

Karlsruhe Institute of Technology

Institute for Applied Materials

*contact: Jan Hoffmann e-mail: j.hoffmann@kit.edu phone: +49 (0) 721 6082 3476

Al-containing ferritic oxide dispersion strengthened alloys Production, Microstructure, Mechanical Properties and Oxidation

Jan Hoffmann^{1*}, Michael Rieth¹, Anton Möslang¹

¹ Karlsruhe Institute of Technology, Institute for Applied Materials IAM-AWP, Karlsruhe, Germany

Four different ODS alloys with 0,2,3 and 4 % - Al were produced by mechanical alloying of Fe13Cr1W0.3Ti + Fe,Y. The variation of the aluminum content was done by the addition of FeAl, powder.

Fe13Cr1W0.3Ti

After consolidation via hot-isostatic pressing (1100°C, 100 MPa), the materials were hot-rolled from 45 mm to 6 mm in 5 passes at 1100°C with reheating after each pass.

The tensile tests show a significant drop in strength for the Al-added alloys.

All Al-ODS materials show similar behaviour in the range of the operating temperatures $(600^{\circ}C)$

Nearly no differences can be observed for the absorbed energy and DBTT values.

The overall toughness of the 0%Al alloy is higher.

A final heat treatment was performed at 800°C for 1 hour.

Microstructure

KIT - University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

the European community's Seventh framework profunding from This project received gram (FP7/2007-2013) under grant agreement N°269706 - MATTER Project. The Karlsruhe Institute of Technology and the Materials Department of the University of Oxford are acknowledged for the overall use of their facilities.