

Thermal stability of the ferromagnetic in-plane uniaxial anisotropy of Fe-Co-Hf-N/Ti-N multilayer films for high-frequency sensor applications

<u>K. Krüger¹</u>, C. Thede², K. Seemann¹, H. Leiste¹, M. Stüber¹, E. Quandt²

Institute for Applied Materials (IAM-AWP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ² Institute for Materials Science, Kiel University, Kiel, Germany

kathrin.krueger@kit.edu

Motivation

Sample preparation

Experimental

Results

Multilayer films annealed for one hour at $T_a = 400$ °C in vacuum

Temperature-dependent hysteresis loop measurements in easy and hard axis of polarization from RT up to 500 °C in air

total magnetic layer

thickness d_m= 370 nm

The direction of $\mu_0 H_{\mu}$

towards its originally direction at

WWWW.KILEQU

relaxes

Permeability, $\mu_{_{r}}$

- Decrease of coercive field H_c in the hard axis of polarization
- Saturation polarization J_s decreases with increasing temperature
- Clear distinction between easy and hard axis up to 500 °C
- Absolute value of $\mu_0 H_u$ decreases slightly from 5 mT at RT to 3.4 mT at 500 °C
- Uniaxial anisotropy field $\mu_0 H_u$ remains stable in its direction up to 500 °C within one hour
- $Fe_{32}Co_{44}Hf_{12}N_{12}/Ti_{50}N_{50}$ multilayer films annealed at T_a = 600 °C for 1 h are suitable for detecting changes in the resonance frequency up to 500 °C

National Research Center of the Helmholtz Association

E

 $\mathcal{L}_{x,r}$

polarization

Ф

0.6

Dynamic behavior of magnetic moments in a HF-field: Landau-Lifschitz-Gilbert equation (L-L-G) [1] in combination with the Maxwell equations to consider eddy-currents [2]: $\frac{\partial M}{\partial t} = -\gamma M \times H_{eff} + \frac{\alpha_{eff}}{M_S} \left(M \times \frac{\partial M}{\partial t} \right)$	 Kittel formula: a decrease in f_r is predicted due to the decrease in J_s(T) and μ₀H_u(T) with increasing temperature 20 °C: f_r was confirmed experimentally Due to thermal fluctuations the damping parameter α is expected to increase f_r(T) will also be affected by α(T) 	 magnetic Fe₃₂Co₄₄Hf₁₂N₁₂ laye not occurred Ferromagnetic properties maintained 	er has are Joint Control of the second sec	The state of the
Summary				Outlook
 By annealing the Fe₃₂Co₄₄Hf₁₂N₁₂/Ti₅₀N₅₀ multilayer films at either T_a = 400 °C or 600 °C for 1 h in a static magnetic field in vacuum a uniaxial anisotropy field of about μ₀H_u ≈ 5 mT was induced The films annealed at T_a = 600 °C show a temperature stability of μ₀H_u up to 500 °C at least for 1 h Thermally induced strain relaxes instantaneously Fe₃₂Co₄₄Hf₁₂N₁₂/Ti₅₀N₅₀ multilayer films annealed at T_a = 600 °C for 1 h are suitable for detecting changes in the resonance frequency up to 500 °C In contrast, the films annealed at T_a = 400 °C lose this metastable state above 200 °C, because the orientation of μ₀H_u in the film plane has shifted out of its room temperature direction The change of the uniaxial anisotropy field direction could have been caused by mechanically and thermally induced strain in the magnetostrictive material Thermally induced strain starts to relax after approximately 3 h at 500 °C Fe₃₂Co₄₄Hf₁₂N₁₂/Ti₅₀N₅₀ multilayer films annealed at T_a = 400 °C for 1 h are less suitable for detecting changes in the resonance frequency above 200 °C 			ropy field of Unia: • T • T • T • T • F 00 °C • Temp • V€ • In • E; • E;	xial anisotropy field: Temperature stability of $\mu_0 H_u$ depends on a possible oxidation process of the magnetic layer Further investigations on the oxidation process at high temperatures berature dependent resonance frequency: Perification of the thermal stress tegration of the thermally induced residual stress in the model for f _r (T) by troducing a magnetoelastic anisotropy experimental verification of f _r (T)
KIT – University of the State of Ba	aden-Wuerttemberg and [1] T.L.	. Gilbert, IEEE Trans. Magn. 40 (2004)		

[2] K. Seemann, H. Leiste, V. Bekker, J. Magn. Magn. Mater. 278 (2004)