KfK 4315 Februar 1988

Stabilisierung der UF₆-Verteilung und des Isotopengradienten einer Trenndüsenkaskade zur Urananreicherung

P. Bley, J. S. Coelho, H. Hein, A. A. Souza Institut für Kernverfahrenstechnik

Kernforschungszentrum Karlsruhe

ef 31

Kernforschungszentrum Karlsruhe Institut für Kernverfahrenstechnik

KfK 4315

Stabilisierung der UF₆-Verteilung und des Isotopengradienten einer Trenndüsenkaskade zur Urananreicherung

P. Bley, J.S. Coelho, H. Hein*), A.A. Souza

*) von der Fakultät für Maschinenbau der Universität Karlsruhe (T.H.) genehmigte Dissertation

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Stabilisierung der UF₆-Verteilung und des Isotopengradienten einer Trenndüsenkaskade zur Urananreicherung

Zusammenfassung

Bei dem im Kernforschungszentrum Karlsruhe entwickelten Trenndüsenverfahren zur Urananreicherung wird als Verfahrensgas ein Gemisch aus Uranhexafluorid (UF₆) und einem leichten Zusatzgas (H₂ bzw. He) verwendet. Um in einer Trenndüsenkaskade den starken Transport des leichten Zusatzgases zum Kaskadenkopf zu kompensieren, wird der überwiegende Teil des Zusatzgasstromes am Kaskadenkopf über diskontinuierlich arbeitende Tieftemperaturabscheider entnommen und in den Kaskadenfuß zurückgeführt, während von dem abgeschiedenen UF₆ über Pufferbehälter ein UF₆-Rückstrom kontinuierlich an den Kaskadenkopf zurückgespeist werden muß.

Bei den durch Wirtschaftlichkeitsbetrachtungen festgelegten Betriebsbedingungen werden UF₆-Fehlströme zum Kaskadenfuß transportiert, wo sie rasch abgebaut werden müssen. Am Kaskadenkopf entstehende UF₆-Fehlströme durchlaufen die gesamte Kaskade und können daher zu einer erheblichen Verminderung der Trennleistung der Anlage führen.

An einer 10-stufigen Pilot-Anlage wurden die mit solchen UF₆-Fehlströmen verbundenen Änderungen der UF₆-Verteilung in der Kaskade und des ²³⁵U-Isotopengradienten untersucht. Diese Pilot-Anlage wurde im Rahmen der deutschbrasilianischen Zusammenarbeit auf dem Kernenergiegebiet von Karlsruhe in das Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) in Belo Horizonte transferiert und dort für den Betrieb mit Doppelumlenksystemen umgebaut.

Es wird zunächst gezeigt, daß selbst bei massiven UF₆-Fehlströmen die notwendige stabile und gleichmäßige UF₆-Verteilung in allen Stufen allein durch eine Regelung des UF₆-Inventares der Fußstufe mit Hilfe des UF₆-Abfallstromes am Kaskadenfuß (Tails-Strom) gewährleistet wird.

Der vom UF₆-Transport abhängige ²³⁵U-Isotopengradient muß zur Erzielung maximaler Trennleistung auf den vorgegebenen Wert gehalten werden. Hierzu wurde eine Regelung für den UF₆-Transport entwickelt, wobei der Tails-Strom als Regelgröße und der UF₆-Rückstrom aus dem Pufferbehälter am Kaskadenkopf als Stellgröße benutzt werden. Die durchgeführten Experimente belegen, daß durch die kombinierte Regelung des UF₆-Inventares und des UF₆-Transportes UF₆-Fehlströme ausreichend schnell beseitigt werden, so daß nur vorübergehend geringfügige Abweichungen des ²³⁵U-Isotopengradienten auftreten.

Die experimentell aufgenommenen Kennfelder des Doppelumlenksystems und die entwickelte Betriebsregelung wurden in die Rechenmodelle zur Simulation des Betriebsverhaltens der Pilot-Anlage eingeführt. Im Rahmen der Meßgenauigkeit besteht zwischen experimentell und rechnerisch ermitteltem Betriebsverhalten eine gute Übereinstimmung, die sowohl für die gasdynamischen Betriebsgrößen als auch für den ²³⁵U-Isotopengradienten zutrifft.

Stabilization of the UF₆-Distribution and the Isotopic Gradient of a Separation Nozzle Cascade for Uranium Enrichment

Abstract

The separation nozzle method of uranium enrichment developed at the Karlsruhe Nuclear Research Center uses as process gas a mixture of uranium hexafluoride (UF₆) and a light auxiliary gas (H₂ and He, respectively). In order to compensate in a separation nozzle cascade for the pronounced transport of the light auxiliary gas to the top of the cascade, most of the auxiliary gas stream is extracted at the top of the cascade by means of cryo-separators operating in a cyclic mode and is recycled to the bottom of the cascade, while a UF₆ feedback of the UF₆ removed must be continuously returned to the top of the cascade through a buffer tank.

Under the operating conditions defined in the light of economic assessments, false flows of UF₆ are carried to the bottom of the cascade, where they must be dissipated quickly. False flows of UF₆ generated at the top of the cascade pass through the entire cascade and, consequently, can greatly reduce the separating power of the plant.

In a ten-stage pilot plant, the changes in UF₆ distribution in the cascade and in the 235 U isotopic gradient due to such false flows of UF₆ were studied. The pilot plant was transferred from Karlsruhe to the Centro de Desenvoloimento da Tecnologia Nuclear (CDTN) at Belo Horizonte within the framework of German-Brazilian cooperation in the nuclear energy sector and converted there for operation with double deflection systems.

Initially, it is shown that even in the presence of massive false flows of UF_6 the required stable and uniform UF_6 distribution is ensured at all stages solely by controlling the UF_6 content in the bottom stage by means of the UF_6 tails flow at the bottom of the cascade.

The ²³⁵U isotopic gradient, which is a function of UF₆ transport, must be kept at its preset level for maximum separation power. For this purpose, a control system for the transport of UF₆ has been developed in which the tails flow is used as a control variable and the UF₆ feedback flow from the buffer tank at the top of the cascade is used as a manipulated variable. The experiments performed document that the combined control of the UF₆ content and of the UF₆ transport allows false flows of UF₆ to be dissipated sufficiently quickly to that minor deviations in the ²³⁵U isotopic gradient occur only temporarily.

The fields of characteristic curves of the double deflection system recorded experimentally, and the operation control developed, were entered into the computer models used to simulate the operating behavior of the pilot plant. Within the limit of measuring accuracy, there is good agreement between the operating characteristics determined experimentally and by means of computation, both with respect to the gas dynamics operating parameters and the ²³⁵U isotopic gradient.

INHALTSVERZEICHNIS

1.	Einl	eitung und Überblick	1	
2.	Beschreibung der Pilot-Anlage und der Rechenmodelle			
	2.1	Aufbau der Pilot-Anlage	6	
	2.2	Kenngrößen der verwendeten Trennelemente	10	
	2.3	Die Stufenkennlinie	12	
	2.4	Rechenmodelle	15	
3.	Einregelung in den Sollarbeitspunkt und Störungsanalyse			
	im Kreislauf			
	3.1	Einregelung der Trenndüsenstufen in den Sollarbeitspunkt	15	
	3.2	Störungsanalyse bei lokalen Störungen	18	
4.	Begründung und Realisierung der Betriebsregelung			
	4.1	Begründung der Betriebsregelung	22	
	4.2	Realisierung der UF ₆ -Inventarregelung	23	
	4.3	Realisierung der UF ₆ -Transportregelung	28	
	4.4	Gasdynamische Erprobung der Betriebsregelung	31	
5.	Einhaltung des ²³⁵ U-Isotopengradienten durch die			
	UF ₆ -Transportregelung			
	5.1	Experimentelle Bestimmung des ²³⁵ U-Isotopengradienten		
		in Abhängigkeit vom UF ₆ -Transport	33	
	5.2	Berechnung des instationären Verlaufes des		
		235 U-Isotopengradienten	35	
6.	Disk	ussion	39	
7.	Literaturverzeichnis			
8.	Nomenklatur			

1. Einleitung und Überblick

Zur Anreicherung des leichten Uranisotopes ²³⁵U wird im Kernforschungszentrum Karlsruhe das Trenndüsenverfahren entwickelt, das die Massenabhängigkeit der Zentrifugalkraft in einer schnellen gekrümmten Gasströmung ausnutzt [1]. Als Verfahrensgas dient UF₆, dem ein leichtes Zusatzgas H₂ oder He im hohen molaren Überschuß zugegeben wird. Die positive Wirkung des Zusatzgases beruht vor allem auf der mit der Verminderung des mittleren Molekulargewichts verbundenen Erhöhung der Strömungsgeschwindigkeit des Gases.

Bei dem in Abb. 1 dargestellten "Einzelumlenksystem" expandiert das Verfahrensgas entlang einer gekrümmten Umlenkwand, an deren Ende ein Abschäler den Gasstrom in eine mit ²³⁵UF₆ und Zusatzgas angereicherte leichte Fraktion und eine an ²³⁵UF₆ und Zusatzgas verarmte schwere Fraktion aufteilt. Da der optimale Gasdruck umgekehrt proportional zu den charakteristischen Abmessungen des Trennsystems ist und ein möglichst hoher Gasdruck aus wirtschaftlichen Gründen anzustreben ist, werden die charakteristischen Abmessungen so klein wie möglich gewählt. Da die relative ²³⁵U-Isotopenverschiebung zwischen den beiden Fraktionen nur etwa 2 % beträgt, muß für die Anhebung der Isotopenkonzentration von 0,711 Gew.-% ²³⁵U des Natururans auf die für Leichtwasserreaktoren erforderliche Konzentration von ca. 3 Gew.-% ²³⁵U der Trennvorgang in einer Trenndüsenkaskade einige hundert mal wiederholt werden.

Abb. 1: Prinzip des Trenndüsenverfahrens mit Einzelumlenksystem.

Die erforderliche Stufenzahl einer Trenndüsenkaskade läßt sich um 30 - 40 % vermindern, wenn anstelle des in Abb. 1 gezeigten Einzelumlenksystems das in Abb. 2 dargestellte "Doppelumlenksystem" verwendet wird [2]. Wie aus der Abbildung hervorgeht, wird bei diesem System die schwere Fraktion einer ersten Trenndüse in einer direkt angeschlossenen zweiten Trenndüse einer weiteren Trennung unterzogen, so daß insgesamt drei Fraktionen entstehen. Die mittlere Fraktion, deren Isotopenmischungsverhältnis etwa dem des in der ersten Düse eingespeisten Gases entspricht, wird innerhalb der Trennstufe auf die Ansaugseite des Verdichters zurückgeführt. Trotz der mit der Rückführung der mittleren Fraktion verbundenen Verminderung des effektiven Gasdurchsatzes der Stufe wird die Trennarbeitsleistung um etwa 10 % erhöht, was zu einer entsprechenden Verminderung des spezifischen Energieverbrauchs des Verfahrens führt. Ein Nachteil des Doppelumlenksystems ist sein größerer Herstellungsaufwand.

<u>Abb. 2:</u> Prinzip des Trenndüsenverfahrens mit Doppelumlenksystem und Verschaltung zu einer Trenndüsenstufe.

Aufgrund der starken Trennung zwischen UF₆ und leichtem Zusatzgas entsteht in einer Trenndüsenkaskade bei beiden Trenndüsensystemen ein großer Nettostrom des leichten Zusatzgases in Richtung Kaskadenkopf. Um dort eine Anreicherung des leichten Zusatzgases zu verhindern, muß es möglichst UF₆-frei zum Kaskadenfuß zurückgeführt werden. Eine erste technische Anwendung des Trenndüsenverfahrens ist in Brasilien im Rahmen der deutsch-brasilianischen Kernenergievereinbarungen vorgesehen: In Resende bei Rio de Janeiro wird z.Z. die Inbetriebnahme einer aus 24 technischen Trenndüsenstufen bestehenden Vorlaufkaskade vorbereitet, die mit dem in Abb. 1 gezeigten "Einzelumlenksystem" ausgerüstet ist [3]. Für die Feintrennung von UF₆ und Zusatzgas sind zyklisch arbeitende Tieftemperaturabscheider vorgesehen, die naturgemäß diskontinuierlich arbeiten. Das am Kaskadenkopf abgeschiedene UF₆ muß daher in einem Pufferbehälter gesammelt und von dort mit der richtigen Stromstärke in den Kaskadenkopf zurückgespeist werden. Die Anlage arbeitet also nach dem in Abb. 3 dargestellten Schema.

Bei den nach ökonomischen Gesichtspunkten festgelegten Betriebsbedingungen wird ein am Kopf der Anlage zeitweilig eingespeister UF₆-Überschuß relativ schnell zum Kaskadenfuß transportiert und dort mit dem Tails-Strom (Abfallstrom) ausgetragen. Dabei können schon kleine Fehlströme zu einer erheblichen Verminderung der Trennarbeitsleistung der Anlage führen [4]. In der vorliegenden Arbeit sollten die mit solchen Fehlströmen verbundenen Änderungen der UF₆-Verteilung und des ²³⁵U-Isotopengradienten an einer von Karlsruhe in das <u>C</u>entro de <u>D</u>esenvolvimento da <u>T</u>ecnologia <u>N</u>uclear (CDTN) in Belo Horizonte (Brasilien) transferierten 10-stufigen Pilot-Anlage experimentell untersucht und Maßnahmen zu ihrer Vermeidung aufgezeigt werden. Die früher mit Einzelumlenksystemen ausgerüstete Pilot-Anlage [5] wurde für den Betrieb mit Doppelumlenksystemen umgebaut. Der Betriebspunkt wurde dabei so gewählt, daß ein UF₆-Überschuß, wie in der Vorlaufkaskade in Resende, zum Kaskadenfuß transportiert wird.

Wie aufgrund vorheriger Simulationsrechnungen erwartet wurde, wirken sich beim Doppelumlenksystem, im Gegensatz zum Einzelumlenksystem, Eingriffe über das Rückstauventil hauptsächlich auf den Betriebszustand der betreffenden Stufe aus. Unter Ausnutzung dieses Verhaltens wurden die jeweils auftretenden maximalen Abweichungen an den betreffenden Stufen mit Hilfe der Rückstauventile halbiert und so eine schnelle Einregelung aller Stufen erreicht.

Bei den weiteren experimentellen Untersuchungen wurde für die Pilot-Anlage die in der Abb. 4 dargestellte Betriebsart gewählt, welche dem Abstreifteil einer Kaskade entspricht. Aus der schweren Fraktion der Fußstufe wird der erforderliche Tails-Strom entnommen und vollständig in einem kleinen Tieftemperaturabscheider ausgefroren. Für die Trennung des leichten Zusatzgases vom UF₆ werden am Kaskadenkopf zyklisch arbeitende Tieftemperaturabscheider einge-

<u>Abb. 3:</u> Vereinfachtes Schema der 24-stufigen Vorlaufkaskade* in Resende (Brasilien).

*Die eingetragenen Kaskadenumlaufströme kennzeichnen die UF₆-Ströme in den kaskadenaufwärts führenden leichten Fraktionen und in der kaskadenabwärts führenden schweren Fraktion. Hieraus resultiert ein zum Kaskadenkopf bzw. ein zum Kaskadenfuß gerichteter UF₆-Strom, der im stationären Betriebszustand dem zu entnehmenden Produkt- bzw. Tails-Strom entspricht.

- 4 -

setzt. Zur Aufrechterhaltung der Materialbilanz wird das in den beiden Tieftemperaturabscheidern abgeschiedene UF₆ aus einem Vorratsbehälter als UF₆-Kopfpufferrückstrom vor die Kopfstufe zurückgespeist. Da der UF₆-Inhalt des Vorratsbehälters groß gegenüber den während der einzelnen Versuche mit dem Tails-Strom entnommenen und an ²³⁵U verarmten UF₆-Mengen ist, bleibt der ²³⁵U-Gehalt des UF₆ im Vorratsbehälter praktisch konstant.

Die Auslegung der Tails-Entnahme wurde so gewählt, daß der Tails-Strom über ein Regelventil in einem großen Bereich variiert werden kann. Mit dem Tails-Strom als Stellgröße wurde für das UF₆-Inventar der Fußstufe eine Regelung realisiert, welche am Ort der größten Störauswirkung direkt und mit geringer Verzögerung eingreift und so der Akkumulierung von UF₆-Störinventar schnell entgegenwirkt. Eine UF₆-Inventarregelung der Fußstufe, bei welcher der UF₆-Kopfpufferrückstrom als Stellgröße dient, wäre zwar bei kleiner Stufenzahl noch realisierbar, scheidet jedoch aufgrund der mit der Stufenzahl wachsenden Verzögerung bei größeren Kaskaden aus.

Die experimentellen Ergebnisse mit dieser UF₆-Inventarregelung zeigen, daß sowohl bei massiven permanenten Störungen der externen UF₆-Ströme am Kaskadenkopf als auch bei lokalen Störungen einzelner Stufen nur geringfügige Abweichungen der UF₆-Inventarverteilung innerhalb der Kaskade auftreten. Die zur Aufrechterhaltung des Kaskadenbetriebes notwendige Stabilisierung der UF₆-Verteilung kann somit nur durch die Regelung des UF₆-Inventares der Fußstufe gewährleistet werden, da sie ein Überschreiten der zulässigen Betriebsgrenzen der Verdichter und die damit verbundene Abschaltung durch den installierten Komponentenschutz verhindert.

Mit dieser UF₆-Inventarregelung allein ist es jedoch nicht möglich, Abweichungen des UF₆-Transportes vom Sollwert und die hierdurch verursachten Änderungen des ²³⁵U-Isotopengradienten zu beseitigen. Die zur Erzielung einer maximalen Trennleistung notwendige Einhaltung des vorgegebenen ²³⁵U-Isotopengradienten wird durch die Regelung des UF₆-Transportes erreicht, bei welcher der UF₆-Tails-Strom als Regelgröße und der UF₆-Kopfpufferrückstrom als Stellgröße benutzt werden. Auf diese Weise werden durch Fehleinstellungen von Stufen in der Nähe des Kaskadenkopfes verursachten Abweichungen des UF₆-Transportes vom Sollwert durch entsprechende Änderungen des UF₆-Kopfpufferrückstromes beseitigt. Da die Einstellzeit des ²³⁵U-Isotopengradienten etwa eine Größenordnung länger als die des UF₆-Transportes ist, können UF₆-Transportstörungen ausgeregelt werden bevor der ²³⁵U-Isotopengradient eine deutliche Änderung erfährt.

Da die Pilot-Anlage wie der Abstreifteil einer Kaskade arbeitet, wird der ²³⁵U-Isotopengradient wesentlich durch die ²³⁵U-Isotopenkonzentration des Tails-Stromes festgelegt, mit dessen Zunahme der ²³⁵U-Isotopengradient abnimmt. Diese Abhängigkeit wurde erstmals für verschiedene stationäre Betriebszustände massenspektrometrisch gemessen, wobei der UF₆-Transport in einem großen Bereich variiert wurde. Durch lokale Störungen an einzelnen Stufen in der Nähe des Kaskadenkopfes wurden bei ausgeschalteter UF₆-Transportregelung permanente Zunahmen des UF₆-Transportes von etwa 50 % bis 70 % induziert, die zu relativen Abnahmen des stationär gemessenen ²³⁵U-Isotopengradienten von bis zu 15 % führten. Bei eingeschalteter UF₆-Transportregelung lag die Abnahme des ²³⁵U-Isotopengradienten bei diesen Störungen unterhalb der Nachweisgrenze.

Im Rahmen der vorliegenden Arbeit wurden in die bestehenden Rechenmodelle zur Simulation des instationären Betriebsverhaltens die Kennfelder des Doppelumlenksystems und die Betriebsregelung der Pilot-Anlage eingeführt. Die mit den angepaßten Simulationsprogrammen gewonnenen Ergebnisse sind in guter Übereinstimmung mit den experimentellen Daten. Dies trifft sowohl für das stationäre und instationäre gasdynamische Betriebsverhalten der Kaskade als auch für den ²³⁵U-Isotopengradienten und seine Abhängigkeit vom UF₆-Transport zu. Damit steht ein von der Pilot-Anlage unabhängiges Instrumentarium für die Planung und Überwachung von Trenndüsenanlagen zur Verfügung.

2. Beschreibung der Pilot-Anlage und der Rechenmodelle

2.1 Aufbau der Pilot-Anlage

Eine Gesamtansicht der Pilot-Anlage ist in der Abb. 5 gegeben. Sie besteht aus 10 Trennstufen, deren UF₆-Durchsatz um ca. 4 Größenordnungen kleiner als der technischer Trennstufen ist. Das aus UF₆ und dem leichten Zusatzgas Helium bestehende Verfahrensgas wird von Roots-Verdichtern komprimiert. Als Trennelemente wurden Doppelumlenksysteme (s. Abb. 2) eingesetzt, welche nach dem Formätzverfahren hergestellt wurden [6]. Bei der vorliegenden Verschaltung (Abb. 6) mit dem nominellen UF₆-Stufenabschälverhältnis $\theta_u^n = 1/2$ wird die leichte Fraktion zur nächsten kaskadenaufwärts gelegenen und die schwere Fraktion zur vorherigen kaskadenabwärts gelegenen Stufe geführt. Um den konstruktiven Aufwand des Umbaues der Pilot-Anlage [7] für den Betrieb mit Doppelumlenksystem gering zu halten, erfolgt an den Trennstufen Nr. 2 bis Nr. 9 die interne Rückführung der mittleren Fraktion nicht unmittelbar auf die Saugseite des Roots-Verdichters derselben Stufe, sondern über die Trennelementkammer der vorherigen Stufe. Die hier entstehende Vermischungsfraktion wird dann mit der schweren Fraktion der kaskadenaufwärts gelegenen Stufe direkt vor der Saugseite des Roots-Verdichters zusammengeführt. Nur an der Stufe Nr. 10 wurde die Leitungsführung so gewählt, daß die in der Abb. 7 gezeigte Reihenfolge der Vermischung entsteht und so sämtliche partielle Abschälverhältnisse θ_i^k (10) gemessen werden können.

Abb. 5: Gesamtansicht der 10-stufigen Pilot-Anlage im CDTN in Belo Horizonte.

Bei der Pilot-Anlage besteht die Gemischtrennanlage am Kaskadenkopf aus zwei zyklisch arbeitenden Tieftemperaturabscheidern, in welchen der in der leichten Fraktion der Kopfstufe (Stufe 10) enthaltene UF₆-Strom UTTA abgeschieden wird.

$$UTTA = L_{\mu}^{St}(10) \cdot \quad \Theta_{\mu}^{St}(10) \tag{1}$$

Der UF₆-Kopfpufferrückstrom URP mit der natürlichen Isotopenzusammensetzung wird aus UF₆-Vorratsbehältern gespeist, in welche das abgeschiedene UF₆ aus den Tieftemperaturabscheidern am Ende eines jeden Abscheidezyklus transferiert wird. Mit einer überkritischen Meßblende wird der UF₆-Kopfpufferrückstrom gemessen, wobei der UF₆-Einspeisedruck P_{RP} über ein UF₆-Einspeiseventil in einem ausreichend großen Bereich verändert werden kann.

<u>Abb. 6:</u> Vereinfachtes Fließschema der Pilot-Anlage, welche als Abstreifteil einer Kaskade geschaltet ist. Die Überbrückungsleitungen für den Kreislaufbetrieb sind gestrichelt eingezeichnet.

Zur Vereinfachung der versuchstechnischen Durchführung wurde für die Pilot-Anlage eine Betriebsart gewählt, welche dem Abstreifteil einer Kaskade entspricht. Da im Abstreifteil ein zum Kaskadenfuß gerichteter UF₆-Transport τ_u besteht, gilt bei dieser speziellen Betriebsart folgende Bilanz für die externen UF₆-Ströme der Kaskade:

$$URP = UTTA + T \tag{2}$$

Von dem in die Tieftemperaturabscheider eintretenden Zusatzgas wird am Ausgang der Molstrom des Zusatzgases einer schweren Fraktion über ein Regelventil mit Meßblende vor die Kopfstufe geführt, während der zum Kaskadenkopf gerichtete Zusatzgastransport τ_7 mit der Stromstärke

$$\tau_{z} = L_{z}^{St} \cdot (2 \cdot \theta_{z}^{St} - 1)$$
⁽³⁾

über ein Regelventil mit Meßblende auf konstanten Wert geregelt und direkt vor die Fußstufe (Stufe 1) zurückgeleitet wird.

Am Kaskådenfuß wird die schwere Fraktion abzüglich eines kleinen Teilstromes vor dieselbe Stufe geleitet und bildet mit dem insgesamt rückgeführten Zusatzgasstrom die Stromstärke einer leichten Fraktion. Der aus der schweren Fraktion der Fußstufe entnommene Teilstrom wird über ein Regelventil einem Tieftemperaturabscheider zugeführt, in welchem das in diesem Teilstrom enthaltene UF₆ als Tails T ausgefroren wird.

Zur Erfassung des Betriebszustandes der Pilot-Anlage ist jede Stufe mit einem Druckaufnehmer auf der Druckseite des Roots-Verdichters sowie in der Leitung der leichten und der schweren Fraktion ausgerüstet. Die Stufen eins bis zehn sind mit je einem α -lonisationsdetektor [8] zur Bestimmung der Düsengaskonzentration bestückt. Die Kopfstufe ist zusätzlich mit vier weiteren α -lonisationsdetektoren ausgerüstet, so daß hier aus den gemessenen UF₆-Konzentrationen alle partiellen Abschälverhältnisse bestimmt werden können. Über ein rechnergesteuertes Datenerfassungssystem werden 70 Meßstellen abgefragt und in einem Kaskadenüberwachungsprogramm aufbereitet. In Abständen von fünf bis zehn Sekunden erfolgt eine vollständige Überwachung und Dokumentation des Betriebszustands der Pilot-Anlage.

2.2 Kenngrößen der verwendeten Trennelemente

In Abb. 7 ist das Ersatzschaltbild der in der Pilot-Anlage verwendeten Doppelumlenksysteme zusammen mit den wichtigsten Kenngrößen zur Beschreibung des Betriebszustandes dargestellt. Der Molstrom L_i^{1} mit der molaren UF₆-Konzentration N₀ wird vom Verdichter auf den Einlaßdruck P₀ komprimiert und dem ersten Trennsystem zugeführt. In diesem ersten Trennsystem wird das Verfahrensgas unter Expansion auf den Druck P₁ in eine leichte Fraktion mit der UF₆-Konzentration N₁ und eine schwere Fraktion des ersten Trennsystems mit dem Molstrom L_i^2 getrennt, welche direkt dem zweiten Trennsystem zugeführt wird. Die im zweiten Trennsystem entstehende mittlere Fraktion mit der UF₆-Konzentration N_m expandiert auf den Druck P_m und wird innerhalb der Stufe auf die Saugseite des Verdichters zurückgeführt, während der zweite Teilstrom als schwere Fraktion mit der UF₆-Konzentration N_s bei einem Druck P_s die Trennstufe verläßt. Da die mittlere Fraktion innerhalb der Stufe zirkuliert, ist der Stufendurchsatz LiSt um den Molstrom der mittleren Fraktion kleiner als der Verdichterdurchsatz Li¹.

Das partielle Abschälverhältnis θ_i^k für die Komponente i des Verfahrensgases im Trennsystem k ist definiert als Verhältnis des Molstromes der Komponente i in der leichten Fraktion zu dem in das Trennsystem k eintretenden Gesamtstrom der Komponente i:

$$\theta_{i}^{k} = \frac{Molstrom \, der \, Komponente \, i \, in \, der \, leichten \, Fraktion \, des \, Trennsystems \, k}{Gesamtstrom \, der \, Komponente \, i \, durch \, das \, Trennsystem \, k} \tag{4}$$

Die Entmischung zwischen dem leichten Uranisotop ²³⁵U und dem schweren Uranisotop ²³⁸U in der Trennstufe wird durch den elementaren Trenneffekt ε_A^{St} angegeben:

$$\varepsilon_A^{St} = \frac{n_l (1 - n_s)}{n_s (1 - n_l)} - 1 \tag{5}$$

Hierbei bedeuten:

 $n_1 = 235$ U-Molenbruch in der leichten Fraktion $n_s = 235$ U-Molenbruch in der schweren Fraktion

Die von einer Trennstufe geleistete Werterzeugung &U ergibt sich zu [9]:

$$\delta U = \frac{1}{2} L_u^{St} \cdot \theta_u^{St} \cdot (1 - \theta_u^{St}) \cdot (\varepsilon_A^{St})^2$$
(6)

<u>Abb. 7:</u> Ersatzschaltbild eines Doppelumlenksystems mit den wichtigsten Kenngrößen zur Beschreibung des Betriebszustandes. Die Indizes kennzeichen:

> Komponente i = g, u, z; g = Gemisch, u = UF_6 , z = Zusatzgas Trennsystem k = 1, 2, St; 1 = 1. Düse, 2 = 2. Düse, St = Stufe.

Mit dem nominellen UF₆-Abschälverhältnis θ_u^n für den in die Trenndüsenstufe eintretenden UF₆-Molstrom LuSt wird die Art der Verschaltung der Trenndüsenstufen festgelegt. Bei der Pilot-Anlage wurde der Wert $\theta_u^n = 1/2$ gewählt, da er zur einfachsten Verschaltung führt. Die wichtigsten Sollwerte der Betriebsgrößen der Trennelemente der Pilot-Anlage sind in der Tabelle 1 zusammengefaßt.

	Sériéo.	Düse	Fraktion		
	Sture		leicht	mittel	schwer
Druck [mbar]	P _{St} 13,9	Р _о 34,6	P _l 13,8	P _m 13,8	Ps 16,3
UF ₆ -Konz. [mol %]	Nst 3,0	N _o 4,2	N _l 1,5	N _m 10,5	Ns 21,6
UF ₆ -Durchsatz [mmol/h]	766	1340	383	574	383

Tabelle 1:Sollwerte der wichtigsten Betriebsgrößen der Trennelemente der
Pilot-Anlage. Der elementare Trenneffekt beträgt $\varepsilon_A^{St} = 14,4 \%$.

2.3 Die Stufenkennlinie

In früheren Arbeiten wurde unter der Randbedingung eines konstanten Zusatzgastransportes gezeigt, daß bei Störungen die Drucke und Konzentrationen in den Trennstufen eindeutig miteinander gekoppelt sind. Auf der Grundlage der experimentell aufgenommenen Kennlinien, welche das Betriebsverhalten der Stufenkomponenten - Verdichter, Trennelement und Rückstauventil - beschreiben, wurde ein vereinfachtes mathematisches Modell entwickelt, mit welchem das Antwortverhalten der Trenndüsenstufe bei Änderungen des Betriebszustandes berechnet wird [10]. Von besonderem Interesse ist hierbei die Änderung des UF₆-Stufenabschälverhältnisses, dessen Abhängigkeit vom UF₆-Inventar IuSt der Trenndüsenstufe durch die sogenannte Stufenkennlinie beschrieben wird.

In einem weiten Bereich um den Sollarbeitspunkt (*) wird die Stufenkennlinie in guter Näherung durch einen quadratischen Ansatz beschrieben und man erhält auf den Sollarbeitspunkt normiert:

$$\theta_{\mu}^{St}/\theta_{\mu}^{St*} = 1 + G \cdot (I_{\mu}^{St}/I_{\mu}^{St*} - 1) + H \cdot (I_{\mu}^{St}/I_{\mu}^{St*} - 1)^{2}$$
⁽⁷⁾

. _ .

Für den UF₆-Stufendurchsatz läßt sich bei gleicher Normierung die Durchsatzkennlinie in Abhängigkeit des UF₆-Stufeninventares als Potenzfunktion angeben:

$$L_{u}^{St}/L_{u}^{St^{*}} = (I_{u}^{St}/I_{u}^{St^{*}})^{E}$$
(8)

In analoger Weise können in der Nähe des Sollbetriebspunktes für andere Betriebsgrößen der Trenndüsenstufe die Abhängigkeit vom UF₆-Stufeninventar formuliert werden und man erhält z. B. für den Düsengasvordruck:

$$P_{o}^{\prime}P_{o}^{*} = (I_{u}^{St}/I_{u}^{St*})^{E}_{2}$$
⁽⁹⁾

Der Verlauf der Stufenkennlinie kann experimentell an einer im Kreislauf betriebenen Stufe gemessen oder mit Hilfe der Kennfelder der Komponentenkennlinien berechnet werden. Für die Pilot-Anlage wurden beide Methoden zur Bestimmung der Stufenkennlinie benutzt. Die ermittelten Parameter sind zusammen mit der Abhängigkeit wichtiger Betriebsgrößen vom UF₆-Stufeninventar in der Tabelle 2 zusammengestellt.

normierte Betriebsgröße	Parameter
UF ₆ -Stufenabschälverhältnis	G = -0,79 H = 0,4
UF ₆ -Stufendurchsatz	E ₁ = 1,33
Düsengasvordruck	$E_2 = 0,42$
Düsengaskonzentration	$E_3 = 0,66$

Tabelle 2:Parameter zur Berechnung der Stufenkennlinie und wichtiger
Betriebsgrößen in Abhängigkeit vom UF6-Stufeninventar.

Die Stufenkennlinie ist in der Abb. 8 dargestellt. Die erste Ableitung wird als Stufengradient G bezeichnet und besitzt im Bereich des aufgrund wirtschaftlicher Überlegungen festgelegten Sollarbeitspunktes A ein negatives Vorzeichen*). Bei einer Erhöhung des UF₆-Stufeninventares nimmt daher das UF₆-Stufenabschälverhältnis ab, und der UF₆-Molstrom in der schweren Fraktion steigt relativ stärker an als in der leichten Fraktion. Aufgrund dieser Abhängigkeit werden die bei Änderung des Betriebszustandes auftretenden UF₆-Störinventare in Richtung Kaskadenfuß transportiert und können hier akkumuliert werden. Die Transportgeschwindigkeit der UF₆-Störinventare wird durch die mittlere Verweilzeit festgelegt, welche sich aus dem Verhältnis von UF₆-Stufeninventar zum UF₆-Stufendurchsatz ergibt und etwa fünf Sekunden beträgt.

<u>Abb. 8:</u> Der Verlauf der Stufenkennlinie an der Pilot-Anlage. In dem aus wirtschaftlichen Überlegungen festgelegten Arbeitspunkt A besitzt die als Stufengradient bezeichnete erste Ableitung ein negatives Vorzeichen.

^{*)} Aus dem Verlauf der Stufenkennlinie entnimmt man, daß ein zweiter Arbeitspunkt existiert, in welchem der Stufengradient jedoch ein positives Vorzeichen besitzt. Bei unveränderter Stellung des Rückstauventiles wird dieser zweite Arbeitspunkt bei einer Verdreifachung des UF₆-Stufeninventares bzw. bei einem auf 55 mbar erhöhten Düsengasvordruck erreicht. Die früher durchgeführten Untersuchungen an der mit Einzelumlenksystemen ausgerüsteten Pilot-Anlage erfolgten wegen einer im Vergleich zum spezifischen Energieverbrauch stärkeren Bewertung der spezifischen Investierung bei einem auf dem rechten Kurvenast liegenden Arbeitspunkt, in dem UF₆-Störinventare zum Kaskadenkopf transportiert werden [11].

2.4 Rechenmodelle

Zur Simulation des stationären und instationären Betriebsverhaltens von Trenndüsenkaskaden wurden in früheren Arbeiten die als "Volle Simulation" und als "SCHNEL-Modell" bezeichneten Rechenmodelle entwickelt. Das als "Volle Simulation" bezeichnete Rechenmodell benutzt direkt die Kennfelder, welche das Verhalten der einzelnen Stufenkomponenten in Abhängigkeit von Druck und UF6-Konzentration beschreiben. Hierbei wird die Trenndüsenstufe in drei Volumina eingeteilt, in welchen Druck und UF6-Konzentration jeweils konstant und dem Düsengas sowie der leichten und schweren Fraktion zugeordnet sind [12]. Bei dem als "SCHNEL-Modell" bezeichneten Simulationsprogramm handelt es sich um ein vereinfachtes Rechenmodell, welches unter der Randbedingung eines konstanten Zusatzgastransportes entwickelt wurde. Als einziger unabhängiger Betriebsparameter wird das UF₆-Stufeninventar ISt benutzt, das die in einer Trenndüsenstufe vorhandene UF₆-Menge angibt. Der Trenndüsenstufe wird nur ein Volumen zugeordnet. Ihr Verhalten wird mit Hilfe der Stufenkennlinie und der UF6-Durchsatzkennlinie berechnet [10]. In diese Rechenmodelle wurden die experimentell ermittelten Kennlinien der Pilot-Anlage eingeführt. Die Erweiterung der Simulationsprogramme um die in der vorliegenden Arbeit entwickelte Betriebsregelung und der Vergleich der rechnerisch ermittelten Ergebnisse mit den experimentellen Daten wird jeweils in den nachfolgenden Kapiteln behandelt.

3. Einregelung in den Sollarbeitspunkt und Störungsanalyse im Kreislaufbetrieb

3.1 Einregelung der Trenndüsenstufen in den Sollarbeitspunkt

Die Einregelung aller zehn Trenndüsenstufen in den Sollarbeitspunkt erfolgte in einer als Kreislaufbetrieb bezeichneten Betriebsart, bei welcher durch Überbrückungsleitungen die schwere Fraktion der Fußstufe vor die Kopfstufe und deren leichte Fraktion direkt vor die Fußstufe geleitet wird (vgl. Abb. 6). Das UF₆ und das Zusatzgas werden so unter Umgehung der Tieftemperaturabscheider im Kreislauf geführt, wodurch eine Akkumulierung von UF₆-Störinventar zwangsläufig unterbunden wird. Da besonders zu Beginn des Einregelvorganges sehr große UF₆-Störtransporte auftreten können, wird durch diesen Kreislaufbetrieb ein Überschreiten der zulässigen Betriebsgrenzen der Stufenverdichter verhindert. Um die Pilot-Anlage an sehr unterschiedliche Betriebsbedingungen anpassen zu können, sind die eingesetzten Roots-Verdichter mit einem Bypassventil zwischen der Druck - und der Saugseite versehen, mit welchem das Kompressionsverhältnis in einem weiten Bereich justiert werden kann. Hierdurch können Arbeitspunkte mit sehr unterschiedlichen Expansionsverhältnissen am Trennelement eingestellt und das aufgrund von Fertigungstoleranzen z. T. stark streuende Kompressionsverhalten der Roots-Verdichter ausgeglichen werden. Die Bypassventile wurden im Kreislaufbetrieb so justiert, daß die Roots-Verdichter im Sollarbeitspunkt des Doppelumlenksystems bei einem Verdichtergegendruck von P₀* und einer UF₆-Konzentration von N₀* das Sollkompressionsverhältnis mit einer maximalen Abweichung von weniger als 5 % erreichen. Diese Justierung wurde bei geschlossenen Rückstauventilen durchgeführt, um die hier unerwünschte Gemischtrennung in den Stufen zu unterbinden.

Für die Einregelung der Trennstufen in den Sollarbeitspunkt wurde die Pilot-Anlage mit dem für den Kreislaufbetrieb berechneten Sollinventar des UF₆ und Zusatzgases gefüllt und bei zunächst weit geöffneten Rückstauventilen betrieben. Fertigungstoleranzen der übrigen Stufenkomponenten und ungleiche Stufenvolumina bewirken zusammen mit dem sehr unterschiedlichen Kompressionsverhalten der Roots-Verdichter bei Druck- und Konzentrationsänderungen, daß sich in jeder Stufe ein individueller Betriebspunkt einstellt. Mit einer schrittweisen Halbierung der jeweils größten Abweichung des Rückstauverhältnisses P_s/P₁ wird zunächst eine grobe Einregelung der UF₆-Stufenabschälverhältnisse anhand der Rückstauventile vorgenommen, wodurch eine rasche Annäherung des Düsengasvordruckes P₀ und der UF₆-Konzentration N₀ an die Sollwerte erreicht wird. Dieses Vorgehen nutzt das für Doppelumlenksysteme charakteristische Antwortverhalten bei Änderung des Rückstauverhältnisses aus, demzufolge sich solche Änderungen im wesentlichen auf die betroffene Stufe auswirken (vgl. 3.2).

Unter Nachregelung des UF₆-Stufenabschälverhältnisses an der Kopfstufe wird danach der Düsengasvordruck P_o stufenweise mit Hilfe der Rückstauventile auf Sollwert geregelt. Diese an der Kopfstufe beginnende Feinregelung wird gegebenenfalls wiederholt, bis das UF₆-Stufenabschälverhältnis an der Kopfstufe und der Düsengasvordruck in allen 10 Stufen innerhalb einer tolerierbaren Sollwertabweichung liegen. Mit der hier dargestellten Prozedur wurde der in der Abb. 9 gezeigte Betriebszustand innerhalb einiger Stunden erreicht, der durch eine mittlere Sollwertabweichung der Betriebsgrößen von weniger als \pm 2 % charakterisiert ist.

<u>Abb. 9:</u> Betriebszustand der Pilot-Anlage nach der Einregelung im Kreislaufbetrieb. Die mittlere Abweichung vom Sollarbeitspunkt beträgt weniger als ± 2 %.

3.2 Störungsanalyse bei lokalen Störungen

Als Betriebsprofile werden die über der Stufennummer aufgetragenen Abweichungen der Betriebsgrößen gegenüber einem störungsfreien Betriebszustand bezeichnet. Sie werden in einem speziellen Unterprogramm des Kaskadenüberwachungsprogramms erstellt und können bei der Diagnose auftretender Störungen an einzelnen Stufen wichtige Hinweise über die Störursache liefern. An der Stufe Nr. 8 wurden für die beiden typischen Störungen im Rückstau- und Kompressionsverhältnis diese Betriebsprofile für die Betriebsgrößen Düsengasvordruck P_o, Düsengaskonzentration N_o, Expansionsverhältnis P_o/P₁, Rückstauverhältnis P_s/P₁ und Ansaugdruck P_a aufgenommen.

Das Betriebsprofil, welches sich bei einer Reduzierung der freien Querschnittsfläche am Rückstauventil der Stufe Nr. 8 ergibt, ist in der Abb. 10 dargestellt und zeigt, daß die aufgeprägte Störung im Rückstauverhältnis sich besonders auf die betroffene Stufe auswirkt. Bei einer Abnahme der freien Querschnittsfläche am Rückstauventil dieser Stufe wird das Rückstauverhältnis erhöht und der UF₆-Durchsatz in der schweren Fraktion reduziert, während der UF₆-Durchsatz in der mittleren Fraktion entsprechend ansteigt und zu einem Anstieg der UF₆-Konzentration N₀ führt. Dieser Konzentrationsanstieg führt zu einem erhöhten Kompressionsverhältnis des Roots-Verdichters und bewirkt eine Zunahme des Düsengasvordruckes und des Expansionsverhältnisses. Da das gesamte UF₆-Inventar im Kreislaufbetrieb konstant bleibt, führt der Anstieg des UF₆-Inventares in der gestörten Stufe zu einer entsprechenden Abnahme der UF₆-Inventare in den übrigen Stufen, wie die geringe und gleichmäßige Abnahme des Düsengasvordruckes und der Düsengaskonzentration in diesen Stufen zeigt.

<u>Abb. 10:</u> Betriebsprofil einer Rückstaustörung an der Stufe Nr. 8 im Kreislaufbetrieb. Durch Reduzierung der freien Querschnittsfläche am Rückstauventil wurde das Rückstauverhältnis P_s/P_l um 17 % erhöht.

Das sich aus der Abnahme des Kompressionsverhältnisses am Stufenverdichter Nr. 8 ergebende Betriebsprofil ist in der Abb. 11 als zweite typische Störung gezeigt. Die Abnahme des Kompressionsverhältnisses kann in einer technischen Trennstufe z. B. durch einen Leistungsabfall eines Verdichtermotores verursacht werden. Diese Störung läßt sich an der Pilot-Anlage durch Öffnen des Bypassventiles des betreffenden Roots-Verdichters simulieren.

Da auf die Saugseite des gestörten Verdichters (Nr. 8) drei verschiedene Fraktionen münden, werden von der Absenkung des Kompressionsverhältnisses drei Stufen (Nr. 7 bis Nr. 9) unmittelbar betroffen. Die Zunahme des Ansaugdruckes bewirkt eine Verminderung des Expansionsverhältnisses an der kaskadenabwärts gelegenen Stufe (Nr. 7) und führt so zu einem erhöhten UF₆-Strom in der leichten Fraktion dieser Stufe. An der gestörten Stufe (Nr. 8) bewirkt der erhöhte Ansaugdruck des Verdichters ein kleineres Expansionsverhältnis der mittleren Fraktion, deren UF₆-Durchsatz dadurch zunimmt. In der kaskadenaufwärts gelegenen Stufe (Nr. 9) wird durch den gestiegenen Ansaugdruck des Verdichters das Rückstauverhältnis erhöht und führt so über ein größeres UF₆-Stufenabschälverhältnis zu einem kleineren UF₆-Durchsatz in der schweren Fraktion dieser Stufe. Die Durchsatzänderungen in den drei Fraktionen kompensieren sich teilweise, so daß in der gestörten Stufe die UF₆-Konzentration und der Düsengasvordruck nahezu konstant bleiben.

Charakteristisch für diese Störung ist, daß die Abnahme des Kompressionsverhältnisses sich kaum auf die Betriebsgrößen P_o und N_o der gestörten Stufe auswirkt, jedoch bei der kaskadenaufwärts gelegenen Nachbarstufe (Nr. 9) zu einem deutlichen Anstieg der Betriebsgrößen P_o und N_o bzw. des hierzu proportionalen UF₆-Stufeninventares führt. Da im Kreislaufbetrieb das UF₆-Inventar konstant bleibt, bewirkt die Zunahme des UF₆-Inventares in der Stufe Nr. 9 eine anteilige Abnahme der UF₆-Inventare in den übrigen Stufen, so daß die Betriebsgrößen P_o und N_o in diesen Stufen abgesenkt werden.

<u>Abb. 11:</u> Betriebsprofil einer Verdichterstörung an der Stufe Nr. 8 im Kreislaufbetrieb. Durch Öffnen des Bypassventiles wurde das Kompressionsverhältnis um -17 % reduziert.

4. Begründung und Realisierung der Betriebsregelung

4.1 Begründung der Betriebsregelung

Bei Trenndüsenkaskaden mit negativem Stufengradienten verursachen UF₆-Störinventare einen zum Kaskadenfuß gerichteten UF₆-Störtransport, dessen Auswirkung auf die gestellte Trennaufgabe davon abhängt, an welcher Stelle der Trenndüsenkaskade die Störung auftritt. Treten Störungen an Stufen innerhalb der Kaskade auf, so ergeben sich hieraus nur unterhalb der Störstelle temporär auftretende UF₆-Störtransporte, welche die ²³⁵U-Isotopenverteilung nur geringfügig ändern. Diese temporären UF₆-Störtransporte klingen mit dem Übergang der gestörten Stufen in einen anderen stationären Arbeitspunkt rasch ab. Das zum Kaskadenfuß transportierte UF₆-Störinventar entspricht dabei der UF₆-Inventaränderung der von der Störung betroffenen Stufen. Ursache solcher temporärer UF₆-Störtransporte können Störungen im Rückstau- und Kompressionsverhältnis sein.

Bei Störungen an Stufen im Bereich des Kaskadenkopfes entsteht zunächst auch hier ein temporärer UF₆-Störtransport. Mit dem UF₆-Stufenabschälverhältnis ändert sich der UF₆-Strom in der leichten Fraktion und damit der in die Gemischtrennanlage eintretende UF₆-Strom. Da der UF₆-Kopfpufferrückstrom konstant ist, induziert die gestörte Stufe auch einen permanenten UF₆-Störtransport, welcher der Änderung des UF₆-Einstroms in die Tieftemperaturabscheider entspricht. Treten Betriebsstörungen an der Vorabscheidertrennstufe, am System der Tieftemperaturabscheider oder der UF₆-Rückspeisung auf, so entstehen hierdurch ebenfalls permanente UF₆-Störtransporte.

Ohne geeignete Gegenmaßnahme können die UF₆-Störtransporte durch die Akkumulierung des UF₆-Störinventares im Bereich der Fußstufen zum Erreichen der zulässigen Betriebsgrenzen der Stufenverdichter und damit zur Abschaltung durch den installierten Verdichterschutz führen. Anhand von Simulationsrechnungen wurde gezeigt, daß die Akkumulierung von UF₆-Störinventar im Bereich der Fußstufen verhindert werden kann, indem das UF₆-Inventar der Fußstufe mit Hilfe des Tails-Entnahmestromes geregelt wird. Durch diese UF₆-Inventarregelung können jedoch die durch permanente UF₆-Störtransporte entstehenden Sollwertabweichungen des ²³⁵U-Isotopengradienten nicht beseitigt werden.

Aufgrund der im Verhältnis zum Produktstrom P großen externen UF₆-Ströme UTTA und URP führen selbst relativ kleine Änderungen dieser externen UF₆-Ströme zu großen permanenten UF₆-Störtransporten. Um diese am Kaskadenkopf durch Bilanzieren feststellen zu können, wäre hier ein hoher Aufwand für die Meß- und Regelgenauigkeit erforderlich, während diese Änderungen anhand des Tails-Entnahmestromes T umso leichter detektiert werden können, je größer das Verhältnis von URP/T ist. Diese verstärkte Auswirkung von Störungen am Kaskadenkopf auf den Tails-Entnahmestrom kann zur Regelung des UF₆-Transportes und damit zur Einhaltung der ²³⁵U-Isotopenkonzentrationen in den UF₆-Entnahmeströmen genutzt werden. Da die UF₆-Inventarregelung mit Hilfe des Tails-Entnahmestromes erfolgt, kann für die UF₆-Transportregelung die Regelgröße aus dem Tails-Entnahmestrom bzw. aus der Reglerstellung der UF₆-Inventarregelung abgeleitet werden. Als Stellgröße für die UF₆-Transportregelung ist der UF₆-Kopfpufferrückstrom URP besonders geeignet, da er frei von Zusatzgas ist und über den UF₆-Einspeisedruck relativ genau eingestellt werden kann.

Die UF₆-Inventarregelung zur Einhaltung der zulässigen Betriebsbedingungen und die UF₆-Transportregelung zur Einhaltung des ²³⁵U-Isotopengradienten wurden an der 10-stufigen Pilot-Anlage realisiert und experimentell erprobt.

4.2 Realisierung der UF₆-Inventarregelung

Um die Pilot-Anlage als Abstreifteil einer Kakade bei konstantem UF₆-Inventar betreiben zu können, mußten vor dem Übergang zu dieser Betriebsart die zur Tails-Entnahme notwendigen Einrichtungen installiert werden. Für die Tails-Entnahme aus der schweren Fraktion der Fußstufe wurden ein Feindosierventil mit Stellmotor und ein nachgeschalteter Tieftemperaturabscheider montiert. Durch Voruntersuchungen wurden zunächst für den Stellbereich und die Stellgeschwindigkeit des Tails-Entnahmestroms die erforderlichen Auslegungswerte festgelegt. Hierzu wurden temporäre und permanente UF₆-Störtransporte aufgeprägt und die Auslegungswerte aus dem Antwortverhalten der Fußstufe bei konstanter Stellung des Tails-Entnahmeventiles ermittelt.

Dem Rechner des on-line arbeitenden Datenerfassungssystems wurde die UF₆-Inventarregelung übertragen, welche als unterteiltes Blockdiagramm in der Abb. 12 dargestellt ist. Durch das Kaskadenüberwachungsprogramm wird der Betriebszustand jeder Stufe ermittelt. Da das UF₆-Inventar der Fußstufe als direkte Regelgröße aus den vorliegenden Meßdaten nicht bestimmt werden kann, wird als Regelgröße eine vom UF₆-Stufeninventar abhängige Betriebsgröße der Fußstufe benutzt. Als Regelgröße wird der Düsengasvordruck P₀ verwendet, da die Druckmessung nahezu verzögerungsfrei ist, während die Messung der Düsengaskonzentration N₀ mit einer Verzögerung von etwa 15 bis 30 s behaftet ist. Die Ansteuerung des Stellmotores erfolgt über ein parallel Input/Output-Interface, über welches der Rechner die Steuerkommandos Drehrichtung und Betätigungsdauer an das Stellglied leitet. Diese Steuerkommandos werden in einem Unterprogramm über einen hier programmierten Geschwindigkeits-Algorithmus [13] berechnet, bei deren Ausführung die freie Querschnittsfläche des Feindosierventils und damit der Tails-Entnahmestrom geändert wird. Die Drehrichtung bestimmt das Vorzeichen der Änderung, während die Betätigungsdauer den Betrag festlegt, da der Stellmotor mit konstanter Drehgeschwindigkeit arbeitet. Der Stellbereich des Feindosierventiles wird ebenfalls durch den Rechner überwacht, wobei die untere Stellgrenze so gelegt wurde, daß zum Schutz des Ventiles ein völliges Schließen verhindert wird.

Bei technischen Trenndüsenkaskaden können UF₆-Störtransporte durch die Akkumulierung des UF₆-Störinventares im Bereich der Fußstufen zum Erreichen der zulässigen Betriebsgrenzen der Radialverdichter und damit zur Abschaltung durch den installierten Verdichterschutz führen. Um die Abschaltung der Verdichter zu verhindern, muß das Störverhalten des UF₆-Inventarreglers daher durch eine möglichst geringe Überschwingweite gekennzeichnet sein.

Obwohl bei den an der Pilot-Anlage eingesetzten Roots-Verdichtern die für Radialverdichter einzuhaltenden Betriebsgrenzen nicht bestehen, erfolgte die Anpassung der UF₆-Inventarregelung unter dieser Randbedingung. Hierdurch soll gezeigt werden, daß selbst bei massiven UF₆-Störtransporten bestimmte Betriebsgrenzen in der besonders gefährdeten Fußstufe nicht überschritten werden und die UF₆-Inventarregelung damit ein Abschalten der Verdichter durch den installierten Komponentenschutz wirksam verhindert. In diesem Sinn wurden Sollwertabweichungen von 10 % für den Düsengasvordruck P_o der Fußstufe als Betriebsgrenzen für die Roots-Verdichter festgelegt.

Bei der UF₆-Inventarregelung bildet die Fußstufe die Regelstrecke. Aus der experimentell aufgenommenen Sprungantwort bei temporären und permanenten UF₆-Störtransporten wurden erste Einstellwerte für einen proportional-integral wirkenden Regler ermittelt. Die Einstellwerte wurden durch weitere Untersuchungen des Störverhaltens angepaßt und die Regelgüte soweit verbessert, bis für die betrachteten Störungen eine Überschwingweite der Regelgröße Düsengasvordruck P_o von weniger als 5 % des Sollwertes erreicht wurde.

In der Abb. 13 ist am Beispiel eines massiven permanenten UF₆-Störtransportes das Antwortverhalten der Pilot-Anlage anhand der Düsengasvordrucke P_o dargestellt. Als Störung wurde der UF₆-Kopfpufferrückstrom URP um 11,2 % erhöht, was einer Zunahme des UF₆-Transportes um ca. 100 % entspricht. Aus dem zeitlichen Anstieg der Düsengasvordrucke kann man entnehmen, daß die Störung mit einer Geschwindigkeit von etwa 5 Sekunden pro Stufe zum Kaskadenfuß wandert. Der Düsengasvordruck erhöht sich in den Stufen Nr. 10 bis Nr. 2 mit nahezu gleicher Zeitkonstante stationär nur um etwa 2 %, was einer Zunahme der UF₆-Stufeninventare um ca. 4 % entspricht. In der Fußstufe führt die Störung zunächst zu einem ähnlichen Anstieg, jedoch verhindert die UF₆-Inventarregelung eine weitere Akkumulierung von UF₆-Inventar und baut die Störung über den steigenden Tails-Entnahmestrom sehr schnell ab. Nach einer Überschwingweite des Düsengasvordruckes von weniger als 3 % und einer Anregelzeit von etwa 2 Minu-

<u>Abb. 13:</u> Antwortverhalten der Pilot-Anlage auf einen massiven permanenten UF₆-Störtransport bei eingeschalteter UF₆-Inventarregelung nach einer Zunahme des UF₆-Kopfpufferrückstromes um 11,2 %.

----- Experiment ------ Modellrechnung "Volle Simulation"

ten arbeitet die Fußstufe nach ca. 9 Minuten wieder im Sollarbeitspunkt. Die UF₆-Inventarregelung verhindert selbst bei dieser massiven Störung ein Überschreiten der festgelegten Betriebsgrenzen.

Das realisierte Konzept der rechnergestützten Regelung des UF₆-Inventares wurde in die bestehenden Simulationsprogramme zur Berechnung des instationären Betriebsverhaltens der Versuchskaskade übernommen. Für die betrachtete Störung des UF₆-Kopfpufferrückstromes URP um 11,2 % ist in der Abb. 13 das experimentelle Ergebnis und das mit der "Vollen Simulation" berechnete Antwortverhalten zusammen dargestellt. Die Abb. 13 zeigt, daß sowohl das instationäre Antwortverhalten der Stufen als auch der stationäre Betriebszustand durch das Simulationsprogramm richtig berechnet wird. Die geringfügigen Abweichungen zwischen Experiment und Rechnung beruhen im wesentlichen darauf, daß im Simulationsprogramm angenommen wird, daß die Versuchskaskade aus völlig identischen Stufenkomponenten aufgebaut ist und alle Stufen vor Beginn der Störung exakt im Sollarbeitspunkt arbeiten. Diese Annahmen können von der Pilot-Anlage nur näherungsweise erreicht werden.

Bei ausgeschalteter UF6-Inventarregelung wurde für die gleiche Störung das Antwortverhalten mit der "Vollen Simulation" berechnet und in der Abb. 14 dargestellt. Der Anstieg des UF6-Kopfpufferrückstromes (Abb. 14a) bewirkt über den gestiegenen UF₆-Transport nach ca. 50 Sekunden eine rasche Zunahme des Tails-Entnahmestromes T (Abb. 14b), welcher nach sechs Minuten stationär um ca. 100 % zugenommen hat. Da die freie Querschnittsfläche am Feindosierventil jetzt konstant bleibt, erhöht sich der Tails-Entnahmestrom nur über den Druckanstieg in der schweren Fraktion der Fußstufe. Der UF₆-Störtransport führt daher in der Fußstufe solange zu einem Anstieg des Düsengasvordruckes Po (Abb. 14c), bis über den damit verbundenen Druckanstieg in der schweren Fraktion im stationären Betriebszustand die Zunahme des Tails-Entnahmestromes dem UF6-Störtransport entspricht. Dieser Zustand wird nach etwa 6 Minuten erreicht, wobei sich der Düsengasvordruck in der Fußstufe stationär um 30 % erhöht. Die festgelegte Betriebsgrenze wird bereits nach etwa 1,5 Minuten überschritten. Auf die übrigen Stufen wirkt sich dieser UF₆-Störtransport deutlich geringer aus und führt in der Stufe Nr. 2 zu einem Druckanstieg von maximal 10 % (Abb. 14d), während in den hier nicht dargestellten übrigen Stufen der Anstieg nur etwa 2 % beträgt.

<u>Abb. 14:</u> Mit der "Vollen Simulation" berechnetes Antwortverhalten der Pilot-Anlage bei ausgeschalteter UF₆-Inventarregelung auf einen massiven permanenten UF₆-Störtransport nach einer Zunahme des UF₆-Kopfpufferrückstromes um 11,2 %.

4.3 Realisierung der UF₆-Transportregelung

Da im stationären Betriebszustand die Änderungen des UF₆-Transportes und des Tails-Entnahmestromes einander gleich sind, kann als Regelgröße für die UF₆-Transportregelung (Abb. 15) der Tails-Entnahmestrom oder eine hierzu proportionale Größe verwendet werden. An der Pilot-Anlage wurde als Regelgröße die Stellung des Feindosierventiles für den Tails-Entnahmestrom gewählt. Diese Stellung wird als Spannungssignal R_T über ein Drehpotentiometer auf der Ventilachse ermittelt. Da die UF₆-Inventarregelung die Fußstufe in ihrem Sollarbeitspunkt hält, steht somit ein zur Regelgröße proportionales Signal zur Verfügung, welches unverzögert der Änderung des Tails-Entnahmestromes folgt.

<u>Abb. 15:</u> Blockdiagramm der gesamten Betriebsregelung für die Pilot-Anlage.

Als Stellgröße wird der UF₆-Kopfpufferrückstrom URP benutzt, dessen Größe über den UF₆-Einspeisedruck P_{RP} und einer überkritischen Meßblende gemessen wird. An einem Sollwertgeber R_{RP} kann der UF₆-Einspeisedruck eingestellt und in einem ausreichend großen Stellbereich verändert werden. Über das Datenerfassungssystem stehen die zur Regel- und Stellgröße proportionalen Signale zur Verfügung. Durch einen für die UF₆-Transportregelung programmierten Geschwindigkeits-Algorithmus werden die zur Nachstellung des UF₆-Kopfpufferrückstromes erforderlichen Steuerkommandos berechnet. Die Pilot-Anlage ist als Abreicherungsteil einer Kaskade geschaltet. Bei dieser Betriebsart wird die ²³⁵U-Isotopenkonzentration am Kaskadenkopf durch den UF₆-Kopfpufferrückstrom URP aufgeprägt, während die ²³⁵U-Isotopenkonzentration am Kaskadenfuß mit abnehmendem UF₆-Transport geringer wird. Bei dieser speziellen Betriebsart hat die UF₆-Transportregelung daher die Aufgabe, die ²³⁵U-Isotopenkonzentration n_T im Tails-Entnahmestrom T auf Sollwert zu halten. Für die Anpassung der UF₆-Transportregelung an die Regelstrecke, welche jetzt von der gesamten Kaskade gebildet wird, muß daher das Antwortverhalten des Tails-Entnahmestromes T und der ²³⁵U-Isotopenkonzentration n_T bei permanenten UF₆-Störtransporten untersucht werden.

Da besonders der zeitliche Verlauf der ²³⁵U-Isotopenkonzentration n_T nur mit erheblichem experimentellen Aufwand ermittelt werden kann, wurde das Antwortverhalten bei permanenten UF₆-Störtransporten mit Hilfe von Simulationsrechnungen ermittelt. Wie erwartet folgt die ²³⁵U-Isotopenverteilung einem geänderten UF₆-Transport nur mit deutlicher Verzögerung. Die Ausgleichszeit für die ²³⁵U-Isotopenkonzentration n_T liegt um einen Faktor 5 bis 10 über der Ausgleichszeit für den Tails-Entnahmestrom T, während die Verzugszeit für beide Größen etwa den gleichen Wert hat. Aus diesen Kenngrößen wurden für einen proportional-integral wirkenden Regler erste Regelparameter berechnet und die UF₆-Transportregelung ihrem Aufbau entsprechend in die Simulationsprogramme eingeführt. Mit Hilfe von Simulationsrechnungen wurde das Störverhalten der UF₆-Transports von bis zu 50 % des Sollwertes Ausregelzeiten zu erreichen, welche deutlich kleiner als die jeweiligen Einstellzeiten der stationären ²³⁵U-Isotopenverteilung sind.

Temporäre UF₆-Störtransporte, die beispielsweise durch Störungen innerhalb der Kaskade induziert werden, führen nur zu geringen Änderungen der ²³⁵U-Isotopenverteilung, jedoch können durch die UF₆-Inventarregelung kurzzeitige und relativ große Änderungen des Tails-Entnahmestromes auftreten. Da die UF₆-Transportregelung über den Tails-Entnahmestrom mit der UF₆-Inventarregelung verknüpft ist, würden solche Änderungen zu unnötigen Eingriffen der UF₆-Transportregelung führen. Um solche Eingriffe weitgehend zu unterdrücken, wurde eine vom Betriebszustand der Fußstufe abhängige Schwelle programmiert, bei deren Überschreitung die UF₆-Transportregelung ausgeschaltet wird. Diese Schwelle wird zweckmäßigerweise durch eine vorgegebene Regeldifferenz von ca. 2 % des Düsengasvordruckes der Fußstufe festgelegt. Das Einschalten der UF₆-Transportregelung erfolgt somit nur, wenn die Fußstufe nahe ihrem Sollarbeitspunkt arbeitet. Man erreicht auf diese Weise, daß die UF₆-Transportregelung im wesentlichen nur auf permanente UF₆-Störtransporte reagiert. Diese mit Hilfe von Simulationsrechnungen konzipierte UF₆-Transportregelung wurde an der Pilot-Anlage realisiert und somit die Betriebsregelung vollständig installiert.

4.4 Gasdynamische Erprobung der Betriebsregelung

Mit der gasdynamischen Erprobung der Betriebsregelung an der Pilot-Anlage war zunächst zu zeigen, daß bei permanenten UF₆-Störtransporten sowohl eine ausreichende Entkopplung zwischen der UF₆-Inventarregelung und der UF₆-Transportregelung erreicht wird als auch die geforderten Ausregelzeiten für den UF₆-Transport eingehalten werden.

Das experimentell ermittelte Antwortverhalten bei eingeschalteter Betriebsregelung ist in der Abb. 16 am Beispiel eines permanenten UF₆-Störtransportes dargestellt, welcher durch eine Vergrößerung der freien Querschnittsfläche am Rückstauventil der Kopfstufe induziert wurde. Mit der Abnahme des Rückstauverhältnisses R = P_s/P_l (Abb. 16a) um -7,7 % zum Zeitpunkt t = 0 verringert sich das UF₆-Stufenabschälverhältnis, wodurch der UF₆-Einstrom UTTA in die Tieftemperaturabscheider am Kaskadenkopf um -AUTTA abnimmt. Da der UF₆-Kopfpufferrückstrom URP (Abb. 16b) zunächst konstant bleibt, steigt von der Kopfstufe ausgehend der UF₆-Durchsatz der schweren Fraktion in den kaskadenabwärts gelegenen Stufen ebenfalls um AUTTA an. Nach etwa einer Minute hat der so induzierte permanente UF₆-Störtransport die Fußstufe erreicht, deren Betriebszustand aus dem Verlauf des Düsengasvordruckes Po (Abb. 16c) hervorgeht. Da die UF₆-Inventarregelung bei dieser Störung die Fußstufe stets nahe dem Sollarbeitspunkt hält, bleibt die UF6-Transportregelung eingeschaltet und reagiert unmittelbar auf den steigenden Tails-Entnahmestrom, (Abb. 16d) mit einer langsamen Reduzierung des UF₆-Kopfpufferrückstromes. Der Verlauf des Tails-Entnahmestromes zeigt, daß nach einer Ausregelzeit von etwa sieben Minuten der UF6-Transport den eingestellten Wert vor der Störung wieder erreicht hat, wobei der UF₆-Kopfpufferrückstrom stationär um - 5 % zurückgenommen wurde.

Die Rückstaustörung wurde nach acht Minuten wieder beseitigt, so daß der UF₆-Einstrom UTTA in die Tieftemperaturabscheider wieder auf den Wert vor der Störung ansteigt. Der UF₆-Transport bzw. der Tails-Entnahmestrom nehmen daher zunächst ab. Für die Ausregelung dieser induzierten UF₆-Transportstörung ergibt sich ein qualitativ ähnlicher Verlauf. Da das Feindosierventil an der unteren Stellgrenze stets etwas geöffnet bleibt, wird in diesem Stellbereich noch Tails-Strom entnommen, wodurch die Ausregelzeiten und die Überschwingweiten größer werden.

Die erreichten Ausregelzeiten betragen etwa 25 % der anhand von Simulationsrechnungen ermittelten Einstellzeit der stationären ²³⁵U-Isotopenverteilung und lassen erwarten, daß durch die UF₆-Transportregelung bei induzierten UF₆-Störtransporten nur geringe Abweichungen der ²³⁵U-Isotopenkonzentration im Tails-Entnahmestrom auftreten werden.

<u>Abb. 16:</u> Experimentell ermitteltes Antwortverhalten bei induziertem UF₆-Störtransport und eingeschalteter Betriebsregelung.

5. Einhaltung des ²³⁵U-Isotopengradienten durch die UF₆-Transportregelung

Da die Pilot-Anlage als Abstreifteil einer Kaskade geschaltet ist, wird die ²³⁵Ulsotopenkonzentration an der Kopfstufe durch den UF₆-Kopfpufferrückstrom URP aufgeprägt und ändert sich mit dem UF₆-Transport τ_u nur unwesentlich. Im Abstreifteil wird die ²³⁵U-lsotopenkonzentration n_T im Tails-Entnahmestrom T mit abnehmendem UF₆-Transport geringer. Die UF₆-Transportregelung hat bei dieser Schaltung daher die Aufgabe, die ²³⁵U-lsotopenkonzentration n_T und den hierdurch bestimmten ²³⁵U-lsotopengradienten auf einem vorgegebenen Wert zu halten.

Die Erfüllung dieser Aufgabe wird für den stationären Betriebszustand anhand der gemessenen Abhängigkeit des ²³⁵U-Isotopengradienten und für den instationären Betriebszustand am Beispiel einer Simulationsrechnung gezeigt.

5.1 Experimentelle Bestimmung des stationären ²³⁵U-Isotopengradienten in Abhängigkeit vom UF₆-Transport

Zur Bestimmung der Abhängigkeit der ²³⁵U-Isotopenkonzentration n_T erfolgte die Variation des UF₆-Transportes in einer ersten Meßreihe direkt durch Änderung des UF₆-Kopfpufferrückstromes URP.In einer zweiten Meßreihe wurde der UF₆-Transport variiert, indem bei konstantem UF₆-Kopfpufferrückstrom durch Änderungen des Rückstau- bzw. des Kompressionsverhältnisses an den Stufen Nr. 9 bzw. Nr. 10 ein geänderter UF₆-Einstrom UTTA in die Tieftemperaturabscheider am Kaskadenkopf induziert wurde. Während der Messungen war nur die UF₆-Inventarregelung eingeschaltet. Im stationären Betriebszustand entspricht der Tails-Entnahmestrom dem UF₆-Transport, dessen Größe durch Wiegen des abgeschiedenen Tails-Entnahmestromes gemessen wurde. Bei der Bestimmung der ²³⁵U-Isotopenkonzentration n_T wurde ein Massenspektrometer mit Doppelauffängern und spezieller Elektronik für die Verhältnisbildung der Ionenströme benutzt [14].

In der Abb. 17 ist die gemessene ²³⁵U-Isotopenkonzentration n_T über dem UF₆-Transport aufgetragen, welcher auf den Sollwert des UF₆-Stufendurchsatzes U_{St}* normiert wurde. Bei der massenspektrometrischen Bestimmung der ²³⁵U-Isotopenkonzentration des Tails-Entnahmestromes wurde zum Vergleich stets eine

<u>Abb. 17:</u> Abhängigkeit der ²³⁵U-Isotopenkonzentration n_{τ} vom auf den UF₆-Stufendurchsatz U_{st}* normierten UF₆-Transport τ_u im stationären Betriebszustand.

In der 1. Meßreihe (Symbol•) wurde der UF₆-Transport durch den UF₆-Kopfpufferrückstrom und in der 2. Meßreihe (Symbol o) durch Änderung des Betriebszustandes an den Stufen Nr. 9 und Nr. 10 variiert. Die durchgezogene Kurve gibt den theoretischen Verlauf wieder.

Probe aus dem UF₆-Kopfpuffer mit der natürlichen Isotopenkonzentration benutzt. Zum Vergleich ist der theoretische Verlauf der ²³⁵U-Isotopenkonzentration eingetragen, welcher mit Hilfe der ²³⁵U-Isotopenbilanzen für den stationären Zustand iterativ berechnet wurde.

Die Pilot-Anlage arbeitet bei dieser Variation des UF₆-Transportes im Mittel bei unterschiedlichen Arbeitspunkten, woraus sich geringfügige Änderungen des elementaren Trenneffektes in den einzelnen Stufen ergeben. Aus Messungen des Elementareffektes der Isotopentrennung in Abhängigkeit der Betriebsbedingungen konnte jedoch abgeschätzt werden, daß dieser Einfluß auf die ²³⁵U-Isotopenkonzentration des Tails sehr gering ist. Die Meßwerte aus der Variation des UF₆-Transportes durch den UF₆-Kopfpufferrückstrom (Symbol •) bzw. durch die Änderungen des Betriebszustandes an den Stufen Nr. 9 und Nr. 10 (Symbol o) weisen gegenüber dem theoretischen Verlauf keine systematische Abweichung auf. Bei einer Standardabweichung von 0,15 ‰ ²³⁵U sind die Messungen in guter Übereinstimmung mit den theoretischen Werten.

Für den stationären Betriebszustand belegen die durchgeführten Messungen, daß über den als Stellgröße der UF₆-Transportregelung dienenden UF₆-Kopfpufferrückstrom URP die durch Fehleinstellungen an Stufen in der Nähe des Kaskadenkopfes verursachten Änderungen des UF₆-Transportes und des ²³⁵U-Isotopengradienten beseitigt werden können.

Prinzipiell könnte der UF₆-Einstrom UTTA in die Tieftemperaturabscheider am Kaskadenkopf als Stellgröße für den UF₆-Transport benutzt werden. An der Pilot-Anlage würde dann als Stellglied das Rückstauventil der Kopfstufe dienen. Da das Rückstauventil einen begrenzten Stellbereich und eine nicht lineare Kennlinie besitzt, erscheint die Regelung des UF₆-Transportes mit dem UF₆-Einstrom UTTA als Stellgröße weniger geeignet.

5.2 Berechnung des instationären Verlaufes des ²³⁵U-Isotopengradienten

Erwartungsgemäß liefern die in Kapitel 2.4 beschriebenen instationären Simulationsprogramme für die durchgeführte Variation des UF₆-Transportes im stationären Betriebszustand dieselbe quantitative Abhängigkeit der ²³⁵U-Isotopenkonzentration n_T. Da auch das stationäre und instationäre gasdynamische Betriebsverhalten richtig wiedergegeben werden, kann man daher erwarten, daß die Simulationsprogramme auch die experimentell schwer meßbare instationäre ²³⁵U-Isotopenverteilung richtig beschreiben.

Der hier interessierende instationäre Verlauf der ²³⁵U-Isotopenkonzentration n_T im Tails-Entnahmestrom und des zeitlichen Mittelwertes \bar{n}_{T} im Tails-Abscheider bei induziertem UF₆-Störtransport wird daher anhand einer mit dem "SCHNEL-Modell" durchgeführten Simulationsrechnung gezeigt.

In der Rechnung wurde für den störungsfreien Betriebszustand der UF₆-Transport τ auf 2 % des Sollwertes des UF₆-Stufendurchsatzes U_{St}* eingestellt und als Störung eine Reduzierung des Rückstauverhältnisses um -7,3 % an der Kopfstufe gewählt. In der Abb. 18 ist das berechnete instationäre Betriebsverhalten als Änderung gegenüber dem ungestörten Betriebszustand dargestellt.

<u>Abb. 18:</u> Mit dem "SCHNEL-Modell" berechneter zeitlicher Verlauf einer UF₆-Transportstörung, die durch Reduzierung des Rückstauverhältnisses um -7,3 % an der Kopfstufe induziert wurde. Die durchgezogenen Kurven geben den Verlauf mit eingeschalteter UF₆-Transportregelung wieder, während die gestrichelt eingetragenen Kurven dem Verlauf bei ausgeschalteter UF₆-Transportregelung entsprechen.

Die eingetragenen Symbole kennzeichnen folgende Meßwerte:

- ungestörter Betriebszustand
- A = induzierter UF₆-Störtransport bei eingeschalteter UF₆-Trans-portregelung
- o = induzierter UF₆-Störtransport bei ausgeschalteter UF₆-Transportregelung

Mit der Reduzierung des Rückstauverhältnisses an der Kopfstufe zum Zeitpunkt t = 0 sinkt der UF₆-Einstrom UTTA in die Tieftemperaturabscheider um -3 % (Abb. 18a). Da ohne die UF₆-Transportregelung (gestrichelte Kurven) der UF₆-Kopfpufferrückstrom URP (Abb. 18b) konstant bleibt, führt diese relativ geringe Abnahme von UTTA zu einem relativ starken Anstieg des UF₆-Transportes. Die UF₆-Inventarregelung reagiert auf den induzierten UF₆-Störtransport mit einer schnellen Erhöhung des UF₆-Tails-Entnahmestromes T (Abb. 18c). Aus dem Verlauf des Tails-Entnahmestromes entnimmt man, daß dieser nach etwa 2,5 Minuten bereits 90 % seines stationären Endwertes erreicht hat. Im gasdynamisch stationären Betriebszustand bewirkt die betrachtete Reduzierung des Rückstauverhältnisses an der Kopfstufe eine Zunahme des UF₆-Transportes um 75 %.

Mit dem induzierten UF₆-Störtransport steigt die ²³⁵U-Isotopenkonzentration n_T (Abb. 18d) im Tails-Entnahmestrom zunächst relativ rasch an und erreicht nach ca. 16 Minuten 90 % des stationären Wertes. Gegenüber dem störungsfreien Betriebszustand bewirkt der UF₆-Störtransport eine stationäre Zunahme der ²³⁵U-Isotopenkonzentration n_T im Tails-Entnahmestrom um relativ 1,7 %, was einer Abnahme des ²³⁵U-Isotopengradienten um -13 % entspricht.

Durch Aufsummieren des Tails-Entnahmestromes T und seines ²³⁵U-Isotopenstromes n_{τ} ·T wurde die abgeschiedene UF₆-Menge T und deren mittlere ²³⁵U-Isotopenkonzentration \bar{n}_{τ} berechnet, wobei der Tails-Abscheider zu Beginn der Störung als leer angenommen wurde. Die mittlere ²³⁵U-Isotopenkonzentration \bar{n}_{τ} (Abb. 18e) des UF₆-Inhaltes im Tails-Abscheider steigt langsamer als die ²³⁵U-Isotopenkonzentration n_{τ} im Tails-Entnahmestrom an und erreicht erst 60 Minuten nach Beginn der Störung 90 % des stationären Wertes. Der UF₆-Inhalt T (Abb. 18f) im Tails-Abscheider steigt mit dem induzierten UF₆-Störtransport zunächst rasch an und erreicht bereits nach acht Minuten 90 % des stationären Wertes.

Für den gleichen induzierten UF₆-Störtransport geben die durchgezogenen Kurven den berechneten Verlauf mit eingeschalteter UF₆-Transportregelung wieder. Mit dem reduzierten Rückstauverhältnis an der Kopfstufe nimmt der UF₆-Einstrom UTTA (Abb. 18a) zunächst ebenfalls um -3 % ab. Die UF₆-Transportregelung reduziert den UF₆-Kopfpufferrückstrom URP (Abb. 18b) innerhalb von vier Minuten um -5 % und beseitigt so den induzierten UF₆-Störtransport. Aus dem Verlauf des UF₆-Tails-Entnahmestromes T (Abb. 18c) erkennt man, daß nach etwa zehn Minuten der Tails-Entnahmestrom und damit der UF₆-Transport den Wert des störungsfreien Betriebszustandes erreichen. Die ²³⁵U-Isotopenkonzentration n_T (Abb. 18d) im Tails-Entnahmestrom T ändert sich zunächst mit der gleichen Zeitkonstante wie bei ausgeschalteter UF₆-Transportregelung. Nach drei Minuten erreicht die ²³⁵U-Isotopenkonzentration n_T eine maximale Abweichung von 0,5 % relativ und nähert sich dann wieder langsam dem ungestörten Wert an. Für die mittlere Isotopenkonzentration \bar{n}_{T} (Abb. 18e) der UF₆-Menge T im zu Beginn der Störung leeren Tails-Abscheider ergibt sich ein ähnlicher Verlauf wie für die momentane ²³⁵U-Isotopenkonzentration n_T im Tails-Entnahmestrom, jedoch ist die maximale Abweichung kleiner und die Zeitkonstante größer (Abb. 18e). Zu Beginn der Störung steigt die UF₆-Menge \bar{T} (Abb. 18f) im Tails-Abscheider zunächst mit der Zunahme des Tails-Entnahmestromes T rasch an, um sich nach einer maximalen Abweichung von 55 % langsam dem Sollwert zu nähern.

Das mit dem SCHNEL-Modell berechnete Antwortverhalten zeigt, daß ausreichend kurze Ausregelzeiten erreicht werden, so daß im wesentlichen nur während der Ausregelzeit der UF₆-Transportstörung ein geänderter ²³⁵U-Isotopenstrom abgeschieden wird. Da der Tails-Abscheider zu Beginn der UF₆-Transportstörung als leer angenommen wurde, entspricht der Verlauf der mittleren ²³⁵U-Isotopenkonzentration \bar{n}_{T} der UF₆-Menge im Tails-Abscheider einer oberen Grenze der Störauswirkung.

Der zeitliche Verlauf der ²³⁵U-Isotopenkonzentration kann experimentell nur mit erheblichem Aufwand bestimmt werden, da für die massenspektrometrische Auswertung eine ausreichende Menge an UF₆ erforderlich ist. Während der UF₆-Transportstörung kann diese Menge an UF₆ gesammelt und deren mittlere ²³⁵U-Isotopenkonzentration gemessen werden. Für die hier behandelte UF₆-Transportstörung wurde an der Pilot-Anlage während der Ausregelzeit für 12 Minuten der Tails-Entnahmestrom gesammelt und die sich ergebende mittlere ²³⁵U-Isotopenkonzentration \overline{n}_{T} gemessen. Diese Messung sowie die experimentellen Werte der ²³⁵U-Isotopenkonzentration im störungsfreien Betriebszustand bzw. im stationären Betriebszustand bei induziertem UF₆-Störtransport und ausgeschalteter UF₆-Transportregelung sind in der Abb. 18 eingetragen.

Die Meßwerte und das berechnete Antwortverhalten belegen, daß mit der realisierten UF₆-Transportregelung auch bei induzierten UF₆-Störtransporten nur während der Ausregelzeit geringe Änderungen des ²³⁵U-Isotopengradienten auftreten. Im Rahmen der Meßgenauigkeit zeigen Messung und Simulationsrechnung auch für die instationäre ²³⁵U-Isotopenverteilung eine gute Übereinstimmung.

6. Diskussion der Ergebnisse

In der vorliegenden Arbeit wurde die anhand von Simulationsrechnungen getroffene Aussage [4] experimentell bestätigt, daß an einzelnen Stufen auftretende Störungen bei Kaskaden mit Doppelumlenksystemen wesentlich stärker als bei Kaskaden mit Einfachumlenksystemen lokalisiert sind. Die aufgenommenen Störungsprofile zeigen, daß eine Unterscheidung zwischen einer Störung im Rückstauverhältnis und einer Störung im Kompressionsverhältnis anhand der unterschiedlichen Lage der maximalen Abweichung des Düsengasvordrucks und des Ansaugdrucks des Verdichters möglich ist.

Die in der vorliegenden Arbeit eingeführte Betriebsregelung zur Stabilisierung der UF₆-Verteilung und des ²³⁵U-Isotopengradienten wurde an einer als Abstreifkaskade arbeitenden Trenndüsenanlage experimentell erprobt. Die Betriebsregelung benutzt als Stellgröße den UF₆-Pufferrückstrom am Kaskadenkopf, mit dem ein vorher festgelegter Tails-Strom unter Einhaltung der vorgesehenen Betriebsbedingungen der Fußstufe konstant gehalten wird. Die Anforderungen an die Meß- und Regelgenauigkeit werden umso höher, je kleiner das Verhältnis von Entnahmestrom zu Kaskadenumlaufstrom, d. h. je größer die Stufenzahl ist.

Bei einer technischen Trenndüsenanlage liegt die Gesamtstufenzahl um mehr als eine Größenordnung über der Stufenzahl der Pilot-Anlage. Die Betriebsregelung wird dann nicht nur die Konstanthaltung des Produkt- und Tails-Stromes innerhalb bestimmter Fehlergrenzen sowie die Einhaltung der Betriebsbedingungen zur Aufgabe haben, sondern den Produkt- und Tails-Strom unter Einbeziehung des Feed-Stromes so regeln, daß die gewünschten Isotopenkonzentrationen bei vorgegebenen Betriebsbedingungen eingehalten werden.

Die diesen Anforderungen entsprechende Betriebsregelung ist in Abb. 19 dargestellt. Im Sollarbeitspunkt ist die ²³⁵U-Isotopenkonzentration n_p* des in die Tieftemperaturabscheider eintretenden UF₆-Stromes gleich der ²³⁵U-Isotopenkonzentration \bar{n}_p * des Produktstromes. Die ²³⁵U-Isotopenregelung im Anreicherungsteil ermittelt aus einer Sollwertabweichung der ²³⁵U-Isotopenkonzentration n_p für die UF₆-Transportregelung einen geänderten Sollwert T*. Durch eine schrittweise Korrektur der Führungsgröße T* der UF₆-Transportregelung kann somit die Auswirkung systematischer Fehler bzw. eines geänderten Trennverhaltens auf die ²³⁵U-Produktkonzentration \bar{n}_p beseitigt werden. Im Abreicherungsteil wird die Einhaltung der ²³⁵U-Isotopenkonzentration n_T* im Tails-Entnahmestrom dadurch

<u>Abb. 19:</u> Prinzipieller Aufbau der Betriebsregelung zur Konstanthaltung der ²³⁵U-Isotopenkonzentration einer produzierenden Kaskade mit negativem Stufengradienten und Tieftemperaturabscheidern zur UF₆/Zusatzgastrennung am Kaskadenkopf.

erreicht, daß bei einer Sollwertabweichung der 235 U-Isotopenkonzentration n_T eine Korrektur für den Feed-Strom ermittelt wird.

Die Regelaufgabe wird wesentlich erleichtert, wenn der UF₆-Puffer am Kopf der Kaskade entfällt, wie dies beim Ersatz der zyklisch arbeitenden Tieftemperaturabscheider durch eine aus wenigen Trenndüsenstufen bestehende kontinuierlich arbeitende Gastrennkaskade [15] der Fall ist. Bei der Vorlaufkaskade in Resende (vgl. Einleitung) wurde aus wirtschaftlichen Gründen eine Zwischenlösung gewählt, bei der eine Vorabscheidung mit einer Trenndüsenstufe vorgesehen ist, während die Feintrennung mit zyklisch arbeitenden Tieftemperaturabscheidern erfolgt. Durch den aus der Vorabscheidungstrennstufe stammenden kontinuierlichen UF₆-Rückstrom werden die Regelprobleme bereits erheblich gemildert.

Der in der vorliegenden Arbeit durchgeführte Vergleich der experimentellen Ergebnisse mit Resultaten von Rechenprogrammen bestätigt die Brauchbarkeit der theoretischen Ansätze für die Kaskade und das Regelsystem im Fall der 10-stufigen mit Doppelumlenksystemen ausgerüsteten Pilot-Anlage. Da bei größeren Stufenzahlen, anderen Trennsystemen und anderen Stufenverschaltungen nicht mit grundsätzlich neuen Phänomenen zu rechnen ist [4] dürften sich die Ergebnisse auch auf technische Trenndüsenanlagen übertragen lassen.

7. Literaturverzeichnis

- [1] E. W. Becker, K. Bier, W. Bier, R. Schütte, D. Seidel:
 "Separation of the Isotopes of Uranium by the Separation Nozzle Process", Angew. Chem. Int. Ed. Engl., 6, 507-518 (1967);
 see also, E. W. Becker, W. Bier, W. Ehrfeld, K. Schubert, R. Schütte,
 D. Seidel: "Physics and Technology of Separation Nozzle Process", Nuclear Energy Maturity, Proc. Europ. Nucl. Conf., Paris, Invited Sessions, Pergamon Press Ltd., Oxford, 172-180 (1975);
 see also E. W. Becker: "Separation Nozzle", in S. Villani (Ed.,) Uranium Enrichment, Topics in Applied Physics, Vol. 35, 245 - 268, Springer Verlag, Berlin, Heidelberg, New York (1979).
- [2] E. W. Becker, W. Bier, P. Bley, U. Ehrfeld, W. Ehrfeld, G. Eisenbeiß,
 F. J. Rosenbaum und E. Schmid:
 "Die physikalischen Grundlagen der Uran-235-Anreicherung nach dem Trenndüsenverfahren: IV. Trenndüsensystem mit zweifacher Strahlumlenkung und trifraktionärer Gasabsaugung", Z. Naturforschung 32a, 401-410 (1977).
- [3] E. W. Becker, P. Nogueira Batista, H. Völcker:
 "Uranium Enrichment by the Separation Nozzle Method within the Framework of German / Brazilian Cooperation", Nuclear Technology, 52, 105 - 114 (1981).
- P. Bley, W. Ehrfeld, B. Maciejewski:
 "Minimierung von Trennleistungsverlusten beim Betrieb einer Trenndüsenanlage mit Doppelumlenksystemen zur Anreicherung von Uran-235."
 Kernforschungszentrum Karlsruhe GmbH, Bericht KfK 3662 (1984).
- [5] E.W. Becker, G. Frey, R. Schütte und D. Seidel:
 "Entmischung der Uranisotope in einer zehnstufigen Trenndüsen-Versuchsanlage", Atomwirtschaft, Jahrgang XIII, 7, 359-362 (1968).
- [6] E.W. Becker, W. Bier, W. Ehrfeld, K. Schubert, R. Schütte, D. Seidel: Uranium enrichment by the separation nozzle process, Naturwissenschaften 63, 407-411 (1976).
- [7] R. Yadoya, P. Bley, A. S. Camara, R. Consiglio, H. Hein, G. Linder:"Usina-Piloto de 10 Estágios: sua Utilização na Pesquisa do Comporta-

mento Dinâmico e Processo de Regulagem de uma Cascata de Jato Centrífugo Para Enriquecimento de Urânio", Ciência e Cultura, 38 (10), São Paulo, 1732-1739 (1986).

- [8] P. Bley, W. Ehrfeld, U. Knapp, G. Krieg:
 "Entwicklung von Gasanalysatoren f
 ür das Trennd
 üsenverfahren in Zusammenarbeit mit der Industrie". KfK Nachrichten 2, 48-57 (1979).
- [9] K. Cohen:

"The Theory of Isotope Separation as Applied to the Large-Scale Production of U-235", McGraw-Hill, New York (1951).

- [10] W. Ehrfeld, W. Fritz, "Analysis of Cooperative Behavior of Rarefied Flow and Continuum Flow Components in Separation Nozzle Cascades", Rarefied Gas Dynamics, 12th Int. Symp., edited by Sam S. Fisher, Progress in Astronautics and Aeronautics, 74, Vol., 1, 642-655 (1980).
- [11] W. Fritz, P. Hoch, G. Linder, R. Schäfer, R. Schütte: "Experimentelle Untersuchungen und Digitalrechner-Simulation des instationären Betriebsverhaltens von Trenndüsenkaskaden für die U-235-Anreicherung", Chem. Ing. Techn., 45, 590 - 596 (1973).
- [12] W. Fritz, R. Schäfer, R. Schütte: "Auswirkungen und Gegenmaßnahmen beim Ausfall eines Stufenverdichters in einer Trenndüsenkaskade zur U-235-Anreicherung", KfK-Bericht 2142 (1975), Kernforschungszentrum Karlsruhe.
- [13] Wolfgang Latzel:

Regelung mit dem Prozeßrechner (DDC); Theoretische und experimentelle Methoden der Regelungstechnik, Band 13; Wissenschaftsverlag, Bibliographisches Institut.

- [14] W. Ehrfeld, D. Fröhlich, O. Fromhein, U. Knapp: "Verfahren zur automatischen Isotopenverhältnismessung bei magnetischen Massenspektrometern", KfK-Bericht 2344 (1977), Kernforschungszentrum Karlsruhe
- [15] P. Bley, W. Ehrfeld, D. Schmidt:

"Experimentelle und theoretische Untersuchungen zur gasdynamischen Trennung von Uranhexafluorid und Helium in Trenndüsenanlagen zur Anreicherung von Uran-235", KfK-Bericht 3991 (1986), Kernforschungszentrum Karlsruhe

8. Nomenklatur

E ₁ , E ₂ , E ₃	Exponent zur Berechnung von Betriebsgrößen in Abhängigkeit vom UF ₆ -Stufeninventar
F	Feed-Strom
G	linearer Parameter der Stufenkennlinie, Stufengradient
н	quadratischer Parameter der Stufenkennlinie
lu St	UF ₆ -Inventar einer Trennstufe
Lik	Durchsatz der Komponente i im Trennsystem k
Nj	molare UF ₆ -Konzentration der Fraktion j einer Trennstufe
nj	²³⁵ U-Molenbruch des UF ₆ -Stromes der Fraktion j einer Trennstufe
n _e	²³⁵ U-Molenbruch des externen UF ₆ -Stromes
Ρ	Produktstrom
PA	Verdichteransaugdruck
Pj	Druck in der Fraktion j einer Trennstufe
P _{RP}	UF ₆ -Einspeisedruck am Kaskadenkopf
R	Rückstauverhältnis P _s /P _l der schweren Fraktion
R _{RP}	Sollwertgeber für den UF ₆ -EinspeisedruckP _{RP}
R _T	Regelsignal für den UF ₆ -Transport
Ţ	Tails-Strom
TTA	Tieftemperaturabscheider am Kaskadenkopf
URP	UF ₆ -Kopfpufferrückstrom
UTTA	UF ₆ -Einstrom in die Tieftemperaturabscheider am Kaskadenkopf
VAT	Vorabscheidertrennstufe
U3	Werterzeugung
θik	partielles Abschälverhältnis der Komponente i im Trennsystem k
θun	nominelles UF ₆ -Abschälverhältnis
τį	Transport der Komponente i in der Kaskade
ϵ_A^{St}	elementarer Trenneffekt einer Stufe

Index			
А	Ansaugseite des Verdichters		
An	Anreicherungsteil		
Ab	Abreicherungsteil		
<u>e</u>	externer UF ₆ -Strom		
	F P RP T	Feed Produkt Kopfpuffer Tails	
	Komponente		
	g u z	Gemisch Uranhexafluorid Zusatzgas	
j	Frakt	ion	
	o I m s	Düsengas leichte Fraktion mittlere Fraktion schwere Fraktion	
<u>k</u>	Trennsystem		
	1 2 St	1. Düse 2. Düse Stufe	

Sonderzeichen zur Kennzeichnung einer Größe x

Х*	Sollwert
Χ'	ungestörter Betriebszustand
X	zeitlicher Mittelwert
ΔX	Abweichung gegenüber einem ungestörten Betriebszustand.