brought to you by 🗓 CORE

Campus-Alpin

Source apportionment studies on particulate matter in Beijing/China

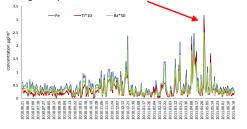
P. Suppan¹, R. R. Shen¹, S. Schrader^{1,2}, L.Y. Shao³, K. Schäfer¹, S. Norra², B. Vogel⁴, K. Cen⁵, Y. Wang⁶

¹ Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU) at the Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany

- ² Institute of Geography and Geoecology (IfGG) at the Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany ³ Department of Resources and Earth Sciences, China University of Mining and Technology (CUMTB), 100083 Beijing, P. R. China
- ⁴ Institute of Meteorology and Climate Research, Tropospheric Research (IMK-TRO) at the Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany ⁵ School of Earth Sciences and Resources, China University of Geosciences (CUGB), 100083, Beijing, P.R. China
- ⁶ Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), 100029 Beijing, P.R. China

Contact: Dr. Peter Suppan – peter.suppan@kit.edu

Problem & Motivation


More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China.

Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009), PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance..

In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed.

Measurements


Annual course of concentrations of natural sources (Fe, Ti and Ba) in particulate matter. Highest concentrations during dust storm events, e.g. 30. April 2011

Element	Factor 1	Factor 2	Factor 3	s
PM	0.684	0.647	0.129	Ā
Fe	0.944	0.261	0.107	Ē
S	0.009	0.874	-0.009	
к	0.620	0.653	0.097	<u>F</u>
Ca	0.885	0.218	0.124	(0
Ti	0.954	0.040	0.117	w
Mn	0.843	0.417	0.137	<u> </u>
Cr	0.520	0.514	-0.078	
Ni	0.467	0.564	0.060	
Zn	0.367	0.814	0.273	
As	0.132	0.677	0.419	"(
Sn	0.008	0.174	0.792	in
Sb	0.172	0.068	0.680	
Ba	0.947	0.240	0.110	199919

ource apportionment - Factor nalvsis: actor 1: Geogenic sources actor 2: Fossil fuel combustion oil and coal combustion) and aste incineration actor 3: Brake wear

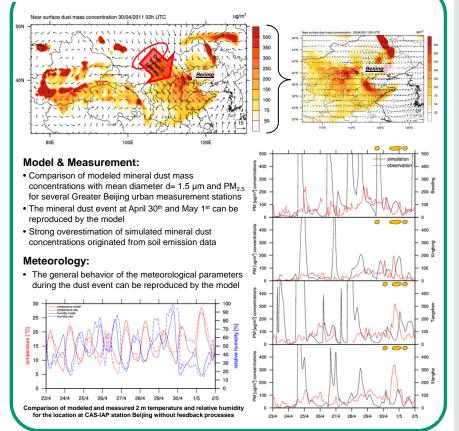
> See also poster on Chemical composition of PM a residential area of Beijing, China" → P-2-082

Particle composition:

S, Zn and Pb refer to anthropogenic influences - highest amount during haze days

Fe, Ti, Ca, Mn, Ba refer to geogenic sources - highest amount during dust davs.

Methodology


Measurements

- Particulate concentrations: Daily PM filter sampling on quartz fiber filters with 2 High-Volume Samplers DHA80 (Digitel)
- Particle composition: Main and trace elements analyzed by PEDXRF (Polarized energy dispersive X-rav fluorescence)
- Period: One years episode from June 2010 to June 2011

Modeling

- Meteorology: COSMO weather forecast model of the German Weather Service
- Gases & Aerosols: simulation in ART (developed at KIT) of 80 gaseous species, 5 anthropogenic aerosol modes, mineral dust, sea salt and pollen
- Feedbacks: meteorology, aerosols, gas phase, dynamics, clouds
- Period: 9-days episode from April 23rd to May 2nd 2011

Model results

Outlook

- Source apportionment on the basis of inorganic compounds, organic compounds, EC, OC, carbon isotope
- Integration of anthropogenic emissions in addition to the natural ones to quantify the contributions of each source category to PM2.5 and PM10 in Greater Beijing
 - Consideration of interactions between dust, radiation and cloud processes

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Acknowledgement

This work was partly funded by the Chinese Scholarship Council (CSC) and the Helmholtz Graduate School for Climate and Environment (GRACE) at KIT