

Mechanical properties of different refractory materials for nuclear fusion applications

M. Rieth¹, A. Hoffmann², B. Dafferner¹, S. Heger¹, E. Materna-Morris¹, H. Sandim³, H. Zimmermann¹

Fig. 1: Microstructure of the different rod materials (longitudinal cross-sections).

Test Temperature, °C

Fig. 2: Charpy test results of the rod materials. Between 400 °C and 600 °C there is a transition from brittle to cleavage fracture. Only pure tungsten and WVM shows a second transition at about 900 °C to ductile fracture.

T-L: transverse to rolling direction).

Fig. 6: At 900 °C delaminated fracture surfaces of typical plate specimens.

Fig. 5: Microstructure of tungsten and WL10 plates. The L-T specimen orientation is also illustrated.

¹ Forschungszentrum Karlsruhe GmbH, IMF I, P.O. Box 36 40, 76021 Karlsruhe, Germany ² PLANSEE Metall GmbH, Development Refractory Metals, 6600 Reutte, Austria ³ **USP-Lorena**, Department of Materials Engineering, Lorena-SP, Brazil

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

