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High Speed X-Ray Imaging

Typical Setup

X-ray tomography has been proven to be a valuable tool for 
understanding internal, otherwise invisible, mechanisms in 
biology, materials research and other fields. Detectors employed 
at modern synchrotrons are able to deliver images with high 
resolution and at high frame rates  generating up to several 
gigabytes per second. The ability to process this information in 
real-time and present to the users without long processing delays 
is extremely important for synchrotron operation. It will increase 
experiment throughput and enable image-based control of 
dynamical processes under study. We have developed a GPU-
based platform for high speed tomography optimized for 
continuous operation with streamed data. Our system consists of 
dedicated hardware platform, a camera  abstraction layer, a 
pipelined parallel programming framework, and a high-speed 
implementation of tomographic reconstruction. Using only a 
single GPU server we are able to handle the full throughput of 
CameraLink interface with 850 MB/s.
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Tomography at Synchrotron Light Sources

The sample, evenly rotating  in the front of a pixel detector, is penetrated by X-
rays produced in the synchrotron

The pixel detector registers series of parallel 2D projections of the sample 
density at different angles.

3D Image Reconstruction

Filtered back-projection is used to reconstruct 3D images from a manifold of 2D 
projections. The projection values are smeared back over 2D cross sections and 
integrated over all projection angles. To reduce blurring effect the projections are 

filtered in the Fourier space before being back projected.
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Sample: Plastic holder with porose polyethylene grains
Source data: 24GB (2000 projections,  3 Mpix, 32 bits)
3D Image: 11GB (3 Gpix, 32 bits)
Complexity: 53 Tflop back-projection + 0.6 Tflop filtering

Goal: Reconstruct 3D image  in 1 minute

Heads of a newt larva showing bone 
formation and muscle insertions (top) 
and a stick insect (bottom), acquisition 

time 2s.
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∑
p=1

P

I p  x⋅cos pa − y⋅sin  pa , z 

According to the Back Projection algorithm, the pixel at position (x,y,z)  is 

computed by                                                , where P is the number of projections 

α is the angle between projections, and Ip is the image of p-th projection.
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Open Source Parallel Processing Framework
Camera abstraction layer working in synchronous and 
asynchronous modes and supporting CameraLink, 
Firewire, and PCI-express cameras
Easy exchange of parallel algorithms written in OpenCL 
language,  automated management of OpenCL buffers
Support multiple algorithms implementation optimized to 
different architectures and hardware-aware task scheduling
Pipelined processing, i.e. readout, CPU-based 
preprocessing, GPU-based reconstruction, and storage are 
executed in parallel.
  Glib/GObject, scripting language support with 
introspection. Multiple python scripts for standard tasks.
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LibUCA: Camera Abstraction

Moderate size data-sets 
are stored in memory and 
huge data-sets are 
cached on SSD Raid

Filtered Back Projection

GT200
Base version 
Uses texture 
engine

Fermi
High computation power, but 
low speed of texture unit 
Reduce load on texture engine: 
use shared memory to cache 
the fetched data and, then, 
perform linear interpolation
using computation units.

Kepler
Low bandwidth of integer inst-
ructions, but high register count
Uses texture engine, but 
processes 16 projections at once 
and 16 points per thread to 
enhance cache hit rate 

GCN
High performance of texture 
engine and computation nodes
Balance usage of texture engine 
and computation nodes to get 
highest performance

VLIW
Executes 5 independent 
operations per thread
Computes 16 points per thread 
in order to provide sufficient 
flow of independent instructions 
to VLIW engine
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Tunning Back Projection for Hardware Architectures

Performance

Four stage pipeline is used. Data is prefetched from SSDs, preprocessed on CPUs, reconstructed using all 
GPUs, and stored to the real-time storage.All 4 stages are executed in parallel.
Pinned (unswappable) memory buffers are used to speed-up data transfers. The slice is split in blocks and the 
transfer of next block is interleaved with reconstruction of the current one.
Batched mode of Fourier library is used for better performance. Two real convolutions are computed using a 
single complex FFT transform
An-architecture specific variations of back projection algorithm is to better utilize GPU resources

Contact: http://ufo.kit.edu
Suren Chilingaryan <Suren.Chilingaryan@kit.edu>
Andreas Kopmann <Andreas.Kopmann@kit.edu>

CPU: 2 x Xeon X5650 (total 12 cores at 2.66 Ghz)
GPUs: 2 x GTX 580 + 4 x GTX580 External
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