

Batterietag NRW & Kraftwerk Batterie - No. PB08

Institut für Angewandte Materialien Werkstoffprozesstechnik

Effect of Conducting Salts in Ionic Liquid based Electrolytes for **Li-Ion-Batteries**

Andreas Hofmann*, Martin Tosoni*, Michael Schulz*, Thomas Hanemann*,**

- Karlsruher Institut für Technologie, Institut für Angewandte Materialien Werkstoffprozesstechnik, Karlsruhe, Germany Andreas Hofmann, e-mail: andreas.hofmann2@kit.edu, Tel. +49 (0)721-608-25920
- Universität Freiburg, Professur für Werkstoffprozesstechnik, Institut für Mikrosystemtechnik (IMTEK), Freiburg, Germany **

Summary

Study of conducting salts in ionic liquid – propylene carbonate liquid electrolytes

Mixtures in LiNMC and LiC cells

- L1 - L3 - L5

- L1 - L3 - L5

- Interaction of ionic liquid based electrolytes with graphite and NMC electrodes
- Li⁺ conductivity, safety, cycle stability

Motivation

- Enhancement of the **temperature stability** of Li-Ion battery electrolytes
- Influence of **conducting salts** on ionic liquid based electrolytes
- Improvement of the **lithium ion mobility**
- Study of the **solid electrolyte interface** (SEI)

Li-Ion Cell

- Functionality of Li-ion batteries
- Negative graphite electrode
- Positive NMC electrode

 $(NMC = LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2)$

Electrolyte based on DMMA-TFSA and

 $L-1 = LiBF_{4}$ L-2 = LiOTf $L-3 = LiClO_4$ $L-4 = LiPF_6$

L-5 = LiTFSA

Cell cycling tests of Li|NMC (left) and Li|C cells (middle) at room temperature with different current rates in a potential range of 3 - 4.2 V vs. Li/Li⁺ (left) and 0 - 2.0 V vs. Li/Li⁺ (middle). On the right side there are depicted the first two cycles of C|Li cell with electrolyte L-5. (t': the time scale is normalized at the beginning of the cycle)

- Different performing of the electrolytes in LiNMC and LiC cells (especially for $LiBF_4$)
- LiTFSA and LiPF₆ exhibit the best results in Li|NMC as well as Li|C cells
- SEI formation is already finished after the first cycle (Li|C cells)
- Lithium intercalation in graphite is observed for every electrolyte mixture
- Current rates up to C/4 (Li|NMC) as well as C/6 (Li|C) are realizable at room temperature*

NMC|**C** - cell performance

- L1 → L3 → L5

propylene carbonate

- Cell design: Swagelok type cells and coin cells (CR 2032)
- Separator: Whatman glass fiber, thickness: 450 μm
- Conducting salts:
 - LiBF₄ : lithium tetrafluoroborate
 - LiPF₆ : lithium hexafluorophosphate
 - LiClO₄ : lithium perchlorate
 - LiOTf : lithium triflate
 - LiTFSA :

lithium bis(trifluoromethylsulfonyl)azanide

- (= lithium bis(trifluoromethylsulfonyl)imide)
- DMMA (as cation):
- N,N-diethyl-N-methyl-N-(2-methoxy-
- ethyl)ammonium

sample	conducting salt	solvent	conductivity	viscosity	density
	(1 mol/kg)	(1:1 wt%)	[mS/cm] (20 °C)	[mPa-s] (20 °C)	[g/cm³]

$L-1 = LiBF_4$

L-2 = LiOTf $L-3 = LiClO_4$ $L-4 = LiPF_6$ L-5 = LiTFSA

Cycling tests of C|NMC cells (left) at room temperature with different current rates in a potential range of 3 – 4.2 V vs. Li/Li⁺ (left). In the middle a coin cell is shown which is running for 120 cycles with mixture L5 (3 – 4.2 V, C-rate up to 0.5 C). On the right side the temperature dependence of the C|NMC cell with mixture L-5 at 0.4 C is depicted.

- LiBF₄, LiOTf, and LiClO₄ exhibit a poor cell performance in NMC|C cells
- LiTFSA exhibits the best results in C|NMC cells in performance testing as well as in cells at constant current rates of C/20*
- Specific capacities of >150 mAh/g are received in a potential range of 3 – 4.2 V for the LiTFSA electrolyte reversibly
- Current rates up to C/2.5 are realizable at 40 °C
- Discharge Capacity of 80% after 400 cycles

Conclusions

Strong dependence of the cell performance of the applied conducting salts in the following order: LiTFSA > LiPF₆ > LiClO₄ > LiOTf > LiBF₄

L-0	-	PC – DMMA-TFSA	9.8 0.9	7.9 ± 0.2	1.29 0.20
L-1	LiBF ₄	PC – DMMA-TFSA	3.1 ± 0.2	39.6 ± 0.6	1.35 ± 0.02
L-2	LiOTf	PC – DMMA-TFSA	2.3 ± 0.2	55.1 ± 0.5	1.39 ± 0.03
L-3	LiClO ₄	PC – DMMA-TFSA	2.2 ± 0.1	69.7 ± 1.8	1.37 ± 0.02
L-4	LiPF ₆	PC – DMMA-TFSA	1.9 ± 0.1	78.9 ± 4.1	1.38 ± 0.03
L-5	LiTFSA	PC – DMMA-TFSA	1.6 ± 0.1	70.7 ± 2.2	1.44 ± 0.04

- High conductivity, independent of the conducting salt
- Measurements reveal a suitability for Li-Ion-Cells

- Best performance in case of lithium bis(trifluoromethylsulfonyl)azanide as conducting salt
- Successful cycling of the NMC C cells up to current rates of C/5 (specific capacity > 100 mAh/g) is possible

Acknowledgements

We acknowledge IoLiTec Ionic Liquids Technologies GmbH for kindly providing ionic liquids.

* C/n: current rate when the cell is charged or discharged completely in n h

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

