

Karlsruhe Institute of Technology (KIT), Campus North Institute for Materials Research III Institute of Functional Interfaces* Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

Iron Doped Ba_{0.6}Sr_{0.4}Ti_{1-x}Fe_xO₃ Thin Films Deposited by RF Magnetron Co-sputtering

F. Stemme, H. Gesswein, C. Azucena*, J.-R. Binder, and M. Bruns

Introduction

Barium strontium titanate (BST) is a very promising material for tunable microwave applications like phase-shifters and filters. Therefore much effort has been spent on BST thin film deposition and subsequent annealing processes to tune the film properties. Well characterized are e.g. the properties of iron doped thin films [1] and powders [2] with different Ba/Sr concentration ratios prepared by sol-gel techniques. In this work we focus on the deposition and characterization of iron doped BST thin films with tailored stoichiometries using RF magnetron co-sputtering. The main sputter parameters were studied to tune the elemental composition and a subsequent annealing step leads to the necessary crystallinity of the thin films.

Film Preparation

> 3"-RF magnetron sputter set-up with a double cross recipient

Ba_{0.6}Sr_{0.4}TiO₃ 3"-sputter target, Kurt J. Lesker Company, UK Magnet and iron foil Goodfellow GmbH, Germany > Platinized Si(100) substrates, Inostek Inc, South Korea > Sputter parameter: Clamp rind Ar/O2 80/20 vol/% sputter gas operating pressure 1.0 Pa Sr_{0,} .TiO RF power 85 W Iron foil strip > Subsequent heat treatment in Magnetic field oxygen atmosphere in a tube furnace Co-Sputtertarget

Film Characterization

Chemical Binding States

XPS X-ray Photoelectron Spectroscopy, K-Alpha, mono AlKα, ThermoFisher Scientific, UK; sputter depth profiles: 1keV Ar-Ion beam, raster size 1mm

Crystal Structure

XRD X-ray Diffractometry, D8, Bruker AXS GmbH, Germany

<u>Morphology</u>

- AFM Atomic Force Microscopy, MFP-3D-Bio, Asylum Research, USA
- SEM Scanning Electron Microscopy, Supra 55VP, Carl Zeiss NTS GmbH, Germany

Grazing incident X-ray diffraction pattern and SEM images of the as deposited and heat treated BST thin film. Substrate related peaks are marked by asterisks.

→ single phase BST, with a microcrystalline morphology after annealing at 800°C

References

[1] Y. Ye, T. Guo, Ceramics International, 2009, 35, 2761-2765

[2] F. Paul, J.-R. Binder, H. Gesswein, H.-J. Ritzhaupt- Kleissl, J. Hausselt, Ceramics International, 2009, 35, 479-486.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Ba 4d (a) and Fe $2p_{3/2}$ (b) **XPS spectra** of iron doped BST thin films on Pt-Si substrates in the as deposited state and after subsequent annealing.

XPS binding energies of the chemical components in the iron doped BST thin films

	Ba4d		Sr3d	Ti2p		Fe2p				01s			C1s	
	Ba ²⁺	BaCO ₃	Sr ²⁺	Ti ³⁺	Ti4+	Fe ²⁺	Fe ²⁺ sat.	Fe ³⁺	Fe ³⁺ sat.	0 ²	CO32.	C-0/C=0	reference	CO32.
eposited eV]	88,9		132,7	456,1	457,7	710,4	714,3	712,4	718,0	529,4	531,0	532,1	285,0	289,0
00°C ⊪V]	88,0	89,7	132,6	456,2	457,9	710,2	714,7	712,5		529,3	531,3	532,3	285,0	288,4

Experimental uncertainty: ± 0,2eV

as d BE [

1h 8 BE [

XPS sputter depth profile of an iron doped BST thin film on a Pt-Si substrate in the as deposited state

XPS sputter depth profile of an iron doped BST thin film on a Pt-Si substrate after annealing 1h@800°C

- ➔ high energy Ba4d doublet is attributed to Ba atoms in a "surface state" related to BaCO₃
- → homogeneous element distribution in the film, loss of chemical information due to sputter-induced reduction (Ti⁴⁺→Ti⁰; Fe³⁺→Fe⁰)

AFM image and section graph of the 1h@800°C annealed sample

→ enhanced surface roughness of the subsequent annealed sample due to crystallization of the BST thin film

Conclusion

> RF magnetron co-sputtering and subsequent annealing process allows production of iron doped, crystalline BST thin films with a homogeneous dopant distribution

www.kit.edu