Electron microscopy studies of the SEI layer and lithium plating by OsO₄-staining

<u>Martin Zier¹, Frieder Scheiba², Jürgen Thomas¹, Torsten Scherer³, Helmut Ehrenberg², Jürgen Eckert¹</u>

¹Leibniz Institute for Solid State and Materials Research IFW Dresden

²Karlsuhe Institute of Technology (KIT), Institute for Applied Materials (IAM)

³Karlsuhe Institute of Technology (KIT), Institute of Nanotechnology (INT)

Motivation

Observing SEI in electron microscopy:

- ✤ lack of contrast
- Iack of stability in electron beam Already established: staining of biological tissue in order to enhance contrast and to achieve fixation
 - Applied to electrodes having an SEI

Goal

- Increase visibility of SEI components in electron microscopy
- Stabilize air sensitive compounds for easier handling
- Test feasability of osmium tetroxide staining in anode materials of lihtium ion batteries

Results **TEM/FIB**

Graphite electrode \bullet particles on TEM grid with lacey carbon film:

Fig: HRTEM of OsO₂ crystallites on stained graphite particle

> The SEI surrounding the particle reacted with OsO₄

Plated and exposed graphite electrode prepared with • slice and view technique

Experimental

- Sealed osmium tetroxide exposure chamber
 - Up to 12 h exposure of samples
 - Subsequent Argon flush to remove remaining OsO₄
- Standard sample preparation for electron microscope investigations

5 at.-% of Os found on surface

> OsO4 reacts with graphite sample

XPS investigation of stained samples, e.g.:

Results **XPS/AES**

- Graphite electrode particles on TEM grid with lacey carbon film
- AES probing to check for OsO_4 reaction

- OsO₄ leeches the intercalated lithium from graphite if not discharged
- OsO₄ stains residual Li-dendrites that have not been dissolved during

discharge

Quantification (EDX) of residual lithium is used to estimate the amount of "dead lithium" \bullet

Conclusion

- > Osmium tetroxide staining of energy storage materials with low elemental contrast can be used efficiently to *improve elemental contrast* for electron microscopy.
- > A stabiliziation of the samples can be achieved, hence allowing TEM investigation of SEI. \succ Metallic lithium is oxidated preferrably by OsO₄ giving the opportunity to better investigate and *quantify lithium deposition* on graphite electrodes.

Outlook

Deeper SEI investigation

Further application to other lithium rich compounds (Li₂O₂)

Leibniz Institute for Solid State and Materials Research Dresden