Temporal variation of urban mixing layer height in Mexico City and Augsburg from ceilometer and SODAR measurements

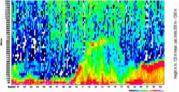
Klaus Schäfer¹, Stefan Emeis¹, Carsten Jahn¹, Caroline Münsterer¹, Christoph Münkel²

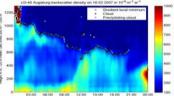
¹Forschungszentrum Karlsruhe GmbH, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU) Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany; phone: +49 8821 183 192, fax: +49 8821 73573, e-mail: klaus.schaefer@imk.fzk.de 2Vaisala GmbH, Schnackenburgallee 41d, 22525 Hamburg, Germany; phone: +49 40 839 03 132, fax:+49 40 839 03 110, e-mail: christoph.muenkel@vaisala.com

The mixing layer height (MLH) is assumed to be a key parameter for the characterisation of air pollution. The determination and modelling of the MLH has therefore found considerable interest in the recent decade (Piringer et al., 2005).

With today's availability of remote sensing devices for monitoring the structure of the atmospheric boundary layer (e.g. Emeis and Schäfer, 2006) it has been shown that the atmospheric boundary layer sometimes exhibits multiple layering (e.g. internal boundary layers, nearsurface inversions and residual layers at night-time and in the morning hours). It was demonstrated that the lowest stable layer or inversion limits the vertical exchange of primary pollutants emitted at or near the surface (e.g. Schäfer et al., 2006). MLH information is also necessary for special kinds of satellite data interpretation, e. g. the retrievals of optical depths for the particle concentration near the surface (Sarigiannis et al., 2002).

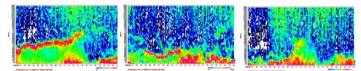
Objectives


Augsburg (Germany): Determination of lower atmospheric layering to investigate interactions between urban and regional areas.


Mexico City: Study of conditions for high air pollution.

Methodologies

A ceilometer was operated in Mexico City during March 2006 and two ceilometers and a SODAR in Augsburg since September 2006. The Vaisala ceilometers LD40 and CL31 were used which are eye-safe commercial lidar systems. Partially a comparison was performed with parallel MLH retrievals from a Metek SODAR DSDR 3 x 7.


MLH is retrieved from SODAR data by analysing the backscatter intensity and the variance of the vertical velocity component. High backscatter intensity with low variance indicate stable layers and a sharp decrease of backscatter intensity in the vertical profile the top of the turbulent mixing layer (Emeis and Türk, 2004). The ceilometer measurements are used routinely to determine the heights of the near surface aerosol layers from minima of the vertical gradient of the optical backscatter intensity (Münkel et al., 2006).

Backscatter intensities from SODAR (above left) and ceilometer (above right) in the city of Augsburg as well as several layers from ceilometer (left) on February 16, 2007: averaging: temporal 1200 s, height 120 m. Between 0:00 and 11:00 a residual laver exists above a stable near-surface laver. From 11:00 until 18:00 a convective boundary layer with a maximum height of 700 m is visible.

Backscatter intensities from SODAR on February 17, 18 and 21, 2007 clearly indicating temporal variation of MLH.

Results

Continuous remote sensing measurements provide information about temporal variation of urban MLH. A typical rise of MLH during a day with strong convection in the afternoon as well as a residual layer above the mixing layer during night and early morning hours can be seen from ceilometer data together with SODAR data. Aerosol load and thus backscatter intensity are much lower in Augsburg (see above) than around Mexico City (see left).

Conclusion

In the absence of low clouds and precipitation ceilometers can estimate the mixing layer height fairly well. The combined operation of acoustic and optical remote sensing techniques offers the possibility to analyse the vertical structure of the atmospheric boundary layer. Because the acoustic technique observes thermal structures and the optical technique observes the aerosol distribution different lavers like the stable surface layer, the convective boundary layer and the residual layer can be easily distinguished.

are

Acknowledgements: The authors would like to thank Rainer Steinbrecher of the IMK-IFU as well as Michel Grutter and Edgar Flores-Jardines of the Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, México for fruitful cooperation. We thank Jürgen Schnelle-Kreis of the Bayerisches Institut fuer Angewandte Umweltforschung und -Technik, Augsburg and Jan Bernkopf of the Bayerisches Landesamt fuer Umwelt, Augsburg for effective support during the ongoing Augsburg measurements.

Ceilometer

measurements

Tenango del Aire nearby Mexico City in 2377 m asl (left,

view to Mexico Citv)

on March 05, 2006; averaging: temporal 1200 s, height 300

m. Several aerosol

layers above ground clearly visible

from the backscatter

intensity plot (right).

C cuales, could: related and an endode to thread gate coloradary by the sector of the

, brou, N.I. Sifakis, D. Assimakopoulos, M. Lointier, A. Dantou, M. Saisana, 2002: ICAROS: An Inte for Urban and Regional Air Quality. Int. J. Water, Air, and Soil Pollution: Focus 2, 641-654.