On the need for uncertainty assessment of long-term eddy-covariance measurements

Mauder M¹, Cuntz M², Drüe C³, Graf A⁴, Rebmann C², Schmid HP¹, Schmidt M⁴, Steinbrecher R¹ ¹KIT, Institute for Meteorology and Climatology – Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany ²UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany ³Trier University, Environmental Meteorology, Trier, Germany ⁴Forschungszentrum Jülich, Institute for Bio- and Geosciences – Agrosphere, Jülich, Germany

Introduction

Eddy-covariance measurements are performed at several hundred sites all over the world on a long-term basis. The increasing demand on standardised and comprehensive quality flagging and uncertainty quantification of these fluxes has led to this review of established quality assessment procedures and the development of a strategy, focusing on automatically applicable tests on high-frequency data, expanding existing tests on statistics, fluxes and corrections, plus quantification of errors which will be used within the Helmholtz-project TERENO.

Site name	Operator	Ecosystem	Coordinates	Meas- urement height	Canopy height	Sensor combi- nation	Data period
Fendt	KIT	grassland, pre- alpine valley	47°49'59"N, 11°03'40"E, 600 m a.s.l.	3.5 m a.g.l.	0.25 m	CSAT3/ LI-7500	25/07/2010– 23/08/2010
Graswang	KIT	grassland, pre- alpine valley	47°34'15"N, 11°01'58"E, 865 m a.s.l.	3.5 m a.g.l.	0.25 m	CSAT3/ LI-7500	25/07/2010– 23/08/2010
Lackenberg	KIT	wind throw, low mountain range	49°05'59"N 13°18'17"E 1308 m a.s.l.	9.0 m a.g.l.	2.0 m	CSAT3/ LI-7500	25/07/2010– 23/08/2010
Selhausen	FZJ	agricultural land, sugar beet, flat	50°52'14"N, 6°26'58"E, 103 m a.s.l.	2.5 m a.g.l.	0.45 m	CSAT3/LI -7500	01/06/2011– 30/06/2011
Wetzstein	MPI-BGC	spruce forest, low mountain range	50°27'13''N, 11°27'27''E, 785 m a.s.l.	30 m a.g.l.	20 m	Solent- R3/ LI-6262	15/07/2006– 13/08/2006

Data sets

Table 1

Tests on high-frequency data

- usage of internal quality tests and diagnostic flags (e.g. Campbell CSAT3, Li-Cor LI-7500).
- spike test based on Median Absolute Deviation (MAD) for outlier or spike detection
- screening of the high-frequency data for **instrumental plausibility**

Tests on statistics

assumptions of the EC method (simplified flagging after FW96):

- stationarity of the covariances
- •**ITC**: well-developed turbulence
- zero mean vertical wind velocity
- •Inter-dependence of flux conversions and corrections on fluxes

Errors and uncertainty

instrumental noise only present in first term of auto-covariance function \rightarrow error propagation

random error

~ 1 / $\sqrt{\#}$ independent observations, Finkelstein & Sims (2001): the statistical variance of a covariance is expressed as function of its auto-covariances and cross-covariance → detrending through high-pass filter before

systematic error

the total surface flux is not represented by the covariance in the presence of large eddies;

indirect error definition via energy balance ratio:

$$\sigma_F^{sys} = F \cdot \left(\frac{1}{EBR} - 1\right) \text{for } R_g >$$

$$\sigma_F^{sys} = n/a \qquad \text{for } R_g \leq$$

source area – representativeness application of footprint model (Kormann & Meixner, 2001) on each averaging interval

Figure 1: Relative random flux error (%) for the investigated fluxes (median, lower and upper quartiles) as a function of their quality flags (orange: highest quality= flag 0, red: medium quality=flag1).

- 20 W m^{-2}
- 20 W m^{-2}

	Fendt	Graswang	Lackenberg	Selhausen	Wetzstein
τ	1/1277	5/1348	0/1044	1/1383	2/1395
Н	1/916	7/1121	21/882	9/1262	19/1153
λΕ	2/820	5/850	7/762	13/1127	18/1059
F _c	3/757	9/888	8/765	7/1113	2/1064

Table 2: Results of the MAD-based outlier test (Papale et al. 2006) after application of the proposed flagging scheme: (number of detected values by the Papale et al. (2006) procedure / number of available data with flag 0 and 1. 1440 data records were tested for each site.

Conclusions

- noise errors typically $\leq 1\%$
- random errors 20-30%

 highest data quality associated with smallest random errors • systematic errors: existence known, but difficult to quantify Combination of diagnostic flags, robust spike detection, interdependence of fluxes, and footprint analysis improved the quality assessment strategy compared to established ones.

Publication: Mauder, M., M. Cuntz, C. Drüe, A. Graf, C. Rebmann, H. P. Schmid, M. Schmidt, R. Steinbrecher. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. AFM,Vol. 169, 2013, pp. 122-135.

HELMHOLTZ ASSOCIATION

Figure 2: CO₂-fluxes for Graswang: without quality control (red circles), flagging according to FW96/Spoleto (orange triangles), filtering according to **TERENO** quality assessment scheme (green squares)

Figure 3: Relative systematic errors (%) for three test data sets determined from the energy balance ratio

