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Abstract 
 
     Models that help predict fecal coliform bacteria (FCB) levels in environmental waters 

can be important tools for resource managers.  In this study, we used animal activity 

along with antibiotic resistance analysis (ARA), land cover, and other variables to build 

models that predict bacteria levels in coastal ponds that discharge into an estuary.  

Photographic wildlife monitoring was used to estimate terrestrial and aquatic wildlife 

activity prior to sampling.  Increased duck activity was an important predictor of 

increased FCB in coastal ponds.  Terrestrial animals like deer and raccoon, although 

abundant, were not significant in our model.  Various land cover types, rainfall, tide, 

solar irradiation, air temperature, and season parameters, in combination with duck 

activity, were significant predictors of increased FCB.  It appears that tidal ponds allow 

for settling of bacteria under most conditions.  We propose that these models can be used 

to test different development styles and wildlife management techniques to reduce 

bacterial loading into downstream shellfish harvesting and contact recreation areas.   

 

Keywords: Fecal coliform bacteria; antibiotic resistance; land cover; regression modeling  
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1.   Introduction 
 
     The coast of the southeastern USA is changing.  Large tracts of land once used for 

silviculture are being converted to residential, resort communities.  In many cases this has 

led to decreased water quality even though best management practices (BMPs) are 

employed.  Development in the coastal southeast typically includes residential homes, 

golf courses, parks, and light commercial establishments.  In addition to increased 

impervious surface, these land uses all include maintained lawns, deciduous trees, and 

ornamental plants that are attractive to wildlife.  In many cases, overall wildlife carrying 

capacity increases compared to climax forest or monoculture of conifer trees, and wildlife 

is often pushed to the wetland margins and marsh hammocks adjacent to estuarine 

waterways to avoid human activity (SCDNR, 2004).  Consequently, bacterial water 

quality has been impaired even though human and domestic animal sources were well 

managed.  

     Increased impervious surface and channelization that accompanies development 

increases non-point source pollution of coastal waters (Corbett et al., 1997; Holland et al., 

2004), and coastal retention ponds may play a role in the transport of contaminants to 

estuaries.  In coastal South Carolina, there are over 8000 retention ponds and the number 

increased by approximately 13 percent per year from 1994 to 1999 (Siewicki et al., 

2007).  These ponds are designed to retain rainfall up to a certain point, above which they 

overflow into estuaries and coastal waters.  Some BMP stormwater ponds are designed to 

exchange water with the estuary at high tide, leading to twice daily pond discharge in the 

absence of rainfall.  In these tidal retention ponds, rainfall that coincides with ebbing 
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tides can cause increased loading of non-point source runoff constituents such as fecal 

coliform bacteria (FCB).   

     Fecal coliform bacteria are an important non-point source runoff contaminant as they 

are the microbiological indicator organism used to classify areas used for shellfish 

harvesting and contact recreation in many states.  The contamination of natural waters 

with untreated fecal material may indicate the presence of pathogenic bacteria and viruses 

such as Salmonella spp. and the Hepatitis A virus, both of which can cause severe 

gastroenteritis (USEPA, 1986).  Exceedences of microbial water quality guidelines are 

relatively common even when the best available controls are employed.  Common 

sources of fecal pollution include faulty septic systems, livestock operations, and pets.  

Local wildlife is also an important source of FCB.  For example, a single deer, raccoon, 

duck and goose have been shown to deposit up to 5x108, 1x108, 1x1010, and 5x1010 

colony forming units (cfu) per day, respectively (Hanson, 1997; Mara, 1974; USEPA, 

2001; Yagow, 2000).  Models that provide information about sources of FCB in coastal 

waters could be important tools for water quality management. 

     Improved understanding of sources of FCB will lead to more effective management 

strategies.  There is substantial microbial source tracking  (MST) literature describing 

attempts to determine the relative contributions of anthropogenic and non-anthropogenic 

sources of fecal pollution in environmental waters (Choi et al., 2003; Griffith et al., 2003; 

Parveen et al., 2001; Parveen et al., 1997; Wiggins, 1996).  An increasing number of 

studies suggest wildlife is an important source of FCB.  For example, Somarelli et al. 

(2007) showed wildlife were the primary source of FCB in lakes surrounded by 

agriculture, including dairy farms.  They used genetic fingerprinting techniques to 
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determine that geese and deer contributed about 70 percent of the E. coli in these lakes.  

Whitlock et al. (2002) used antibiotic resistance analysis (ARA) to identify sources of 

FCB in an urban watershed.  They showed that wildlife were the primary source of FCB 

when concentrations were elevated above background levels.  Using ARA of enterococci 

in Huntington Beach, CA, bird feces was found to be the source of surf-zone 

contamination under some conditions (Choi et al., 2003).     

     The study presented here builds upon our previously published work (Siewicki et al., 

2007) by including wildlife activity prior to sampling to better predict FCB levels in 

coastal retention ponds.  We provided models that predicted total as well as presumed 

wildlife FCB levels in coastal ponds using a combination of ARA, physical-chemical, 

environmental, and land cover variables.  The objective of this study was to use similar 

variables along with photographic wildlife monitoring to model non-anthropogenic 

sources of FCB in coastal retention ponds.  To date, we know of no other studies that 

have combined wildlife monitoring, land cover data, and antibiotic resistance analysis in 

an effort to model FCB concentrations in environmental waters.  We propose that these 

refined models can be used to test both development and wildlife management strategies 

to protect the quality of water in ponds discharging into estuaries where both shellfish 

harvesting and contact recreation are allowed.   

 

2.  Methods 
 
2.1 Study sites 

 
     Nine study sites on Kiawah Island, South Carolina (Fig. 1) represented the primary 

style of development expected to increase along the southeast coast.  Specifically, all 
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were located in a coastal golf resort community that utilizes retention ponds as Best 

Management Practices (BMPs) for stormwater management.  Sites were selected to 

include a range of predominant land cover types.  Pond 61 drained into Pond 56 which 

then drained into a tidal creek.  All other sites drained directly into tidal creeks.  Pond 35 

was completely surrounded by golf course with elevations ranging from 1 to 4 m above 

mean sea level.  Ponds 1, 74, 75, 93 and 94 were surrounded by a combination of golf 

course and residential areas.  Ponds 56 and 61 were in a residential area with elevations 

of 1 to 2 m above mean sea level.  Pond 96 was surrounded almost exclusively by 

wooded land cover.  Finally, additional sample sites at the Kiawah Sewage Treatment 

Plant (KSTP) included untreated, pre-chlorinated sewage (KSTPPreChlor), as well as a 

retention pond (KSTPHoldPond) containing a mixture of secondary treated waste, well, 

and potable water used for irrigation of Pond 1 and Pond 75 catchment areas.   

     Catchments were manually delimited in situ using differential GPS after mapping all 

drainage pipes and grates.  Sewage treatment plant sites were not affected by adjacent 

land cover, therefore catchments were not delimited for KSTP sites.  Catchment size 

ranged from 2.4-45.2 hectares (Table 1).  Land classes for all catchments were defined 

from combinations of aerial photography and in situ (differential GPS) measurements.  

All spatial data layers were processed in a GIS (ArcView 3.x or ArcMap 8.x or 9.x, 

ESRI, Redlands, CA, USA) and the amounts and locations of specific land classes or 

other aspects of topology were associated to contaminant concentrations.  Fifteen land 

use and land cover types were classified and ground-truthed within the study areas.  

Building footprints were obtained from scanned engineering drawings, edited, and 

registered to parcel maps to create a detailed impervious surface data layer.  To assess the 
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accuracy of our land cover classification method, 30 points were randomly selected for 

each land cover type in each catchment and verified in-situ.  Accuracies for pond sites 

ranged from 82.9-94.8% (mean = 90.8%). 

 

2.2 Sample collection  
 

     Samples were collected and measured for FCB at Ponds 56 and 61 beginning in June, 

2002.  Samples were collected and measured for FCB at all other sites beginning in 

February, 2005.  Samples were collected at four to six week intervals through January, 

2006 in sterile NalgeneTM bottles three to four hours after high tide and kept on ice while 

transported to the laboratory where they were immediately analyzed (<six h).  Salinity, 

water temperature, pH and specific conductance were measured near the surface with 

either an YSI Environmental model 63 or YSI 556 handheld meter (Yellow Springs, 

Ohio, USA) at the time of sampling.   

 

2.3 Water Quality Analyses 
 

     Fecal coliform bacteria concentrations were measured using the membrane filtration 

method (APHA, 1989).  All plates were incubated in a water bath for 24-h (± 4 h) at 44.5 

°C.  After the incubation period, each plate was inspected for dark blue colonies.  Each 

dark blue colony was counted as one colony forming unit (cfu).  Data are expressed as 

cfu per 100 ml unless otherwise specified.  Antibiotic resistance analysis was used to 

measure the resistance of E. coli, which were identified using the hydrolysis of 

methylumbelliferyl-β-D glucoronide (MUG, Difco Laboratories, Detroit, MI, USA) 

assay.  Up to ten E. coli isolates from each sample were measured for antibiotic 
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resistance.  Staphylococcus aureus ATCC 25923 and Psuedomonas aeruginosa ATCC 

27853 were used as control isolates.     

     Two methods were used to measure antibiotic resistance during this study.  From 

June, 2002 through June, 2003, a previously published technique was used which 

measured resistance to single concentrations of 10 antibiotics (Parveen et al., 1997).  

Beginning in June, 2003, an improved ARA method was used that measured resistance to 

multiple concentrations of 26 antibiotics on a 96-well plate (Table 2).  Plates were pre-

made with dehydrated antimicrobics in each well.  We used MicroScan® Research Use 

Only panels (Dade Behring Inc., W. Sacramento, CA).  Bacteria were transferred from an 

18-24 hour nutrient agar plate to 3 mls of autoclaved deionized water to a turbidity 

equivalent to a 0.5 McFarland Barium Sulfate turbidity standard.  Then 0.1 ml of the 

sterile water/bacteria suspension was transferred into 25 mls of cation adjusted Mueller 

Hinton broth and inoculated the 96-well panels.  Panels were incubated for16-20 hours at 

37° C.  An isolate was considered resistant if it grew at the highest concentration of a 

drug.   

 

2.4 Estimating Wildlife Activity 
 

     To quantify shorebird and waterfowl activity within the watersheds, digital cameras 

were deployed for four days prior to sampling.  Nikon Coolpix 8700 cameras (Tokyo, 

Japan) coupled to a Harbortronics Digisnap 2000 electronic shutter release (Gig Harbor, 

Washington, USA) were deployed on the edge of the ponds to photograph a series of five 

pictures (spaced 15 minutes apart) at dawn, midday and dusk.  To estimate terrestrial 

wildlife, we adapted a previously used technique (Jacobson et al., 1997) utilizing motion 
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sensitive, infrared illuminated trail cameras (Highlander Sports, Inc., Huntsville, 

Alabama, USA) deployed over shelled corn bait and a single furbearer animal attractant 

scent wafer (Pocatello Supply Depot, Pocatello, Idaho, USA).  All digital photographs 

were examined and the highest number of each species in each picture each day was 

recorded.  For deer, individual types (collared, antlered, non-antlered, or fawn) were 

recorded and summed.  Image resolution was occasionally insufficient to identify animals 

to species, and the best possible animal identification was performed based on image 

quality.  For wildlife activity, the average daily maximum for each type of animal per 

deployment was used.  

 

2.5 Weather and tide measurements  
 

     A Li-Cor Biosciences (Lincoln, NE, USA) LI-1400 weather station was maintained 

approximately midway between the sites on Kiawah Island.  Rainfall, temperature, wind 

speed, wind direction, relative humidity, solar irradiation, and soil temperature were 

continuously recorded.  Tide was monitored at two locations at Kiawah using Global 

model WL15X water level loggers (Global Water, Inc., Gold River, CA, USA).   

 

2.6 Data analysis 
 

     Bacterial isolates showing no drug resistance (MARnegFCB) were assumed to be 

primarily from wildlife sources for this study, based on the assumption that the 

proportion of antibiotic resistant FCB is equal to the proportion of tested E. coli from the 

same sample.  For example, if the total cfu concentration at a site was 1000 per 100 ml 

and 20% of the isolates tested were antibiotic resistant then it was assumed that the 
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MARnegFCB concentration for this sample was 80% or 800 cfu.  This was the response 

variable in our MARnegFCB models.  Total cfu concentration was the response variable 

in the TotalCfu model.  

     Linear regression modeling was used to develop compact predictive models for 

microbial contaminants using combinations of land cover, antibiotic resistance, 

meteorological data, tide, and wildlife activity prior to sampling.  Bootstrapping was used 

to further evaluate the regression models and provide confidence intervals of regression 

coefficients.  Data were re-sampled by bootstrapping 1000 to 100,000 times.  Correlation 

analysis (Pearson) was done to further characterize relationships among variables.  All 

statistical tests were done in SAS 8.2 or 9.1 (SAS Institute, Inc., Cary, NC, USA).   
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3. Results  
  

3.1 Fecal Coliforms in Coastal Ponds 
  

     A total of 202 water samples were analyzed throughout this study.  Fecal coliform 

bacteria concentrations ranged from 0-710 CFU/100 ml in ponds and 2-46, 000 CFU/100 

ml  in KSTPPreChlor and KTSPHoldPond.  Average FCB levels (± SE) were 66.2 ± 10.9 

for ponds and 7, 345.3 ± 3, 420.6 for KSTPPreChlor and KTSPHoldPond.  Among 

ponds, mean FCB concentrations were highest in Pond 1 and lowest in Pond 94  

(Table 3).   

 

3.2 Antibiotic resistance analysis 
 

     During the period of June 2002 through June 2003, wildlife activity was monitored 

within the watersheds of Ponds 61 and 56 while water samples were measured for 

antibiotic resistance using the 10-antibiotic method of Parveen et al. (1997).  Beginning 

in June, 2003 we began using the 26-drug method described above.  The MARnegFCB 

and total FCB concentrations from both time periods were not significantly different from 

one another (p<0.05; t-test), therefore data from both time periods were combined and 

analyzed.   

     A total of 1387 E. coli isolates were tested for antibiotic resistance throughout this 

study.  Multiple antibiotic resistant bacteria were found at all sites on multiple occasions.  

Resistance was greatest at the KSTPPreChlor and KSTPHoldPond sites, followed by 

Pond 74 and Pond 1, and lowest at Pond 93 and TCPE (Table 3).  Among retention pond 

sites, overall percentage of E. coli resistant to one or more drugs ranged from 5-24%, 

compared to 42-45% for the sewage treatment plant (Table 3).  Among drugs, the most 
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frequently observed resistance was to the Beta-Lactam drugs penicillin and ampicillin, 

while we seldom observed resistance to aminoglycosides amikacin and apramycin  

(Table 2).   

 

3.3 Wildlife Activity 
 

     A total of 11, 080 trail camera images and 7, 818 pond camera images were analyzed 

during this study.  The most commonly observed terrestrial wildlife included white tailed 

deer (Odocoileus virginianus) and raccoon (Procyon lotor).  Less frequently observed 

species included gray squirrel (Sciurus carolinensis), bobcat (Lynx rufus), and grackle 

(Quiscalus spp.).  The most commonly observed waterfowl and shorebird species 

included coots (Fulica americana), hooded mergansers (Lophodytes cucullatus), mallards 

(Anas platyrhynchos), great blue herons (Ardea herodius), and egrets (Egretta alba, 

Egretta thula).  

 

3.4 FCB pond models and correlations  
 

     Three data points were found to be outliers, and one data point was treated as a 

leverage point.  These four data points were excluded from analysis.  Abbreviations and 

descriptions of model terms are in Table 4.  The models were:  

 
( )( ) 19.3 816.00000119.03.2212.482.20588.0 −∗= −++−+ γϕεδβαeFCB      (1) 

 
( )( ) 18.4 0486.00000148.08.1921.481.30493.0 −∗= −++++ ηϕεχβαeMARnegFCB    (2) 

 
Where: 
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     For the Total FCB model wildlife activity, meteorological parameters, land cover, and 

season were all useful predictors of FCB concentrations, and our model explained 47% of 

the observed variation in total cfu concentrations.  Increased duck activity on ponds 

significantly increased FCB concentrations (p = 0.0005).  For weather variables, 

increased solar irradiation six hours before sampling (p = 0.0041) and high cumulative 

rainfall over three days prior to sampling (p < 0.0001) were significant predictors of 

increased FCB.  In addition, the greater the percentage of wooded land cover (p = 0.0119) 

and ratio of building and cart path to pond volume (p < 0.0001) in a watershed, the higher 

the expected concentration of FCB.  Lower FCB concentrations were associated with the 

warm months of May through September. 

 

     For the MARnegFCB model, wildlife, land cover, weather, and tide variables were 

useful predictors of cfu levels, and our model explained 48% of the observed variation in 

presumed wildlife (no antibiotic resistance) FCB.  This model included four of the same 

variables as the TotalCfu model, as well as two additional terms.  Average air 

temperature two hours prior to sampling was associated with decreased FCB (p = 0.008).  
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Increased percent impervious surface was also a significant predictor of increased FCB 

concentrations (p<0.001).   

 

3.5 Bootstrapping and model confidence limits 
 

     Bootstrapping provided 95% confidence intervals for coefficients of each parameter 

associated with FCB measurements while also providing an estimated sample 

distribution.  Model coefficients were generated by re-sampling the pond FCB data 100, 

000 times (Table 5).  The coefficients are similar to the linear regression coefficients for 

most terms.  Very little difference in variability among coefficients was observed 

regardless of data sampling frequency.  The 95% CI for the solar irradiation term 

coefficient in the total cfu model and the average air temperature term in the MARneg 

model included zero (Table 5), suggesting that a few influential data points caused these 

terms to be significant in the regression model.   

 

 

3.6 Correlations 
 

     Forty nine variables and combinations of variables were tested during the model 

building process (Table 6).  There were some significant correlations between bacteria 

levels and variables that were not significant in multiple regression models.  Specifically, 

for MARNegFCB, the irrigation and percent treed pond perimeter terms were significant 

and positively correlated with increased FCB (Table 6).  Activity of animals such as 

egrets (p=0.16), raccoons (p=0.42), and average daily maximum deer (p=0.83) was not 

significantly correlated with MARNegFCB.   
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4. Discussion 
 

     Duck activity was a useful predictor of total and MARNeg FCB in coastal ponds in 

combination with other variables.  Duck activity varied greatly and was highest during 

the cool migratory season.  All ducks were observed in autumn and winter, with 94% in 

December and January.  Many species of ducks migrate south along the Atlantic flyway 

every year beginning in late fall through early winter.  It was not uncommon to see large 

groups of multiple species of ducks on our study ponds throughout the winter months.  

Ponds with high percentages of treed perimeter were the preferred habitat for waterfowl 

and shore birds, and percent treed perimeter was used to normalize duck activity although 

duck activity was significant without inclusion of treed pond perimeter in the term.  

Repelling waterfowl and shorebirds in areas of marginal water quality might be effective 

during the limited time periods they normally occur.   

     Our results agree with previous studies that suggested birds were important sources of 

FCB in environmental waters  (Choi et al., 2003; Grant et al., 2006; Somarelli et al., 

2007), however none of these studies used photographic monitoring to quantitatively link 

bacterial water quality to avian wildlife.  Photographic monitoring appeared to measure 

shorebirds and waterfowl well.  There may be ways to improve upon this method.  For 

example, using more cameras on large ponds, as well as taking more pictures at different 

times throughout the day could be helpful.  In this study, camera battery life was the 

limiting factor and determined the number of pictures that could be taken prior to 

sampling.  Other birds such as cormorants and anhinga were frequently observed in and 

around several ponds, but they were not significant in our models.  Both birds are 

common throughout the spring and summer months and tend to feed throughout mid day.  
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However they were not often observed in photographs during early morning or at dusk 

when cameras were programmed to take pictures and as such, their effects on FCB levels 

in coastal ponds may have been underestimated.   

     The contribution of FCB from terrestrial animals like deer and raccoon, although 

known to be abundant on Kiawah Island, was less evident using our approach.  Models 

might have been improved by using more cameras per sample site.  Alternatively, it is 

possible that under most conditions deer and raccoon have less of an impact on bacterial 

water quality in this system.  The transport of FCB from terrestrial wildlife to ponds is 

strongly dependent upon recent rainfall and the flat terrain at our sites may inhibit 

transport of fecal material off land.  

     Two other techniques were used to determine if the influence of additional wildlife 

species could be included in the models.  Total daily bacterial loading (cfu/day) was 

calculated by multiplying average daily maximum by loading factors (Table 7) for 

terrestrial (deer and raccoon) and aquatic (egrets, herons, and ducks) wildlife, but these 

terms were not significant in the model.  Daily total numbers of each species summed 

over the camera deployment were also tested but were less significant in the models 

compared to average daily maximum observed in a single picture.  We suggest that 

average daily maximum is a better estimate of total activity since many of the species we 

tested travel in groups and tend to feed or raft often throughout the day (e.g., ducks, deer, 

and raccoons).     

     Our results agree with similar studies (Kelsey, 2006) and suggest the relationship 

among wildlife, tidal ponds, and bacterial water quality is multifaceted.  After recent 

heavy rainfall on an ebbing tide, ponds may be less effective at slowing the transport of 
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runoff contaminants from upland areas into downstream tidal creeks and estuaries.  

Raccoon, deer, bobcat, otter, and mink were commonly found on most marsh islands, 

likely because islands provide a degree of security lacking on the mainland (SCDNR, 

2004).  Heavy rainfall before a large incoming tide likely leads to wash-off and transport 

of bacteria from hummocks and marsh islands into retention ponds.  The inclusion of the 

unusually high recent tide term in the model supports this conclusion.   

     The most important predictor variables in both the Total FCB and MARnegFCB 

models, based upon type II sums of squares, were impervious cover and rainfall.  

Specifically, total FCB levels were higher in watersheds where either percentage of total 

impervious surface or the ratio of buildings and golf cart paths to pond volume was high.  

This is consistent with what has been found in previous studies (Schoonover and 

Lockaby, 2006; Tong and Chen, 2002), that suggested increased impervious cover leads 

to increased overland flow and transport of non-point source contaminants to adjacent 

water bodies.  Both total and MAR negative FCB increased with cumulative three day 

rainfall prior to sampling.  This agrees with results from rain event studies we have 

conducted in this area (results not published) which showed that increases in pond FCB 

levels from recent rainfall were observable for up to 72 h.   

 

     The ratio of buildings plus golf cart paths to pond volume was a useful predictor of 

total FCB.  The majority of buildings at our sites were residential, either single family 

homes or multi-family condominiums, and it is likely that pet waste in yards near 

residential buildings contributed to elevated FCB levels in adjacent ponds, especially 

smaller ponds.  This finding has management implications, suggesting that larger, deeper 
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ponds in areas of high density housing could contribute to improved bacterial water 

quality.  Wooded land cover was also associated with increased FCB in coastal ponds.  

Many wildlife species prefer wooded habitat.  Wooded habitats along with measures of 

impervious surfaces that are unattractive to wildlife are better predictors of bacteria 

concentrations then terrestrial wildlife activity.     

     The warm season (May through September) was a significant, negative predictor in 

the total FCB model.  Similarly, both average air and soil temperature were highly 

correlated to season.  Several of our study ponds were shallow and occasionally exceeded 

30°C when sampled.  The warm season also coincides with typical stratification of the 

ponds, which limits mixing.  Warm weather correlated with reduced FCB concentrations, 

suggesting higher die off. 

     Bootstrapping analysis showed that some predictor variables were highly variable and 

insignificant (Table 5).  Specifically, the 95% CI for coefficients for the solar irradiation 

term in the Total FCB bootstrap model and the air temperature term in the MARnegFCB 

model included zero.  This suggests that a few influential data points caused these 

variables to be significant in the multiple regression models.   

     The MARnegFCB model was based on the assumption that antibiotic susceptible 

bacteria were more likely to come from wildlife.  Although this might not always be the 

case, clearly there is a trend towards more resistance in anthropogenic bacteria.  For 

example, in this study resistance was much higher in sewage treatment samples compared 

to environmental samples.  We assert that the MARnegFCB more accurately models 

wildlife sources of bacteria and should be useful when trying to manage these bacteria 

sources.    
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5.  Conclusion 
 
     Regression models for predicting FCB levels in coastal retention BMP’s were 

improved by the addition of wildlife activity monitoring prior to sampling.  Specifically, 

ducks were important predictors of pond FCB levels, especially in the winter months 

when they were present in high numbers.  The areas in and around our study areas are 

known to support large populations of migratory birds, especially during the winter 

months.  Management strategies aimed at reducing FCB from avian wildlife may be 

useful and targeted at systems where water quality is impaired during the brief migratory 

season.   

     Land use variables were important predictors of both total and MARNeg FCB.  

Increased percent impervious cover and woods were associated with increased FCB in 

coastal ponds.  In addition, small ponds that were surrounded by a large number of 

houses or condominiums had higher total FCB concentrations.  Resource managers 

should consider increasing the ratio of pond volume to housing density as one way to 

reduce bacteria levels in waterways contiguous with shellfish harvesting and contact 

recreation areas.  The usefulness of reducing wooded pond perimeters should be 

investigated.  Tidal retention ponds appear to work well under most conditions, as FCB 

levels are frequently lower in ponds than in tidal creeks just downstream of ponds (data 

not shown), suggesting that settling of contaminants occurs.  Minimizing tidal flushing of 

ponds can reduce estuarine impacts.   
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Figure 1. Ponds studied on Kiawah Island, SC, land uses within the pond watershed are shown. 
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Site 

  

 Catchment size 

(ha) 

% IS % Woods %IS / %Woods  

Ponds     

 P1 9.1  30.0% 35.0% 0.86 

 P35 17.1  4.3% 6.8% 0.63 

 P74 35.3  16.0% 5.7% 2.81 

 P75 45.2  23.0% 16.8% 1.37 

 P93 27.2  9.9% 13.7% 0.72 

 P94 32.1  4.7% 21.2% 0.22 

 P96 20.5  1.6% 44.6% 0.04 

 TCPE 8.5  24.0% 14.4% 1.67 

 TCPW 2.4  23.0% 16.5% 1.39 

Table 1. Catchment size with percentage of impervious surface and woods at pond sites.   
Antibiotic resistance was greatest at Pond 74, which had the highest ratio of percent impervious  
surface to percent woods.    
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Table 2.  Antibiotics used in resistance testing.  A total of 1 387 isolates were analyzed throughout the 
study.  Superscripts in drug class column denote generation.  The concentration ranges describe those drugs 
used in the Dade-26 method.  For example, 4-32 means the concentrations tested were 4, 8, 16, and 32.  
Values in parentheses reflect changes in concentrations.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Class Drug Name  Abbr. Conc. (ug/ml) Resistant Isolates 
aminoglycoside Amikacin Ak 8-64 0  
beta-lactam Amoxicillin Amx 4-32 130  
beta-lactam Ampicillin* Am 10*; 4-32 133  
aminoglycoside Apramycin Apr 8-32 4  
macrolide Azithromycin Azi 1-4 (2-8) 43  
ephalosporin2 Cefoxitin Cfx 8-32 43  
cephalosporin3 Ceftriaxone Cax 8-64 1  
cephalosporin1 Cephalexin Cex 16-128 62  
cephalosporin1 Cephalothin Cf 3-32 (16-128) 119  
bacteriostatic Chloramphenicol C 8-32 15  
quinolone2 Ciprofloxacin Cp 1-4 13  
macrolide Erythromycin E 4-32 (16-128) 82  
aminoglycoside Gentamicin Gm 2-16 12  
carbapenem Imipenem Imp 2-16 12  
aminoglycoside Kanamycin* Kan 25* 1  
carbapenem Meropenem Mer 2-16 12  
quinolone Moxifloxacin Mox 1-8 (0.25-4) 10  
quinolone Naladixic Acid* NA 25*; 4-32 43  
aminoglycoside Neomycin* Neo 50 1  
 Nitrofurantoin Fd 16-128 96  
quinolone Ofloxacin Ofl 1-8 9  
tetracycline Oxytetracycline* Otet 50*; 4-32 104  
beta-lactam Penicillin* P 75*; 8-64 (16-128) 153  
aminoglycoside Streptomycin* St 12.5*; 16-128 27  
sulfonamide Sulfathiazole* Sz 500*; 250-500 62  
tetracycline Tetracycline* Te 4-32 32  
bacteriostatic Trimethroprim T 2-16 50  
 Trimethroprim/ 

Sulfamethoxazole 
TS 2/38-4/76 

 
36  

* denotes drugs and concentration used in the MAR-10 method. 
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Site Avg cfu (median) SE Max cfu Antibiotic Res 

Ponds       
 P 1 162.2  (166) 40.0  360  19.2% 
 P 35 24.3 (   3) 11.1  104  11.4% 
 P 74 33.8 ( 12) 22.0  228  23.1% 
 P 75 56.8  ( 30) 16.8  182  14.9% 
 P 93 51.3 ( 36) 16.9  138  7.0% 
 P 94 21.6 ( 16) 6.3  58  13.8% 
 P 96 58.3 ( 15) 25.0  256  9.5% 
 TCPE 44.5 ( 16) 12.2  340  5.6% 
 TCPW 73.7 ( 18) 26.8  710  9.5% 

Sewage Treatment       

 KSTP PreChlor 7598.2 (1939) 3933.1  46000  41.7% 
 KSTP HoldPond 833.2 (    17) 773.8  31000  44.7% 

Table 3.  Pond and sewage treatment plant FCB concentrations and antibiotic 
resistance.   
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Table 4. Abbreviations and explanation of terms tested in models.  Rain is in mm, distances are m, areas are m2, 
temperatures are °C, turbidity is NTU’s, volume is m3, tide height is m above mean sea level, and salinity is ppt.   
 
 

Term Description N Min Max Mean StdDev 
LCfu Log (cfu+1) 121 0.00 6.567 3.090 1.486 

LMarneg Log (cfu * MarNegPer+1) 93 0.92 6.567 3.299 1.258 

Deer Avg. daily max. number * 
distance to pond edge 102 0.00 2.10E+03 311.393 407.152 

Duck Avg. daily max. number 102 0.00 28.400 2.049 5.308 

Duck_tree 
Avg. daily max. ducks / 

proportion of pond * (percent 
treed pond edge) 

102 0.00 0.140 0.005 0.018 

Egret Avg. daily max. number 102 0.00 13.250 0.726 1.914 
Heron Avg. daily max. number 102 0.00 9.250 0.320 0.970 

Raccoon Avg. daily max. number * 
distance to pond edge 102 0.00 768.450 76.911 114.955 

%Fairway Percent fairway 121 0.00 0.137 0.014 0.036 
%ImpSurf Percent impervious surface 121 0.02 0.301 0.180 0.085 

%Road Percent road 121 0.02 0.191 0.116 0.052 
%Rough Percent golf course rough 121 0.00 0.161 0.024 0.043 

%UpLand Percent upland 121 0.23 0.879 0.765 0.162 
%VegLawn Percent VegLawn 121 0.00 0.502 0.292 0.208 

%Water Percent water 121 0.12 0.768 0.235 0.162 
%Woods Percent wooded land cover 121 0.06 0.446 1.84E-01 9.86E-02 

BCVolume Bldg + cart path areas / pond vol. 121 0.00 0.466 0.178 0.120 
Fairway Area (m2) 121 0.00 4.83E+04 5.04E+03 1.30E+04 

ImpWood ImpSurf area / woods area (m) 121 0.04 2.727 1.205 0.656 

NU1 Summed area of lawn, woods, 
water, and golf course 121 0.00 1.74E+05 4.15E+04 5.01E+04 

RoadImpSurfRatio Road area / impervious surface 
area 121 0.56 1.000 0.697 0.132 

TreePer Percent treed pond perimeter 121 0.52 1.000 0.874 0.177 
Upland Upland area 121 2.11E+04 3.28E+05 1.11E+05 9.35E+04 

VegGolf Vegatated or landscaped golf 
course area 121 0.00 1.80E+04 2.05E+03 4.76E+03 

VegLawn Vegatated or landscaped lawn 
course area 121 0.00 7.65E+04 2.59E+04 2.06E+04 

Water Water area 121 2.91E+03 1.32E+05 4.86E+04 5.01E+04 

AirTemp Avg. air temp 2 h before 
sampling 121 1.38 30.699 18.196 7.124 

LRain2 Log(2 day rain +1) 121 0.00 3.497 1.095 1.147 
LRain7 Log(7 day rain +1) 121 0.00 4.868 2.286 1.366 
Rain2 rain during 2 d prior to sampling 121 0.00 32.000 4.562 6.147 
Rain3 rain during 3 d prior to sampling 121 0.00 37.000 7.595 9.138 

Rain3_7 rain between 3 and 7 d before 
sampling 121 0.00 97.000 13.479 17.282 

Rain7 rain during 7 d prior to sampling 121 0.00 129.000 18.041 20.380 
SO Solar irradiation2 119 2.27 2.29E+05 1.95E+04 3.78E+04 

WindSpeed Avg. wind speed six hours prior 
to sampling 121 0.00 4.830 0.677 0.524 

LandLoading Sum of all avg daily max land 
animal * loading factor 102 0.00 2.44E+10 6.29E+09 5.28E+09 
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Table 4 Continued. Abbreviations and explanation of terms tested in models.  Rain is in mm, distances are m, areas 
are m2, temperatures are °C, turbidity is NTU, volume is m3, tide height is m above mean sea level, and salinity is 
ppt.   
 

Term Description N Min Max Mean StdDev 

PondLoading sum of all avg daily max pond 
animal * loading factor 102 0.00 8.82E+12 4.03E+11 1.09E+12 

TotalLoading sum of all avg daily max land 
and pond animal * loading factor 121 1.28E+09 8.82E+12 3.49E+11 1.01E+12 

CurrentTide Current tide height (m) 121 0.06 1.564 0.712 0.299 
LTideTime log(TideTime) 121 1.07 1.803 1.411 0.149 

pH pH 121 6.81 9.150 8.017 0.453 
Salinity Salinity 121 5.05 32.000 17.062 7.374 

Tide Previous high tide  - avg. 14 d 
high tide 121 -0.51 0.638 -0.026 0.219 

TideStage Current tide  - previous high tide 121 -1.86 -0.498 -1.182 0.309 
Turb Turbidity 121 2.11 128.400 9.675 13.916 
Turb2 Turbidity2 121 4.45 1.65E+04 285.659 1553.263 

Volume Pond vol. 121 1.02E+04 1.65E+05 5.11E+04 4.95E+04 
WaterTemp Water temp. 121 8.50 32.000 21.339 6.866 

Aerated Indicates ponds with aeration 121 0.00 1.000 0.562 0.498 

Irrigation Indicates ponds adjacent to 
irrigation 121 0.00 1.000 0.149 0.357 

Mon Indicates May-Sept or Oct-Apr 121 0.00 1.000 0.455 0.500 
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   Table 5.  Variable coefficients from re-sampling data 100,000 times. 

(a) TotalFCB boostrapping model      

Confidence limits Constant Solar2 Rain3 %Woods Duck3 BCVolume Mon 

Lower 0.95 -1.5x10-6 0.03 0.02   6.7 2.165 -1.21 
Median 1.54  1.0x10-5 0.06 2.43 21.5 3.916 -0.74 
Upper 2.18  1.7x10-5 0.08 5.01 38.6 5.591 -0.26 
(b) MARneg bootstrapping model      

Confidence limits Constant Solar2 Rain3 %Woods Duck3 ImpSurfPer AirTemp 
Lower 1.08 4.2 x10-6 0.01 0.33   1.65 0.599 -0.0704 
Median 1.96 1.3 x10-5 0.04 3.24 19.2 3.52 -0.0334 
Upper 2.92 2.1 x10-5 0.06 5.76 39.0 6.31  0.0045 
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Table 6.  Pearson’s correlation coefficients of variables used in regression models.   
Both cfu and MarnegCfu concentrations were log (x + 1) transformed.   
Bold indicates significant p<0.05.  Explanations of other terms are included in Table 4. 
 
Variable cfu Non-Res cfu % Res 
Deer -0.115 0.024 0.159 
Duck 0.227 0.231 -0.128 
Duck_tree 0.313 0.364 -0.044 
Egret -0.065 -0.161 -0.155 
Heron 0.028 0.078 -0.138 
Raccoon -0.026 -0.093 0.254 
%Fairway -0.130 -0.105 0.177 
%ImpSurf 0.215 0.205 0.131 
%Road 0.217 0.219 0.114 
%Rough -0.120 -0.112 0.142 
%UpLand 0.169 0.175 0.099 
%VegLawn 0.031 0.016 -0.003 
%Water -0.169 -0.175 -0.099 
%Woods 0.202 0.259 0.118 
BCVolume 0.316 0.287 0.149 
Fairway -0.143 -0.134 0.158 
ImpWood -0.121 -0.073 0.083 
NU1 -0.091 -0.081 0.110 
RoadImpSurfRatio -0.081 -0.023 -0.096 
TreePer 0.178 0.217 0.058 
Upland -0.027 -0.037 0.030 
VegGolf -0.152 -0.145 0.152 
VegLawn 0.008 0.018 0.023 
Water -0.132 -0.158 -0.054 
AirTemp -0.096 -0.129 0.199 
LRain2 0.228 0.102 0.266 
LRain7 0.193 0.016 0.178 
Rain2 0.206 0.132 0.221 
Rain3 0.316 0.218 0.321 
Rain3_7 0.072 -0.039 0.074 
Rain7 0.123 0.010 0.151 
SO 0.110 0.058 -0.059 
WindSpeed 0.069 0.194 0.139 
LandLoading -0.051 -0.050 0.054 
PondLoading -0.074 -0.087 -0.117 
TotalLoading -0.073 -0.086 -0.104 
CurrentTide 0.011 0.119 -0.206 
LTideTime -0.051 -0.191 0.234 
pH 0.040 -0.075 -0.067 
Salinity -0.101 -0.002 -0.095 
Tide 0.270 0.242 -0.097 
TideStage -0.170 -0.162 -0.111 
Turb -0.099 -0.041 -0.119 
Turb 2 -0.076 0.005 -0.065 
Volume -0.176 -0.183 0.028 
WaterTemp -0.127 -0.133 0.238 
Aerated -0.068 -0.089 -0.090 
Irrigation 0.306 0.236 0.174 
Mon -0.212 -0.199 0.172 
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Table 7.  Daily fecal coliform bacteria loading rates used to calculated individual species 
contributions and tested as model terms. 
 
 
 

Animal 
 

Loading 
(cfu/d/animal) Explanation References 

Deer 4.24x108 Average of two literature 
values Hanson, 1997; Yagow, 2001 

Raccoon 1.13x108 Literature Yagow, 2001 

Duck 4.54x109 Average of three literature 
values 

Mara, 1974; Roll & Fujioka, 
1997; EPA, 2001 

Egret 3.17x109 Average wt. times average 
cfu/g of ducks and geese USEPA, 2001; USGS, 2002 

Heron 3.45x109 Average wt. times average 
cfu/g of ducks and geese USEPA, 2001; USGS, 2002 
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