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Abstract. Recent developments in high energy physics (HEP) including multi-core jobs and
multi-core pilots require data centres to gain a deep understanding of the system to monitor,
design, and upgrade computing clusters. Networking is a critical component. Especially the
increased usage of data federations, for example in diskless computing centres or as a fall-
back solution, relies on WAN connectivity and availability. The specific demands of different
experiments and communities, but also the need for identification of misbehaving batch jobs,
requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained
information at batch job level. This complicates network-aware scheduling and optimisations. In
addition, pilots add another layer of abstraction. They behave like batch systems themselves by
managing and executing payloads of jobs internally. The number of real jobs being executed is
unknown, as the original batch system has no access to internal information about the scheduling
process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time
behaviour or network performance cannot be ensured. Hence, identifying the actual payload is
important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of
network traffic information at batch job level. This contribution presents the current monitoring
approach and discusses recent efforts and importance to identify pilots and their substructures
inside the batch system. It will also show how to determine monitoring data of specific jobs from
identified pilots. Finally, the approach is evaluated.

1. Introduction
The monitoring of resources to evaluate and maintain the quality of service, detect anomalies,
or identify root causes for severe issues is an important topic in data centres operating a batch
system. It is essential to measure networking performance but also to gain insights into network
usage [1]. Various storage federations in use to operate diskless computing centres or to facilitate
a fallback to access data generate additional network traffic on external network interfaces.
Federation providers offer uniform interfaces with a global namespace to heterogenous storage.
They provide read-only access to replicated data via redirections. Hence, federated storage
provides seamless access to data independently of their location and improved recovery due to
fail-over mechanisms [2, 3, 4, 5, 6]. Especially in grid and cloud environments it is common to
facilitate remote processing of data.

A single worker node offers a number of job slots that are either used by the appropriate
number of single batch jobs or multi-core jobs. As soon as multiple batch jobs are running in
parallel the differentiation and thus the monitoring of data streams becomes more challenging [7].
Furthermore pilot jobs complicate the current monitoring in batch systems [8, 9]. Instead of
directly executing work, these specialised jobs dynamically pull the real workload for execution,
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forming a virtual overlay batch system [10]. While this improves scheduling inside user groups,
the information available to the underlying system is drastically reduced. With job behaviour
being defined during execution of the pilot, monitoring information must be directly extracted
from the jobs.

Obviously, significant remote accesses, and federated storage can cause network congestions.
Therefore, the monitoring of access patterns over time is needed. As the network is shared by
thousands of batch jobs, a differentiation and metric for job-specific network usage is required.
For this goal to be achieved, a monitoring is in use at the GridKa data and computing centre
that profiles data flows of processes related with batch jobs. It has been designed and realised
to monitor the traffic at process-level while being non-intrusive (section 2). We analysed CMS
pilots based on their UNIX process tree structure as well as traffic volumes to identify the real
workloads (section 3).

2. Monitoring traffic of batch jobs
Since the middle of 2014 a process and network monitoring tool has been in use at the GridKa
computing centre [11]. It monitors the network traffic on packet level based on libpcap [12].
Additionally, it monitors the processes of batch system jobs to create a clear assignment between
network packets and their associated processes. The tool supplements the monitoring data of
the batch system in use by adding variables about the traffic rates and volumes of running batch
jobs. It also logs the process and traffic data for further analysis, e.g. the monitoring of payloads
in pilots.

2.1. Design and implementation
The uninterrupted operation of the GridKa data and computing centre was the main concern
for the introduction of a new monitoring tool. Thus, a number of requirements had to be taken
into account. The monitoring must not have an impact onto the batch job scheduler nor the
batch jobs and should result in low performance overhead. Additionally, no kernel extensions nor
driver customisations must be introduced to ensure maintainability. This required a solution that
runs in user space. There is no existing production-ready batch system monitoring or related

/proc
Packet 

Watcher
Connection 

List

find connection

Connection

Process

Process 
Watcher

refresh

find process

report data

Packet

Logger

Figure 1. UDP and TCP packets are analysed one by one. Received IP addresses for source
and destination as well as ports are used to match known connections. Unknown connections are
identified by scanning procfs. Additionally, the associated process is added to the logger. The
logger handles different output methods.
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system monitoring tool that supports the measurement of network traffic on batch job level while
satisfying the aforementioned requirements [13].

For this reason, a new tool has been developed and put into operation. We have chosen a
design that relies only on information exposed by the operating system. This makes the tool
independent of the batch system used; in fact, it allows deployment without any batch system.

The tool is implemented in C/C++ and consists of three components: the packet watcher,
process watcher, and logger. Each component is implemented as an individual thread. The main
priority is on the packet watcher to enable a fast processing of network packets. Especially the
packet size, destination IP and port as well as source IP and port are of interest. Therefore
only the IP headers need to be copied into the packet buffer by libpcap. This improves the
performance and used memory.

Figure 1 shows the control flow of the tool. The matching of IP and port selected from
the received packets is performed with the results of the process watcher. To match unknown
connections it scans for newly established TCP and UDP sockets in the process filesystem
(procfs) [14]. After a new socket has been found, the associated process is identified by again
scanning procfs. The processes are monitored by utilising the netlink socket to get details about
forking, execution, and termination of processes from the kernel level to user space [15]. These
events are used to get and store details about processes running on the worker node. Each
process is stored at position pid to facilitate a fast lookup of the process hierarchy. Next to
the start time, process ID, parent process ID, user ID, process name and additional metadata
about the relevance for logging is stored. It contains information if the process is skipped, can
be relevant for monitoring in the future or is being monitored. Another important variable is the
group ID. It is the process ID of the root process, the batch job process. Within the workflow it
is used to identify all processes that belong to a single batch job. Table 1 shows an overview of
some selected variables. By looking up the parent for each new process a fast decision can be
made if a new process needs to be monitored.

Finally data to be stored from the packet or process watcher is put into a concurrent queue.
Those data are read, processed, and logged by the logger component. It performs accumulation
for a given time interval and handles the output of results. There are different levels of detail for
logging, e.g. traffic and process data can be summarised by job, by process, or by connection. Also
the output format itself can be configured: one method calls a predefined system command to
report about data rates and volumes, e.g. qalter to report variables to UNIVA Grid Engine [16].
The other method is used for analysis outside the accounting of the batch system. The output
can be generated as CSV, JSON, or as a stream.

2.2. Hardware and setup
The batch job monitoring tool is currently running on two identical racks. Each rack consists
of 32 worker nodes. Each worker node has 16 physical cores with hyper-threading enabled. On
each worker node 24 job slots are configured; in total around 1,500 job slots are monitored in
parallel. The operating system in use is Scientific Linux 6.4. Long-term measurements and data
collection are in progress with a measurement interval of 20 s. All process information is stored
for the respective worker node. Additionally traffic information on connection level is stored for
internal and external network interfaces based on known IP ranges.

2.3. Data processing
The main task of the central collector is the processing of data received by the individual worker
nodes. As each worker node transmits a single stream that includes the data of several jobs
running in parallel, it is first split into sub-streams. The main criterion for splitting is the group
ID set while monitoring the processes. For each group ID two files are created: process and
traffic data. The process file contains one line of data for each process of the batch job. Therefore
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Table 1. Attributes of vertices in the process tree.

Name Description

tme Start time of process (s)
duration Duration of process (s)
pid Process ID
ppid Parent process ID
gpid Group ID
uid User ID
name Process name
error code Error code
signal Signal
int in volume Inbound volume on internal interface (kB)
int out volume Outbound volume on internal interface (kB)
ext in volume Inbound volume on external interface (kB)
ext out volume Outbound volume on external interface (kB)

the fork/exec as well as termination events are combined. The traffic file contains time series
traffic information based on the configuration chosen for the monitoring process.

As the job IDs from the batch system are not unique, a unique ID needs to be generated. The
central collector takes care of this by combining the start timestamp of the job with its job ID.
For an improved data handling and analysis the central collector adds additional metadata to
the measurements. They include general information about the monitoring process of a single
job, e.g. duration, experiment, worker node, or additional information about possibly missing
data. These are stored into a relational database enabling a fast access to specific job data.

As the monitoring might include incomplete jobs that might falsify further analysis, e. g.
when the monitoring does not cover the entire life-time of a job, complete and valid jobs are
marked in the database. The processes of finished jobs are finally processed to rebuild the UNIX
process tree. This tree is stored in a graph file format – an extended version of the original
METIS format [17]. The file format has been extended to support properties that are needed
for our use case to add process information to vertices. Next to the process information also
the multidimensional traffic information is added to the graph file. Traffic data is accumulated,
because a time series of traffic rates that is correlated to the batch jobs on the same worker node
as well as the other worker nodes inside GridKa is too complex to be attached to single vertices
in a tree. Therefore only data on the traffic volume for internal and external network interface
is attached to the vertices. Detailed traffic information, e.g. traffic rates, or packet counts per
interval are not stored.

3. Active payload recognition
To gain insight into the virtual overlay batch system, the parent processes starting the individual
payloads need to be recognised. This knowledge can then trigger the actual monitoring of the real
payloads. Payload analysis currently only uses single-core pilots. As payloads of single-core pilots
are managed and executed sequentially by one single parent process, we assume the depth of the
UNIX process tree over time is a good indicator for the payload parent process. The process
depth for each process is defined by the number of consecutive parent processes. Additionally we
can take advantage of the assumption that majority of traffic is generated by payloads.
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Figure 2. Simplified il-
lustration of UNIX pro-
cess tree of a CMS pi-
lot batch job with two
different payloads. All
processes with a dura-
tion of less than 10 s are
hidden. Traffic generat-
ing processes are coloured.
The payloads are exe-
cuted by the process
condor startd . It can
be seen that payloads
start at process depth
9. The number of pay-
loads can be validated by
counting processes named
condor starter .

3.1. Data preparation and preprocessing
The data that is analysed consists of a complete UNIX process tree for each batch job including
batch system processes, job wrappers, watchdogs, etc. The vertices of the tree have different
properties identifying the processes as well as accumulated traffic data. Table 1 gives an overview
of available properties.

Before the data is analysed with R [18], we need to ensure the validation of results. Data
can be validated by using internal knowledge of process hierarchies of the pilot software in use
of CMS [19], glideinWMS/HTCondor [20, 10]. Therefore, a subset is selected based on CMS
pool account ownership. The correct amount of payloads as well as the start of payloads can
be assessed by taking advantage of the process names. Figure 2 shows a simplified CMS pilot.
All processes with a duration of less than 10 s are hidden to clearly visualise the structure of
the pilot batch job. The actual pilot is started with the process glidein startup. It takes care of
scheduling, and management of the various payloads. The actual payloads are identified by the
process condor starter. The figure shows that most transfers are part of the payloads. Especially
the process cmsRun creates relatively high traffic volumes.

The dataset used for payload recognition consists of 3,800 batch jobs with a wide range of
complexity. The subset after selecting CMS pilots by pool account ownership contains 612 pilot
jobs. The number of sub-processes range from 234 to 3,983,680. By counting the executed
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Figure 3. Number of payloads that are executed by 612 CMS single-core pilots in the period
from 2014-07-28 15:51:23 to 2014-08-12 03:12:43.

condor starter processes for the subset we can analyse the actual pilot to payload ratio. Figure 3
visualises current statistics for the GridKa data and computing centre. It proves that CMS pilots
usually run multiple payloads. A typical CMS pilot executes on average 3.9 payloads. However,
the payload count varies widely between pilots. This shows that only analysing pilots for i. e.
anomaly detection or runtime prediction is not meaningful.

3.2. Analysing the process depth of pilots
For single-core pilots we can assume a sequential execution of payloads. That means at least
one parent process has to exist inside the UNIX process tree that takes care of the management
and execution. Based on this assumption, we conclude that the position of this parent process
can be identified by analysing the development of the tree depth over time. The maximum tree
depth is determined every time a process is executed or ended. The tree is traversed by applying
depth-first search with a break condition checking the current time of a process. The break
condition is that the current log interval timestamp is not contained in the process time interval.
As soon as the break condition is satisfied, the last valid tree depth is remembered when it is
larger than the last known one and the next branch is analysed. This is done repeatedly for
every process event of a pilot.

Figure 4 shows the resulting data for a typical pilot. It can clearly be seen that up to the
depth of 9 nodes the tree is rather static. Compared to the CMS pilot in Figure 2 this is expected.
When the batch job is started, first batch system-relevant processes are started, which themselves
take care of starting the pilot processes. Finally the process condor startd starts the payload
processes at a tree depth of 9. Every time a new payload is terminated, the tree depth gets to its
local minimum of 9 and starts to build up a new payload again.

This approach works reliably as long as payloads are executed sequentially and e.g. no
watchdogs are started in parallel. Otherwise these processes might falsify the results by hiding
the payload processes.
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Batchsystem and Pilot Processes

Payload

Figure 4. Development of tree depth over time. The vertical orange lines mark the
start/termination of the payloads. Every time a new payload is started, the local minimum of 9
is met (the batch system and pilot-related processes account for a depth of 9).

Table 2. Overview of traffic volume and fraction by interface and process category.

Interface Category Traffic Volume (MB) Rel. Traffic Distribution

Internal Batch system 1.5e+2 ± 1.7 8.0e−4 ± 3.3e−4

Pilot 7.3e+1 ± 5.7e+1 1.2e−3 ± 5.0e−4

Payload 7.2e+7 ± 3.3e+6 1.0 ± 8.3e−4

External Batch system 3.6e−1 ± 2.6e−1 9.9e−6 ± 9.8e−6

Pilot 1.1e+4 ± 2.5e+2 1.8e−1 ± 1.1e−2

Payload 3.3e+6 ± 2.3e+5 8.2e−1 ± 1.1e−2

3.3. Analysing the traffic distribution
To overcome the issue of watchdogs hiding the payload, the traffic distribution by process category
and network interface was analysed. Again, the internal knowledge of HTCondor process names
but also CMS workflows were used to assign the correct categories batch system, pilot, or payload
beforehand. The results are summarised in Table 2. They validate our assumption that most
traffic originates from payload processes. The overall payload traffic for internal and external
interfaces accounts for about 80 % to 100 %. Therefore the traffic footprint can be taken as a
clear indicator for payload identification.

With the relative internal traffic of pilots and their child processes in the order of only 0.10 %,
we consider a cut-based approach. Any child process of the pilot process generating more than
1 % of relative internal traffic during its runtime is categorised as a payload candidate. For
external traffic, this distinction is not that clear. Relative traffic of 10 % is considered a strong
but not definitive indicator.
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4. Discussion and final remarks
The work undertaken at the GridKa data and computing centre addresses the monitoring of
data streams at batch job level. A monitoring tool was designed and implemented that does not
require kernel modifications nor driver customisations. The implementation is independent of
the targeted batch system. It acts as an agent on the worker nodes of the batch system. The
monitoring data is transferred from the agents to a central collector, where the actual processing
and analysis is performed.

The monitoring data on batch job level facilitates an analysis of pilots to gain detailed
knowledge about the underlying substructures. By using CMS pilots as an example we showed
that the actual payloads can be identified by analysing the process depth with regard to the UNIX
tree as well as measuring the network activity inside the branches of the UNIX tree. Further
research and development will focus on generic real-time recognition of payloads regardless of
the used pilot framework.

In the long run, we aim for an online assessment of payloads for anomaly detection and
reaction, the identification of payload types as well as the evolution of usage patterns.
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