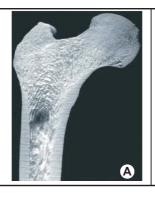
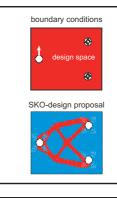
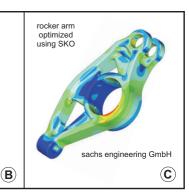


Department of Biomechanics Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen www.kit.edu

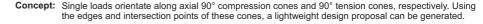

Lightweight Design According to Nature


Computer-free Engineering Design Using Thinking Tools


C. Mattheck, K. Bethge, I. Tesari, J. Sörensen, C. Wissner, R. Kappel

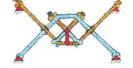
Computer-aided lightweight design using Soft Kill Option (SKO)

- A) SKO (Soft Kill Option) is a computer application to optimize the weight of technical components, which is based on the demineralization of bones by osteoclasts.
- B) In consideration of technical specifications, non or minor - loaded areas of the technical component are removed.
- C) For optimized technical components under the specified load, material usage and weight are . minimized.



Simplified Design Tools Shear Squares, Tension Triangles, and Force Cones

Method of Force Cones



applied load and force cones

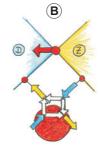
design proposal using the Method of Force Cones

visualization of the principle

comparison with SKO computing

(E)

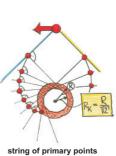
Torsion Anchor


At force cones and primary points (•), tensile and compressive forces intersect at right angles.

Each point along the circumference of the anchor circle is a primary point.

The constructive circle (radius R_{κ}) enables simplified engineering of the torsion anchor using tangent lines. The loaded radius of the torsion anchor is R.

applied load



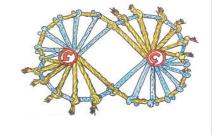
force cones

(C)

constructive circle

(**D**)

string of primary points



of the principle

Demonstrator of Two Interacting **Torsion Anchors**

Visualization of the Principle

more information: www.mattheck.de