

High-Pressure Investigations of spinel-type LiNi_{0.5}Mn_{1.5}O₄ as a cathode material

C. Braun,^[a,b]* N. Kiziltas Yavuz,^[b] K. Nikolowski,^[b] F. Falkenberg,^[c] J.M. Gallardo-Amores,^[d] M. E. Arroyo de Dompablo,^[d] H. Ehrenberg^[b]

[a] Technische Universität Dresden, Institut für Werkstoffwissenschaft (IfWW), D-01062 Dresden, Germany.

[b] Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

- [c] Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
- [d] Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

Introduction

New synthesis strategies are needed to prepare novel electrode materials for lithium-ion batteries. High-pressure / high-temperature routes are widely used within other fields of Solid State Chemistry to induce structural transformations of materials, conducting to novel polymorphs possessing structures not accessible at ambient pressure. The high pressure treatment changes both the crystal structure as well as the electronic characteristics of the material. High pressure driven transformations of several electrode materials have been studied and reported, for example Li_xFePO₄,^[1,2] V₂O₅,^[3] Li₂MSiO₄ (M = Mn, Co).^[4,5] It is proven that after exposure to high pressure/high temperature conditions, the electrochemical properties varied compared to the ambient pressure materials. For LiM_p O_4 various studies report structural examinations at high pressure of these spinel phase^[6-10]. But, only little is known about the electrochemical behaviour of these phases, when they are used as intercalation compounds for an subcruit examined is a high pressure phase of LiMa₂O₄ ^[10] the high pressure phase of LiMa₂O₄ ^[10] was identified as the CaFe₂O₄-(Calciumferrite)structure type, which is approximately 6% more dense than the spinelstructure type. The partial substitution of Mn in LiMa₂O₄ by transition metal ions, such as e.g. Ni, was shown to result in the electrochemical activity at potentials close to 5 V vs Li/Li+. ^[11] In this work we investigate the pressure driven structural and electrochemical modifications of spinel $LiTM_2O_4$ (TM = transition metal) cathode materials.

High-pressure experiments are performed in a 1000 tons Walker-type multianvil press. The figure shows the step by step process of mounting the assembley.

Phase transition of ,,LiNi_{0.5}Mn_{1.5}O₄" (CaFe₂O₄-type) after 18 GPa . Deserved (circles) and calculated (line) X-ray powder diffraction pattern together with their difference curve after Rietveld refinement ($\lambda = 0.70926$ Å). The two upper lines of reflection marks corresponds to rocksalt type (Li,Ni)O and (Li,Mn)O and the lower line to HP-LiNi0.5Mn1.5O4. * At least 4 weak reflections belong to one unidentified phase

Comparison of HP-LiNi_{0.5}Mn_{1.5}O₄ and HP-LiMn₂O₄^[10] Crystallographic data of HP-LiNi_{0.5}Mn_{1.5}O₄

Spacegroup	Pnma (No.62)
formula mass	182.56 g · mol ⁻¹
lattice parameters	a = 8.7669(9) Å
	b = 2.8482(3) Å
	c = 10.3612(10) Å
cell volume	$V = 258.71 \text{ Å}^3$
X-ray density	4.63 g · cm ⁻³

Crystanographic data of Hr -Livin ₂ O ₄				
Spacegroup	Pnma (No.62)			
formula mass	180.93 g · mol-1			
lattice parameters	a = 8.8336(5) Å			
	b = 2.83387(18) Å			
	c = 10.6535(7) Å			
cell volume	$V = 266.69 \text{ Å}^3$			
X-ray density	4.49 g · cm ⁻³			

Wyckoff sites of "HP-LiNi_{0.5}Mn_{1.5}O₄"

Atom W	yck.	x	у	z
Li	4c	0.27800	1/4	0.37000
Mn1/Ni	4c	0.0637(15)	1/4	0.1198(15
Mn2/Ni	4c	0.0784(15)	1/4	0.6011(12
01	4c	0.270(5)	1/4	0.674(4)
02	4c	0.390(4)	1/4	0.882(5)
03	4c	0.430(5)	1/4	0.189(3)
04	4c	0.137(5)	1/4	0.921(4)

Atom	Wyck.	x	у	z
Li	4c	0.278(4)	1/4	0.370(4)
Mn1	4c	0.0584(10))	1/4	0.1188(8
Mn2	4c	0.0828(8)	1/4	0.6082(6
01	4 c	0.3061(6)	1/4	0.6508(6
02	4 c	0.3801(9)	1/4	0.9799(6
03	4 c	0.4764(8)	1/4	0.2072(6
04	4c	0.0707(8)	1/4	0.9269(6

M. E. Arroyo de Dompablo, N. Biskup, J.M. Gallardo-Amores, E. Morán, H. Ehrenberg, U. Amador, Chem. Mater

2010, 22, 994. M. E. Arrovo de Dompablo, J.M. Gallardo-Amores, U. Amador, Electrochem, Solid St. 2005, 8, A564-A569

- M. E. Arroyo de Dompablo, J. M. Gallardo-Amores, U. Amador, E. Morán, *Electrochem. Commun.* 2007, 9, 1305-1310. [4] M. E. Arroyo de Dompablo, U. Amador, J.M. Gallardo-Amores, E. Morán, H. Ehrenberg, L. Dupont, R. Dominko
- J. Power Sources 2009, 189, 638. M. E. Arroyo de Dompablo, R. Dominko, J.M. Gallardo-Amores, L. Dupont, G. Mali, H. Ehrenberg, J. Jamnik, [5]
- E. Moran, Chem Mater 2008, 20, 5574-5584

- P. Piszora, W. Nowicki, J. Darul, B. Bojanowski, S. Carlson, Y. Cerenius, *Radiat. Phys. Chem.* 2009, 78, S89-S92.
 J. Darul, W. Nowicki, C. Lathe, P. Piszora, *Radiat. Phys. Chem.* 2011, 80, 1014-1018.
 A. Paolone, A. Sacchetti, P. Postorino, R. Cantelli, A. Congeduti, G. Rousse, C. Masquelier, *Solid State Ionics* [8] 2005, 176, 635-639.
- K. Tokiwa, K. Matsukura, S. Kasahara, S. Tsuda, S. Mikusu, K. Takeuchi, A. Iyo, Y. Tanaka, J. Akimoto, J Awaka, N. Kijima, Y. Takahashi, T. Watanabe, J. Phys.: Conf. Ser. 2009, 150, 042210.
- K. Yamara, O. Hang, L. Zhang, K. Takada, Y. Baba, T. Nagai, Y. Matsui, K. Kosuda, E. Takayama-Muromachi, J. Am. Chem. Soc. 2006, 128, 9448-9456.

[11] A. Bhaskar, N. N. Bramnik, A. Senyshyn, H. Fuess, H. Ehrenberg J. Electrochem. Soc. 2010, 157, A689-A695.