Ola Andréasson, Elisabeth 



33 
 

Nilsson, Bodil Gesslein, Enida Kuric and Marie-Louise Edvinsson, I am grateful to you 

for all the help you gave me in the laboratory and for creating an unforgettable time in 

Lund. Tack så mycket! 

 

I wish to express my special gratitude to my family. 

My mother, Mária, my father, Ferenc, and my sister Szandra. You made all this 

possible with your enormous love and encouragement. Thank you for your continuous 

support and for showing me how to live a valuable life. 

My husband, János. Thank you for your endless love and all the support you gave me, 

especially when I was far away. You always show me the bright side of life. 

And I would like to thank my parents-in-law, Ilona and János, my brother-in-law, 

Máté, and my adopted grandparents, Ilona, Piroska and János, for your love and for 

making Szeged a home for me. 

 

Scientific support 

This work was supported by the following grants: TAMOP 4.2.2/A-11/1/KONV-2012-

0052, MTA-SZTE Neuroscience Research Group; Scientific Fellowship 2011 of the 

European Federation of Neurological Societies; and the Scientific Foundation of Lund 

University, Lund, Sweden. 

 



34 
 

8. HUNGARIAN SUMMARY 

 

Idegrendszeri hírvivőanyagok megoszlása és kapcsolatuk a ganglion 

sphenopalatinum rendszerében 
 

1. BEVEZETÉS 

A fej-nyak tájéki és a koponyaűri (agyi, agyburki) vasculatura paraszimpatikus 

beidegzést kap a ganglion (ggl.) sphenopalatinumból és a ggl. oticumból (Suzuki et al., 

1988). A humán ggl. sphenopalatinumban vazoaktív intestinalis peptid (VIP), hypophysis 

adenilát-cikláz aktiváló polipeptid (PACAP) és nitrogén-monoxid szintetáz (NOS) tartalmú 

neuronok jelenlétét mutatták ki (Uddman et al., 1999).  

A VIP és a PACAP a szekretin/glukagon/VIP peptidcsalád tagjai. A VIP széleskörű 

biológiai hatásokkal rendelkezik, úgymint az embrionális agyi fejlődés, a fájdalom 

percepció és a gyulladás (Harmar et al., 1998). A PACAP ezen peptidcsalád legújabb tagja, 

amelyet legelőször birka hypothalamusból izoláltak (Miyata et al., 1989). Két formája 

ismert, a 38 aminosavból álló PACAP-38 és a 27 aminosavból álló PACAP-27. Mindkét 

peptid nagy változatosságot mutató biológiai hatásokkal rendelkezik, mint például a 

vazodilatáció, a sejtproliferáció és differenciáció stimulálása, a neurotranszmitter 

felszabadulás szabályozása és a fájdalom transzmisszió (Harmar et al., 1998, Vaudry és 

Laburthe, 2006). Mind a PACAP, mind a VIP G-proteinhez kapcsolt receptorokon 

keresztül fejtik ki hatásukat (Vaudry és Laburthe, 2006, Dickson és Finlayson, 2009). A 

VPAC1 és a VPAC2 receptorok egyenlő erősséggel kötik a VIP-et és a PACAP-ot, míg a 

PAC1 receptor csak a PACAP-ra specifikus (Harmar et al., 1998). 

Az elsődleges fejfájások (migrén és cluster fejfájás) patofiziológiájának vizsgálata során 

migrénesekben szoros kapcsolatot figyeltek meg a calcitonin gén-rokon peptid (CGRP) és 

a fejfájás intenzitása között rohamok esetén (Ho et al., 2010, Juhász et al., 2005). A CGRP 

receptor a G-protein receptor család B-típusába tartozik (Hay et al., 2008). A funkcionális 

CGRP receptor három fehérjét tartalmaz. A (i) calcitonin receptor-szerű receptor (CLR) és 

a (ii) receptor aktivitást módosító fehérje 1 (RAMP1) együttesen a ligand kötő oldalt képzi 

(McLatchie et al., 1998, Heroux et al., 2007). A (iii) CGRP receptor komponens fehérje 

(RCP) szerepe a receptor intracellularis jelátvivő pályákhoz kapcsolása (Evans et al., 

2000). 
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Cluster típusú fejfájásban szenvedő betegek mindegyikében, míg migrénes páciensek 

közül csak néhányban a CGRP és a paraszimpatikus rendszerre jellegzetes VIP együttes 

felszabadulását figyelték meg (Goadsby és Edvinsson, 1994a). Kiemelendő, hogy ezen 

migrénes betegekben a clusterre jellegzetes kísérő tüneteket (conjunctivalis belövelltség, 

orrdugulás, orrfolyás) figyeltek meg. A CGRP az érző rendszer jellegzetes, 37 

aminosavból álló neuropeptidje, amely jelentős szerepet játszik a craniocervicalis 

vazodilatációban és a fájdalom transzmissziójában (Ho et al., 2010). A sumatriptán az 5-

hidroxitriptamin 1B/1D receptorokon fejti ki agonista hatását. Megszünteti nem csak a 

CGRP felszabadulást és a fejfájást, hanem a VIP felszabadulást és a paraszimpatikus 

tüneteket is (Goadsby és Edvinsson, 1994a, Juhász et al., 2005).  

Az érintett mechanizmusok nem tisztázottak, ezért terveztük kísérleteinket a ggl. 

sphenopalatinum rendszerében. 

 

2. CÉLKITŰZÉS 

(i) VIP és PACAP receptorok jelenlétének és eloszlásának feltárása humán és patkány 

ggl. sphenopalatinumban indirekt immunfluoreszcens és Western blot technika 

használatával. 

(ii) A satellita glia sejtek és azok neuronális kapcsolatának vizsgálata mind humán és 

patkány ggl. sphenopalatinumban. 

(iii) A CGRP és CGRP receptor komponensek (CLR és RAMP1) tanulmányozása 

humán és patkány ggl. sphenopalatinum neuronjaiban, idegrostjaiban és satellita glia 

sejtjeiben, a feltételezett helyi funkció feltárása céljából. 

(iv) A vizsgált neurotranszmitterek eloszlásának összehasonlítása humán és patkány 

ggl. sphenopalatinumban immunfluoreszcens technika segítségével. 

 

3. ANYAG ÉS MÓDSZER 

Kísérleteinkhez boncolás során nyert humán (n=5), illetve hím Sprague-Dawley 

patkány (n=8, 300-400g) ggl. sphenopalatinumokat használtunk követve az érvényben lévő 

etikai engedélyek irányelveket.  

A minták előkészítését követően 10 µm vastagságú kriometszeteket készítettünk. A 

tájékozódás és a szövet állapotának vizsgálata céljából Hematoxylin-Eosin festést 

alkalmaztunk mind a humán, mind a patkány ggl. sphenopalatinum metszeteken. Humán és 

patkány ggl. sphenopalatinumban a VIP, PACAP, NOS, VIP és PACAP közös receptorok 

(VPAC1, VPAC2), PACAP receptor (PAC1), CGRP és CGRP receptor komponensek 
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(CLR, RAMP1) immunhisztokémiai vizsgálata céljából indirekt immunfluoreszcens 

technikát használtunk, továbbá kettősfestéseket is alkalmaztunk az egyes 

neurotranszmitterek kolokalizációjának feltárása céljából. A metszetek vizsgálatához és a 

felvételek elkészítéséhez fény- és epifluoreszcens mikroszkópot használtunk.  

Patkány ggl. sphenopalatinumban a VIP/PACAP receptorok és a CGRP receptor 

komponensek jelenlétének kimutatására Western blot technikát alkalmaztunk. 

 

4. EREDMÉNYEK 

4.1. Hisztológia 

4.1.1. Hematoxylin-Eosin 

Mind a humán, mind a patkány ggl. sphenopalatinum jól körülírt ganglion, melyek 

satellita glia sejtekkel körülvett különböző méretű neuronokat tartalmaznak. 

4.2. Immunhisztokémia 

4.2.1. Humán 

Az alanyok idős életkora miatt számos neuron tartalmazott citoplazmális lipofuszcin 

granulumokat. 

A humán ggl. sphenopalatinumban granuláris festődést mutató VIP és PACAP 

immunoreaktív neuronokat és idegrostokat, valamint homogénen festődő NOS 

immunoreaktív idegsejteket figyeltünk meg. A glia sejt specifikus Vimentin és PACAP 

antitestekkel végzett kettősfestéssel kimutattuk, hogy a PACAP immunoreaktivitás nem 

jelentkezik a satellita glia sejtekben. VIP/NOS, PACAP/NOS és VIP/PACAP kettősfestést 

végeztünk. Vizsgálatainkban kolokalizációt találtunk a VIP és a NOS, valamint a PACAP 

és a NOS között.  

A humán ggl. sphenopalatinum számos gyöngyfüzérszerű megjelenést mutató CGRP 

immunoreaktív idegrostot tartalmaz. CGRP immunoreaktivitást nem találtunk a humán 

sphenopalatinális neuronokban és satellita glia sejtekben. Számos CLR immunoreaktív 

satellita glia sejtet és idegrostot, továbbá RAMP1 pozitív satellita glia sejtet, valamint 

néhány nagy és közepes méretű neuront figyeltünk meg. 

4.2.2. Patkány 

A patkány ggl. sphenopalatinum VIP, NOS és PACAP immunoreaktív neuronokat és 

idegrostokat tartalmazott. PACAP és glutamin szintetáz kettősfestéssel igazoltuk, hogy a 

PACAP immunoreaktivitás bár közel helyezkedik el a sejtmembránhoz, de nem jelentkezik 

a satellita glia sejtekben. Továbbá kettősfestéssel mutattuk ki a PACAP és a NOS 

kolokalizációját. 
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CGRP immunoreaktív idegrostok, továbbá homogénen festődő neuronok találhatóak a 

patkány mintákban. A receptor komponensek közül CLR immunoreaktivitást a 

idegrostokban és a satellita glia sejtekben, míg RAMP1 pozitivitást a idegrostokban és a 

neuronokban írtunk le. Kettősfestés felfedte, hogy a CLR és a RAMP1 kolokalizációt 

mutat az idegrostokban. 

4.2.3. Humán és patkány 

A PAC1, VPAC1 és VPAC2 receptorok eloszlását mind humán, mind patkány ggl. 

sphenopalatinumban azonosnak észleltünk. PAC1 immunoreaktivitást a satellita glia 

sejtekben, VPAC1 immunoreaktivitást a satellita glia sejtekben és néhány idegrostban, míg 

VPAC2 immunoreaktivitást a idegrostokban találtunk. 

4.2.4. Negatív kontrollok 

A primer antitestek elhagyásával negatív kontroll festéseket alkalmaztunk, amelyek az 

autofluoreszcens lipofuszcintól eltekintve nem mutattak immunoreaktivitást. 

4.3. Western blot 

Western blot vizsgálattal igazoltuk a PAC1, a VPAC1 és a VPAC2 receptorok, valamint 

a RAMP1 és a CLR receptor komponensek fehérje expresszióját patkány ggl. 

sphenopalatinumban. A PAC1 60 kDa, a VPAC1 58 kDa, a VPAC2 65 kDa, a RAMP1 30 

kDa, míg a CLR 60 kDa molekulatömegű sávok formájában jelentek meg.  

 

5. KÖVETKEZTETÉS 

Eredményeink igazolják a VIP, a PACAP és a NOS jelenlétét a ggl. 

sphenopalatinumban az idegrostokban. A VIP/NOS és a PACAP/NOS neuronális 

kolokalizációját írtuk le a humán ganglionokban. Immunhisztokémiai vizsgálattal PAC1 és 

VPAC1 aktivitást mutattunk ki a satellita glia sejtekben, míg VPAC1 és VPAC2 

immunoreaktivitást a idegrostokban. Western blot vizsgálat megerősítette a VPAC1, a 

VPAC2 és a PAC1 receptorok expresszióját patkány ggl. sphenopalatinumban. Mindezen 

eredményeinek alapján feltételezzük, hogy ezen peptidek részt vesznek az 

intraganglionáris aktivitásban. 

Továbbá a vizsgálataink során humán és patkány ggl. sphenopalatinumban CGRP 

pozitív idegrostokat találtunk, amelyek valószínűleg C-idegrostok formájában a 

trigeminális ganglionból erednek. A patkány minták CGRP pozitív neuronokat is 

tartalmaztak. Mivel a CGRP receptor mindkét komponensét kimutattuk a ganglionban 

Western blot technikával, valamint immunhisztokémiai módszerrel igazoltuk azok 
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jelenlétét a satellita glia sejtekben (humán) és idegrostokban (patkány), a paraszimpatikus 

és szenzoros ganglionok közötti kölcsönhatást valószínűsítünk. 

A humán és a patkány ggl. sphenopalatinum között észlelt immunhisztokémiai 

különbségek azt sugallják, hogy humánban a CGRP a trigeminális neuronokban 

termelődik, és a CGRP pozitív idegrostokon keresztül jut a ggl. sphenopalatinumba, ahol a 

satellita glia sejteken fejti ki hatását. Ezzel szemben patkányban a CGRP a 

sphenopalatinális neuronokban termelődhet vagy tárolódhat és az idegrostokon keresztül 

fejti ki hatását. 
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