KfK 4671 Februar 1990

# Simulation der Aufbauphase einer Hochspannungs-Niederdruckgasentladung mit Monte-Carlo-Methoden

W. Nießen Institut für Neutronenphysik und Reaktortechnik

Kernforschungszentrum Karlsruhe

# KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Neutronenphysik und Reaktortechnik

KfK 4671

Simulation der Aufbauphase einer Hochspannungs-Niederdruckgasentladung mit Monte-Carlo-Methoden \*)

Wolfgang Nießen \*\*)

\*) von der Fakultät für Physik der Universität Karlsruhe genehmigte Diplomarbeit

\*\*) Permanente Adresse: University College, Swansea SA 28PP

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

. .

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

# Inhaltsverzeichnis

.

.

|   | Zusammenfassung                            |                                                         |    |  |
|---|--------------------------------------------|---------------------------------------------------------|----|--|
|   | Einleitung                                 |                                                         |    |  |
| 1 | Die                                        | Pseudofunkenentladung                                   | 5  |  |
| 2 | Methoden zur Berechnung von Gasentladungen |                                                         |    |  |
|   | 2.1                                        | Die Boltzmann-Gleichung                                 | 7  |  |
|   | 2.2                                        | Die Kontinuitätsgleichung                               | 9  |  |
|   | 2.3                                        | Integralgleichungen                                     | 10 |  |
|   | 2.4                                        | Die Monte-Carlo-Methode                                 | 11 |  |
|   |                                            | 2.4.1 Das Konzept                                       | 12 |  |
|   |                                            | 2.4.2 Berechnung des freien Weges bzw. der Zeit         |    |  |
|   |                                            | zwischen zwei Stößen / Null-Kollisions-Technik          | 13 |  |
| 3 | Mod                                        | ell, Näherungen, Grenzen                                | 17 |  |
| 4 | Präsentation und Diskussion der Ergebnisse |                                                         |    |  |
|   | 4.1                                        | Testrechnungen                                          | 20 |  |
|   | 4.2                                        | Teilchenströme                                          | 23 |  |
|   | 4.3                                        | Teilchendichten                                         | 28 |  |
|   | 4.4                                        | Energieverteilungen                                     | 33 |  |
|   | 4.5                                        | Relative Reaktionshäufigkeiten                          | 38 |  |
|   | 4.6                                        | Absolute Skalierung                                     | 42 |  |
| 5 | Kurz                                       | zer Ausblick                                            | 44 |  |
|   | Anha                                       | ang                                                     | 45 |  |
|   | A1                                         | Herleitung des Paschengesetzes                          | 46 |  |
|   | A2                                         | Wikungsquerschnitte / Sekundärelektronenkoeffizienten / |    |  |
|   |                                            | Rückstreukoeffizienten der Elektronen                   | 47 |  |
|   | A3                                         | Programmbeschreibung                                    | 52 |  |
|   | Liter                                      | aturverzeichnis                                         | 81 |  |

#### Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Simulation der Vorentladung einer Pseudofunkenkammer im Bereich zwischen Anode und Kathode mit Monte-Carlo-Rechnungen. Unter Vorentladung ist in diesem Zusammenhang die frühe Entladungsphase zu verstehen, während der die internen elektrischen und magnetischen Felder noch vernachlässigt werden können. Das Modell beruht auf einer Entladung, die sich zwischen zwei unendlich ausgedehnten Kondensatorplatten aufbaut. Elf verschiedene Stoßreaktionen und zwei Elektrodenoberflächeneffekte fanden Berücksichtigung. Es wurde ein FORTRAN-Programm entwickelt, mit dem die Berechnung der zeitlichen und räumlichen Entwicklung der Entladung möglich ist. Die Besonderheiten des Codes liegen darin, daß nicht nur Elektronen und Ionen berücksichtigt werden, sondern auch schnelle ungeladene Atome und Moleküle.

Es wurden drei verschiedene Diodenlänge-Spannungs-Paare bei unterschiedlichen Drücken untersucht: 350 kV/5.0 cm, 30 kV/10.0 cm und 6.9 kV/0.7 cm. Das Füllgas war Wasserstoff. Berechnet wurden:

- die Paschenkurve
- die zeitliche Entwicklung der Teilchenstromdichten der einzelnen Teilchensorten an der Anode (für Elektronen) bzw. an der Kathode (für schwere Teilchen)
- die raum- und zeitabhängigen Teilchendichten
- die zeitabhängigen Energieverteilungen der verschiedenen Teilchensorten
- die relativen Häufigkeiten der verschiedenen Stoßreaktionen.

Die Untersuchungen zeigten, daß Ladungsaustausch zwischen Ionen und neutralen Molekülen die häufigste Reaktion ist. So sind von allen Stößen des  $H_2^+$ -Ions bei 350 kV und 25 Pa 41 % Umladungen, bei 30 kV und 18 Pa 76 % und bei 6.9 kV und 200 Pa 87 %. Die angegebenen Drücke entsprechen ungefähr dem dreifachen Zündmindestdruck. Dies hat zum einen zur Folge, daß die Neutralteilchenstromdichten größer sind als die Ionenstromdichten, zum anderen begrenzen Umladungen die Energieaufnahme der Ionen im elektrischen Feld. Bei 350 kV beträgt die Durchschnittsenergie der  $H_2^+$ -Ionen beim Erreichen der Kathode 2 % der maximalen Energie  $e^*U$ , die der Protonen 14 %.

Die Energieausbeute der Elektronen ist wesentlich besser. Bei hoher Spannung durchlaufen mehr als die Hälfte aller Elektronen die gesamte Spannung. Ihr Beitrag zur Ionisation des Gases ist dann gering. Nur 10 % aller Ionisationen werden durch Elektronenstoß verursacht. Der Rest geht auf das Konto der schweren Teilchen. Dieses Verhältnis kehrt sich mit abnehmender Diodenspannung langsam um, so daß bei 6.9 kV schon 76 % der Ionisationen von Elektronen gemacht werden.

#### Simulation of the Build-up Phase of a High Voltage Low Pressure Gas Discharge Using

## Monte-Carlo-Methods.

In this report the simulation of a Pseudospark predischarge between anode and cathode using Monte-Carlo-Methods is described. In the early phase of the discharge electric and magnetic self-fields can be neglected. The model is based on a discharge between two infinitely extended capacitor plates. Eleven different collision reactions and two electrode surface effects are taken into account. A Fortran program was developed that computes the built-up of the discharge in time and space. A specialty of the code is, that not only electrons and ions are taken into account, but also fast neutral atoms and molecules.

Three pairs of diode-length and voltage were investigated at different pressures: 350 kV / 5.0 cm, 30 kV / 10.0 cm and 6.9 kV / 0.7 cm. The working gas was hydrogen. The computations included:

- the Paschen-curve
- the time evolution of the current densities of the electrons at the anode and the ions at the cathode
- the space- and time-dependent particle densities
- the time-dependent energy distributions of the different particle species
- the relative number of the different collision reactions.

The investigations show, that charge exchange between ions and neutral molecules is the dominant reaction. 41 % of all collisions of the  $H_2^+$ -ion at 350 kV and 25 Pa are charge exchanges, 76 % at 30 kV and 18 Pa, and 87 % at 6.9 kV and 200 Pa. The pressures mentioned are about three times higher than the minimum pressure required for ignition. From this follows first, that the neutral current densities are higher than the ion current densities, and second that the ions take up less energy in the electric field. At 350 kV the average energy of the  $H_2^+$ -ions is only 2 % and that of the protons 14 % of the maximum energy e\*U.

The electrons are accelerated much more. At high voltage more than 50 % of the electrons experience the full voltage. Their contribution to the ionisation of the gas is then small. Only 10 % of all ionisations are due to electron collisions. The rest is due to heavy particles. This ratio is turned upside-down for decreasing voltage: At 6.9 kV already 76 % of the ionisations are made by electrons.

## Einleitung

Seit 1979 ist das KfK an der Entwicklung von Quellen für hochintensive Teilchenstrahlen in der Größenordnung kA/cm<sup>2</sup> beteiligt. Durch Beschuß von Targets mit solchen Teilchenstrahlen kann man Materie verdichten und dabei ihr Verhalten unter extremen Bedingungen studieren. Ein Fernziel solcher Untersuchungen könnte die Realisierung der Trägheitsfusion sein.

Neben Hochvakuumdioden bietet die von C. Schultheiß und J. Christiansen erstmals 1979 beschriebene Pseudofunkenkammer [1] [2] eine Möglichkeit zur Ionenstrahlerzeugung. Desweiteren liefert dieser Diodentyp auch Elektronen [3] sowie elektromagnetische Strahlung im Röntgenbereich [4] mit Eigenschaften, die ihn z. B. für eine Anwendung in der Mikrofertigung interessant machen. Eine praktische Verwendung findet er schon als Schalter für große Leistungen aufgrund seines schnellen Stromanstieg von ca.  $10^{11}$ A/s [5] [6].

Die Pseudofunkendiode ist eine Gasentladungskammer, die bei niedrigem Druck (10 - 100Pa) und hoher Spannung (1 - 400kV) betrieben wird. Das Füllgas ist gewöhnlich Wasserstoff. Durch eine Bohrung in Kathode und/oder Anode können Ionen, Elektronen und schnelle Neutrale die Entladekammer als Teilchenstrahlen verlassen und einer Diagnostik zugeführt werden.

Obwohl der Pseudofunken seit nunmehr einem Jahrzehnt in verschiedenen Gruppen im In- und Ausland untersucht wird, fehlt immer noch ein vollständiges und quantitatives Verständnis der für den gesamten Entladevorgang verantwortlichen physikalischen Prozesse. Dies liegt zum Teil daran, daß es bisher nur wenige theoretische Arbeiten über ihn gibt. Da aber nach momentanem Wissensstand die Entladung eine Kette von unterschiedlichen Vorgängen ist, die sich zeitlich und räumlich überschneiden und sich gegenseitig beinflussen, wird es wohl nicht möglich sein, eine geschlossene und einfache Theorie für sie zu entwickeln. Auf dem Weg zu einem besseren Verständnis kann die Computersimulation weitere Fortschritte bringen. Die heutigen Großrechenanlagen sind immerhin leistungsfähig genug, um grundlegende Teilaspekte des Gesamtproblems numerisch zu lösen, wenn auch eine vollständige Behandlung noch versagt bleibt. Ziel dieser Diplomarbeit ist die Simulation der Aufbauphase der Gasentladung zwischen Anode und Kathode, um die zeitabhängigen Reaktionsvorgänge zwischen Elektronen, Ionen und neutralen Molekülen besser zu verstehen.

Die Arbeit ist wie folgt gegliedert: Nach einer kurzen Beschreibung der momentanen Vorstellung von einer Pseudofunkenentladung in Kapitel 1 wird in Kap. 2 etwas ausführlicher auf die Erörterung verschiedener Methoden zur theoretischen Beschreibung von Gasentladungen eingegangen. Das physikalische Modell, welches dem Computerprogramm zugrunde liegt, wird in Kapitel 3 genau beschrieben. Schließlich folgt in Kap. 4 die Präsentation und Diskussion der Ergebnisse, der in Kap. 5 ein kurzer Ausblick folgt. Im Anhang sind zu finden: eine Herleitung des Paschengestzes, Schaubilder der Wirkungsquerschnitt-Energie-Abhängigkeiten der verschiedenen Stoßreaktionen sowie der Quelltext des Simulationsprogramms.

.

## 1 Die Pseudofunkenentladung

Im folgenden Kapitel wird zunächst die momentane Vorstellung von einer Pseudofunkenentladung in groben Zügen wiedergegeben. Diese Darstellung erhebt keinen Anspruch auf Vollständigkeit und geht nicht auf Detailunterschiede ein, die z. B. durch Änderung des Füllgases oder des Produktes p\*d hervorgerufen werden.

Abb. 1.1 stellt eine vereinfachte Form der Diode dar. Sie besteht im wesentlichen aus einer Anodenplatte und einer dazu parallelen Kathodenplatte mit einer Bohrung. Diese Bohrung führt in den Kathodenraum, welcher das entscheidende Charakteristikum einer Pseudofunkenkammer darstellt. In ihm sind die elektrostatischen Felder wesentlich schwächer als zwischen den Platten. Anode und Kathode sind an ihren Rändern über einen Isolator verbunden. Der Innenraum der Diode ist mit Gas gefüllt. Die angelegte Spannung liegt in der Regel zwischen 1kV und 400kV, der Elektrodenabstand zwischen 0,5 cm und 10 cm und der Druck zwischen 10 Pa und 100 Pa. Damit ist die Entladung (genauer die Vorentladung) im linken Teil der Paschenkurve angesiedelt.



Abb. 1.1: vereinfachte Darstellung einer Pseudofunkenkammer

Unmittelbar nach Anlegen der Spannung setzen sich die wenigen Ladungsträger, die infolge natürlicher radioaktiver Strahlung oder Feldemission vorhanden sind, entsprechend ihren Ladungsvorzeichen in Richtung Elektroden in Bewegung. Dabei stoßen sie mit Füllgasteilchen und können neue Elektron-Ion-Paare erzeugen. Kurz: es baut sich eine Townsendentladung auf. Bedingung dafür ist, daß die Diodenspannung größer als die Zündspannung ist. Neben Ionen und Elektronen entstehen durch Ladungsaustausch auch schnelle Neutrale, die vor allem bei hohem Verhältnis zwischen elektrischer Feldstärke und Gasteilchendichte E/n  $(\geq 10^{-17} \text{Vm}^2)$  wesentlich zur Ionisierung des Gases beitragen und, genauso wie die Ionen, beim Aufprall auf die Kathode Elektronen herausschlagen können.

Ein Teil der schweren Teilchen (Ionen und schnelle Neutrale) gelangt durch die Bohrung in den Kathodenhohlraum und bildet dort eine virtuelle Anode. Elektronen, die durch Photoeffekt und Aufprall schwerer Teilchen aus den Wänden herausgelöst werden, verursachen weitere Ionisationen, weil sie bei der geringen Feldstärke in der Hohlkathode einen hohen Wirkungsquerschnitt haben. Schließlich zerfallen auch die hochangeregten Neutrale durch Stöße in Ionen und Elektronen. Die Mitte des Kathodenraums ist jetzt mit einem dichten Plasma ausgefüllt. Es emittiert Elektronen, die durch das Loch in Richtung Anode abgesaugt werden und einen schnellen Stromanstieg verursachen. Die Hauptentladung ist damit in Gang gesetzt. Die Diode wird sehr gut leitend, bis die Spannung zusammenbricht.

Die Voraussetzung für das Einsetzen der Hauptentladung ist, wie Computerrechnungen gezeigt haben, an eine gewisse Mindestdichte des Hohlkathodenplasmas gebunden. Diese hängt von der Geometrie der Diode, und der angelegten Spannung ab. Auf keinen Fall darf unbedingt erwartet werden, daß, wenn die Paschenbedingung gerade erfüllt ist, die Diode auch zündet. Die Paschenbedingung stellt nur eine notwendige Bedingung für die Pseudofunkenentladung dar.

Der gesamte Entladeprozess kann also in drei Phasen eingeteilt werden:

- die Vorentladung, d. h. die Townsendentladung zwischen Anode und Kathode.
   Sie liefert die Ionen zur Ausbildung der virtuellen Anode im Hohlkathodenraum.
- der Aufbau des Hohlkathodenplasmas
- die Hauptentladung, während welcher ein starker Elektronenstrahl aus dem Hohlkathodenplasma in das Beschleunigungsgap extrahiert wird.

Gegenstand der vorliegenden Arbeit ist die Simulation der Vorentladung im Raum zwischen Anode und Kathode, d. h. die Simulation einer Townsendentladung. Ein Code, mit dem die Berechnung der Vorgänge in der Hohlkathode möglich ist, wurde bereits von K. Mittag entwickelt. Ziel weiterer Arbeiten ist die Verbindung beider Programme zu einem einzigen, welches dann die Pseudofunkenentladung vollständig auf dem Rechner nachvollziehen kann.

# 2 Methoden zur Berechnung von Gasentladungen

#### 2.1 Die Boltzmann-Gleichung

Ein fundamentales Konzept zur Beschreibung von Vielteilchensystemen ist das der Phasenraumdichte. Die Phasenraumdichte  $f(\mathbf{r}, \mathbf{v}, t)$  ist im allgemeinen eine Funktion von sieben Variablen, den drei Ortskomponenten und den drei Geschwindigkeitskomponenten der Teilchen sowie der Zeit. Ihr Wert gibt die Teilchenzahl der betrachteten Teilchensorte pro Einheitsraumelement des Ortsraumes und pro Einheitsraumelement des Geschwindigkeitsraumes wieder. Neben der räumlichen Verteilung enthält  $f(\mathbf{r}, \mathbf{v}, t)$  auch die vollständige Information über die Geschwindigkeitsverteilung. Diese ist vor allem dann notwendig, wenn sich die Teilchen nicht im thermischen Gleichgewicht befinden, ihre Verteilungsfunktion also nicht mit der Maxwellverteilung übereinstimmt. In einem solchen Fall kann sich das System in seinem Verhalten beträchtlich von dem eines Gleichgewichtssystems unterscheiden. Durch Integration von f über den gesamten Geschwindigkeitsraum erhält man die Teilchendichte im Ortsraum:

 $n(\mathbf{r},t) = \int f(\mathbf{r},\mathbf{v},t) d^3 \mathbf{v}$ 

Die zeitliche und phasenräumliche Entwicklung von f genügt der Boltzmann-Gleichung [7]:

$$\frac{\partial \mathbf{f}}{\partial \mathbf{t}} + \mathbf{\Psi} \frac{\partial \mathbf{f}}{\partial \mathbf{r}} + \frac{\mathbf{F}}{\mathbf{m}} \frac{\partial \mathbf{f}}{\partial \mathbf{\Psi}} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{t}}\right)_{\mathbf{c}}, \qquad (2.1.a)$$

wobei m die Teilchenmasse und F die auf die Teilchen wirkende Kraft bedeuten.  $\left(\frac{\partial f}{\partial t}\right)_c$  steht als Symbol für Stoßterme, die den Einfluß der gegenseitigen Teilchenwechselwirkungen — wie z. B. Coulombstöße oder Teilchenvernichtung- und Erzeugung— auf f beschreiben. Kann man Stöße vernachlässigen, so wird die rechte Seite der Boltzmann-Gleichung gleich null gesetzt. Ein Beispiel dafür ist die Vlasov-Gleichung, die auf Plasmen anwendbar ist, welche hauptsächlich durch äußere, elektromagnetische Felder dominiert werden [8]:

$$\frac{\partial f_{\alpha}}{\partial t} + \mathbf{v} \frac{\partial f_{\alpha}}{\partial \mathbf{r}} + \frac{\mathbf{q}_{\alpha}}{\mathbf{m}_{\alpha}} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f_{\alpha}}{\partial \mathbf{v}} = 0$$

Der Index  $\alpha$  bezeichnet die Teilchenart (Elektronen, einfach geladene Ionen u.s.w.). Sollen bei der Lösung der Vlasov-Gleichung zusätzlich noch innere Felder berücksichtigen werden, so ist dies durch simultanes Lösen der Poisson-Gleichung oder, wenn nötig, aller vier Maxwell-Gleichungen möglich [9]. Dabei sind die Ladungsdichte  $\rho$  und die Stromdichte j folgendermaßen mit  $f_{\alpha}$  verknüpft:

$$\rho = \sum_{\alpha} q_{\alpha} \int f_{\alpha} d^{3} v \qquad j = \sum_{\alpha} q_{\alpha} \int f_{\alpha} v d^{3} v$$

Beim Pseudofunken wird die Anwendung der Vlasov-Gleichung wahrscheinlich erst bei der Behandlung der Hauptentladung sinnvoll, da dann — verursacht durch hohe Strom- und Raumladungsdichten— die inneren elektromagnetischen Kräfte im Vergleich mit Stoßreaktionen an Bedeutung gewinnen. Bei der Beschreibung der Vorentladung kann man jedoch die inneren Felder vernachlässigen, während die Ladungsträgervermehrung unbedingt zu berücksichtigen ist.

Ein einfaches Modell dafür ist folgendes: Anode (x=0) und Kathode (x=d) sind zwei unendlich ausgedehnte Kondensatorplatten. Das bedeutet, daß das E-Feld homogen ist. f hängt nur noch von x,  $v_x$  und t ab.  $v_y$  und  $v_z$  müssen nicht berücksichtigt werden, da die Bewegung der Ladungsträger so gut wie parallel zu E verläuft. Die betrachteten Stoßreaktionen seien:

$$\underline{\mathbf{e}} + \mathbf{H}_2 \longrightarrow \underline{\mathbf{e}} + \mathbf{H}_2^+ + \mathbf{e} \qquad \text{mit Wirkungsquerscnitt} \quad \sigma_1$$
$$\underline{\mathbf{H}}_2^+ + \mathbf{H}_2 \longrightarrow \underline{\mathbf{H}}_2^+ + \mathbf{H}_2^+ + \mathbf{e} \qquad \text{mit Wirkungsquerscnitt} \quad \sigma_2$$

Die unterstrichenen Teilchen haben kinetische Energie, während die nicht unterstrichenen in Ruhe sind. Da die Durchschnittsenergie der Ladungsträger mehrere keV beträgt, können Energieverluste durch Ionisation sowie Anfangsenergien vernachlässigt werden. Beim Erreichen der Elektroden werden die Ladungsträger vernichtet, wobei die Ionen in Abhängigkeit von ihrer Energie mehrere Elektronen aus der Kathode herausschlagen können. Die Boltzmann-Gleichungen lauten nun:

$$\frac{\partial f_1}{\partial t} + v \frac{\partial f_1}{\partial x} - \frac{eE}{m_1} \frac{\partial f_1}{\partial v} = \left(\frac{\partial f_1}{\partial t}\right)_c$$
$$\frac{\partial f_2}{\partial t} + v \frac{\partial f_2}{\partial x} + \frac{eE}{m_2} \frac{\partial f_2}{\partial v} = \left(\frac{\partial f_2}{\partial t}\right)_c$$

Der Index 2 bedeutet Elektronen, 1 bedeutet  $H_2^+$  - Ionen. Die Stoßterme kann man wie folgt schreiben:

 $\left(\frac{\partial f_1}{\partial t}\right)_{c} = \delta(v) \int f_1(x,v) n_0 \sigma_1 |v| dv$  Erzeugung von Elektronen durch  $+ \delta(v) \int f_2(x,v) n_0 \sigma_2 |v| dv$  Erzeugung von Elektronen durch  $+ \delta(v) \delta(x-d) \int f_2(d,v) |v| \gamma(v) dv$  Sekundärelektronenemission durch Ionenaufprall an der Kathode

 $\delta$  ist die Dirac'sche Delta-Funktion. Sie bringt zum Ausdruck, daß Sekundär-

elektronen bei ihrer Entstehung die Geschwindigkeit null haben.  $\gamma$  ist der Sekundärelektronenkoeffizient für das Kathodenmatrial und n<sub>O</sub> die Dichte des Füllgases.  $\left(\frac{\partial f_2}{\partial t}\right)_c$  läßt sich analog zu  $\left(\frac{\partial f_1}{\partial t}\right)_c$  formulieren, jedoch mit dem Unterschied, daß die Indizes vertauscht werden und der dritte Term wegfällt.

Die numerische Lösung des Gleichungssystems bereitet wegen den singulären Gliedern  $\delta(x-d)$  und  $\delta(v)$  Schwierigkeiten. Die Unstetigkeit in v ließe sich zwar noch durch die Einführung einer realistischeren Geschwindigkeitsverteilung für die neu entstandenen Teilchen beheben, nicht jedoch die räumliche Diskontinuität an den Elektroden. Allgemein kann man feststellen, daß die Boltzmann-Gleichung bei der Berechnung von Vielteilchensystemen vorteilhaft ist, wenn Stöße und Randeffekte keinen dominierenden Einfluß haben; wenn also die rechte Seite vernachlässigbar ist oder zumindest einfach abgeschätzt werden kann. Auch geht der Trend mit der ständig zunehmenden Leistungsfähigkeit der Rechenanlagen immer mehr weg von der Boltzmann-Gleichung hin zu Monte-Carlo-Simulationen [10] [11], welche Lösungen liefern, die den Lösungen der Boltzmann-Gleichung äuquivalent sind.

### 2.2 Die Kontinuitätsgleichung

Durch Integration der Gleichung (2.1a) über den gesamten Geschwindigkeitsbereich erhält man die Kontinuitätsgleichung [8], [12]:

$$\frac{\partial \mathbf{n}}{\partial t} + \frac{\partial (\mathbf{n}\mathbf{u})}{\partial \mathbf{r}} = \left(\frac{\partial \mathbf{n}}{\partial t}\right)_{\mathbf{c}}$$
(2.2.a)

**u** ist die mittlere Teilchengeschwindigkeit, auch Driftgeschwindigkeit genannt.  $\left(\frac{\partial n}{\partial t}\right)_c$  steht für Erzeugungs- und Vernichtungsterme. Da in den Größen n und **u** – die nur noch von Ort und Zeit abhängen- keine Informtion über die Geschwindigkeitsverteilung enthalten ist, eignet sich Gleichung (2.2a) zur Beschreibung von Vielteilchensystemen nur dann, wenn ihre rechte Seite ebenfalls von der Geschwindigkeitsverteilung unabhängig ist. Für Gasentladungen bedeutet dies, daß die von den Ladungsträgern im elektrischen Feld aufgenommene Energie im Mittel durch Stöße wieder abgegeben werden muß, was bei einem E/nWert von unter  $5 \cdot 10^{-18}$  Vm<sup>2</sup> der Fall ist. Bei der typischen Auslegung einer Pseudofunkenkammer mit einem Druck von 20 Pa, einem Elektrodenabstand von 5 cm und einer Entladespannung von 350 kV, beträgt E/n mehr als  $10^{-15}$  Vm<sup>2</sup>. Im Hohl-kathodenbereich liegen die Werte der Feldstärke jedoch wesentlich niedriger, so daß dort die Anwendung der Kontinuitätsgleichung sinnvoll ist [13].

Da Gleichung (2.2a) allein unterbestimmt ist, wird noch eine zweite Bedingung für die Driftgeschwindigkeit benötigt um die Dichte n eindeutig bestimmen zu können. u ist im allgemeinen parallel zu den Feldlinien und dem Betrag nach abhängig von E:

$$\mathbf{u} = \mu(\mathbf{E}/\mathbf{n_0})\mathbf{E}$$

Wobei  $\mu$ , die Beweglichkeit, eine durch Experiment, Berechnung oder Simulation ermittelte Funktion der reduzierten Feldstärke E/n<sub>O</sub> ist.

Die Erzeugungsglieder der Gleichung (2.2a) lassen sich im einfachen Fall der Ladungsträgerzeugung durch Stoßionisation wie folgt schreiben [12]:

$$\left(\frac{\partial n_1}{\partial t}\right)_{\mathbf{c}} = \left(\frac{\partial n_2}{\partial t}\right)_{\mathbf{c}} = \alpha n_1 u_1 + \beta n_2 u_2$$

Die Indizes 1 und 2 deuten wieder Elektronen und Ionen an.  $\alpha$  und  $\beta$  sind der erste und zweite Townsendkoeffizient. Sie geben die Zahl der Ionisationen an, die ein Elektron bzw. Ion pro Einheitswegstrecke verursacht.

Oft ist es nötig, Raumladungseffekte zusätzlich zu berücksichtigen. Dies kann wieder durch simultanes Lösen der Poisson-Gleichung geschehen. Es sei hier noch als Beispiel ein Gleichungssystem für das in 2.1 beschriebene Modell einer Gasentladung – diesmal jedoch unter Hinzunahme der inneren elektrostatischen Felder – angegeben:

$$\frac{\partial n_1}{\partial t} + \frac{\partial n_1 u_1}{\partial x} = -\alpha n_1 u_1 + \beta n_2 u_2 + \delta(x-d) n_2(d) u_2(d) \gamma$$

$$\frac{\partial n_2}{\partial t} + \frac{\partial n_2 u_2}{\partial x} = -\alpha n_1 u_1 + \beta n_2 u_2$$

$$\frac{\partial E_{int}}{\partial x} = \frac{\rho}{\varepsilon_0} \qquad \rho = (n_2 - n_1)e \qquad E = E_{ext} + E_{int}$$

$$u_1 = \mu_1(E)E \qquad u_2 = \mu_2(E)E$$

#### 2.3 Integralgleichungen

Eine weitere Methode zur Berechnung von Gasentladungen, die jedoch nur für eindimensionale Systeme geeignet ist, wird im folgenden kurz skizziert. Sie wurde von Lauer u. a. zur Beschreibung einer Wasserstoffgasentladung benutzt [14]. Es sollen wieder die in 2.1 genannten Näherungen gelten. Die in diesem Modell berechneten Zustandsgrößen sind R(x,t), die Ionen- bzw. Elektronenproduktionsrate pro Einheitsstrecke, und I(t), die Elektronenerzeugungsrate an der Kathode.

Entsteht zum Zeitpunkt t' am Ort x' durch Stoßionisation ein Ion, so kann dieses selber nach einer gewissen Zeit eine weitere Ionisation verursachen. Für die Zeit t<sub>c</sub> zwischen zwei Stößen gilt:

$$t_{c} = t - t' = \sqrt{\frac{2m_{1}d(x-x')}{eU}}$$

x und t sind Ort bzw. Zeitpunkt des neuen Stoßes. Die Energie des Ions ist dabei eU(x-x')/d. Für das Elektron kann man die gleiche Überlegung anstellen, mit dem Unterschied, daß seine Flugzeit vernachlässigt werden darf. R(x,t) läßt sich nun wie folgt ausdrücken:

$$R(x,t) = I(t)n_0\sigma_1(eU(x-x')/d) + \int_{x}^{d} R(x',t)n_0\sigma_1(eU(x-x')/d)dx' + \int_{0}^{x} R(x',t-t')n_0\sigma_2(eU(x-x')/d)dx'$$
(2.3a)

Der erste Summand ist der Ionisierungsbeitrag der von der Kathode emittierten Elektronen. Der zweite beschreibt den Beitrag der Elektronen, die im Gas entstehen und der dritte den Ionenbeitrag. Der Sekundärelektronenstrom I(t) ist gegeben durch:

$$I(t) = \int_{0}^{d} R(x',t-t')\gamma(eU(x-x')/d) dx'$$
 (2.3b)

 $\gamma$  ist der energieabhängige Sekundärelektronenkoeffizient. Die beiden Gleichungen (2.3a) und (2.3b) bilden ein vollständiges Integralgleichungssystem, welches eindeutig gelößt werden kann. Es ist auch möglich, durch Hinzunahme zusätzlicher Gleichungen Umladungsprozesse zwischen Ionen und Restgasteilchen, Ionsationen durch schnelle Neutrale sowie Elektronenrückstreuung an der Anode mit einzubeziehen.

Ein Vorteil der Lauer'schen Beschreibung – im Vergleich zur Kontinuitätsgleichung- ist, daß sie die elementaren Stoßprozesse auf atomarer Ebene berücksichtigt und deshalb auch bei hohen E/n-Werten gültig ist. Die Beschränkung auf eine Dimension reduziert jedoch ihre Anwendbarkeit. So ist diese Methode auch nur ganz speziell und bezüglich der Allgemeinheit nicht mit den beiden vorigen gleichzustellen.

## 2.4 Die Monte-Carlo-Methode

In den nächsten beiden Unterkapiteln wird die Monte-Carlo-Methode vorgestellt. Da in der vorliegenden Arbeit Gasentladungen nach diesem Konzept berechnet werden, wird nach einer kurzen Einleitung auf Details wie z. B. die Bestimmung des freien Weges (das ist der Weg, der zwischen zwei Stößen zurückgelegt wird) eingegangen. Gute Darstellungen findet man in den Veröffentlichungen von E. Kunhardt und Y. Tzeng bzw. J. P. Boeuf und E. Marode [15], [16].

#### 2.4.1 Das Konzept

Monte-Carlo-Methoden haben, wie der Name schon nahelegt, etwas mit Zufall zu tun. Sie sind besonders für solche Systeme geeignet, deren Verhalten durch viele stochastische Einzelereignisse bestimmt ist. Bei der Simulation von Gasentladungen geht man dabei folgendermaßen vor:

Am Anfang wird im Rechner – entsprechend  $f(\mathbf{r}, \mathbf{v}, t=0)$  – eine representative Testmenge mit N<sub>0</sub> Teilchen generiert. Die Testmenge vertritt die gesamte Population der betrachteten Teilchenart(en). Je größer die Zahl der Testteilchen gewählt wird, um so geringer wird der statistische Fehler und um so besser spiegelt die Simulation die Wirklichkeit wieder. Allerdings nimmt auch die erforderliche Rechenzeit und der Speicherplatz linear mit der Testteilchenzahl zu, so daß N<sub>0</sub> in der Praxis typisch auf einige tausend bis eine Million beschränkt ist. Größen wie z. B. Teilchendichte, Teilchenstromdichte und interne Feldstärke, die sich aus den Daten der Testmenge berechnen lassen, kann man durch Multiplikation mit dem Wichtungsfaktor  $w=N_{0r}/N_0$  in reale Größen umrechnen. N<sub>0r</sub> ist die wirkliche Teilchenzahl zur Zeit t=0.

Nun werden die Testteilchenbahnen unter Berücksichtigung der Stoßreaktionen ermittelt. Das heißt: a) Zwischen den Stössen eines Teilchens wird seine Bewegungsgleichung

$$\frac{\mathrm{d}^2 \mathbf{r_i}}{\mathrm{d}t^2} = \frac{\mathbf{F_i}}{\mathbf{m_i}} \tag{2.4.1a}$$

gelöst. i ist der Teilchenindex,  $m_i$  die Teilchenmasse und  $F_i$  die auf das Teilchen wirkende Kraft. b) Findet eine Kollision statt, so werden Teilchengeschwindigkeit gemäß der speziellen Reaktion geändert und, wenn nötig, neue Teilchen erzeugt (z. B. bei Ionisierungsstössen). Nach festen, dem Problem angepaßten Zeitintervallen, kann dann über alle Testteilchen Zwischenbilanz gezogen werden und interessierende Größen wie Teilchendichte, Teilchenstrom, Feldverteilung u. s. w. aus den Teilchendaten  $\mathbf{r}_i$  und  $\mathbf{v}_i$  berechnet werden.

Bei Systemen mit wachsender Teilchenzahl ist es nötig, das Testteilchenensemble immer dann zu reduzieren, wenn es eine gewisse Größe übersteigt. Dadurch wird ein Überlauf des Rechenspeichers vermieden. Dieses "Abspecken" erfolgt durch zufälliges Löschen von Testteilchen bis eine vorgegebene Mindesttestteilchenzahl N<sub>min</sub> erreicht ist. Nach der Reduzierung erhalten die Testteilchen den neuen Wichtungsfaktor  $w \leftarrow w N_v / N_{min}$ .  $N_v$  ist die Testteilchendichte vor der Renormierung. Diese Prozedur kann im Hinblick auf eine Minimierung von statistischen Fehlern noch verfeinert werden, indem man jedem Teilchen einen eigenen Wichtungsfaktor zuordnet. Dieser wird dann je nach Teilchenart und Teilchenernergie bei einer Reduzierung unterschiedlich verändert [15]. Darauf soll hier jedoch nicht näher eingegangen werden, da dies den Rahmen dieser Arbeit sprengen würde.

Im folgenden werden nur Kollisionen mit nicht angeregten und nicht ionisierten Füllgasteilchen betrachtet. Ihre Dichte  $n_0$  soll sich während des Entladevorgangs nicht ändern. Das bedeutet, daß die Konzentration der angeregten und ionisierten Teilchen gegenüber  $n_0$  noch zu vernachlässigen ist.

Ist der totale Wirkungsquerschnitt  $\sigma$  eines Teilchens von seiner Energie unabhängig, so genügt die mittlere freie Weglänge  $\langle l_c \rangle$  der Beziehung:

$$\langle 1_{\rm c} \rangle = \frac{1}{n_0 \sigma} \tag{2.4.2a}$$

Im allgemeinen ist Gleichung (2.4.2a) zur Ermittlung des freien Weges jedoch nicht geeignet. Dies hat zwei Gründe: zum einen gilt sie nicht mehr, wenn o mit der Teilchenenergie variiert, was über genügend große Energiebereiche immer der Fall ist. Zum anderen trägt sie dem stochastischen Charakter von Stoßprozessen nicht Rechnung. Es ist nämlich durchaus möglich, daß ein Teilchen zwischen zwei Stössen eine kürzere oder längere Strecke als  $\langle l_c \rangle$  zurücklegt. Um dies zu berücksichtigen, benötigt man die statistische Weglängenverteilung. Dazu folgende Überlegungen:

Betrachtet wird ein Strahl mit N Teilchen, der eine infinitesimal dünne Schicht aus Füllgasteilchen der Dicke dx durchquert. Infinitesimal dünn bedeutet in diesem Zusammenhang so dünn, daß sich die Füllgasteilchen, in Strahlrichtung gesehen, nicht überlappen. Die Kollisionswahrscheinlichkeit dp<sub>c</sub> ist dann gegeben durch:

$$dp_{c} = -\frac{dN}{N} = \frac{\sigma A dx n_{0}}{A}, \qquad (2.4.2b)$$

wobei -dN die Anzahl der Stösse, A die Querschnittsfläche des Strahls und oAdxn<sub>0</sub> die Summe aller Wirkungsflächen im Volumen Adx ist. Integration der Gleichung (2.4.2b) liefert:

$$\frac{N}{N_0} = \exp\left(-n_0 \int_0^{l_c} \sigma(E(x)) dx\right)$$
(2.4.2c)

N ist nun die Zahl der nach Durchquerung der Strecke  $l_c$  ungestreuten Teilchen, E(x) die Teilchenenergie und N<sub>O</sub> die Zahl aller Teilchen. Gleichung (2.4.2 c) berücksichtigt die Energieänderung des Teilchens (z. B. durch elektrostatische Felder) und die damit verbundene Änderung des Wirkungsquerschnitts. Der Quotient N/N<sub>O</sub> ist die Wahrscheinlichkeit dafür daß ein Teilchen mindestens den Weg  $l_c$  zurücklegt, bevor es mit einem Füllgasteilchen zusammenstößt. Die Wahrscheinlichkeit p<sub>c</sub> mindestens einmal entlang  $l_c$  zu kollidieren, ist folglich:

$$\mathbf{p}_{\sigma} = 1 - \exp\left(-n_{0} \int_{0}^{1_{\sigma}} \sigma(\mathbf{E}(\mathbf{x})) \, \mathrm{d}\mathbf{x}\right)$$
(2.4.2 d)

mit der Substitution dx=vdt kann Gleichung (2.4.2d) in die Form

$$p_{c} = 1 - \exp\left(-n_{0} \int_{0}^{t_{c}} \sigma(E(x))v dt\right)$$
(2.4.2e)

gebracht werden. (2.4.2 d) und (2.4.2 e) sind die Wahrscheinlichkeitsverteilungen des freien Weges  $l_c$  bzw. der dazu gehörenden Zeit  $t_c$ .

Mit diesen Gleichungen ist es möglich,  $l_c$  oder  $t_c$  vor jedem Stoß zu bestimmen. Dazu generiert der Rechner für  $p_c$  eine Zufallszahl mit Gleichverteilung zwischen null und eins und integriert dann unter Berücksichtigung der Bewegungsgleichung (2.4.1a) stückchenweise das Argument der Exponentialfunktion so weit, bis beide Seiten von (2.4.2d) bzw. (2.4.2e) gleich sind. Um Rechenzeit zu sparen, kann diese Integration jedoch mit einem Trick, der sogenannten Null-Kollisions-Technik, umgangen werden [17].

Hierzu wird der totale Wirkungsquerschnitt  $\sigma$  um einen fiktiven Null-Kollisions-Querschnitt  $\sigma_{null}$  erhöht, daß der so erhaltene Wirkungsquerschnitt  $\sigma$ proportional zu 1/v ist:

$$\sigma' = \frac{Q}{v} = \sigma + \sigma_{null}$$

Q ist eine Konstante. Setzt man  $\sigma$  in Gleichung (2.4.2e) ein, läßt sich das Integral analytisch lösen. Aufösung nach t<sub>c</sub> ergibt:

$$t_{c} = -\frac{\ln(1-p_{c})}{n_{0}Q}$$

Die Vorteile dieser Methode liegen darin, daß  $t_c$  ohne großen Rechenaufwand bestimmt werden kann. Als Nachteil nimmt man in kauf, daß Stöße infolge von

 $\sigma_{null}$  fiktiv sind, also die Teilchenbahn- und zahl nicht verändern, ihre Behandlung aber dennoch Rechenzeit erfordert.

Da eine Kollision im allgemeinen mehrere Reaktionskanäle hat, muß davon noch einer "ausgewürfelt" werden. oʻ ist der Null-Kollisions-Querschnitt plus der gesamte Wirkungsquerschnitt, d. h. die Summe der Wirkungsquerschnitte der verschiedenen Reaktionen:

$$\sigma' = \sum_{i} \sigma_{i} + \sigma_{null}$$

i ist der Kanalindex. Die Wahrscheinlichkeit dafür, daß bei dem betrachteten Stoß die i-te Reaktion auftritt ist  $\sigma_i/\sigma'$ . Wiederum wird eine Zufallszahl ( $p_k$ ) zwischen null und eins erzeugt. Die Bedingung dafür, daß die k-te Reaktion stattfindet lautet dann:

$$\frac{1}{\sigma'}\sum_{i=1}^{k-1}\sigma_i \leq p_k < \frac{1}{\sigma'}\sum_{i=1}^k\sigma_i$$

k läuft von eins bis zur Anzahl der Reaktionskanäle. Ist obige Ungleichungskette für kein k erfüllt, bedeutet dies eine Null-Kollision, das Testteilchen erfährt also keinen Stoß.



**Abb.** 2.4.2:  $\sigma$  und  $\sigma = \Sigma \sigma_i$  als Funktion der Teilchengeschwindigkeit

Noch ein paar Bemerkungen zur Null-Kollisions-Technik. Sie erhöht zwar künstlich die Stoßfrequenz der Testteilchen, doch der damit verbundene Zeitverlust wird im allgemeinen durch den Wegfall der Integration mehr als ausgeglichen. Auch läßt sich der Anteil der Null-Stöße reduzieren indem der interessierende Energiebereich in mehrere Intervalle unterteilt wird und in jedem Energieintervall ein eigenes Q benutzt wird, so daß  $\sigma_{null} = \sigma' - \sigma$  möglichst klein ist.

۰.

.

## 3 Modell, Näherungen, Grenzen

Vor der Erstellung des Programmcodes ist es zunächst nötig, ein Modell für die zu berechnende Vorentladung zu entwickeln. In dieses Modell können nicht alle physikalischen Prozesse, die sich im realen Experiment abspielen, eingebaut werden. Ein Grund dafür liegt in der begrenzten Rechnerkapazität, bezogen sowohl auf den Speicherplatz wie auch auf die Rechengeschwindigkeit. Ein weiterer Grund ist der Mangel an quantitativer und qualitativer Kenntnis sämtlicher prinzipiell denkbaren physikalischen Vorgänge. So ist z.B. der Einfluß, den verunreinigte Elektroden auf die auf ihnen stattfindenden Oberflächenreaktionen haben, noch wenig verstanden. Jedoch ist es möglich die wichtigsten und tragenden Aspekte zu berücksichtigen und in einem Modell zusammenzufassen. Dieses wird im folgenden dargestellt, wobei auch auf seine Grenzen und Unzulänglichkeiten eingegangen wird.

Wie in dem in Kapitel 2.1 skizzierten Beispiel besteht die Modelldiode aus zwei unendlich ausgedehnten paralellen Metallplatten (genauer Molybdän). Die anliegende Spannung hat beim Einschalten sofort den den Wert  $U_0$ , der sich dann nicht mehr ändert.

 $U(t) = \Theta(t) U_0$ 

Das äußere elektrostatische Feld ist homogen. Interne elektromagnetische Felder, verursacht durch Raumladungen und Ladungsströme, werden vernachlässigt. Eine solche Näherung ist vernünftig, da, wie schon erwähnt, während der Vorentladung die Ionen- und Elektronendichten noch gering sind. Besonderes Augenmerk muß dagegen auf die verschiedenen Stoßreaktionen gerichtet werden. Hier eine Liste der betrachteten Kollisionen:

$$\underline{e} + H_2 \longrightarrow \underline{e} + H_2^+ + e \qquad \text{Ionisation}$$

$$\underline{H}^+ + H_2 \longrightarrow \underline{H}^+ + H_2^+ + e \qquad \text{Ionisation}$$

$$\underline{H}^+ + H_2 \longrightarrow \underline{H}^+ + H_2^+ + e \qquad \text{Ionisation}$$

$$\underline{H}_2^+ + H_2^+ + H_2^+ + H_2^+ \qquad \text{Iadungsaustausch}$$

$$\underline{H}_2^+ + H_2 \longrightarrow \underline{H}^+ + H_2^+ + H_2^+ \qquad \text{Iadungsaustausch und}$$

$$\underline{H}_2^+ + H_2 \longrightarrow \underline{H}^+ + H_2^+ + H_2^+ \qquad \text{Ionisation}$$

 $\underline{H} + H_2 \longrightarrow \underline{H}^+ + \underline{e} + H_2^+ \qquad \text{Stripping}$   $\underline{H} + H_2 \longrightarrow \underline{H} + H_2 + e \qquad \text{Ionisation}$   $\underline{H_2} + H_2 \longrightarrow \underline{H_2}^+ + \underline{e} + H_2 \qquad \text{Stripping}$   $\underline{H_2} + H_2 \longrightarrow \underline{H_2} + H_2^+ + e \qquad \text{Ionisation}$ 

Reaktionen ohne Beteiligung von Füllgasmolekülen (z. B. Rekombinationen) werden nicht berücksichtigt. Ihre Stoßraten sind nähmlich proportional zu dem Produkt der Konzentrationen beider Partner  $n_{\alpha}n_{\beta}$ . Dem gegenüber steht  $n_{\alpha}n_{0}$  als Maß für die Raten der obigen Reaktionen. Während der Vorentladung kann jedoch  $n_{\alpha}n_{\beta}$  gegenüber  $n_{\alpha}n_{0}$  vernachlässigt werden.  $n_{0}$  wird als konstant angesehen.

Wieder haben die unterstrichenen Teilchen kinetische Energie und die nicht unterstrichenen keine. Bei Ionen und schnellen Neutralen wird angenommen, daß sich die Geschwindigkeiten durch einen Stoß nicht ändern, d. h., daß Energieverluste durch Ionisation, Dissoziation oder Umladung vernachlässigt werden. Diese Näherung ist vernünftig, da solche Reaktionen erst ab mehreren hundert eV eine Rolle spielen. Im Vergleich dazu sind die 15,5 eV Ionsierungsenergie für H<sub>2</sub> wenig. Dem ist nicht so bei Elektronen, die bei 80 eV ihren maximalen Wirkungsquerschnitt haben. Im Modell wird dem Rechnung getragen.

Elastische und inelastische Stöße zwischen Elektronen und Wasserstoffmolekülen werden vernachlässigt, weil sie bei den betrachteten hohen E/n-Werten keine Rolle mehr spielen. Ferner werden die Wechselwirkungen zwischen Photonen und Gasmolekülen außer Acht gelassen, da die Photonenenergie - von Bremsstrahlung abgesehen - kleiner als 15,5 eV ist. Es können also nur Atome und angeregte Moleküle ionisiert werden, was aber aufgrund ihrer geringen Konzentration unwahrscheinlich ist.

Da auch Oberflächeneffekte eine Rolle spielen, werden die beiden wichtigsten in das Modell mitaufgenommen:

- Sekundärelektronenemission an der Kathode durch Aufprall von Ionen und schnellen Neutralen
- Rückstreuung von Elektronen an der Anode

Die Energieabhängigkeiten der Emissions- und Rückstreukoeffizienten werden ebenfalls berücksichtigt. Ionen und schnelle Neutrale werden an der Kathode nicht zurückgestreut. Bei der Reflexion der Elektronen liegt der Streuwinkel (der Winkel zwischen Einfallslot und Reflexionsstrahl) – senkrechten Einfall vorausgesetzt – mit einer Wahrscheinlichkeit von  $\cos \vartheta d\vartheta$  zwischen  $\vartheta$  und  $\vartheta + d\vartheta$ 

- 18 -

[18]. Ist der Einfallswinkel  $\vartheta_{in}$  von null verschieden, so werden die Teilchen mit einer gewissen Verschmierung um den Ausfallswinkel  $\vartheta = \vartheta_{in}$  zurückgestreut. Die Verschmierung ist um so kleiner je größer  $\vartheta$  ist. Es wird daher näherungsweise davon ausgegangen, daß Elektronen mit einem Einfallswinkel von weniger als  $30^{\circ} \cos \vartheta$ -verteilt reflektiert werden; während für die restlichen  $\vartheta = \vartheta_{in}$  gelten soll. Für den Energieverlust durch die Rückstreuung wird 20% der Einfallsenergie angenommen, falls diese größer als 10 keV ist. Unter 10 keV soll das Elektron elastisch reflektieren.

Die Emission von Photoelektronen wird aus folgendem Grund vernachlässigt: Zwar entstehen im Gas ungefähr so viele Photonen wie Ionen; ihr Sekundärelektronenkoeffizient (maximal 0,1 [19]) ist jedoch deutlich geringer als der der schweren Teilchen (maximal 6,0).

Da sich die schweren Teilchen praktisch nur parallel zum äußeren elektrostatischen Feld bewegen, reicht eine Dimension im Ortsraum bzw. zwei im Phasenraum zu ihrer Beschreibung  $(x, v_x)$ . Die Elektronen erhalten jedoch durch die Rückstreuung an der Kathode auch eine Geschwindigkeitskomponente senkrecht zum Feld. Diese kann durch Hinzunahme einer weiteren Geschwindigkeitskoordinate  $v_1$  in die Bewegungsgleichung einbezogen werden. Die Einführung der entsprechenden Ortskoordinate ist wegen der Translationsinvarianz der Modelldiode in y- und z-Richtung überflüssig. Aufgrund der hohen Maximalenergie der Elektronen von bis zu mehreren hundert keV, die schon im Bereich der Elektronenruheenergie von 511 keV liegt, wird für sie die relativistische Bewegungsgleichng benutzt.

Es sei schließlich noch deutlich darauf hingewiesen, daß das oben entworfene Modell nur die Vorentladung hinreichend beschreiben kann. Sobald die Ladungsdichten und -ströme nicht mehr zu vernachlässigen sind, müssen ihre Felder miteinbezogen werden. Auch sollte dann die Rechnung im Ortsraum zweidimensional sein, um die Bündelung der Ladungsträger auf der Rotationsachse erklären zu können. Ferner muß man sich die Frage stellen, inwieweit Stöße ohne Beteiligung von Füllgasmolekülen und der Einfluß von Photonen eine Rolle spielen. Trotz der Vereinfachungen vermag dieses Modell dennoch eine Reihe von Teilaspekten zu beleuchten, die auch in der Hauptentladung von Bedeutung sein können.

# 4 Präsentation und Diskussion der Ergebnisse

Im folgenden Kapitel 4 werden die Ergebnisse der Monte-Carlo-Simulation ausführlich dargestellt und erörtert. In 4.1 werden die Verifikation des Paschengesetzes sowie der Vergleich mit bereits vorliegenden Rechnungen behandelt. In den Unterkapiteln 4.2 bis 4.5 folgen Resultate für jeweils drei verschiedene Diodenspannung/Elektrodenabstand-Paare (350 kV/5,0 cm, 30 kV/10,0 cm, 6,9 kV/ 0,7 cm), für die es auch experimentelle Untersuchungen gibt [20], [21]. So ist 4.2 den Stromdichten der verschiedenen Teilchensorten gewidmet; in 4.3 werden die raum- und zeitabhängigen Teilchendichten präsentiert, in 4.4 die Energieverteilungen und die mittleren freien Weglängen und in 4.5 die relativen Häufigkeiten der einzelnen Stoßreaktionen. Da die Zahlenwerte in 4.2 und 4.3 für Strom- und Teilchendichten nicht in absoluten Einheiten skaliert sind, wird dies in 4.6 durch eine grobe Abschätzung, die auch eine Aussage über den zeitlichen Gültigkeitsbereich der Simulation zulässt, nachgeholt.

Sämtliche Rechnungen wurden mit einer Anfangstestteilchenzahl von 569000 durchgeführt. Die Maximalzahl war auf 910400 beschränkt. Trotz dieser großen Testteilchenzahl sind noch statistische Fehler auf den Abbildungen in Form kleiner ungleichmäßiger Oszillationen erkennbar. Sie beeinträchtigen jedoch nicht die Interpretation der Ergebnisse. Man muß sich nur bewußt sein, daß es keine systematischen Effekte sind.

Es wurde angenommen (sofern nicht explizit etwas anderes erwähnt wird), daß im Füllgas schon zu Beginn der Entladung eine geringe Menge von  $H_2^+/e^-$ Paaren, gleichmäßig verteilt, vorhanden ist.

#### 4.1 Testrechnungen

Zur Prüfung des FORTRAN-Codes SPARK (siehe Anhang 3) dienten die Verifikation des Paschengesetzes und der Vergleich mit der Arbeit von Lauer u. a. [14].

Das Paschengesetz U=f(pd) muß für das verwendete Modell streng gelten, da von eindimensionaler Geometrie ausgegangen wird und nur Stöße mit Füllgasteilchen in Betracht gezogen werden (siehe Anhang 1). Diese Gültigkeit konnte mit SPARK bestätigt werden: Für eine Entladespannung bei 30 kV und einem Elektrodenabstand von 10 cm lieferte die Simulation einen Zünddruck (der Druck ab dem die Gasentladung selbständig ist) von 5,2 Pa. Demnach sollte man bei gleicher Spannung, aber halbem Elektrodenabstand 10,4 Pa Zünddruck erwarten. Genau dieser Wert konnte mit dem Programm ermittelt werden. Analog dazu ergab  $6,9 \,\text{kV}$  und  $0,7 \,\text{cm}$  einen Zünddruck von  $84 \,\text{Pa}$  und  $6,9 \,\text{kV}$  und  $5,0 \,\text{cm}$  einen von  $11,8 \,\text{Pa}$  (=  $84 \,\text{Pa}*0,7/5,0$ ). Es sei jedoch darauf hingewiesen, daß mit diesem Test noch lange nicht gezeigt ist, daß auch die Paschenkurve korrekt wiedergegeben wird (siehe Kap. 4.2.).

Der Vergleich mit den Lauer'schen Rechnungen lieferte ähnlich befriedigende Resultate. Die Abbildung 4.1 zeigt den von der Kathode emittierten Elektronenstrom als Funktion der Zeit; einmal mit SPARK berechnet und das andere mal nach Lauer u. a.. Ferner sind noch die Kathodenströme der  $H_2^+$ -Ionen und schnellen  $H_2$ -Molekülen der SPARK-Simulation dargestellt. Die Einheiten sind willkürlich. Lauer läßt in den ersten paar Nanosekunden einen pulsförmigen, extern getriggerten Elektonenstrom aus der Kathode fließen und berücksichtigt in seinem Modell weder Protonen noch schnelle H-Atome. Diese Verhältnisse wurden bei der Testrechnung in SPARK eingebaut um mit Lauer vergleichen zu können. Der Strompeak wäre auch in Abb. 4.1 zu sehen; jedoch beginnt der Computerplot erst nach dessen Abklingen. Da in beiden Fällen die Stromdichte einem konstanten Wert zustrebt, befriedigen die Diodenparameter (U, d, p) gerade die Zündbedingung. Die gute Übereinstimmung beider Zünddrücke ist ein positives Testergebnis.

Zu den Unterschieden folgende Erläuterungen: Lauer u. a. gingen von konstanten freien Weglängen für die schnellen  $H_2$ -Moleküle aus; während in SPARK das gesamte statistische Weglängenspektrum auch für Neutrale realisiert ist. Dies kann der Grund für die unterschiedliche Lage der Elektronenstrommaxima sein (15ns, 20ns). So rühren auch die feinen Oszillationen in der Lauer' schen Kurve von den konstanten freien Weglängen her. In Wirklichkeit erwartet man eine glatte Kurve.



**Abb. 4.1:** Stromdichten der Elektronen (von Lauer berechnet bzw. mit SPARK), der  $H_2^+$ -Ionen und der schnellen  $H_2$ -Teilchen (mit SPARK berechnet) an der Kathode

## 4.2 Teilchenströme, Paschenkurve

Auf den Seiten 25 bis 27 sind die zeitlichen Entwicklungen der Teilchenstromdichten und die Paschenkurve dargestellt. Die Zahlenwerte der Stromdichten sind in relativen Einheiten angegeben. Sie wurden durch Division mit der maximalen Stromdichte des aus den Anfangselektronen resultierenden Anodenstromes gewonnen. Dieses Maximum tritt kurz nach Anlegen der Diodenspannung auf (genauer: zu dem Zeitpunkt, an dem die Primärelektronen, welche unmittelbar vor der Kathode starteten, die Anode erreichen) und ist in den Abbildungen nicht eingezeichnet. Eine Skalierung in absoluten Einheiten ist nicht ohne weiteres möglich, da die absolute Teilchendichte von Elektronen bzw.  $H_2^+$ -Ionen zur Zeit t=0, d. h. der natürliche Ionisierungsgrad, nicht genau bekannt ist. Die Schwerteilchenströme beziehen sich wieder auf die Kathode.

Die Maxima in Abb. 4.2a und 4.2b zeigen die Ankunft der Lawine an, die durch die letzten Primärionen ( $H_2^+$ -Ionen, die schon bei t=0 existierten) verursacht wurde. Nach diesem Ereignis nehmen die Ströme wieder ab oder steigen zumindest weniger stark an (siehe Abb. 4.2c-4.2e) um dann in einen von folgenden drei Zustände überzugehen:

| <br>exponentielles Abklingen der Ströme, wenn | р | < | $p_{z \text{ünd}}$ |
|-----------------------------------------------|---|---|--------------------|
| <br>Ströme bleiben konstant, wenn             | р | I | p <sub>zünd</sub>  |
| <br>exponentieller Anstieg der Ströme, wenn   | р | > | Pzünd              |

Abb. 4.2a zeigt also den Fall der unselbständigen Entladung. Wenn nicht dauernd Ladungsträger durch externe Quellen bereitgestellt werden, stirbt die Entladung mit einer Halbwertszeit von 22 ns aus. In Abb. 4.2b wurde der Druck auf 7,5 Pa erhöht. Dies entspricht fast dem Zündruck von 7,8 Pa. Die Ströme bleiben nach einer Initialphase von ungefähr 100 ns annähernd konstant. Die Auswirkungen einer weiteren Druckzunahme auf 25 Pa sind Abb. 4.2c zu entnehmen. Nach ca. 80-100 ns ist der Endzustand erreicht; die Ströme wachsen exponenentiell an. Ihre Verdoppelungszeit beträgt 6,3 ns. Die Abbildungen 4.2d und 4.2e zeigen diesen Fall für die anderen beiden Dioden (30 kV/10,0 cm und 6,9 kV/0,7 cm). Der Druck ist 18,0 Pa ( $p_{ztind}=5,2 Pa$ ) bzw. 200 Pa ( $p_{ztind}=84 Pa$ ), die Verdoppelungszeit 56,8 ns bzw. 9,3 ns. Daraus kann man folgern, daß bei gleichbleibendem Verhältnis p/ $p_{ztind}$  die Verdoppelungszeit mit wachsender Feldstärke abnimmt, was auch zu erwarten ist.

Erstaunlicher hingegen sind die Verhältnisse der einzelnen Teilchenstromdichten. So sind die Ströme der Neutralteilchen H und  $H_2$  stärker als die der Ionen; außer in Abb. 4.2a und 4.2b, wo der  $H_2^+$ -Ionenstrom an dritter Stelle noch vor dem H-Strom steht. Der Elektronenstrom steht an der Spitze. Dies liegt daran, daß ein Ion durch Aufbruch und/oder mehrfache Umladung mehere

schwere Teilchen generieren kann, die ihrerseits wiederum mehrere Elektronen aus der Kathode herausschlagen können. Bei dem in Abb. 4.2c dargestellten Fall entstehen nur 27% aller Elektronen durch Ionisation des Füllgases, bei dem in Abb. 4.2 d dagegen schon 62%, also mehr als die Hälfte und bei den Diodenparametern 6,9 kV/0,7 cm/200 Pa stammen 80% der Elektronen aus der Gasphase. Je kleiner die Entladespannung und je größer das Verhältnis p/pzünd, desto unbedeutender ist also der Einfluß der Sekundäremission. Diesen Sachverhalt kann man wie folgt verstehen: Mit abnehmender Spannung verringert sich die Durchschnittsenergie der schweren Teilchen und mit zunehmendem p/pzünd der mittlere freie Weg, somit auch wieder die Durchschnittsenergie, was schließlich kleinere Sekundärelektronenkoeffizienten bedeutet (siehe Anhang 2)

Der hohe Neutralteilchenanteil ist auf die großen Wirkungsquerschnitte der beiden Umladungsreaktionen

 $H^{+} + H_{2} \longrightarrow H + H_{2}^{+}$  $H_{2}^{+} + H_{2} \longrightarrow H_{2} + H_{2}^{+}$ 

zwischen 0,5 keV und 80 keV bzw. zwischen 0 keV und 80 keV zurückzuführen (siehe Anhang 2).

In Abb. 4.2f sind neben der mit SPARK berechneten Paschenkurven noch drei andere dargestellt: eine von Lauer berechnete [14] und zwei von R. B. Quinn [22] bzw. G. W. McClure [23] gemessene. Die Quinn'sche Kurve bezieht sich auf Nickelelektroden. Damit läßt sich zum Teil auch die starke Abweichung erklären. Nickel hat einen größeren Sekundärelektronenkoeffizient als Molybdän. Eine Nickeldiode zündet daher leichter als eine Molybdendiode. Der Vergleich der anderen Kurven untereinander zeigt, daß die Simulation mit SPARK näher an die Messungen von McClure heranreicht als die Rechnungen von Lauer. Die höheren Zündspannunungen beim Lauer'schen Modell haben hauptsächlich zwei Gründe: zum einen berücksichtigt Lauer weder Protonen noch schnelle Wasserstoffatome. Aber genau diese Teilchen tragen – wie aus 4.5 hervorgeht– bei hoher Spannung erheblich zur Ionisation von Füllgasmolekülen bei. Zum anderen werden auch Aufbrüche von  $H_2^+$ -Ionen vernachlässigt. Ein Aufbruch hat jedoch zur Folge, daß zwei neue Teilchen entstehen (H und H<sup>+</sup>), deren Gesamtsekundärelektronenkoeffizient über dem des  $H_2^+$ -Ions liegt. Beide Effekte senken die Zündspannung.



Abb. 4.2a und 4.2b: Teilchenstromdichten der Schwerteilchen an der Kathode und der Elektronen an der Anode als Funktion der Zeit



Abb. 4.2c und 4.2d: Teilchenstromdichten der Schwerteilchen an der Kathode und der Elektronen an der Anode



**Abb. 4.2e**: Teilchenstromdichten der Schwerteilchen an der Kathode und der Elektronen an der Anode / **Abb. 4.2f**: berechnete Paschenkurven und gemessene (letztere von G. W. McClure bzw. R. B. Quinn)

#### 4.3 Teilchendichten

Die Abbildungen 4.3a bis 4.3f zeigen die zeit- und ortsabhängige Dichten verschiedener Teilchensorten. Ihre Zahlenwerte beziehen sich auf die räumlich konstante  $H_2^+$ -Ionen- bzw. Elektronendichte zum Zeitpunkt t=0. Die Anode liegt bei x=0. Das rechte Ende der x-Achse ist mit der Kathode identisch.

Abb. 4.3a bis 4.3d gehören zum Parametertripel 350kV/5,0cm/7,5Pa, einem Punkt, der wie aus Abb. 4.2b zu ersehen ist, ungefähr auf der Paschenkurve liegt  $(p/p_{ziind} \approx 1)$ . Charakteristisch für die Elektronen (Abb. 4.3a) ist das geringfügige Abfallen der Dichte von der Anode bis kurz vor die Kathode. Dem schließt sich ein starker Anstieg bis zur Kathode an. Dieser rührt von der Elektronenemission an der Kathode her. Die Sekundärelektronen haben bei ihrer Entstehung die kinetische Energie bzw. Geschwindigkeit null und verweilen deswegen relativ lang im Kathodenbereich. Ähnlich sind die Verhältnisse in Abb. 4.3e (30 kV/10,0 cm/18 Pa/p:p<sub>ziind</sub>=3,5). Jedoch ist die Elektronenvermehrung durch Ionisation von Gasmolekülen stärker ausgeprägt, während die hohe Elektronenkonzentration an der Kathode nachläßt. Beide Effekte lassen sich damit erklären, daß mit zunehmendem Verhältnis p/p<sub>zünd</sub> und abnehmender Diodenspannung die Sekundäremission von Elektronen an der Kathode abnimmt, weil die auftreffenden Schwerteilchen weniger Energie und damit einen geringeren Emissionskoeffizienten haben (siehe Anhang 2). Gleichzeitig gewinnt die Ionisation -vor allem durch Elektronen- in der Gasphase an Bedeutung.

Abb. 4.3b bis 4.3d zeigen die Schwerteilchendichten. Sie besitzen alle etwa den gleichen Verlauf: Sie wachsen langsam mit steigender Tendenz von null an der Anode bis zur Kathode. Einen Zentimeter vor der Kathode ( $\equiv 20\%$  der Diodenlänge) betragen ihre Dichten noch nicht die Hälfte der Werte an der Kathode. Über 60% der positiven Raumladung befinden sich in diesem Zentimeter. Das hat einen Kathodenfall zur Folge. Dieser wird hauptsächlich durch H<sub>2</sub><sup>+</sup>-Ionen verursacht, welche ca. neun mal häufiger vertreten sind als Protonen und ca. fünf mal häufiger als Elektronen. Die Dichte der schnellen Neutralen liegt -was auf Grund ihrer Stromanteile zu erwarten ist- im gleichen Größenordnungsbereich wie die der H<sub>2</sub><sup>+</sup>-Teilchen. Die Konzentration der H-Atome (Abb. 4.3d) ist rund 18 mal größer als die der H<sup>+</sup>-Ionen, H<sub>2</sub>-Moleküle (keine Abbildung) haben immerhin noch die gleiche Raumdichte wie H<sub>2</sub><sup>+</sup>-Ionen.

Das zunehmende räumliche Anwachsen der  $H_2^+$ -Ionendichte von Anode zu Kathode ist in Abb. 4.3f (30 kV/p:p<sub>zünd</sub> = 3,5) in ein lineares Anwachsen übergegangen. Kurz vor der Kathode ist dem noch ein verstärkter Anstieg überlagert. Dieser hat seinen Ursprung in der  $H_2^+$ -Produktionsrate durch von der Kathode stammende Elektronen. Bei weiterer Spannungsverminderung und p/p<sub>zünd</sub>-Vergrößerung wachsen die Schwerteilchendichte mit sinkender Tendenz zur Anode hin an. Auch das kann man verstehen: Ionisierungen von Gasmolekülen werden immer häufiger von Elektronen verursacht. Da die Elektronendichte von Kathode zu Anode ansteigt, ist die Ionisationsrate und damit die räumliche Anwachsrate der Ionendichte im Anodenbereich am größten. Dieser Effekt wird noch durch die an der Anode zurückgestreuten Elektronen begünstigt.



**Abb. 4.3a** und **4.3b**: räumliche Dichte der Elektronen bzw. Protonen als Funktion des Ortes und der Zeit



**Abb. 4.3c** und **4.3d**: räumliche Dichte der  $H_2^+$ -Ionen bzw. der schnellen H-Atome als Funktion des Ortes und der Zeit


**Abb. 4.3e** und **Abb. 4.3f**: räumliche Dichte der Elektronen bzw. der  $H_2^+$ -Ionen als Funktion des Ortes und der Zeit

## 4.4 Energieverteilungen

Es folgt nun die Diskussion der Energieverteilungen. Auf den Seiten 35 bis 37 sind zeitabhängige Energiespektren der Ionen und schnellen Neutralteilchen an der Kathode zu finden. Auf eine graphische Darstellung des Elektronenspektrums an der Anode wurde verzichtet. Es ist jedoch nötig, ein paar Bemerkungen darüber zu machen.

Ein großer Teil der Elektronen ensteht, wie schon erwähnt, an der Kathode. Da der Wirkungsquerschnitt oberhalb 1keV klein ist, sind Stöße im Gas selten. Viele Elektronen werden zu "Runaway-Teilchen" (das sind Teilchen, deren Wirkungsquerschnitt so klein ist, daß sie nicht mehr stoßen). Der Energieverlust auf dem Weg zur Anode ist also sehr gering. Dies hat zur Folge, daß die Verteilung aus zwei Komponenten besteht: einem ausgeprägten Peak bei der Maximalenergie e\*U und einem kontinuierlichen Spektrum zwischen null und e\*U, verursacht durch die in der Gasphase produzierten Elektronen. Diese Verteilung sieht ungefähr so aus wie die Dichteverteilung der Elektronen. Mit abnehmendem  $p/p_{zünd}$  und zunehmender Diodenspannung wird der Peak immer größer. So haben bei 350 kV Spannung und  $p/p_{zünd} = 1$  rund 60% aller an der Anode auftreffenden Elektronen die Maximalenergie von 350 keV. Dies läßt an eine Verwendung der Pseudofunkenkammer als Elektronenquelle denken.

Bei den Schwerteilchen sind die Verhältnisse komplizierter, da ihnen mehrere Reaktionskanäle zur Verfügung stehen, die je nach Teilchenenergie unterschiedliche Stoßraten haben. Abb. 4.4 a bis 4.4 d zeigen die Spektren der Schwerteilchen für U=350 kV und  $p/p_{ztind}$  = 3,2. Auffallend bei den  $H_2^+$ -Ionen ist, daß die Verteilung ihr Maximum bei null hat und dann ungefähr exponentiell abnimmt. 93% der Ionen haben weniger als 20 keV. Ihre Durschnittsenergie beträgt nur 7,1 keV, (2% der Maximalenergie) was einem mittleren freien Weg von einem Millimeter entspricht (die Diode ist 50mm lang). Besser ist die Energieaufnahme der Protonen. Ihre Durchschnittsenergie ist 48 keV (14% der Maximalenergie). Für den schlechten Energiegewinn der  $H_2^+$ -Ionen sind vor allem die großen Wirkungsquerschnitte von Ladungsaustausch und Ladungsaustausch mit Dissoziation unterhalb 100 keV verantwortlich. Bei diesen Reaktionen geht die gesamte Energie des Ions auf schnelle Neutrale über, die im elektrostatischen Feld keine Energie mehr aufnehmen können. Unterhalb 20 keV sind die Wirkungsquerschnitte annähernd konstant. Die Verteilung der freien Weglänge le ist dann proportional  $zu \exp(-n_0 \sigma l_c)$ . Damit ist auch das exponentielle Abklingen des Energiespektrums erklärt.

Eine Erhöhung der Diodenspannung würde die mittlere Energie vergrößern, somit den Wirkungsquerschnitt der Austauschreaktionen senken und den der erwünschten Ionisationen heben. Um einen optimalen Energiegewinn zu erhalten, sollte jedoch zusätzlich eine differentiell leergepumpte Nachbeschleunigungskammer verwendet werden. Ansonsten müßten die Ionen auf der Anode entstehen und ohne Austauschstöße die Kathode erreichen um die Maximalenergie e\*U zu erhalten. Dies ist dann aber keine Gas- sondern eine Vakuumentladung mit aktiver Anode.

Die Spektren der schnellen Neutralen sind in Abb. 4.4c und 4.4d dargestellt. Ihre Durchschnittsenergien von 8,0 keV und 7,8 keV sind immerhin mit der der  $H_2^+$ -Ionen vergleichbar. Abb. 4.4e und 4.4f zeigen die Ionenspektren bei U=30 kV und p/p<sub>zünd</sub> = 3,5. Wie zu erwarten, liegen die Verhältnisse von mittlerer Energie (1,4 keV für Protonen und 0,59 keV für  $H_2^+$ -Ionen) zu Maximalenergie unter den oben erwähnten.

Es wurden auch Spektren für  $6,9\,\mathrm{kV}$  Diodenspannung berechnet (keine Abbildung). Diese konnten mit den experimentellen Daten von W. Benker [21], welche während der Hauptentladung gemessen wurden, verglichen werden. Dabei zeigte sich, daß das simulierte Protonenspektrum gut mit den Messungen übereinstimmte; nicht so das Spektrum der  $\mathrm{H}_2^+$ -Ionen. Wahrscheinlich liegt das daran, daß während der Hauptentladung der Ionisationgrad des Gases so groß ist, daß Ladungsaustausch zwischen  $\mathrm{H}_2^+$ -Teilchen und Wasserstoffmolekülen stark an Bedeutung verliert. Für Protonen fiele dieser Umstand nicht so sehr ins Gewicht, da ihr Wirkungsquerschnitt unterhalb 1keV rund 30 mal kleiner ist.



**Abb. 4.4a** und **Abb. 4.4b**: zeitabhängiges Energiespektrum der Protonen und der  $H_2^+$ -Ionen



**Abb. 4.4c** und **4.4d**: zeitabhängiges Energiespektrum der schnellen H-Atome und der schnellen H<sub>2</sub>-Moleküle



**Abb. 4.4e** und **Abb. 4.4f**: zeitabhängiges Energiespektrum der Protonen und der  $H_2^+$ -Ionen

.

## 4.5 Relative Reaktionshäufigkeiten

Als letztes Ergebnis der Simulation wird im folgenden die Bedeutungen und Häufigkeiten der einzelnen Reaktionen behandelt. Auf den Seiten 39 bis 41 sind dazu jeweils drei Schaubilder zu finden. Sie zeigen Rechtecke, die in kleinere Flächen unterteilt sind. Diese Flächen stellen relative Häufigkeiten dar; im obersten Rechteck die relativen Häufigkeiten von Ionisationen durch Elektronen, durch Protonen u. s. w. bezogen auf die Gesamthäufigkeit von Ionisationen. Aus der mittleren Abbildung ist die Verteilung der verschiedenen Protonenreaktionen zu entnehmen und aus der unteren die der  $H_2^+$ -Reaktionen. Bei der Beurteilung muß man berücksichtigen, daß die relativen Gewichte der Reaktionen nicht nur von der Diodenspannung abhängen, sondern auch von p/p<sub>zünd</sub>. Eine Variation von p/p<sub>zünd</sub> ändert die mittleren freien Weglängen, damit die mittleren Energien, wodurch sich auch die Verhältnisse der Wirkungsquerschnitte ändern können.

Betrachtet man Abb. 4.5a (U=350 kV,  $p/p_{zünd}$  =3,2), so fällt auf, daß nur rund 10% aller Ionisationen von Elektronen verursacht werden, obwohl der Elektronenstrom 2,3 mal stärker ist als der Strom der schweren Teilchen. Dies liegt in der Energieabhängigkeit des Ionisationswirkungsquerschnitts der Elektronen begründet. Nach einem Maximum von 10<sup>-20</sup>m<sup>2</sup> bei 80 eV fällt er steil ab. Die mittlere freie Weglänge für Teilchen mit 10<sup>-20</sup>m<sup>2</sup> Wirkungsquerschnitt in einem Gas bei 25Pa Druck beträgt 1,6cm. Nach dieser Strecke hat ein Elektron aber schon eine Energie von 113 keV und einen Wirkungsquerschnitt von  $6*10^{-23}m^2$ . Es ist zu einem "Runaway-Teilchen" geworden.

Bemerkenswert ist der hohe Ionisationsbeitrag der schnellen Neutralen von ca. 60% in Abb. 4.5a. Diese Spitzenstellung nehmen bei U=30 kV und  $p/p_{ziind}$ =3,5 (Abb. 4.5d) die Elektronen mit 47% ein. In Abb. 4.5g (U=6,9 kV,  $p/p_{ziind}$ = 2,4) dominieren sie mit 77% noch stärker. Daneben besitzen nur noch die schnellen H<sub>2</sub>-Moleküle eine nennenswerte Ionisationsrate.

Vergleicht man bei den Protonen das Verhältnis von Umladungen zu Ionisationen, so ist auch dort eindeutig ein Trend zu erkennen: Je kleiner die Spannung, desto häufiger sind Umladungen. Schon bei  $30 \, \text{kV}$  ist nur noch jeder 20. Stoß ein Ionisationsstoß. Ähnlich so bei den  $\text{H}_2^+$ -Ionen, jedoch mit dem Unterschied, daß vor allem bei hoher Spannung noch Dissoziationen und Dissoziationen mit Umladungen eine Rolle spielen.



**Abb. 4.5a**: relative Häufigkeit der Ionisation durch Elektronen, durch Protonen u. s. w. / **Abb. 4.5b**: relative Häufigkeit der Ionisation und der Umladung bei Protonen / **Abb. 4.5c**: relative Häufigkeit der Ionisation, der Umladung, der Umladung mit Aufbruch und des Aufbruchs bei  $H_2^+$ -Ionen (alle drei für U=350kV,  $p/p_{ztind} = 3,2$ )



**Abb. 4.5 d**: relative Häufigkeit der Ionisation durch Elektronen, durch Protonen u. s. w. / **Abb. 4.5 e**: relative Häufigkeit der Ionisation und der Umladung bei Protonen / **Abb. 4.5 f**: relative Häufigkeit der Ionisation, der Umladung, der Umladung mit Aufbruch und des Aufbruchs bei  $H_2^+$ -Ionen (alle drei für U=30kV,  $p/p_{zund} = 3,5$ )



**Abb. 4.5 g**: relative Häufigkeit der Ionisation durch Elektronen, durch Protonen u. s. w. / **Abb. 4.5 h**: relative Häufigkeit der Ionisation und der Umladung bei Protonen / **Abb. 4.5 i**: relative Häufigkeit der Ionisation, der Umladung, der Umladung mit Aufbruch und des Aufbruchs bei  $H_2^+$ -Ionen (alle drei für U=6,9kV,  $p/p_{ztind} = 2,4$ )

# 4.6 Absolute Skalierung

Um die Stromdichten und Teilchendichten in absoluten Einheiten zu skalieren, ist es nötig zu einem bestimmten Zeitpunkt entweder die Stromdichten oder die Teilchendichten zu kennen.

Dazu wurde angenommen, daß das Füllgas schon vor dem Anlegen der Diodenspannung durch kosmische Strahlung und Radioaktivität der Erdkruste ständig ionisiert wird. Die dabei entstehenden Elektron-Ion-Paare rekombinieren nach einer gewissen Zeit wieder. Im stationären Zustand ist die Elektronenbzw. Ionendichte gegeben durch [24]:

$$n_i = n_e = \sqrt{\frac{1}{r} \left(\frac{\partial n}{\partial t}\right)_{erz}}$$
 (4.6a)

 $\left(\frac{\partial n}{\partial t}\right)_{erz}$  ist die Ionisationsrate und r der Rekombinationskoeffizient. Ihre Werte sind für Luft 1,6\*10<sup>6</sup> m<sup>-3</sup>s<sup>-1</sup> (bei 1bar) und 1,6\*10<sup>-12</sup> m<sup>3</sup>s<sup>-1</sup>. Sie können in erster Näherung auch für Wasserstoff benutzt werden. Es ergeben sich damit folgende Stromdichten an der Kathode:

U=350 kV / d=5,0 cm / p=25 Pa : j = 0,125 A cm<sup>-2</sup> nach 146 ns  
U=30 kV / d=10,0 cm / p=18 Pa : j = 0,076 m A cm<sup>-2</sup> nach 972 ns  
U=6,9 kV / d=0,7 cm / p=200 Pa : j = 0,78 
$$\mu$$
 A cm<sup>-2</sup> nach 95 ns

Zur Abschätzung der Ladungsdichten und der damit verbundenen inneren elektrostatischen Felder wurden nur die  $H_2^+$ -Ionen in Betracht gezogen. Die Dichte der Elektronen und der Protonen kann vernachlässigt werden. Es ist klar, daß die durch die positive Ladungsschicht verursachten Felder an den Elektroden am größten sind. Man kann sie dort nach der Gleichung

$$E = \frac{\sigma}{2\varepsilon_0}$$

berechnen.  $\sigma$  ist die auf die Einheitsfläche bezogene Ladungsmenge zwischen Anode und Kathode. Man bekommt folgende Zahlenwerte für die H<sup>+</sup><sub>2</sub>-Teilchendichte n und E:

U=350 kV / d=5,0 cm / p=25 Pa :  $n = 1,6*10^8 \text{ cm}^{-3}$ , E = 7,2\*10<sup>4</sup> Vm<sup>-1</sup> nach 146 ns U=30 kV / d=10,0 cm / p=18 Pa :  $n = 1,7*10^6 \text{ cm}^{-3}$ , E = 1,5\*10<sup>3</sup> Vm<sup>-1</sup> nach 968 ns U=6,9 kV / d=0,7 cm / p=200 Pa :  $n = 5,7*10^4 \text{ cm}^{-3}$ , E = 3,6 Vm<sup>-1</sup> nach 96 ns Man sieht, daß das interne Feld gegenüber dem äußeren noch vernachlässigt werden kann. Exponentielles Wachstum der Raumladungen angenommen, würden ihre Feldstärken nach 187 ns bzw. 1400 ns bzw. 264 ns schon 10% der Diodenfeldstärke betragen. Spätestens dann ist die Grenze des Modells erreicht.

Die obigen Abschätzungen sind sehr grob, da der Ionisationsgrad zum Zeitpunkt t=0 -nach Gl. (4.6a) berechnet- nur einen Mittelwert darstellt. In der Pseudofunkenkammer kann er durchaus wesentlich geringer sein, da durch Metallwände die ionisierende Strahlung zum Teil aufgehalten wird. Schließlich ist es nicht sicher, daß die hochenergetische Strahlung der einzige Mechanismus ist, der Primärladungsträger bereitstellt. So kann z. B. bei Feldstärken von über 10<sup>7</sup> V/m an den Elektrodenoberflächen auch Feldemission eine Rolle spielen.

# 5 Kurzer Ausblick

Fernziel unserer theoretischen Arbeit zum Pseudofunken ist die Verbindung von SPARK mit dem Code zur Berechnung der Hohlkathode. Erst diese Vereinigung würde eine komplette Berechnung der zeitlichen und räumlichen Entwicklung der Entladung ermöglichen.

Doch bevor diese Verbindung sinnvoll wird, muß SPARK zunächst auf zwei Dimensionen (r, z) erweitert werden. Dies gilt nicht nur für die Bewegungsgleichungen der Teilchen, sondern auch für das elektrostatische Feld. Erst dadurch ist es möglich die Bündelung des Plasmastrahls auf der Achse zu beschreiben. Das Hauptproblem bei der Erweiterung wird das numerische Lösen der Bewegungsgleichungen mit sich bringen. Bisher konnte darauf verzichtet werden, da die auf die Teilchen wirkende Kraft als konstant angesehen wurde. Um den zeitlichen Rechenaufwand, der zur Lösung der vielen tausend Bewegungsgleichungen nötig ist, in Grenzen zu halten, scheint eine Reduzierung der Testteilchenzahl sinnvoll zu sein. Dies wiederum macht die Implementierung einer ausgefeilteren Renormierung -wie sie in Kap. 2.4 kurz angedeutet wurde – nötig, damit die statistischen Fehler nicht überhand nehmen.

Ist all dies getan, kann auch an die Berücksichtigung von Raumladungen gedacht werden. Dazu ist das simultane numerische Lösen der Poissongleichung nötig, wofür bereits ein Unterprogramm zur Verfügung steht. Die nächste Stufe wäre dann die Berücksichtigung der internen magnetischen Felder.

Schließlich muß auch daran gedacht werden, der Abnahme der Füllgasteilchendichte mit zunehmendem Ionisierungsgrad Rechnung zu tragen und auch Stöße ohne Beteiligung dieser Füllgasteilchen zu berücksichtigen, wie z. B. Rekombinationen.

# Anhang

•

### A1 Herleitung des Paschengesetzes

In den meisten Büchern über Gasentladungsphysik wird das Paschengesetz mit Hilfe des Townsend-Konzeptes hergeleitet. Die dabei vorausgesetzten Näherungen wie z. B., daß der Ionisierungskoeffizient  $\alpha$  nur von E/n abhängt, gelten jedoch nicht mehr bei hohen E/n-Werte (>5\*10<sup>-18</sup> Vm<sup>2</sup>). Formuliert man das Problem im Rahmen der statistischen Theorie unter Verwendung der Stoßwirkungsquerschnitte, so läßt sich zeigen, daß der Gültigkeitsbereich des Gesetzes nicht an einen beschränkten E/n-Bereich gebunden ist. Dies soll im folgenden geschehen.

 $p_c(x)$  sei die Verteilung der freien Weglänge eines geladenen Teilchens. Die Diodenspannung sei U, der Elektrodenabstand d und die Gasdichte  $n_0$ . Geht man bei gleichbleibender Spannung zum Abstand kd und der Dichte  $n_0/k$  über, so gilt das Paschengesetz dann, wenn die neue Weglängenverteilung  $p'_c(x)$  mit der alten durch die Ähnlichkeitsbeziehung

$$\mathbf{p}_{\mathbf{c}}'(\mathbf{k}\mathbf{x}) = \mathbf{p}_{\mathbf{c}}(\mathbf{x}) \tag{A1}$$

verknüpft ist. p(x) ist nach Gleichung (2.4.2d) gegeben durch:

$$p_c(x) = 1 - exp\left(-n_0 \int_0^x \sigma(\frac{U}{d}x') dx'\right)$$

p'c(kx) kann man also wie folgt ausdrücken:

$$p'_{c}(kx) = 1 - exp\left(-\frac{n_{0}}{k}\int_{0}^{kx}\sigma(\frac{U}{kd}x')dx'\right)$$

Durch die Substitution x'=kz wird daraus:

$$p'_{c}(kx) = 1 - exp\left(-\frac{n_{0}}{k}\int_{0}^{x} \sigma(\frac{U}{kd}kz)kdz\right) = p_{c}(x)$$

Somit ist Bedingung (A1) erfüllt, das Paschengesetz also gültig. Anders formuliert: Eine Entladung zwischen zwei unendlich ausgedehnten, parallelen und ebenen Elektroden ist (bis auf ihre zeitliche Entwicklung) eindeutig durch die Angabe von U und p\*d festgelegt.

Allerdings hat man bei dieser Herleitung – neben der Vernachlässigung der Raumladungen- vorausgesetzt, daß die Stoßwahrscheinlichkeit eines Teilchens nur proportional zur Füllgasdichte ist und unabhängig von der Ionen- und Elektronendichte. Die Wahrscheinlichkeit von Rekombinationen ist aber proportional dem Produkt  $n_i n_e$  dieser Dichten. Rekombinationen müssen also vernachlässigbar sein, damit obige Überlegungen sinnvoll bleiben. Immer wenn Prozeßraten dem Produkt aus  $n_i$  und  $n_e$  oder höheren Potenzen proportional sind, sind Ähnlichkeitsbeziehungen, wie z. B. das Paschengesetz, verletzt [25].

# A2 Wirkungsquerschnitte / Sekundärelektronenkoeffizienten / Rückstreukoeffizient der Elektronen

Auf den folgenden Seiten sind die verwendeten Energiabhängigkeiten der Wirkungsquerschnitte, der Sekundärelektronenkoeffizienten und des Rückstreukoeffizienten graphisch dargestellt. Dazu folgende Erläuterungen:

Daten für sämtliche Reaktionen wurden dem Oak Ridge National Laboratory Report "Atomic Data for Controlled Fusion Research" [26] entnommen. Da in diesem Report nicht alle Wirkungsquerschnitte und Koeffizienten über einen genügend großen Energiebereich tabelliert sind, wurden einige Daten durch andere Quellen bzw. Extrapolationen ergänzt. So wurde der Wirkungsquerschnitt für

$$H_2^+ + H_2 \longrightarrow H + H + H_2^+$$

unter 4,0.10<sup>3</sup>eV und über 2,0.10<sup>5</sup>eV nach der Formel

$$\frac{\sigma}{\sigma_0} = \left(\frac{E}{E_0}\right)^s$$

linear in doppelt logarithmischer Skalierung extrapoliert.  $\sigma_0(E_0)$  ist dabei der erste (letzte) Tabellenwert. s kann aus den beiden ersten (letzten) bekannten  $\sigma$ -E-Paaren bestimmt werden. Ebenso wurden die Daten der Stoßreaktionen

$$H_{2}^{+} + H_{2} \longrightarrow H_{2}^{+} + H_{2}^{+} + e$$

$$H + H_{2} \longrightarrow H^{+} + e + H_{2}$$

$$H + H_{2} + e$$

für Energien über  $1,76 \cdot 10^{5} eV$  bzw. über  $3,3 \cdot 10^{5} eV$  erweitert. Unter  $1,5 \cdot 10^{5} eV$  wurde der Wirkungsquerschnitt der letzten Reaktion mit dem Ionisierungsquerschnitt von Protonen gleichgesetzt. Ferner kann man näherungsweise davon ausgehen, daß beide Reaktionskanäle gleich wahrscheinlich sind [27]. Der Wirkungsquerschnitt für

$$H_2 + H_2 \xrightarrow{H_2^+ + e + H_2}_{H_2 + H_2^+ + e}$$

wurde über 1,2.10 eV nach

$$\sigma = \frac{C}{\sqrt{E}}$$

extrapoliert. Auch hier sind, wie man aus Symmetrieüberlegungen folgern kann,

Stripping und Ionisierung gleich stark vertreten.

Sekundärelektronenkoeffizienten von schellen Wasserstoffatomen und schnellen Wasserstoffmolekülen waren in der Literatur nicht zu finden. Sie wurden mit denen der Protonen bzw.  $H_2^+$ -Ionen, welche ausreichend tabelliert sind, gleichgesetzt. Dies ist vernünftig, da die schnellen Neutrale beim Eindringen in das Elektrodenmetall sich ihrer Elektronen entledigen. Da durch Anlagerung von Wasserstoff an den Metalloberflächen die Elektronenemission zunimmt, wurden alle Koeffizienten mit 2,15 multipliziert [14]. Der Rückstreukoeffizient der Elektronen wurde über 2,0·10<sup>4</sup>eV mit dem letzten Tabellenwert gleichgesetzt.



**Abb.1** Ionisierungswirkungsquerschnitt  $\sigma$  für Elektronen [26] / Summe von  $\sigma$ und Null-Kollisions-Querschnitt  $\sigma' = \sigma + \sigma_{null}$ 







Abb.3 H2+-Querschnitte für Ionisierung, Umladung, Dissoziation und Dissoziation mit Umladung [26], [28], [29], [30]



**Abb.4** Ionisierungs- und Strippingquerschnitt für schnelle Wasserstoffatome [26], [28]







 $H_2^+/Mo$  bzw.  $H_2/Mo$  [26], [31]

## A3 Programmbeschreibung

Die Monte-Carlo-Rechnungen wurden mit dem Programm SPARK ausgeführt. SPARK ist ein FORTRAN-Code mit insgesamt 942 Zeilen und 16 Unterprogrammen. Die einzelnen Programmeinheiten haben folgende Bedeutung:

Hauptprogramm SPARK: In Zeile 12 bis 18 werden zunächst Eingabedaten eingelesen. In den 101\*101-Feldern TC2 und TC3 sind die Verteilungen der Zeiten zwischen zwei Stößen für Protonen und  $H_2^+$ -Teilchen gespeichert. EFIELD, GAP-LEN und PRESSU sind Variablen für die Diodenparameter elektrisches Feld, Elektrodenabstand und Druck. MAXTIM ist die Größe des Zeitbereichs, für den die Entladung berechnet wird und DT die Größe der Zeitintervalle, nach denen über die Testmenge Zwischenbilanz gezogen wird. In der WHILE-Schleife 30 (Zeile 28 bis 45) wird das gesamte Testteilchenregime auf den neusten Zeitstand gebracht. In der WHILE-Schleife 10 (34 bis 37) wird das Testeilchenensemble auf den neusten Stand gebracht.

Die Unterprogramme PHYSCO, INITZ, RNSEED, RESEND und INIT dienen der (Anfangs)wertzuweisung diverser Variablen. In INIT wird die phasenräumliche Verteilung des Testensembles zum Zeitpunkt t=0 festgelegt; wobei eine räumlich gleichmäßige Belegung mit ruhenden  $e/H_2^+$ -Paaren angenommen wird.

Unter Berücksichtigung von Stoßreaktionen und dem äußeren elektrischen Feld werden im Unterprogramm UPDATE die Daten eines Teilchens für den Zeitpunkt TIME berechnet. Dies geschieht indem die WHILE-Schleife 10 (17 bis 456) so oft durchlaufen wird (d. h. indem das Teilchen I so oft stößt), bis die Teilchenzeit T(I) größer als TIME ist. Wird das Teilchen vorher jedoch vernichtet, so wird UPDATE mit RETURN verlassen. In der Schleife werden auch neue Teilchen erzeugt.

Die Funktion TC berechnet die Zeit zwischen zwei Stößen in Abhängigkeit der Teilchenart PAKIND, der Zufallszahl RND und des Teichenimpulses P unmittelbar nach dem letzten Stoß. Für Elektronen findet die Null-Kollisions-Technik Anwendung, für Ionen wird TC durch lineare Interpolation der in TCOLL gespeicherten Werte ermittelt. Diese Werte werden nach Gl. (2.4.2 d) mit Hilfe des Programms COLLTIME (siehe Seite 79) separat für 101\*101 äquidistante RND-P-Punkte berechnet. Für die schnellen Neutralen wird die Gleichung

$$t_{c} = -\frac{\ln(RND)}{v n_{O} \sigma(E)}$$

benutzt. v und E sind Teilchengeschwindigkeit bzw. Teilchenenergie.

Die Unterprogramme DELETE und GENERE sind für die "Vernichtung" und "Erzeugung" von Testteilchen zuständig. Dies geschieht indem die Zeiger der verketteten Liste, in welcher die Daten der Teilchen gespeichert sind, in geeigneter Weise umgebogen werden.

Das Unterprogramm RENORM reduziert den Umfang der Testmenge auf einen Wert von MINN durch zufälliges "vernichten" von Testteilchen. Alle fünf Teilchenarten werden um den selben Faktor verringert. Dadurch wird eine unterschiedliche Wichtung vermieden.

Die Programmeinheit OUTPUT und BOOKKE geben Daten (Teilchenstromstärke, Teilchendichte u. s. w.) auf Terminal bzw. Magnetplatte aus.

Die Funktion QN liefert das Produkt  $n_0\sigma$  aus Gasdichte  $n_0$  und Wirkungsquerschnitt  $\sigma$  in Abhängigkeit von Teilchenenergie und Reaktionsnummer. Von QN werden die Unterprogramme FITQNW und FITYX2 aufgerufen.

Die Funktion SIGMAT berechnet für Elektronen die Summe aus realem Wirkungsquerschnitt und Null-Kollisions-Querschnitt, ebenfalls in Abhängigkeit der Energie. SIGMAT wird von TC aufgerufen.

\* -!-\* MAIN PROGRAM SPARK \* \* when when we have the state of the state \* MAXN IS THE MAXIMUM NUMBER OF TESTPARTICLES. <u>مار</u> THE TEST PARTICLE SET IS REDUCED TO MINN TEST PARTICLES \* \* IF THE NUMBER OF TEST PARTICLES EXCEEDS A GIVEN VALUE. 77 \* 001 PARAMETER( MAXN = 91040, MINN = 56900) 002 INTEGER PAKIND, DNANOD, DNKATH 003 REAL MAXTIM ÷ : PARTICLE POSITION Х 4 PPA : PARALLEL MOMENTUM COORDINATE OF THE -1-PARTICLE \* PPE PERPENDICULAR MOMENTUM COORDINATE OF THE PARTICLE \* : CLASSICAL KINETIC ENERGY OF A HEAVY PARTICLE, ويليد E \* • \*\* RESP. TOTAL RELATIVISTIC ENERGY OF AN ELECTRON \*\*\* \*\* : PARTICLE'S TIME \* T <u>.</u>... PAKIND : KIND OF PARTICLE \* MEANS ELECTRON, 2 MEANS PROTON, -!: 1 4 4 MEANS FAST H. مار 3 MEANS H2+, 5 MEANS H2 \* COMMON /PDATA/ X(MAXN), PPA(MAXN), PPE(MAXN), E(MAXN), T(MAXN), 004 & PAKIND(MAXN) PHYSICAL CONSTANTS -1-\* COMMON /CONST/ UNICHA, EMASS, PMASS, H2MASS, CSQR, EOSQR 005 \* POINTERS OF THE CONCATENATED LIST IN WHICH THE PARTICLE \* \* DATA ARE STORED J, COMMON /POINTE/ ITAIL, IFIN, ISUCC( 0:MAXN ) 006 DIODE PARAMETERS ·!- $_{\rm *}$ COMMON / PARAME / EFIELD, GAPLEN, PRESSU 007 COMMON /MISCEL/ NPARTI(5), DNANOD(5), DNKATH(5), FACTOR, EKIMA 800 COMMON /TIMES/ TIME, DT, MAXTIM 009 \* DISTRIBUTION OF THE TIME BETWEEN TWO COLLISIONS \* -!-\* TC2 : PROTONS, TC3 : H2+ COMMON /COLTIM/ TC2(0:100,0:100),TC3(0:100,0:100) 010 COMMON /PMAX/ PMAX2, PMAX3 011 READ(7) TC2 012 READ(8) TC3 013 READ(1,\*) EFIELD 014 READ(1,\*) GAPLEN 015 READ(1,\*) PRESSU 016 READ(1,\*) MAXTIM 017 READ(1,\*) DT 018 \*\* FUNCTION QN IS CALLED TO CALCULATE THE BACK GROUND GAS \* \* DENSITY

DUMMY = QN(2,0.)

ł

019

- 54 -

| 020<br>021<br>022        |             | EKIMA = UNICHA * EFIELD * GAPLEN<br>PMAX2 = SQRT( 2. * PMASS * EKIMA )<br>PMAX3 = SQRT( 2. * H2MASS* EKIMA )                                                                            |        |
|--------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 023                      | *           | INIT RELATES INITIAL DATA TO VARIABLES X, IFIN<br>CALL INIT( X, PPA, PPE, E, T, PAKIND, NPARTI, ISUCC, ITAIL, IFIN<br>& MAXN, MINN )                                                    | *<br>, |
| 024                      | *           | INITIAL RANDOM SEED<br>CALL RNSEED                                                                                                                                                      | *      |
| 025                      | *<br>*      | RESNEND CANCELS THE ENERGY DISTRIBUTION DATA IN THE<br>ARRAY ENEDIS<br>CALL RESEND                                                                                                      | *      |
| 026<br>027               |             | FACTOR = 1.<br>TIME = DT                                                                                                                                                                |        |
| 028                      |             | DO 30, WHILE ( TIME .LT. MAXTIM )                                                                                                                                                       |        |
| 029<br>030<br>031<br>032 | 40          | DO 40, $I = 1, 5$<br>DNKATH(I) = 0<br>DNANOD(I) = 0<br>CONTINUE                                                                                                                         |        |
| 033                      |             | K = 0                                                                                                                                                                                   |        |
| 034<br>035               | *<br>*      | THE WHILE LOOP UPDATES THE WHOLE TEST PARTICLE REGIME<br>FROM TIME - DT TO TIME.<br>DO 10, WHILE ( K .NE. ITAIL )<br>I = ISUCC(K)                                                       | *      |
| 036                      | *<br>*      | UPDATE UPDATES THE DATA OF PARTICLE I FROM TIME - DT<br>TO TIME AND TAKES INTO ACCOUNT COLLISION REACTIONS.<br>CALL UPDATE( K, I )                                                      | *      |
| 037                      | 10          | CONTINUE                                                                                                                                                                                |        |
| 038                      |             | CALL OUTPUT                                                                                                                                                                             |        |
| 039                      | *<br>*<br>* | BOOKKE STORES ENRGY DISTRIBUTIONS OF THE PARTICLES,<br>THE DENSITY DISTRIBUTION OF THE PARTICLES AND THE<br>PARTICLE CURRENT ON AN EXTERNAL FILE.<br>CALL BOOKKE( X, E, PAKIND, ISUCC ) | * * *  |
| 040                      | *           | NTOTNE: NUMBER OF OCCUPIED LIST ELEMENTS AFTER UPDATING<br>NTOTNE = NPARTI(1)+NPARTI(2)+NPARTI(3)+NPARTI(4)+NPARTI(5)                                                                   | *      |
| 041                      | *           | CRITERION FOR TEST PARTICLE REDUCTION<br>IF ( NTOTNE .GT. MAXN * 0.75 ) THEN                                                                                                            | *      |
| 042                      | <u></u>     | TEST PARTICLE REDUCTION<br>CALL RENORM( ISUCC, ITAIL, IFIN, FACTOR, NPARTI, MINN )                                                                                                      | *      |
| 043                      |             | ENDIF                                                                                                                                                                                   |        |

• .

045 30 CONTINUE

046 END

.

|        | יאראראראראראראראראראראראראראראראר                     |                                          | *****                                  | ******                                 | -363636363636            | *****                                                          | ******                                                  | ** >** >** >** >** >**              | うとうにうにうにったうにうとう                        | ***               |
|--------|-------------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|--------------------------|----------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|----------------------------------------|-------------------|
| 01     | BLOCK                                                 | DATA<br>*******                          | PHYSCO                                 | っくっくっっと っとっとっと                         | ******                   | ちっちっちっちっちっちっ                                                   | がったったったったった                                             | りっこうこうにっしょうしょうし                     | ****                                   | ****              |
| 02     | COMMO                                                 | N /CONST/                                | UNICHA, E                              | MASS,                                  | PMASS,                   | H2MAS                                                          | s, csq                                                  | R, EOS                              | QR                                     |                   |
| 03     | DATA                                                  | UNICHA /                                 | / 1.602192                             | E-19                                   | 1                        |                                                                |                                                         |                                     |                                        |                   |
| )4     | DATA                                                  | EMASS /                                  | 9.10956                                | E-31                                   | 1                        |                                                                |                                                         |                                     |                                        |                   |
| )5     | DATA                                                  | PMASS /                                  | 1.67261                                | E-27                                   | /                        |                                                                |                                                         |                                     |                                        |                   |
| 6      | DATA                                                  | H2MASS /                                 | 3.34613                                | E-27                                   | 1                        |                                                                |                                                         |                                     |                                        |                   |
| /<br>8 | DATA                                                  | CSQR /                                   | / 8.98/554<br>/ 6 703133               | E+16<br>E-27                           | /                        |                                                                |                                                         |                                     |                                        |                   |
| 0      | DATA                                                  | E03QK /                                  | 0.703133                               | E-27                                   | /                        |                                                                |                                                         |                                     |                                        |                   |
| 9      | END                                                   |                                          |                                        |                                        |                          |                                                                |                                                         |                                     |                                        |                   |
| )1     | **************************************                | *************<br>DATA<br>************    | ***********<br>INITZ<br>***********    | 31051051051051051<br>51051051051051051 |                          | - 3/2 3/2 3/2 3/2 3/2 3/2 3/2<br>- 9/2 3/2 3/2 3/2 3/2 3/2 3/2 | <del>36 56 56 56 56 56 56</del><br>56 56 56 56 56 56 56 | ** ** ** ** ** **<br>** ** ** ** ** |                                        | ****              |
|        | * Z1.                                                 | Z11 ARI                                  | E THE NU                               | MBERS                                  | OF R                     | EACTIO                                                         | N MAD                                                   | E BY                                | THE                                    | *                 |
| 2      | * ELECT<br>COMMO                                      | RONS<br>N /NOREAC,                       | FAST H2-<br>/ Z1, Z2,                  | MOLECU<br>Z3, Z4                       | JLES D<br>, Z5,          | URING<br>Z6, Z7                                                | THE<br>, 28,                                            | WHOLE<br>Z9, Z1                     | TIME<br>0, Z11                         | *                 |
|        | * EMEAN                                               | (I) ARE 7                                | THE MEAN                               | ENERG                                  | SIES C                   | F THE                                                          | PART                                                    | ICLES                               |                                        | *                 |
| 13     | * IMPIN<br>COMMO                                      | GING THE<br>N /EMEAN/                    | ELECTRODE EMEAN(5),                    | S.<br>TNUM                             | (5)                      |                                                                |                                                         |                                     |                                        | *                 |
| )4     | DATA                                                  | Z1, Z2,                                  | Z3, Z4, Z                              | 5, Z6,                                 | Z7, Z                    | .8, Z9,                                                        | Z10,                                                    | Z11 /                               | 11 * 0                                 | . /               |
| 5      | DATA                                                  | ( EMEAN                                  | (I), I=1,5                             | ) /                                    | 5*0.0                    | /                                                              |                                                         |                                     |                                        |                   |
| 6      | DATA                                                  | ( TNUM()                                 | I), I=1,5                              | ) / 5                                  | 5*0.0 /                  | ,                                                              |                                                         |                                     |                                        |                   |
| 7      | END                                                   |                                          |                                        |                                        |                          |                                                                |                                                         |                                     |                                        |                   |
|        | <del></del>                                           | ว่อว่อว่อว่อว่อว่อว่อว่อว่อว่อว่อว่อว่อว | *****                                  | 3'e3'e3'e3'e3'e3'e3                    | *****                    | *****                                                          | ******                                                  | 510 510 510 510 510 510             |                                        | ** ** **          |
| 01     | ****                                                  | SUBROI                                   | UTINE RNS                              | EED<br>******                          | e ste ste ste ste ste st | ***********                                                    | ז'ר ז'ר ז'ר ז'ר ז'ר ז'ר                                 | יני אינ שיני שיני שיני שיני         | ישרשיר שני שני שני שני שני שני         | ***               |
| )2     | CALL                                                  | TIME(IGEN)                               | )                                      |                                        |                          |                                                                |                                                         |                                     |                                        |                   |
| )3     | CALL                                                  | FA04DS(IG                                | EN)                                    |                                        |                          |                                                                |                                                         |                                     |                                        |                   |
| 4      | END                                                   |                                          |                                        |                                        |                          |                                                                |                                                         |                                     |                                        |                   |
|        | <del>זר זיר ז'ר ז'ר ז'ר ז'ר ז'ר ז'ר ז'ר ז'ר ז'ר</del> | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,   | /+ 5/+ 5/+ 5/+ 5/+ 5/+ 5/+ 5/+ 5/+ 5/+ |                                        | *****                    | * 5% 5% 5% 5% 5% 5%                                            | ット ット ット ット ット・ット                                       | ******                              | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | <u>,,,,,</u> ,,,, |
| )1     | SUBRO                                                 | UTINE RI                                 | ESEND<br>*******                       | ****                                   | * 2**2******             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                        | 310 310 310 310 310 310 310                             | 9K9K9K9K9K9K9K                      | *****                                  | ***               |
| 2      | COMMO                                                 | N /ENEDIS                                | / ENEDIS(5                             | ,20),                                  | ENNOR                    | 1(5)                                                           |                                                         |                                     |                                        |                   |

| 003<br>004<br>005<br>006<br>007<br>008 | 20<br>10           | DO 10, I = 1, 5<br>DO 20, J = 1,20<br>ENEDIS(I,J) = 0.<br>CONTINUE<br>ENNORM(I) = 0.<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 009                                    |                    | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 001                                    |                    | SUBROUTINE INIT( X, PPA, PPE, E, T, PAKIND, NPARTI, ISUCC,<br>& ITAIL, IFIN, MAXN, MINN )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 002<br>003                             |                    | INTEGER PAKIND<br>REAL NEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 004                                    |                    | DIMENSION X(*), PPA(*), PPE(*), E(*), T(*), PAKIND(*),<br>& ISUCC(0:*), NPARTI(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 005                                    |                    | COMMON /CONST/ UNICHA, EMASS, PMASS, H2MASS, CSOR, EOSOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 006                                    |                    | COMMON /DADANE / FETELD CADEN DECSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 000                                    |                    | Control (Trachilly Erillib), Gri Len, Trebbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 007                                    |                    | COMMON /NEO/ NEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 008                                    |                    | EO = SQRT(EOSQR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | **                 | THE DO-LOOP GENERATES A INITIAL TEST PARTICLE SET. THE *<br>TEST PARTICLES ARE UNIFORMLY DISTRIBUTED OVER THE WHOLE *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | *                  | GAP AND HAVE NO INITIAL KINETIC ENERGY. *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 009                                    |                    | DO 10, $I = 1$ , MAXN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 010                                    |                    | $X(I) = I \div GAPLEN / (MINN+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 011                                    |                    | $\mathbf{F}(\mathbf{I}) = \mathbf{F}(\mathbf{I} \times \mathbf{I} \times \mathbf{I})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 011                                    |                    | E(1) = E(1) + |
| 012                                    |                    | PAKIND(1) = 1+MOD(1,2)*2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 013                                    |                    | PPA(I) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 014                                    |                    | PPE(I) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 015                                    |                    | T(I) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 016                                    |                    | ISUCC(I-1) = I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 017                                    | 10                 | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 010                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 010                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 019                                    |                    | 1F1N = MAXN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 020                                    |                    | NPARTI(1) = MINN/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 021                                    |                    | NEO = NPARTI(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 022                                    |                    | NPARTI(2) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 023                                    |                    | NPARTI(3) = NPARTI(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 024                                    |                    | NPARTI(4) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 025                                    |                    | NPARTI(5) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 026                                    |                    | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 001                                    | -te ste ste ste st | www.www.www.www.www.www.www.www.www.ww                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 002                                    |                    | PARAMETER ( MAXN = $91040$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

.

003 PAKIND, DNANOD, DNKATH INTEGER 004 LOGICAL FLAG 005 COMMON /PDATA/ X(MAXN), PPA(MAXN), PPE(MAXN), E(MAXN), T(MAXN), & PAKIND(MAXN) 006 COMMON /CONST/ UNICHA, EMASS, PMASS, H2MASS, CSQR, EOSQR /POINTE/ ITAIL, IFIN, ISUCC( 0:MAXN ) 007 COMMON /PARAME/ EFIELD, GAPLEN, PRESSU 008 COMMON /PHYSIK/ DENSIT 009 COMMON /MISCEL/ NPARTI(5), DNANOD(5), DNKATH(5), FACTOR, EKIMA 010 COMMON 011 COMMON /TIMES/ TIME COMMON /NOREAC/ Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11 012 COMMON / EMEAN / EMEAN(5), TNUM(5)013 014 COMMON /ENEDIS/ ENEDIS(5,20) /IEKATH/ IEKATH 015 COMMON FLAG = .TRUE. 016 017 DO 10, WHILE (FLAG) \* COMPUTATION OF TIME BETWEEN TWO COLLISIONS \* 018 = TC( PAKIND(I), PPA(I), FA04AS(1), I) DT IF (T(I) + DT . GE. TIME) THEN 019 DT = TIME - T(I) 020 T(I) = TIME021 022 FLAG = .FALSE.023 ELSE T(I) = T(I) + DT024 025 ENDIF 026 IF ( PAKIND(I) .EQ. 1 ) THEN \* ELECTRONS: \* 027 PPA(I) = PPA(I) - UNICHA\*EFIELD\*DT028 EOLD = E(I)E(I) = SQRT(EOSQR + CSQR\*(PPA(I)\*PPA(I) + PPE(I)\*PPE(I)))029 030 X(I) = X(I) - (E(I)-EOLD)/UNICHA/EFIELD031 IF (X(I).LT. 0.) THEN 032 DX = -X(I)033 X(I) = 0.E(I) = E(I) - UNICHA\*EFIELD\*DX034 POLD = PPA(I)035 PPA(I) = -SQRT((E(I)\*E(I)-CSQR\*PPE(I)\*PPE(I)-EOSQR)/CSQR))036 T(I) = T(I) + (POLD-PPA(I))/UNICHA/EFIELD037 038 EKIN = (E(I) - SQRT(EOSQR)) / UNICHABACKSCATTERING OF ELECTRONS AT THE ANODE: \* \* 039 ETA = QN(57, EKIN)/DENSIT(FA04AS(1).LE.ETA)THEN 040 IF 0.577\*ABS(PPE(I)) ) THEN IF ( ABS(PPA(I)) .GT. 041 THETA = ASIN(FA04AS(1)) 042 043 ELSE THETA = ABS(ATAN(PPE(I)/PPA(I)))044 045 END IF IF (EKIN.GE. 1.E4) THEN 046

047 E(I)= 0.2 \* SQRT(EOSQR) + 0.8 \* E(I)048 ENDIF PPA(I) = SQRT((E(I) + E(I) - EOSQR) / CSQR) + COS(THETA)049 PPE(I) = ABS(PPA(I) \* TAN(THETA))050 051 IF (T(I) . LT. TIME) FLAG = .TRUE. 052 ELSE 053 EKIN = EKIN  $\div$  UNICHA \* DIVIDING THE ELECTRONS <u>.</u> TN \* SEPARATE ENERGY INTER -2 0 -1-VALLS AND COUNTING 1. ТНЕМ \* 054 INDEX = INT( EKIN / EKIMA \* 19.9999 ) + 1 055 EMEAN(1) = EMEAN(1) + FACTOR \* EKIN056 TNUM(1) = TNUM(1) + FACTOR057 IF ( INDEX .LE. 20 ) THEN 058 ENEDIS(1, INDEX) = ENEDIS(1, INDEX) + FACTOR 059 ELSE WRITE(\*,\*) ' ELECTRON ENERGY : ', EKIN 060 END IF 061 \* DELETE(K,I) CANCELS THE PARTICLE I \* 062 CALL DELETE( K, I ) 063 DNANOD(1) = DNANOD(1) + 1064 NPARTI(1) = NPARTI(1) - 1065 RETURN 066 ENDIF REACTIONS WITHIN \* ТНЕ GAP: \* 067 ELSE IF (FLAG) THEN 068 EKIN = (E(I) - SQRT(EOSQR)) / UNICHA069 F = QN(47,EKIN) / DENSIT / SIGMAT(EKIN) IF ( FA04AS(1) .LE. F ) THEN 070 E + H2 --> 2 E + H2+ : \* IONISATION 071 Z1 = Z1 + FACTOR\* GENERE CREATES A NEW PARTICLE \*\* 072 CALL GENERE 073 NPARTI(1) = NPARTI(1) + 1074 PAKIND(ITAIL) = 1075 X(ITAIL) = X(I)PPA(ITAIL) = 0.076 077 PPE(ITAIL) = 0.078 E(ITAIL) = SQRT(EOSQR)079 T(ITAIL) = T(I)= E(I) - 2.4E - 18080 E(I)081 COSTHE = PPA(I) / SQRT(PPA(I)\*PPA(I) + PPE(I)\*PPE(I))082 PPA(I) = SQRT( (E(I)\*E(I)-EOSQR)/CSQR ) \* COSTHE = ABS(PPA(I)) \* SQRT(1./COSTHE/COSTHE -1.)083 PPE(I) 084 CALL GENERE 085 NPARTI(3) = NPARTI(3) + 1086 PAKIND(ITAIL) = 3087 X(ITAIL) = X(I)

088 PPA(ITAIL) = 0.089 E(ITAIL) = 0.090 T(ITAIL) = T(I)091 END IF END IF 092 093 ELSE IF ( PAKIND(I) .EQ. 2 ) THEN IONS: ، مارد \* H+094 PPA(I) = PPA(I) + UNICHA\*EFIELD\*DT095 EOLD = E(I)E(I) = 0.5\*PPA(I)\*PPA(I)/PMASS096 097 X(I) = X(I) + (E(I)-EOLD)/UNICHA/EFIELD098 IF (X(I).LT. 0.) THEN 099 STOP ' H+ BEHIND ANODE' ELSE IF (X(I).GT. GAPLEN ) THEN 100 DNKATH(2) = DNKATH(2) + 1101 = GAPLEN-X(I) 102 DX 103 E(I) = E(I) + UNICHA\*EFIELD\*DXPOLD = PPA(I)104 PPA(I) = SQRT(2\*PMASS\*E(I))105 106 T(I) = T(I) - (POLD-PPA(I))/UNICHA/EFIELD\* DIVIDING THE H+ IONS IN 20 SEPARATE \* 4. \* ENERGY INTERVALLS AND COUNTING THEM 107 INDEX = INT(E(I) / EKIMA \* 19.9999) + 1108 EMEAN(2) = EMEAN(2) + FACTOR\*E(1)TNUM(2) = TNUM(2) + FACTOR109 IF ( INDEX .LE. 20 ) 110 ENEDIS(2, INDEX) = ENEDIS(2, INDEX) + FACTOR& \* EMISSION 0 F SECONDARY \* ВҮ \* ELECTRONS H+ - I M P A C T \* CATHODE : \* \* ΑΤ ТНЕ DELTA =  $2.159 \approx QN(58, E(I)/UNICHA) / DENSIT$ 111 INTDEL = INT(DELTA)112 DO 40, J = 1, INTDEL 113 CALL GENERE 114 115 IEKATH = IEKATH + 1NPARTI(1) = NPARTI(1) + 1116 PAKIND(ITAIL) = 1117 X(ITAIL) = GAPLEN118 119 PPA(ITAIL) = 0.120 PPE(ITAIL) = 0.121 E(ITAIL) = SQRT(EOSQR)122 T(ITAIL) = T(I)40 CONTINUE 123 ( FA04AS(1) .LE. DELTA-INTDEL ) THEN 124 IF 125 CALL GENERE IEKATH = IEKATH + 1126 127 NPARTI(1) = NPARTI(1) + 1PAKIND(ITAIL) = 1128 129 X(ITAIL) = GAPLEN130 PPA(ITAIL) = 0.

131 PPE(ITAIL) = 0.132 E(ITAIL) = SORT(EOSOR)133 T(ITAIL) = T(I)134 END IF 135 CALL DELETE( K, I ) NPARTI(2) = NPARTI(2) - 1136 137 RETURN \* REACTIONS WITHIN ТНЕ GAP:\* ELSE IF (FLAG) THEN 138 139 SN2 = QN(2, E(I)/UNICHA)140 SN25 = QN(25, E(I)/UNICHA)SNTOT = SN2 + SN25141 142 RND = FA04AS(1)143 ( RND\*SNTOT .LE. SN2 ) THEN IF H+ + H2 ÷ CHARGE EXCHANGE --> H + H2+ \* . THE LOWEST TABULATED H-ENERGY \* ÷ 100 \* UNICHA IS \* ( IN EV ) FOR PRODUCING SECONDARY ELECTRONS AT \* Α 75 A MO-SURFACE. \* 144 Z2 = Z2 + FACTORIF ( E(I) .GE. 100.\*UNICHA ) 145 THEN CALL GENERE 146 NPARTI(4) = NPARTI(4) + 1147 148 PAKIND(ITAIL) = 4149 X(ITAIL) = X(I)PPA(ITAIL) = PPA(I)150 151 E(ITAIL) = E(I)T(ITAIL) = T(I)152 153 END IF 154 CALL GENERE 155 NPARTI(3) = NPARTI(3) + 1156 PAKIND(ITAIL) = 3157 X(ITAIL) = X(I)PPA(ITAIL) = 0.158 159 E(ITAIL) = 0.160 T(ITAIL) = T(I)161 CALL DELETE(K,I) 162 NPARTI(2) = NPARTI(2) - 1163 RETURN 164 ELSE \* IONIZATION H+ + H2 --> H+ + H2+ E \* Z3 = Z3 + FACTOR165 166 CALL GENERE 167 NPARTI(1) = NPARTI(1) + 1PAKIND(ITAIL) = 1168 169 X(ITAIL) = X(I)170 PPA(ITAIL) = 0.171 PPE(ITAIL) = 0.172 E(ITAIL) = SQRT(EOSQR)173 T(ITAIL) = T(I)174 CALL GENERE 175 NPARTI(3) = NPARTI(3) + 1176 PAKIND(ITAIL) = 3

177 X(ITAIL) = X(I)178 PPA(ITAIL) = 0.179 E(ITAIL) = 0.180 T(ITAIL) = T(I)181 END IF END IF 182 183 ELSE IF ( PAKIND(I) .EQ. 3 ) THEN H2+ IONS: \* \* PPA(I) = PPA(I) + UNICHA\*EFIELD\*DT184 185 EOLD = E(I)E(I) = 0.5\*PPA(I)\*PPA(I)/H2MASS186 X(I) = X(I) + (E(I)-EOLD)/UNICHA/EFIELD187 188 IF (X(I).LT. 0.) THEN STOP ' H2+ BEHIND ANODE' 189 190 ELSE IF ( X(I) .GT. GAPLEN ) THEN DNKATH(3) = DNKATH(3) + 1191 DX = GAPLEN-X(I)192 E(I) = E(I) + UNICHA\*EFIELD\*DX193 194 POLD = PPA(I)195 PPA(I) = SQRT(2\*H2MASS\*E(I))196 T(I) = T(I) - (POLD-PPA(I))/UNICHA/EFIELDDIVIDING THE H2+ IONS \* IN 20 SEPARATE يارد. Ļ ENERGY INTERVALLS AND COUNTING THEM ي. 197 INDEX = INT( E(I) / EKIMA \* 7.5 \* 19.9999 ) + 1 EMEAN(3) = EMEAN(3) + FACTOR\*E(I)198 199 TNUM(3) = TNUM(3) + FACTOR200 IF ( INDEX .LE. 20 ) & ENEDIS(3, INDEX) = ENEDIS(3, INDEX) + FACTOR\* EMISSION ΟF SECONDARY 34 \* ELECTRONS H2+ - I M P A C T \* ΒΥ AT -!-ТНЕ KATHODE: -12 DELTA =  $2.159 \div QN(59, E(I)/UNICHA) / DENSIT$ 201 202 INTDEL = INT(DELTA)DO 50, J = 1, INTDEL 203 CALL GENERE 204 IEKATH = IEKATH + 1205 206 NPARTI(1) = NPARTI(1) + 1207 PAKIND(ITAIL) = 1X(ITAIL) = GAPLEN208 209 PPA(ITAIL) = 0.210 PPE(ITAIL) = 0.E(ITAIL) = SQRT(EOSQR)211 212 T(ITAIL) = T(I)213 50 CONTINUE IF ( FA04AS(1) .LE. DELTA-INTDEL ) THEN 214 215 CALL GENERE 216 IEKATH = IEKATH + 1217 NPARTI(1) = NPARTI(1) + 1218 PAKIND(ITAIL) = 1219 X(ITAIL) = GAPLEN

| 220 | PPA(TTATT.) = 0                                                              |            |
|-----|------------------------------------------------------------------------------|------------|
| 221 | PPE(TTAIL) = 0.                                                              |            |
| 222 | E(ITAIL) = SORT(EOSOR)                                                       |            |
| 223 | T(ITAIL) = T(I)                                                              |            |
| 224 | END IF                                                                       |            |
| 225 | CALL DELETE( K, I )                                                          |            |
| 226 | NPARTI(3) = NPARTI(3) - 1                                                    |            |
| 227 | RETURN                                                                       |            |
| 220 | EISE IE (EIAC) TUEN                                                          |            |
| 220 | * <b>REACTIONS WITHIN THE GAP</b> .                                          | -10        |
| 229 | $\frac{1}{1000} = \frac{1}{10000000000000000000000000000000000$              |            |
| 230 | SN20 = ON(20 E(1)/UNICHA)                                                    |            |
| 250 | $\dot{x} \qquad \text{THE ORNL-CROSS SECTION A 3.8 IS 1/2\dot{x}SN20 + SN21$ | <u>بار</u> |
| 231 | SN21 = ON(21 E(1)/UNICHA) - 0.5 + SN20                                       |            |
| 232 | IF (SN21   LT 0) SN21 = 0                                                    |            |
| 233 | SN28 = ON(28, E(1)/UNICHA)                                                   |            |
| 234 | SNTOT = SN4 + SN20 + SN21 + SN28                                             |            |
| 235 | RND = FA04AS(1)                                                              |            |
| 200 |                                                                              |            |
| 236 | IF ( RND*SNTOT .LE. SN4 ) THEN                                               |            |
|     | * CHARGE EXCHANGE $H2+ + H2> H2 + H2+ :$                                     | *          |
|     | * 50. * UNICHA IS THE LOWEST TABULATED H2-ENERGY                             | *          |
|     | * ( IN EV ) FOR IONIZATION OF OTHER H2 - MOLECULES.                          | *          |
| 237 | Z4 = Z4 + FACTOR                                                             |            |
| 238 | IF (E(I).GE. 50.*UNICHA) THEN                                                |            |
| 239 | CALL GENERE                                                                  |            |
| 240 | NPARTI(5) = NPARTI(5) + 1                                                    |            |
| 241 | PAKIND(ITAIL) = 5                                                            |            |
| 242 | X(ITAIL) = X(I)                                                              |            |
| 243 | PPA(ITAIL) = PPA(I)                                                          |            |
| 244 | E(ITAIL) = E(I)                                                              |            |
| 245 | T(ITAIL) = T(I)                                                              |            |
| 246 | END IF                                                                       |            |
| 247 | PPA(1) = 0                                                                   |            |
| 248 | E(1) = 0                                                                     |            |
| 249 | ELSE IF ( KND#SNIUI .LE. SN4+SN2U ) THEN                                     | -1-        |
|     | * PRODUCTION OF FAST NEUTRALS AND FAST PROTONS                               | -1-        |
|     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                        |            |
|     | $\frac{1}{2}$                                                                |            |
|     | * (IN EV) FOR FRODUCING SECONDERT ELECTRONS AT A                             | -1-        |
| 250 | 75 = 75 + FACTOR                                                             |            |
| 251 | $IF (F(I) GF 200 \times INICHA) THEN$                                        |            |
| 252 | CALL GENERE                                                                  |            |
| 253 | NPARTI(A) = NPARTI(A) + 1                                                    |            |
| 254 | PAKIND(TTAIL) = 4                                                            |            |
| 255 | X(TTATL) = X(T)                                                              |            |
| 256 | PPA(TTATL) = 0.5 * PPA(T)                                                    |            |
| 257 | $E(TAIL) = 0.5 \times E(T)$                                                  |            |
| 258 | T(ITAIL) = T(I)                                                              |            |
| 259 | END IF                                                                       |            |
| 260 | CALL GENERE                                                                  |            |
| 261 | NPARTI(2) = NPARTI(2) + 1                                                    |            |
| 262 | PAKIND(ITAIL) = 2                                                            |            |
| 263 | X(ITAIL) = X(I)                                                              |            |
| 264 | $PPA(ITAIL) = 0.5 \div PPA(I)$                                               |            |
|     |                                                                              |            |
|     |                                                                              |            |

| 265<br>266<br>267<br>268<br>269<br>270 | * * | E(ITAIL) = 0.5*E(I)<br>T(ITAIL) = T(I)<br>CALL DELETE(K,I)<br>NPARTI(3) = NPARTI(3) - 1<br>RETURN<br>ELSE IF ( RND*SNTOT .LE. SN4+SN20+SN21 ) THEN<br>PRODUCTION OF FAST NEUTRALS H2+ + H2> 2H + H2+ : *<br>100 * UNICHA IS THE LOWEST TABULATED H-ENERGY *<br>( IN EV ) FOR PRODUCING SECONDARY ELECTRONS AT A *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | *   | A MO-SURFACE. *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 271                                    |     | Z6 = Z6. + FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 272                                    |     | IF ( E(I) .GE. 200.*UNICHA ) THEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 273                                    |     | CALL GENERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 274                                    |     | NPARTI(4) = NPARTI(4) + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 275                                    |     | PAKIND(ITAIL) = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 276                                    |     | X(TTATL) = X(T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 277                                    |     | PPA(TTATL) = 0.5 PPA(T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2778                                   |     | $F(TATT) = 0.5 \times F(T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 270                                    |     | T(TATT) = 0.5 T(T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 213                                    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 200                                    |     | $\frac{\partial \Delta D}{\partial \Delta D} = \frac{\partial \Delta D}{\partial \Delta D} \frac{\partial \Delta D}{\partial D} \frac{\partial \Delta D}{\partial \Delta D} \frac{\partial \Delta D}{\partial D} \frac{\partial \Delta D}{\partial \Delta D} \frac{\partial \Delta D}{\partial D} \frac{\partial D}{\partial D} $ |
| 201                                    |     | $\frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 202                                    |     | $\frac{PARIND(IIAIL) - 4}{V(TTAIL) - V(T)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 200                                    |     | A(IIAIL) - A(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 204                                    |     | $PPA(IIAIL) = 0.5^{\circ}PPA(I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 285                                    |     | $E(TIALL) = 0.5 \approx E(T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 286                                    |     | T(IIAIL) = T(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 287                                    |     | END IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 288                                    |     | PPA(1) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 289                                    |     | E(1) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 290                                    | ala |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        |     | $\frac{10N1ZATION}{R2 - R2 - R2 + R2 - R2 + R2 + R2 + R2 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 291                                    |     | 2/=2/+FAGIOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 292                                    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 293                                    |     | NPARTI(1) = NPARTI(1) + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 294                                    |     | PAKIND(IIAIL) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 295                                    |     | X(IIAIL) = X(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 296                                    |     | PPA(ITAIL) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 297                                    |     | PPE(TTAIL) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 298                                    |     | E(ITALL) = SQRT(EOSQR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 299                                    |     | T(ITALL) = T(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 300                                    |     | CALL GENERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 301                                    |     | NPARTI(3) = NPARTI(3) + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 302                                    |     | PAKIND(ITAIL) = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 303                                    |     | X(ITAIL) = X(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 304                                    |     | PPA(ITAIL) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 305                                    |     | E(ITAIL) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 306                                    |     | T(ITAIL) = T(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 307                                    |     | END IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 308                                    |     | END IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 309                                    |     | ELSE IF ( PAKIND(I) .EQ. 4 ) THEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 310                                    | ~   | $\frac{11}{2} \frac{1}{2} 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 210                                    |     | $\frac{1}{1} - \frac{1}{1} + \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240                                    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 512                                    |     | JUL DEDING AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | •   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 313<br>314<br>315<br>316                                                                                     |              | ELSE IF ( $X(I)$ .GT. GAPLEN ) THEN<br>DNKATH(4) = DNKATH(4) + 1<br>DX = GAPLEN - $X(I)$<br>T(I) = T(I) + DX/PPA(I)*PMASS                                                                                                                                                                                                                                                                                                                                                      |       |
|--------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 317<br>318<br>319<br>320                                                                                     | *<br>*       | DIVIDING THE H ATOMS IN 20 SEPARATE<br>ENERGY INTERVALLS AND COUNTING THEM<br>INDEX = INT( E(I) / EKIMA * 6. * 19.9999 ) + 1<br>EMEAN(4) = EMEAN(4) + FACTOR*E(I)<br>TNUM(4) = TNUM(4) + FACTOR<br>IF ( INDEX .LE. 20 )<br>ENEDIS(4,INDEX) = ENEDIS(4,INDEX) + FACTOR                                                                                                                                                                                                          | *     |
| 321<br>322<br>323<br>324<br>325<br>326<br>327<br>328<br>329<br>330<br>331<br>332<br>333<br>334<br>335<br>226 | ★ EMI        | <pre>SSION OF SECONDARY ELECTRONS BY H-IMPACT AT THE KATHODE:<br/>DELTA = 2.159 * QN(58,E(I)/UNICHA) / DENSIT<br/>INTDEL = INT(DELTA)<br/>DO 60, J = 1, INTDEL<br/>CALL GENERE<br/>IEKATH = IEKATH + 1<br/>NPARTI(1) = NPARTI(1) + 1<br/>PAKIND(ITAIL) = 1<br/>X(ITAIL) = GAPLEN<br/>PPA(ITAIL) = 0.<br/>PPE(ITAIL) = 0.<br/>E(ITAIL) = SQRT(EOSQR)<br/>T(ITAIL) = T(I)<br/>CONTINUE<br/>IF ( FA04AS(1) .LE. DELTA-INTDEL ) THEN<br/>CALL GENERE<br/>IEVATU = IEVATU b 1</pre> | *     |
| 336<br>337<br>338<br>339<br>340<br>341<br>342<br>343<br>344<br>345<br>346<br>347                             |              | IEKATH = IEKATH + 1 $NPARTI(1) = NPARTI(1) + 1$ $PAKIND(ITAIL) = 1$ $X(ITAIL) = GAPLEN$ $PPA(ITAIL) = 0.$ $E(ITAIL) = 0.$ $E(ITAIL) = SQRT(EOSQR)$ $T(ITAIL) = T(I)$ END IF $CALL DELETE(K, I)$ $NPARTI(4) = NPARTI(4) - 1$ $RETURN$                                                                                                                                                                                                                                           |       |
| 348<br>349<br>350<br>351<br>352<br>353<br>354<br>355<br>356<br>357<br>358                                    | * IONIZ<br>* | ELSE IF (FLAG) THEN<br>ATION H + H2> H+ + E + H2 (H + H2+ + E)<br>DECISION OF THE THE REACTION CHANNEL<br>IF (FA04AS(1).LE.0.5) THEN<br>Z8 = Z8 + FACTOR<br>CALL GENERE<br>NPARTI(1) = NPARTI(1) + 1<br>PAKIND(ITAIL) = 1<br>X(ITAIL) = X(I)<br>V = PPA(I)/PMASS<br>PPA(ITAIL) = EMASS * V / SQRT(1 V*V/CSQR)<br>PPE(ITAIL) = 0.<br>E(ITAIL) = SQRT(EOSQR + PPA(ITAIL)*PPA(ITAIL)*CSQR)                                                                                        | ) * * |

359 T(ITAIL) = T(I)360 NPARTI(2) = NPARTI(2) + 1361 PAKIND(I) = 2362 NPARTI(4) = NPARTI(4) - 1363 ELSE 364 Z9 = Z9 + FACTOR365 CALL GENERE 366 NPARTI(1) = NPARTI(1) + 1367 PAKIND(ITAIL) = 1368 X(ITAIL) = X(I)369 PPA(ITAIL) = 0.370 PPE(ITAIL) = 0.371 E(ITAIL) = SORT(EOSOR)372 T(ITAIL) = T(I)373 CALL GENERE 374 NPARTI(3) = NPARTI(3) + 1375 PAKIND(ITAIL) = 3X(ITAIL) = X(I)376 377 PPA(ITAIL) = 0.378 E(ITAIL) = 0.379 T(ITAIL) = T(I)380 END IF END IF 381 ELSE IF 382 ( PAKIND(I) .EQ. 5 ) THEN \* H2 MOLECULES : ÷. 383 X(I) = X(I) + PPA(I)/H2MASS\*DTIF (X(I).LT. 0.) THEN 384 STOP ' H2 BEHIND ANODE' 385 386 ELSE IF (X(I).GT. GAPLEN) THEN DNKATH(5) = DNKATH(5) + 1387 388 DX = GAPLEN - X(I)389 T(I) = T(I) + DX/PPA(I)\*H2MASS-15 DIVIDING THE H2 ATOMS IN 20 SEPARATE \* ENERGY INTERVALLS AND COUNTING THEM -1-20 390 INDEX = INT( E(I) / EKIMA \* 7.5 \* 19.9999 ) + 1 391  $EMEAN(5) = EMEAN(5) + FACTOR \neq (I)$ TNUM(5) = TNUM(5) + FACTOR392 393 IF ( INDEX .LE. 20 ) ENEDIS(5,INDEX) = ENEDIS(5,INDEX) + FACTOR & \* EMISSION OF SECONDARY ELECTRONS BY H2-IMPACT AT THE KATHODE: \* 394 DELTA =  $2.159 \div QN(59, E(I)/UNICHA) / DENSIT$ 395 INTDEL = INT(DELTA)DO 70, J = 1, INTDEL 396 397 CALL GENERE 398 IEKATH = IEKATH + 1399 NPARTI(1) = NPARTI(1) + 1400 PAKIND(ITAIL) = 1401 X(ITAIL) = GAPLENPPA(ITAIL) = 0.402 403 PPE(ITAIL) = 0.404 E(ITAIL) = SQRT(EOSQR)405 T(ITAIL) = T(I)

• :

406 70 CONTINUE 407 IF ( FA04AS(1) .LE. DELTA-INTDEL ) THEN 408 CALL GENERE 409 IEKATH = IEKATH + 1410 NPARTI(1) = NPARTI(1) + 1411 PAKIND(ITAIL) = 1412 X(ITAIL) = GAPLENPPA(ITAIL) = 0.413 414 PPE(ITAIL) = 0.E(ITAIL) = SQRT(EOSQR)415 T(ITAIL) = T(I)416 417 END IF CALL DELETE( K, I ) 418 NPARTI(5) = NPARTI(5) - 1419 420 RETURN ( FLAG ) THEN 421 ELSE IF <u>.</u> IONIZATION H2 + H2 --> H2+ + E + H2\* DECISION WHICH PARTICLE WILL BE IONIZED 422 IF ( FA04AS(1) . LE. 0.5 ) THEN 423 Z10 = Z10 + FACTOR424 CALL GENERE 425 NPARTI(1) = NPARTI(1) + 1426 PAKIND(ITAIL) = 1427 X(ITAIL) = X(I)428 V = PPA(I)/H2MASSPPA(ITAIL) = EMASS \* V / SQRT(1. - V\*V/CSQR)429 430 PPE(ITAIL) = 0.431 E(ITAIL) = SORT(EOSOR + PPA(ITAIL)\*PPA(ITAIL)\*CSOR)432 T(ITAIL) = T(I)433 NPARTI(3) = NPARTI(3) + 1434 PAKIND(I) = 3NPARTI(5) = NPARTI(5) - 1435 436 ELSE 437 Z11 = Z11 + FACTOR438 CALL GENERE NPARTI(1) = NPARTI(1) + 1439 440 PAKIND(ITAIL) = 1441 X(ITAIL) = X(I)PPA(ITAIL) = 0.442 PPE(ITAIL) = 0.443 444 E(ITAIL) = SQRT(EOSQR)445 T(ITAIL) = T(I)CALL GENERE 446 447 NPARTI(3) = NPARTI(3) + 1448 PAKIND(ITAIL) = 3449 X(ITAIL) = X(I)450 PPA(ITAIL) = 0.451 E(ITAIL) = 0.T(ITAIL) = T(I)452 453 END IF 454 END IF 455 END IF 456 10 CONTINUE

-1-

\*
```
457 K = I
```

458 END

```
FUNCTION TC ( PAKIND, P, RND, I )
001
            y to a the set of the 
            *
                            THIS FUNCTION COMPUTES THE PATH LENGTH BETWEEN TWO COLLISIONS.
                                                                                                                                                                                              يار.
002
                            PARAMETER(
                                                         MAXN = 91040,
                                                                                                  A = 6.0457E - 14 )
003
                            INTEGER
                                                             PAKIND
                            REAL
004
                                                             MAXPRO
005
                            DIMENSION
                                                            MAXPRO(2:3)
006
                            COMMON
                                                /COLTIM/ TCOLL( 0:100, 0:100, 2:3 )
007
                            COMMON
                                                /PMAX/ PMAX(2:3)
                            COMMON
                                                /PDATA/ X(MAXN), PPA(MAXN), PPE(MAXN), E(MAXN), T(MAXN)
008
                                                 /PARAME/ EFIELD, GAPLEN, PRESSU
                            COMMON
009
                                                 /CONST/ UNICHA, EMASS, PMASS, H2MASS, CSQR, EOSQR
010
                            COMMON
011
                            COMMON
                                                 /PHYSIK/ DENSIT
                            COMMON
                                                /TIMES/ TIME, DT
012
                            DATA
                                              MAXPRO(2), MAXPRO(3) /1., 1./
013
                                                                                                                                                                                               *
             *
                            FAST H-ATOMS
                            IF ( PAKIND .EQ. 4 )
014
                                                                                      THEN
                                 EEV = E(I) / UNICHA
015
                                  IF ( EEV .GE. 4.E2 ) THEN
016
017
                                       TC = -LOG(RND) \div PMASS / QN(30, EEV) / ABS(PPA(I))
018
                                 ELSE
                                      TC = 1.1 * DT
019
020
                                 END IF
021
                                 RETURN
                            FAST H2-MOLECULES
                                                                                                                                                                                               *
             **
                                         IF ( PAKIND .EQ. 5 ) THEN
022
                            ELSE
                                  EEV = E(I) / UNICHA
023
024
                                  IF
                                        ( EEV .GE. 5.E1 ) THEN
                                       TC_{0} = -LOG(RND) + H2MASS / QN(31, EEV) / ABS(PPA(I))
025
026
                                  ELSE
                                      TC = 1.1 * DT
027
028
                                  END IF
                                  RETURN
029
                            ELECTRONS
                                                                                                                                                                                               *
             :10
                                                      ( PAKIND .EQ. 1 ) THEN
030
                            ELSE IF
                                  TC = -LOG(RND) / DENSIT / A
031
032
                                  RETURN
                            END IF
033
034
                            RND = 1. - RND ** (5./PRESSU)
                                                                                                                                                                                               *
             *
                             PROTONS AND H2+
 035
                             IF
                                     ( RND .LT. MAXPRO(PAKIND) )
                                                                                                              THEN
```

| 036  | $PNORM = P \div 100. / PMAX(PAKIND)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 037  | RNDNOR = 100. * RND / MAXPRO(PAKIND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 038  | J = INT(PNORM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 039  | K = INT(RNDNOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 040  | SJ = TCOLL(J+1,K,PAKIND) - TCOLL(J,K,PAKIND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 041  | SK = TCOLL(J,K+1,PAKIND)-TCOLL(J,K,PAKIND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 042  | TC = TCOLL(J,K,PAKIND) + SJ*(PNORM-J) + SK*(RNDNOR-K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 043  | ELSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 044  | $TC = 1.1 \times DT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 045  | ENDIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 046  | DEBUG SUBCHK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 047  | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001  | SUBROUTINE DELETE( K, I )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | <del>*************************************</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 002  | PARAMETER(MAXN = 91040)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 003  | COMMON /POINTE/ ITAIL, IFIN, ISUCC( 0:MAXN )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 004  | COMMON /MISCEL/ NPARTI(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 005  | ISUCC(K) = ISUCC(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 006  | TSUCC(IFIN) = I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 007  | TFIN = I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 008  | IF (I EO ITAIL) THEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 000  | ITATI = K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 010  | $\frac{11}{10} - K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 010  | UDTTE(++) = NDADTI(1) + NDADTI(2) + NDADTI(3) + NDADTI(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 011  | $ = \frac{1}{2} + \frac$ |
| 012  | STOP ' POPULATION HAS DIED! '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 012  | FND IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 015  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 014  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 015  | DEBUG SUBCHK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 016  | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.04 | CUDDOLITTILE CENEDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 001  | SUBRUUTINE GENERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 002  | PARAMETER( MAXN = 91040 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 003  | COMMON /POINTE/ ITAIL, IFIN, ISUCC( 0:MAXN )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 004  | COMMON /MISCEL/ NPARTI(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 005  | ITAIL = ISUCC( ITAIL )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 006  | IF (ITAIL .EQ. IFIN ) THEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 007  | WRITE(*,*) ' NUMTOT = ', NPARTI(1)+NPARTI(2)+NPARTI(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | & +NPARTI(4)+NPARTI(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 008  | STOP 'ARRAY IS TO SMALL'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 009  | END IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

;

010 DEBUG SUBCHK 011 END

.

001 SUBROUTINE RENORM( ISUCC, ITAIL, IFIN, FACTOR, NPARTI, MINN ) æ 4 THE SUBROUTINE RENORM REDUCES THE SET OF TEST PARTICLES \* \* \* TO A NUMBER OF MINN TEST PARTICLES. 002 PARAMETER ( MAXN = 91040 ) 003 INTEGER PAKIND 004 DIMENSION ISUCC(0:\*), NPARTI(5), NPARTN(5) 005 COMMON /PDATA/ X(MAXN), PPA(MAXN), PPE(MAXN), E(MAXN), T(MAXN), & PAKIND(MAXN) 006 NTOTOL = NPARTI(1)+NPARTI(2)+NPARTI(3)+NPARTI(4)+NPARTI(5) 007 PRODEL = 1. - DBLE( MINN ) / NTOTOL ' RENORMIERUNG: ' WRITE(\*.\*) 008 ' PRODEL = ', PRODEL WRITE(\*,\*) 009 WRITE(\*,\*) ' NPARTI BEFORE = ', NPARTI 010 011 DO 30, J = 1, 5NPARTN(J) = NINT(NPARTI(J) \* (1. - PRODEL))012 013 30 CONTINUE 014 NTOTNE = NPARTN(1)+NPARTN(2)+NPARTN(3)+NPARTN(4)+NPARTN(5)015 FACTOR = FACTOR \* DBLE( NTOTOL ) / NTOTNE 016 N = NTOTOLDO 20, WHILE ( N .GT. NTOTNE ) 017 К = О 018 019 I = ISUCC(0)020 DO 10, WHILE ( I .NE. ITAIL .AND. N .GT. NTOTNE ) 021 J = PAKIND(I)022 IF ( FA04AS(1) .LT. PRODEL .AND. NPARTN(J) .LT. NPARTI(J) ) THEN & 023 NPARTI(J) = NPARTI(J) - 1= N - 1 024 N 025 ISUCC(K) = ISUCC(I)ISUCC(IFIN) = I026 027 IFIN = 1 028 ELSE 029 K = I030 END IF I = ISUCC(K)031 032 10 CONTINUE 033 J = PAKIND(I)IF ( FA04AS(1) .LT. PRODEL .AND. 034 NPARTN(J) .LT. NPARTI(J) ) THEN & 035 NPARTI(J) = NPARTI(J) - 1036 Ν = N - 1037 ITAIL = KEND IF 038 . `

039 20 CONTINUE ' NPARTI = ', NPARTI ' FACTOR = ', FACTOR 040 WRITE(\*,\*) 041 WRITE(\*,\*)042 END 001 SUBROUTINE OUTPUT \* THIS SUBROUTINE PRINTS A TABLE WITH THE NUMBERS OF THE \*  $\star$ PARTICLES. \* 002 LOGICAL FLAG 003 INTEGER RNPART 004 REAL MAXTIM DIMENSION RNPART(5) 005 006 COMMON /CONST/ UNICHA 007 COMMON /PARAME/ EFIELD, GAPLEN, PRESSU 008 COMMON /MISCEL/ NPARTI(5), DNANOD(5), DNKATH(5), FACTOR, EKIMA 009 COMMON /TIMES/ TIME, DT, MAXTIM 010 COMMON /NOREAC/ Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11 011 COMMON / EMEAN / EMEAN(5), TNUM(5) 012 SAVE FLAG FLAG / .TRUE. / 013 DATA 014 DO 70, I = 1, 5015 RNPART(I) = NINT(FACTOR \* NPARTI(I))70 016 CONTINUE IN THE FOLLOWING IF-BLOCK THE HEAD OF THE TABLE IS PRINTED. \* \*\* 017 IF (FLAG) THEN 018 WRITE(\*,10) FORMAT(1H , '| TIME |', 5(' NUMBER OF |') ) 019 10 020 WRITE(\*,20) FORMAT(1H, '| IN |',' ELECTRONS |',' H+ IONS |', 021 20 'H2+ IONS |', 'H ATOMS |', 'H2 MOLECU.|') ۶ 022 WRITE(\*,30) FORMAT(1H, '| NANOSEC. |', 5(' WITHIN |')) 023 30 024 WRITE(\*,40) FORMAT(1H ,'| |', 5(' THE GAP 025 40 (') WRITE(\*,50) FORMAT(1H ,'|-----|', 5('------|')) 026 027 50 028 FLAG = .FALSE.029 END IF WRITE(\*,60) TIME\*1.E9, RNPART(1), RNPART(2), RNPART(3), 030 RNPART(4), RNPART(5) FORMAT(1H , '|', F8.2, ' |', 5(I10, ' |') ) 031 60 IF ( TIME .GE. MAXTIM-DT ) THEN 032 WRITE(\*,\*) NPARTI(1), NPARTI(2), NPARTI(3), NPARTI(4), NPARTI(5) 033 034 ZTOT = Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10 + Z11

| 035<br>036<br>037 |                                     | WRITE(*,'(/)')<br>WRITE(*,*) 'GAPABSTAND : ', NINT(GAPLEN*1000), 'MM'<br>WRITE(*,*) 'SPANNUNG : ', NINT(GAPLEN*EFIELD), 'V'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 038<br>039<br>040 |                                     | WRITE(*,5) PRESSU<br>WRITE(*,6) 'E + H2> 2E + H2+ : ', Z1/ZTOT*100.<br>WRITE(*,6) 'H+ + H2> H + H2+ : ', Z2/ZTOT*100.<br>WRITE(*,6) 'H+ + H2> H + H2+ : ', Z2/ZTOT*100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 041               |                                     | WRITE(*, 6) $H^+ + H^2 = -2 H^+ + E + H^2 +, 23/2101*100.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 042               |                                     | WRITE(*,6) $H_{2+} + H_{2-} + H_{2-} + H_{2+} + H_{2+} + H_{2-} +$                                                                                   |
| 043               |                                     | WRITE(*,0) $n_2 + + n_2 + n_1 + + + + n_2 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 044               |                                     | WRITE(*,0) $R_{2+} + R_{2-} + R_{2+} +$                                                                                   |
| 043               |                                     | WRITE(*,0) $n_{2+} + n_{2-} + n_{2+} +$                                                                                   |
| 040               |                                     | WRITE(*,0) $\Pi = \Pi 2^{} \Pi = \Pi + \Pi 2^{} = 1^{} \Pi + \Pi 2^{} \Pi + $ |
| 047               |                                     | WRITE(*,0) $n + n2 + n + n2 + + E : , 29/2101^{+100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 040               |                                     | WRITE( $^{,}$ , 0) $H_2 + H_2 = 2 H_2 + H_2 + H_2 = 10/2101^{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 049               |                                     | WRITE( $^{,0}$ ) $n_2 + n_2 + n_2 + n_2 + n_2 + n_2 + n_2$ ; $211/2101^{,100}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 050               |                                     | WELLE(",")<br>MDTTE(++) TEMEAN - ' ( NINT( EMEAN(I) /TNUM(I) /UNICUA ) I-4 E )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 051               |                                     | WRITE $(*, *)$ EMEAN - , (NINT(EMEAN(I)/INON(I)/ONIONA), I-1,5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 052               | 5                                   | $\frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{1}{2} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 035               | 5                                   | FORMAT( DROCK :, F4.1, FA.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 055               | 0                                   | FURTAI (ASO, FO.S, /o)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 660               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 056               |                                     | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 001               | יישר שר שר שר שר שר<br>בשר שר שר שר | construction and a second state of the second                                                                                    |
| 002               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 002               |                                     | $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 005               |                                     | DIMENSION $Y(*) = F(*) = DAKIND(*) = ISUCC(0,*) = DENSIT(5, 20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 004               |                                     | COMMON /CONST/ UNICHA EMASS PMASS H2MASS CSOR FOSOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 005               |                                     | COMMON /POINTE/ ITAIL IFIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 000               |                                     | COMMON /PARAME/ FFIFLD GAPLEN PRESSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 007               |                                     | COMMON /MISCEL/ NPARTI(5) DNANOD(5) DNKATH(5) FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 000               |                                     | COMMON /TIMES/ TIME DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 010               |                                     | COMMON /NEO/ NEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 011               |                                     | COMMON /ENEDIS/ ENEDIS(5,20) ENNORM(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 012               |                                     | COMMON /IEKATH/ IEKATH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 013               |                                     | DATA M. N / 11, 0 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 014               |                                     | DATA KATHOI. ANODEI / 0 0. /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 015               |                                     | SAVE N, KATHOI, ANODEI, IMAXO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 016               |                                     | N = N+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 017               |                                     | ENNORM(1) = ENNORM(1) + FACTOR * DNANOD(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 018               |                                     | DO 110. $I = 2.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 019               |                                     | ENNORM(I) = ENNORM(I) + FACTOR * DNKATH(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 020               | 110                                 | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 021               |                                     | IF (MOD(N,M).EQ. 0) THEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 022               |                                     | IF (N.EQ.M) THEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 023               |                                     | WRITE(9,*) ' PARTICLE DENSITY DEPENDENT ON SPACE AND &TIME'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 024<br>025<br>026<br>027<br>028<br>029<br>030<br>031<br>032               | 4<br>5<br>7<br>8<br>9<br>9<br>1<br>2                                                                       | <pre>WRITE(9,*) WRITE(9,80) NINT(EFIELD*GAPLEN/1000.), GAPLEN*100., PRESSU WRITE(9,*) WRITE(11,*) ' ENERGY DISTRIBUTION DEPENDENT ON SPACE AND TIME' WRITE(11,*) WRITE(11,*) WRITE(11,80) NINT(EFIELD*GAPLEN/1000.), GAPLEN*100., PRESSU WRITE(11,*) DENSIO = NEO / GAPLEN END IF</pre>                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 033<br>034<br>035<br>036<br>037                                           | *<br>3<br>4<br>5<br>6 60<br>7 50                                                                           | RESET THE ARRAYS OF<br>PARTICLE DENSITY<br>DO 50, I = 1, 5<br>DO 60, J = 1,20<br>DENSIT(I,J) = 0<br>CONTINUE<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 038<br>039<br>040<br>041<br>042<br>043<br>044<br>045                      | *<br>*<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | <pre>U P D A T E T H E A R R A Y S O F * P A R T I C L E DENSITY: * I = ISUCC(0) DO 10, WHILE ( I .NE. ITAIL ) INDEX = INT(X(I)/GAPLEN*20)+1 DENSIT(PAKIND(I),INDEX) = DENSIT(PAKIND(I),INDEX) + FACTOR I = ISUCC(I) CONTINUE INDEX = INT(X(ITAIL)/GAPLEN*20)+1 DENSIT(PAKIND(ITAIL),INDEX) = DENSIT(PAKIND(ITAIL),INDEX) + FACTOR </pre>                                                                                                                                                                                                                        |
| 046<br>047<br>048<br>049<br>050<br>050<br>051<br>052<br>053<br>054<br>055 | *<br>*<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&<br>&           | <pre>W R I T E T H E A R R A Y S O N THE * E X T E R N A L F I L E D E N S I T Y. D A T A. D A T A WRITE(9,90) TIME*1.E9 WRITE(11,100) NINT( ( TIME - DBLE(M)/2.*DT ) * 1.E9 ) DO 20, I = 1, 20 WRITE(9,30) DENSIT(1,I)/DENSIO/GAPLEN*20., DENSIT(2,I)/DENSIO/GAPLEN*20., DENSIT(3,I)/DENSIO/GAPLEN*20., DENSIT(5,I)/DENSIO/GAPLEN*20. WRITE(11,30) ENEDIS(1,I) / ENNORM(1), ENEDIS(2,I) / ENNORM(2), ENEDIS(3,I) / ENNORM(2), ENEDIS(4,I) / ENNORM(4), ENEDIS(5,I) / ENNORM(4), ENEDIS(5,I) / ENNORM(5) CONTINUE WRITE(9,*) WRITE(11,*) CALL RESEND ND IF</pre> |
|                                                                           | *                                                                                                          | ** **** ** ** ** ** ** ** ** ** ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                                                                                         |                                  | IF (N.EQ. 2) THEN<br>IMAXO = (NEO + 1) / GAPLEN * SQRT( (SQRT(EOSQR))<br>& + UNICHA*EFIELD*GAPLEN) *** 2 - EOSQR ) /<br>& (SQRT(EOSQR) + UNICHA*EFIELD*GAPLEN) * SQRT(                                                                                                                                                                                                                               | CSQR) |
|-----------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 058                                                                                     |                                  | WRITE(10,*) ' PARTICLE CURRENT AT THE ELECTODES'                                                                                                                                                                                                                                                                                                                                                     | 2     |
| 059                                                                                     |                                  | WRITE(10,*)                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 060                                                                                     |                                  | WRITE(10,80) NINI(EFIELD*GAPLEN/1000.), GAPLEN*100., PRES                                                                                                                                                                                                                                                                                                                                            | SSU   |
| 062                                                                                     |                                  | WRITE(10,*)                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                                                                                         |                                  | & 'TIME (NS) E H+ H2+ H H2                                                                                                                                                                                                                                                                                                                                                                           | 2     |
| 063                                                                                     |                                  | $\approx (1EA-1EK)/1EK$<br>WRITE(10 $\Rightarrow$ )                                                                                                                                                                                                                                                                                                                                                  |       |
| 064                                                                                     |                                  | END IF                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                                                                                         | *                                | <b>COMPUTATION OF</b>                                                                                                                                                                                                                                                                                                                                                                                | ماد   |
|                                                                                         | *                                | ELECTRODE CURRENT:                                                                                                                                                                                                                                                                                                                                                                                   | *     |
| 065                                                                                     |                                  | KATHOI = KATHOI + FACTOR*IEKATH                                                                                                                                                                                                                                                                                                                                                                      |       |
| 066                                                                                     |                                  | ANODEI = ANODEI + FACTOR*DNANOD(1)                                                                                                                                                                                                                                                                                                                                                                   |       |
| 067                                                                                     |                                  | IF (MOD(N,3).EQ. 0) THEN                                                                                                                                                                                                                                                                                                                                                                             |       |
| 068                                                                                     |                                  | KATHOI = KATHOI + FACTOR*IEKATH                                                                                                                                                                                                                                                                                                                                                                      |       |
| 069                                                                                     |                                  | ANODE1 = ANODE1 + FACTOR*DNANOD(1)<br>IIM = DNANOD(A)*DACTOR (DT (DNANO))                                                                                                                                                                                                                                                                                                                            |       |
| 070                                                                                     |                                  | ILP = DNANUD(1)*FACTOR / DT / IMAXO $ILP = DNKATH(2)*FACTOR / DT / IMAXO$                                                                                                                                                                                                                                                                                                                            |       |
| 072                                                                                     | -                                | IH2P = DNKATH(2) * FACTOR / DT / IMAXO                                                                                                                                                                                                                                                                                                                                                               |       |
| VIII.                                                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 073                                                                                     |                                  | IH = DNKATH(3)*FACTOR / DT / IMAXO                                                                                                                                                                                                                                                                                                                                                                   |       |
| 073<br>074                                                                              |                                  | IH = DNKATH(4)*FACTOR / DT / IMAXOIH = DNKATH(4)*FACTOR / DT / IMAXOIH = DNKATH(5)*FACTOR / DT / IMAXO                                                                                                                                                                                                                                                                                               |       |
| 073<br>074<br>075                                                                       |                                  | <pre>IH21 = DKKATH(5)*TACTOR / DT / IMAXO<br/>IH = DNKATH(4)*FACTOR / DT / IMAXO<br/>IH2 = DNKATH(5)*FACTOR / DT / IMAXO<br/>WRITE(10,70) (TIME-1.5*DT)*1.E9, IEM, IHP, IH2P, IH, IH2,<br/>&amp; (ANODEI - KATHOI ) / KATHOI</pre>                                                                                                                                                                   |       |
| 073<br>074<br>075<br>076                                                                |                                  | <pre>INALI = DARATH(5)*FACTOR / DI / IMAXO<br/>IH = DNKATH(4)*FACTOR / DT / IMAXO<br/>IH2 = DNKATH(5)*FACTOR / DT / IMAXO<br/>WRITE(10,70) (TIME-1.5*DT)*1.E9, IEM, IHP, IH2P, IH, IH2,<br/>&amp; (ANODEI - KATHOI ) / KATHOI<br/>KATHOI = 0.</pre>                                                                                                                                                  |       |
| 073<br>074<br>075<br>076<br>077                                                         |                                  | <pre>In = DKKATH(3)*FACTOR / DT / IMAXO<br/>IH = DNKATH(4)*FACTOR / DT / IMAXO<br/>IH2 = DNKATH(5)*FACTOR / DT / IMAXO<br/>WRITE(10,70) (TIME-1.5*DT)*1.E9, IEM, IHP, IH2P, IH, IH2,<br/>&amp; (ANODEI - KATHOI) / KATHOI<br/>KATHOI = 0.<br/>ANODEI = 0.</pre>                                                                                                                                      |       |
| 073<br>074<br>075<br>076<br>077<br>078<br>079                                           |                                  | <pre>In III = DNKATH(3) TACTOR / DT / IMAXO<br/>IH = DNKATH(4)*FACTOR / DT / IMAXO<br/>IH2 = DNKATH(5)*FACTOR / DT / IMAXO<br/>WRITE(10,70) (TIME-1.5*DT)*1.E9, IEM, IHP, IH2P, IH, IH2,<br/>&amp; (ANODEI - KATHOI ) / KATHOI<br/>KATHOI = 0.<br/>ANODEI = 0.<br/>END IF<br/>IEKATH = 0</pre>                                                                                                       |       |
| 073<br>074<br>075<br>076<br>077<br>078<br>079                                           | -                                | <pre>In III = DARATH(3) TACTOR / DT / IMAXO<br/>IH = DNKATH(4)*FACTOR / DT / IMAXO<br/>IH2 = DNKATH(5)*FACTOR / DT / IMAXO<br/>WRITE(10,70) (TIME-1.5*DT)*1.E9, IEM, IHP, IH2P, IH, IH2,<br/>&amp; (ANODEI - KATHOI ) / KATHOI<br/>KATHOI = 0.<br/>ANODEI = 0.<br/>END IF<br/>IEKATH = 0</pre>                                                                                                       |       |
| 073<br>074<br>075<br>076<br>077<br>078<br>079                                           | * 30                             | <pre>In In = Dikka In(5) * FACTOR / DT / IMAXO<br/>IH = DNKATH(4)*FACTOR / DT / IMAXO<br/>IH2 = DNKATH(5)*FACTOR / DT / IMAXO<br/>WRITE(10,70) (TIME-1.5*DT)*1.E9, IEM, IHP, IH2P, IH, IH2,<br/>&amp; (ANODEI - KATHOI) / KATHOI<br/>KATHOI = 0.<br/>ANODEI = 0.<br/>END IF<br/>IEKATH = 0</pre>                                                                                                     | *     |
| 073<br>074<br>075<br>076<br>077<br>078<br>079<br>080<br>080                             | *<br>30<br>70                    | <pre>Intr = DikkaIn(5)*FACTOR / DT / IMAXO<br/>IH = DNKATH(4)*FACTOR / DT / IMAXO<br/>IH2 = DNKATH(5)*FACTOR / DT / IMAXO<br/>WRITE(10,70) (TIME-1.5*DT)*1.E9, IEM, IHP, IH2P, IH, IH2,<br/>&amp; (ANODEI - KATHOI) / KATHOI<br/>KATHOI = 0.<br/>ANODEI = 0.<br/>END IF<br/>IEKATH = 0<br/>FORMAT( 5(1P,E11.3) )<br/>FORMAT( F7.2, 6(1P,E11.3) )</pre>                                               | *     |
| 073<br>074<br>075<br>076<br>077<br>078<br>078<br>079<br>080<br>081<br>082               | *<br>30<br>70<br>80              | $HZI = DIKATH(3) + FACTOR / DT / HAAO IH = DNKATH(4) + FACTOR / DT / IMAXO IH2 = DNKATH(5) + FACTOR / DT / IMAXO WRITE(10,70) (TIME-1.5 + DT) + 1.E9, IEM, IHP, IH2P, IH, IH2, & (ANODEI - KATHOI) / KATHOI KATHOI = 0. ANODEI = 0. END IF IEKATH = 0 \frac{1}{10000000000000000000000000000000000$                                                                                                  | *     |
| 073<br>074<br>075<br>076<br>077<br>078<br>079<br>080<br>081<br>082                      | *<br>30<br>70<br>80              | HZI = DNKATH(4) + FACTOR / DT / HAAO IH = DNKATH(4) + FACTOR / DT / IMAXO IH2 = DNKATH(5) + FACTOR / DT / IMAXO WRITE(10,70) (TIME-1.5 + DT) + 1.E9, IEM, IHP, IH2P, IH, IH2, & (ANODEI - KATHOI) / KATHOI KATHOI = 0. ANODEI = 0. END IF IEKATH = 0 FORMAT( 5(1P,E11.3) ) FORMAT( F7.2, 6(1P,E11.3) ) FORMAT( 'U = ', I3, 'KV D = ', F3.1, 'CM P = ', & F4.1, 'PA' ) FORMAT( 'TIME = ', F5.1, 'NS') | *     |
| 073<br>074<br>075<br>076<br>077<br>078<br>079<br>080<br>081<br>082<br>083<br>083        | *<br>30<br>70<br>80<br>90<br>100 | IHZI = DNKATH(3) * FACTOR / DI / IMAXO IH = DNKATH(4) * FACTOR / DT / IMAXO IH2 = DNKATH(5) * FACTOR / DT / IMAXO WRITE(10,70) (TIME-1.5*DT)*1.E9, IEM, IHP, IH2P, IH, IH2, & (ANODEI - KATHOI) / KATHOI KATHOI = 0. ANODEI = 0. END IF IEKATH = 0 ************************************                                                                                                              | *     |
| 073<br>074<br>075<br>076<br>077<br>078<br>079<br>080<br>081<br>082<br>083<br>084<br>085 | *<br>30<br>70<br>80<br>90<br>100 | IH = DNKATH(4) *FACTOR / DT / IMAXO IH = DNKATH(4) *FACTOR / DT / IMAXO IH2 = DNKATH(5) *FACTOR / DT / IMAXO WRITE(10,70) (TIME-1.5*DT) *1.E9, IEM, IHP, IH2P, IH, IH2, & (ANODEI - KATHOI) / KATHOI KATHOI = 0. ANODEI = 0. END IF IEKATH = 0 ************************************                                                                                                                  | *     |
| 073<br>074<br>075<br>076<br>077<br>078<br>079<br>080<br>081<br>082<br>083<br>084<br>085 | *<br>30<br>70<br>80<br>90<br>100 | HLT = DIMATH(3) + FACTOR / DT / HMAXO IH = DNKATH(4) + FACTOR / DT / IMAXO H2 = DNKATH(5) + FACTOR / DT / IMAXO WRITE(10,70) (TIME-1.5 + DT) + 1.E9, IEM, IHP, IH2P, IH, IH2, & (ANODEI - KATHOI) / KATHOI KATHOI = 0. END IF IEKATH = 0 $444444444444444444444444444444444444$                                                                                                                      | *     |
| 073<br>074<br>075<br>076<br>077<br>078<br>079<br>080<br>081<br>082<br>083<br>084<br>085 | *<br>30<br>70<br>80<br>90<br>100 | <pre>Intr = Diddfill(3)*FACTOR / DT / IMAXO<br/>IH = DNKATH(4)*FACTOR / DT / IMAXO<br/>WRITE(10,70) (TIME-1.5*DT)*1.E9, IEM, IHP, IH2P, IH, IH2,<br/>&amp; (ANODEI - KATHOI ) / KATHOI<br/>KATHOI = 0.<br/>END IF<br/>IEKATH = 0<br/>**********************************</pre>                                                                                                                        | *     |
| 073<br>074<br>075<br>076<br>077<br>078<br>079<br>080<br>081<br>082<br>083<br>084<br>085 | *<br>30<br>70<br>80<br>90<br>100 | HARD = Diskath(3) * Factor / DT / HARD IH = DNKATH(4) * Factor / DT / IMAXO IH2 = DNKATH(5) * Factor / DT / IMAXO WRITE(10,70) (TIME-1.5*DT)*1.E9, IEM, IHP, IH2P, IH, IH2, & (ANODEI - KATHOI) / KATHOI KATHOI = 0. END IF IEKATH = 0 ************************************                                                                                                                          | ****  |

\* MW = DIMENSION FOR NUMBER OF ENERGY VALUES FOR EACH CROSS SECTION

```
002
            PARAMETER(MQ=59, MW=30)
003
            CHARACTER*80
                             TEXTQ(4, MQ)
004
            COMMON /CROSS/
                             NQ
005
            COMMON /FLAGS/
                             KPRINT, KCROSS(MQ)
006
            COMMON /GETQWI/ QFIT(MW,MQ),QNWFIT(3,MW,MQ),
          &
                             WFIT(MW,MQ),WFITL(MW,MQ),
          &
                             NW(MQ),KQZERO(MQ)
            COMMON /PARAME/ DUMMY1, DUMMY2, DRUCK
007
008
            COMMON /PHYSIK/ DICHTE
009 -
           COMMON /TEXT/
                             TEXTQ
010
           DATA KFIT/0/
011
           SAVE
012
            IF(KFIT.EQ.1) GO TO 100
013
           DO 10 I=1,MQ
014
           KCROSS(I) = 0
015
        10 CONTINUE
016
           READ(2,*) KPRINT
017
           READ(2,*) KCROSS
018
           WRITE(6,210) KPRINT
019
           WRITE(6,211) KCROSS
020
           CALL FITQNW
021
           KFIT = 1
022
           BOLTZ =
                       1.38054D-23
023
           TEMP
                 = 293.15D0
024
           DICHTE = DRUCK / (BOLTZ*TEMP)
025
           WRITE(6,290) BOLTZ, TEMP, DRUCK, DICHTE
026
           CALL FITNOW
027
       100 IF(ENERGY.GE.WFIT(1, ICROSS)) GO TO 110
028
            IF(KQZERO(ICROSS).EQ.0) THEN
029
                                         QN = 0
030
                                ELSE
031
                                         QN = DICHTE*QFIT(1, ICROSS)
             .
032
                                END IF
033
                                         RETURN
034
       110 DO 120 J=1,NW(ICROSS)-2
035
           IF(ENERGY.LE.WFIT(J+1,ICROSS)) GO TO 130
       120 CONTINUE
036
037
           IF(ENERGY.LE.WFIT(NW(ICROSS), ICROSS)) THEN
038
                                         JW = NW(ICROSS) - 2
039
                                         GO TO 140
040
                                    ELSE
041
                                         QN = 0
042
                                         RETURN
043
                                    END IF
044
       130 JW
                 = J
045
       140 X
                 = LOG(ENERGY)
046
           QN
                  = EXP( QNWFIT(1, JW, ICROSS)
          &
                   + X*( QNWFIT(2, JW, ICROSS) + X*QNWFIT(3, JW, ICROSS)) )
047
           RETURN
```

```
048
       210 FORMAT('1KPRINT = 0: PRINTS NO CROSS SECTIONS '/
         &' KPRINT = 1: PRINTS CROSS SECTIONS USED IN THIS RUN'/
         &' KPRINT = 2: PRINTS ALL CROSS SECTIONS'/
         &' KPRINT = ',11,' IN THIS RUN',/,
         &' KCROSS = INDICES OF CROSS SECTIONS CONSIDERED IN THIS RUN')
      211 FORMAT(' KCROSS = ',40I3)
049
      290 FORMAT('OBOLTZMANN CONSTANT = ',1P,D12.5,' (N*M/K);',
050
              TEMPERATURE = ', 3P, D11.2, '(K); ', /,
         ε'
         &' PRESSURE = ',1P,D10.3,' (N/M**2 = 1E-2 MILLIBAR);',
         &'
              DENSITY =', D10.3, ' (M^{**}-3);')
051
          END
    001
          SUBROUTINE FITONW
    **
          CALL FITQNW READS AND WRITES TABULATED CROSS SECTIONS QFIT(WFIT)
    *
    *
          ENTRY FITNOW HAS TO BE RECALLED FOR EACH NEW VALUE OF "DICHTE"
    *
          ENTRY FITNQW CALCULATES LOG(DICHTE*QFIT), LOG(WFIT)
    *
          NEXT, FITS CUBIC FUNCTION TO THESE DATA
    *
          STORES ITS COEFFICIENTS IN QNWFIT(K,J,I), I = CROSS SECTION NUMBE
    쑸
          AT RETURN THE FUNCTIONS QN(W) ARE READY FOR USE FOR EACH I = 1, NQ
    *
    * KOZERO(I)
                  = 0 THEN QN(W) = 0
                                                     IF W < WFIT(1,I)
                  = 1 THEN QN(W) = DICHTE * QFIT(1, I)
                                                    IF W < WFIT(1,I)
    * KQZERO(I)
    * NQ
                  = TOTAL NUMBER OF CROSS SECTIONS
    * NW(I)
                  = NUMBER OF ENERGY VALUES FOR CROSS SECTION I
    * NWMAX
                  = MAXIMUM OF NW(I)
    * WFIT(J,I)
                  = ENERGY IN EV
                                          MUST BE # 0 IN QN(W)!!!!!!!!!
                = CROSS SECTION IN M**2 MUST BE # 0 IN QN(W)!!!!!!!!!!
    * QFIT(J,I)
    * QN(W, ICROSS) = FUNCTION DENSITY * CROSS SECTION IN M**-3 * M**2 = 1/M
    *
                    FOR THE CROSS SECTION NUMBER ICROSS
    * Ŵ
                  = ENERGY IN EV
    *
    * IXXX = INDEX IN LOOP
    * JXXX = INDEX IN LOOP
    * KXXX = FLAG TO CONTROL PROGRAM FLOW
    * MXXX = DIMENSION OF ARRAY XXX
    * NXXX = NUMBER OF ELEMENTS OF THE VARIABLE XXX USED AT PRESENT
    002
          PARAMETER (MQ=59, MW=30)
003
          REAL
                         AFIT(3),QNFITL(MW),XFIT(3),YFIT(3)
004
          CHARACTER*80
                         TEXTQ(4, MQ)
005
          CHARACTER*52
                         TEXT(MW)
006
          COMMON /CROSS/
                        NQ
007
          COMMON /FLAGS/ KPRINT, KCROSS(MQ)
          COMMON /GETQWI/ QFIT(MW, MQ), QNWFIT(3, MW, MQ),
008
         &
                         wFIT(MW,MQ),WFITL(MW,MQ),
                         NW(MQ),KQZERO(MQ)
         &
009
          COMMON /PHYSIK/ DICHTE
010
          COMMON /TEXT/
                        TEXTQ
011
          IF(KPRINT.EQ.1.OR.KPRINT.EQ.2) WRITE(6,1)
012
        1 FORMAT('OIF W < WFIT(1,I) THEN: IF KQZERO(I) = 0 THEN QN(W) = 0',
```

δ, IF KQZERO(I) = 1 THEN QN(W) = DIC&TE \* QFIT(1,I)') 013 DO 10 I=1,MQ 014 WFIT(1,I) = -1015 **10 CONTINUE** 016 ICROSS = 1017 20 READ(3,\*) I,NQ,NW(I),NWMAX,KQZERO(I) 018 READ(3,25) (TEXTQ(J,I),J=1,3) 019 READ(3,30) (WFIT(J,I),QFIT(J,I),TEXT(J),J=1,NW(I)) 020 25 FORMAT(A80/A80/A80) 021 30 FORMAT(2D10.3,A52) IF(KPRINT.EO.O) GO TO 40 022 023 IF(KPRINT.EQ.2) GO TO 33 024 IF(I.NE.KCROSS(ICROSS)) GO TO 40 025 ICROSS = ICROSS + 1026 33 WRITE(6,35) I,NQ,NW(I),NWMAX,KQZERO(I) 027 WRITE(6,36) (TEXTQ(J,I),J=1,3) 028 WRITE(6,37) (WFIT(J,I),QFIT(J,I),TEXT(J),J=1,NW(I)) 35 FORMAT('OI = ',I2,' &' KQZERO = ',I1) NQ = ', I2, ' NW = ', I3, '029 NWMAX = ', I3,030 36 FORMAT(1H ,A80) 031 37 FORMAT(1H ,1P,2D10.3,A52) 032 40 IF(I.LT.NQ) GO TO 20 033 RETURN 034 ENTRY FITNOW 035 DO 100 I=1,NQ 036 IF(WFIT(1,I).LT.0) GO TO 100 037 DO 50 J=1,NW(I) 038 WFITL(J,I) = LOG(WFIT(J,I))= LOG(DICHTE\*QFIT(J,I))039 QNFITL(J) 50 CONTINUE 040 041 DO 90 J=1,NW(I)-2 042 DO 60 K=1,3 043 XFIT(K) = WFITL(J+K-1,I)044 60 YFIT(K) = QNFITL(J+K-1)045 CALL FITYX2(YFIT,XFIT,AFIT) 046 DO 80 K=1,3 047 QNWFIT(K,J,I) = AFIT(K). 048 **80 CONTINUE** 049 90 CONTINUE 050 **100 CONTINUE** 051 RETURN 052 END SUBROUTINE FITYX2(Y,X,A)

001

\* FITS THE QUADRATIC FUNCTION  $Y = A(3) \times X \times 2 + A(2) \times X + A(1)$ 

|                                               | * TO 3 GIVEN DATA POINTS (X(I),Y(I),I=1,3)<br>* Y, X = INPUT<br>* A = OUTPUT                                                                                                                                                         |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 002                                           | REAL $A(3), X(3), Y(3)$                                                                                                                                                                                                              |
| 003<br>004<br>005<br>006<br>007<br>008<br>009 | DYDX = (Y(2) - Y(1)) / (X(2) - X(1))<br>X1X2 = X(1) + X(2)<br>A(3) = (Y(3) - Y(1) - DYDX*(X(3) - X(1))) /<br>& (X(3)*(X(3) - X1X2) + X(1)*X(2))<br>A(2) = DYDX - A(3)*X1X2<br>A(1) = Y(1) - X(1)*(A(3)*X(1) + A(2))<br>RETURN<br>END |
| 001                                           | **************************************                                                                                                                                                                                               |
| 002<br>003<br>004<br>005<br>006               | LOGICAL FLAG<br>PARAMETER ( A = 6.0457E-14 )<br>COMMON /CONST/ UNICHA, EMASS, PMASS, H2MASS, CSQR, EOSQR<br>DATA FLAG / .TRUE. /<br>SAVE FLAG                                                                                        |
| 007<br>008<br>009<br>010                      | IF ( FLAG ) THEN<br>E0 = SQRT( EOSQR )<br>FLAG = .FALSE.<br>END IF                                                                                                                                                                   |
| 011<br>012                                    | EKIN = E * UNICHA<br>SIGMAT = A / SQRT( (EKIN*EKIN+2*E0*EKIN) * CSQR ) * ( E0 + EKIN )                                                                                                                                               |
| 013                                           | END                                                                                                                                                                                                                                  |

· .

,

-1-\* MAIN PROGRAM COLLTIME -!-÷ THIS PROGRAM COMPUTES THE TIME BETWEEN TWO COLLISIONS (TC), DEPENDENT ON THE INITIAL PARTICLE'S MOMENTUM AND THE PROBABILITY \* THAT AT LEAST ONE COLLISION HAPPENS BETWEEN 0 AND TC. \* REAL INTEGR, MAXPRO DIMENSION TC( 0:100, 0:100 ) COMMON /CONST/ UNICHA, EMASS, PMASS, H2MASS, CSOR, EOSOR COMMON /PARAME/ EFIELD, GAPLEN, PRESSU COMMON /PB/PB EXTERNAL FUNCTI DATA ((TC(I,K), K=0,100), I=0,100)/10201\*150.E-9/ READ(1,\*) EFIELD READ(1,\*) GAPLEN READ(1,\*) PRESSU MAXPRO = 1. RFACTO = 100./MAXPRO= SQRT( 2. \* H2MASS \* UNICHA \* EFIELD \* GAPLEN ) PMAX = PMAX / UNICHA / EFIELD TMAX ' TMAX = ',TMAX,'S', ' PMAX = ',PMAX,'KG\*M/S' WRITE(\*,\*) DT = TMAX/4000. DP = PMAX/100. DO 10, I = 0, 100= I\*DP ΡB INTEGR = 0. DO 20, K = 0, 3999  $T = K \div DT$ 

022 DINTEG = TRAPEZ(T, T+DT, FUNCTI)023 INTEGR = INTEGR + DINTEG024  $\sim$  R = 1. - EXP(-INTEGR) 025 026 INDEXK = INT(R\*RFACTO+0.9999999)TC(I, INDEXK) = T+DT027 CONTINUE 028 20 029 TC(I,0) = 0.CONTINUE 030 10

031 WRITE(4) TC

033 END

001 FUNCTION TRAPEZ( XLOW, XUPP, F ) 

002

001

002

003

004

005 006

007

800

009

010

011

012

013

014

015

016

017

018

019

020

021

TRAPEZ = 0.5 \* (F(XLOW) + F(XUPP)) \* (XUPP - XLOW)

\*

<u>.</u>

\*

\*

\*

<u>بار</u>

003

## END

| 001               | **************************************                                                                                                                                                   | **  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                   | <ul> <li>* THIS FUNCTION COMPUTES THE PRODUCT OF THE DENSITY OF BACK GROUND</li> <li>* GAS AND THE TOTAL CROSS SECTION AND THE VELOCITY OF THE COLLIDING</li> <li>* PARTICLE.</li> </ul> | * * |
| 002<br>003<br>004 | COMMON /CONST/ UNICHA, EMASS, PMASS, H2MASS, CSQR, EOSQR<br>COMMON /PARAME/ EFIELD, GAPLEN, PRESSU<br>COMMON /PB/PB                                                                      |     |
| 005<br>006        | P = PB + UNICHA * EFIELD * T $E = 0.5 * P * P / H2MASS$                                                                                                                                  | -1- |
| 007               | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                    | 25  |
| 007               | * VELOCITY:                                                                                                                                                                              | 70  |
| 008               | V = ABS(P / H2MASS)                                                                                                                                                                      |     |
| 009               | SN1 = QN(4, E)                                                                                                                                                                           |     |
| 010               | SN2 = QN(20, E)                                                                                                                                                                          |     |
| 011               | SN3 = QN(21, E) - 0.5*SN2                                                                                                                                                                |     |
| 012               | IF (SN3 .LT. 0.) SN3 = 0.<br>SN4 = ON(28 F)                                                                                                                                              |     |
| 015               | $\mathbf{D}(1^{1}) = \mathbf{Q}(1(2^{1};1))$                                                                                                                                             |     |
|                   | * H2+ - IONS                                                                                                                                                                             | *   |
| 014               | FUNCTI = (SN1 + SN2 + SN3 + SN4) * V                                                                                                                                                     |     |
|                   |                                                                                                                                                                                          | *   |
|                   | C FUNCTI = $(QN(2,E) + QN(25,E)) * V$                                                                                                                                                    |     |
|                   |                                                                                                                                                                                          |     |
| 015               | END                                                                                                                                                                                      |     |
|                   |                                                                                                                                                                                          |     |
|                   | ***************************************                                                                                                                                                  | **  |
| 002               | INCLUDE (PHYSCO)                                                                                                                                                                         |     |

001

.

.

INCLUDE (CROSS)

## Literaturverzeichnis

- J. Christiansen, Ch. Schultheiss
   "Production of High Current Particle Beams by Low Pressure Spark Discharges"
   Z. Physik A, 290, 35 (1979)
- [2] Ch. Schultheiss
   "Erzeugung von Hochstromteilchenstrahlen aus Niederdruckfunkenentladungen"
   Dissertation, Physikalisches Institut der Universität Erlangen (1979)
- [3] M. R\"abiger
   "Skalierung des Elektronenstromes einer Pseudofunkenentladung"
   Diplomarbeit, Physikalisches Institut I der Universit\"at D\"usseldorf (1986)
- W. Bauer, A. Citron, H. Ehrler, A. Rogner, W. Schimassek, Ch. Schultheiss
   "High Power Pseudo Spark as an Ion- and X-Ray Source"
   XVIII International Conference on Phenomena in Ionized Gases, 4-718 (1987)
- [5] G. F. Kirkman, M. A. Gundersen
   "Low Pressure, Light Initiated Glow Discharge Switch for High Power Applications" App. Phys. Lett. 49 (9), 494 (1986)
- [6] K. Frank, E. Boggasch, J. Christiansen, A. Goertler, W. Hartmann, C. Kozlik "High Repetition Rate Pseudo Spark Switches for Laser Applications" SPIE Vol. 735 Pulse Power for Lasers (1987)
- [7] L. D. Landau, E. M. Lifschitz
   "Lehrbuch der theoretischen Physik" Band 10, 1. Auflage S. 8-10
   Akademie-Verlag Berlin (1962)
- [8] F. F. Chen
   "Introduction to Plasma Physics and Controlled Fusion", Vol. 1, 2. Auflage, S. 233
   Plenum Press, New York (1984)
- [9] N. A. Krall, A. W. Trivelpiece
   Principles of Plasma Physics" S. 368-369
   McGraw-Hill, New York (1973)
- [10] H. T. Salee, L. Lucas
   "Simulation of Electron Swarm Motion in Hydrogen and Carbon Monoxide for high E/N"
   J. Phy. D: App. Phys. 10, 343 (1977)
- [11] J. D. Reid, S. R. HunterAust. J. Phys. 32, 255 (1979)
- [12] A. J. Davies, C. J. Evans
   "The Theory of Ionisation Growth in Gases and Pused and Static Fields" CERN Report 73-10 (1973)

- K. Mittag, W. Nießen
   "Numerical Simulation of a Pseudo Spark Gas Discharge"
   Int. AMSE Conference on Modelling and Simulation, Karlsruhe (1987)
- [14] E. J. Lauer, S. S. Yu, D. M. Cox
   "Onset of Self-Breakdown in a low Pressure Spark Gap" Phys. Rev. 23, 2250 (1981)
- [15] E. Kunhardt, Y. Tzeng
   "Monte Carlo Technique for Simulating the Evolution of an Assembly of Particles Increasing in Number"
   J. of Comp. Phys. 67,2 279 (1986)
- J. P. Boeuf, E. Marode
   "A Monte Carlo Analysis of an Electron Swarm in a Nununiform Field: The Cathode Region of a Glow discharge Helium"
   J. Phys. D: Appl. Phys. 65 2169 (1982)
- [17] H. R. SkullerudJ. Phys. D: 1 1567 (1968)
- J. I. Goldstein, H. Yakowitz, D. E. Newbury, E. Lifshin, J. W. Colby, J. R. Coleman "Practical Scanning Electron Microscopy" 3. Auflage S. 57-69 Plenum Press New York (1975)
- [19] W. C. Walker, O. P. Rustgi, G. L. WeisslerJ. Opt. Soc. Am. 49 471 (1959)
- [20] A. Rogner
   "Untersuchung der Intensitäts- und Energieverteilung intensiver gepulster Ionenstrahlen"
   Diplomarbeit Kernforschungszentrum und Universität Karlsruhe (1985)
- [21] W. Benker
   "Messung der ionischen Energieverteilung von Niederdruckgasentladungen mit der Gegenfeldmethode"
   Diplomarbeit Universität Erlangen-Nürnberg (1983)
- [22] R. B. Quinn"Sparking Potentials at Low Pressures"Phys. Rev. 55 482 (1939)
- [23] G. W. McClureJ. Electron. Control 7 439 (1959)
- [24] K. Simonyi
   "Physikalische Elektronik" S. 514-516
   Teubner Stuttgart (1972)
- [25] K. Wiesemann
   "Einführung in die Gaselektronik: Grundlagen der Elektrizitätsleitung in Gasen"
   1. Auflage S. 51-52 Teubner Stuttgart (1976)

- [26] C. F. Barnett, J. A. Ray, E. Ricci, M. J. Wilker, E. W. McDaniel, E. W. Thomas, H. B. Gilbody
  "Atomic Data for Controlled Fusion Research"
  Vol. I, II of ORNL-5206 (1977)
- [27] L. J. Pucket, G. O. Taylor, D. W. Martin Phys. Rev. 178 (1969)
- [28] Gilbody, HastedProc. Roy. Soc. London 240 A 382 (1957)
- [29] Afrosimov et al. Sov. Phys. Jetp 7 968 (1958)
- [30] A. V. Phelps private Mitteilungen
- [31] M. v. Ardenne
   "Tabellen zur angewandten Physik" Band 1, S. 106, 3. Auflage
   VEB Deutscher Verlag der Wissenschaften Berlin (1975)

Für die Möglichkeit, daß ich diese Arbeit am Institut für Kernphysik II durchführen konnte, danke ich Herrn Professor Dr. A. Citron, Herrn Professor Dr. W. Schmidt und Herrn Dr. W. Bauer. Desweiteren gilt mein besonderer Dank Herrn Dr. K. Mittag, der mich betreute und Herrn Dr. Ch. Schultheiss für seine anregenden Diskussionen. Beide trugen nicht unwesentlich zum Gelingen dieser Arbeit bei. Schließlich möchte ich mich noch bei Frau D. Hamdi für die Bereitstellung ihrer Schreibmaschine bedanken.