
small (4GB) standard (11GB) Big (120 GB) Huge (300 GB)
0

200

400

600

800

1000

1200

Memory SSD

M
B

/s

CPU GPU
1

10

100

1000

10000

17,93

1016,26

M
B

/s

A GPU-based Architecture for Real-Time
Data Assessment at Synchrotron Experiments
S. Chilingaryan1, M. Caselle1, T. Farago1, A. Kopmann1, A. Mirone2,
T. dos Santos Rolo1, U. Stevanovic1, M. Vogelgesang1

High Speed X-Ray Imaging

Typical Setup

X-ray tomography has been proven to be a valuable tool for
understanding internal, otherwise invisible, mechanisms in
biology, materials research and other fields. Detectors employed
at modern synchrotrons are able to deliver images with high
resolution and at high frame rates generating up to several
gigabytes per second. The ability to process this information in
real-time and present to the users without long processing delays
is extremely important for synchrotron operation. It will increase
experiment throughput and enable image-based control of
dynamical processes under study. We have developed a GPU-
based platform for high speed tomography optimized for
continuous operation with streamed data. Our system consists of
dedicated hardware platform, a camera abstraction layer, a
pipelined parallel programming framework, and a high-speed
implementation of tomographic reconstruction. Using only a
single GPU server we are able to handle the full throughput of
CameraLink interface with 850 MB/s.

θ=180

θ=0

Tomography at Synchrotron Light Sources

The sample, evenly rotating in the front of a pixel detector, is penetrated by X-
rays produced in the synchrotron

The pixel detector registers series of parallel 2D projections of the sample
density at different angles.

3D Image Reconstruction

Filtered back-projection is used to reconstruct 3D images from a manifold of 2D
projections. The projection values are smeared back over 2D cross sections and
integrated over all projection angles. To reduce blurring effect the projections are

filtered in the Fourier space before being back projected.

1 Projection 2 Projections 3 Projections 20 Projections 1000 Projections

Sample: Plastic holder with porose polyethylene grains
Source data: 24GB (2000 projections, 3 Mpix, 32 bits)
3D Image: 11GB (3 Gpix, 32 bits)
Complexity: 53 Tflop back-projection + 0.6 Tflop filtering

Goal: Reconstruct 3D image in 1 minute

Heads of a newt larva showing bone
formation and muscle insertions (top)
and a stick insect (bottom), acquisition

time 2s.

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 European Synchrotron Radiation Facility, Grenoble, France

∑
p=1

P

I p x⋅cos pa − y⋅sin pa , z

According to the Back Projection algorithm, the pixel at position (x,y,z) is

computed by , where P is the number of projections

α is the angle between projections, and Ip is the image of p-th projection.

Storage Ring

Bending
Magnet

DMM Monochromator

Attenuator

Slits

Be-window

Slits

Experiment

Sample

XRY
Film

Detector
CCD

Open Source Parallel Processing Framework
Camera abstraction layer working in synchronous and
asynchronous modes and supporting CameraLink,
Firewire, and PCI-express cameras
Easy exchange of parallel algorithms written in OpenCL
language, automated management of OpenCL buffers
Support multiple algorithms implementation optimized to
different architectures and hardware-aware task scheduling
Pipelined processing, i.e. readout, CPU-based
preprocessing, GPU-based reconstruction, and storage are
executed in parallel.
 Glib/GObject, scripting language support with
introspection. Multiple python scripts for standard tasks.

acquisition

flat field
correction

... ...

noise
reduction

Preprocessing
Executed on CPUs

sinogram
generation

FFT

... ...

filter

Reconstruction
Executed on GPUs

iFFT back
projection

Storage

......

manual
post-processing

LibUCA: Camera Abstraction

Moderate size data-sets
are stored in memory and
huge data-sets are
cached on SSD Raid

Filtered Back Projection

GT200
Base version
Uses texture
engine

Fermi
High computation power, but
low speed of texture unit
Reduce load on texture engine:
use shared memory to cache
the fetched data and, then,
perform linear interpolation
using computation units.

Kepler
Low bandwidth of integer inst-
ructions, but high register count
Uses texture engine, but
processes 16 projections at once
and 16 points per thread to
enhance cache hit rate

GCN
High performance of texture
engine and computation nodes
Balance usage of texture engine
and computation nodes to get
highest performance

VLIW
Executes 5 independent
operations per thread
Computes 16 points per thread
in order to provide sufficient
flow of independent instructions
to VLIW engine

+100%

+530% +95%

+75%

Tunning Back Projection for Hardware Architectures

Performance

Four stage pipeline is used. Data is prefetched from SSDs, preprocessed on CPUs, reconstructed using all
GPUs, and stored to the real-time storage.All 4 stages are executed in parallel.
Pinned (unswappable) memory buffers are used to speed-up data transfers. The slice is split in blocks and the
transfer of next block is interleaved with reconstruction of the current one.
Batched mode of Fourier library is used for better performance. Two real convolutions are computed using a
single complex FFT transform
An-architecture specific variations of back projection algorithm is to better utilize GPU resources

Contact: http://ufo.kit.edu
Suren Chilingaryan <Suren.Chilingaryan@kit.edu>
Andreas Kopmann <Andreas.Kopmann@kit.edu>

CPU: 2 x Xeon X5650 (total 12 cores at 2.66 Ghz)
GPUs: 2 x GTX 580 + 4 x GTX580 External

Image Loader

Pool of
Sinograms

CPU task

Pool of
Vertical

Slices

Texture

Data Storage

W

H

GPU thread

1st Stage

2nd Stage

Double
buffering

Double
bufferingFiltering

P
C

Ie D
at a

T
ra

n sfe r

P
C

Ie D
at a

T
ra

n sfe r

Host memory

mailto:Suren.Chilingaryan@kit.edu
mailto:Andreas.Kopmann@kit.edu

	Überschrift – Thema, Arial 80 pt fett schwarz oder KIT-Grün

