

Solubility and TRLFS study of Nd(III) and Cm(III) in dilute to concentrated NaCl-NaNO₃ and MgCl₂-Mg(NO₃)₂ solutions

M. Herm^{1,*}, X. Gaona¹, Th. Rabung¹, D. Fellhauer¹, C. Crepin², V. Metz¹, M. Altmaier¹, H. Geckeis¹

- ¹ Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
- ² Ecole National Supérieure de Chimie de Montpellier. 8 Rue de l'Ecole Normale, 34296 Montpellier CEDEX 5, France * michel.herm@kit.edu

Introduction

- Long–term performance assessment of deep geological nuclear waste repositories
 → prediction of chemical behavior of An and long lived FP in aqueous solutions needed.
- Waste disposal in rock–salt formations in USA; option under consideration in Germany → high [Na⁺], [Mg²⁺] and [Cl⁻] expected in water intrusion scenarios
- Nitrate can be found in high concentrations (≥ 1 M) as part of certain waste forms → waste originated from reprocessing facilities.
- Previous complexation studies with nitrate focused on acidic conditions; no MqCl₂ systems considered.

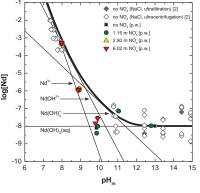
Objectives of this work

- Assessment of NO₃⁻ effect on Ln(III)/An(III) solubility under repository relevant conditions.
- Development of chemical, thermodynamic and activity models for the system Ln(III)/An(III) in NaCl-NaNO₃ and MgCl₂-Mg(NO₃)₂ solutions.

Experimental

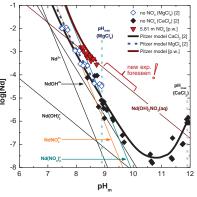
Solubility experiments

- Batch experiments in Ar atmosphere (22 ± 2°C)
- Undersaturation approach in 0.1–5.0 M NaCl-NaNO₃ and 0.25–4.5 M MgCl $_2$ –Mg(NO $_3$) $_2$ mixtures \rightarrow up to 7 M NO $_3$
- pH range: 7.5 ≤ pH_m ≤ 13.0


- 6-12 mg Nd(OH)₃(am) solid phase used in each experiment
- Equilibration time: t ≤ 500 days
- pH measurements: $pH_m = -log m_{H^+} = pH_{exp} + A_m [1];$ A_m for Cl⁻-NO₃⁻ mixtures determined in this study
- [Nd(III)] measured by ICP-MS after 10 kD (2-3 nm) ultrafiltration
- Solid phase characterization: XRD, SEM-EDX

Cm(III)-TRLFS

- Sample preparation in Ar atmosphere (22 ± 2°C)
- TRLFS studies in 5.0 M NaCl-NaNO₃, 0.25 and 3.5 M $MgCl_2$ - $Mg(NO_3)_2$ mixtures \rightarrow up to 7 M NO_3
- pH range: 1 ≤ pH_m ≤ 9
- [Cm(III)] ~1×10⁻⁷ M per sample


Results and discussion

Solubility of Nd(III) in 5.0 M NaCI-NaNO₃

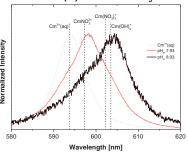
Solubility of Nd(III) in 3.5 M MgCl₂-Mg(NO₃)₂

- Very good agreement with nitrate-free solubility data reported in [2].
- No effect of NO₂ on Nd(OH)3(am) solubility in NaCl-NaNO₃ systems (even in 5 M NaNO₃).

- Significant effect of [NO₃⁻] on Nd(OH)₃(am) solubility.
- Slope of solubility curve increases at pH_m ≥ 8.44 → change in number of OH⁻ involved in solubility reaction.
- Additional experiments in $CaCl_2-Ca(NO_3)_2$ (pH_{max} ~12) planned to confirm this trend.
- Handouts with experimental data at other ionic strength can be shown upon request.

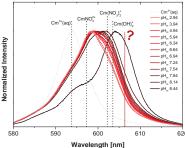
Chemical and thermodynamic model for the system Nd3+/Cm3+-H+-Mg2+-OH--CI--NO3-

(preliminary Pitzer model available upon request)

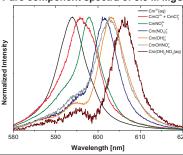

- Solid phase controlling solubility: Nd(OH)₃(am) (XRD, SEM-EDX).
- Slope -1 in presence of NO₃⁻ and pH_m ≥ 8.44 → 1 Nd(III) : 2 OH⁻ (solubility).
- Binary Cm(III)–NO₃ species relevant for pH_m ≤ 8.14 (TRLFS).
- Formation of Cm(OH)₂NO₃(aq) indicated by TRLFS at pH_m ≥ 8.44.

 $Nd(OH)_3(am) + H^+ + NO_3^- \Leftrightarrow Nd(OH)_2NO_3(aq) + H_2O$

References


[1] M. Altmaier, V. Metz, V. Neck, R. Müller, Th. Fanghänel. Geochim. Cosmochim. Acta 67, 3595 (2003). [2] V. Neck, M. Altmaier, Th. Rabung, J. Lützenkirchen, Th. Fanghänel. Pure Appl. Chem. 81, 1555 (2009) [3] A. Skerencak, P. J. Panak, W. Hauser, V. Neck, R. Klenze, P. Lindqvist-Reis, Th. Fanghänel. Radiochim. Acta 97, 385 (2009)

TRLFS of Cm(III) in 5.0 M NaNO₂


- > CmNO₃²⁺ prevails in 5 M $NaNO_3$ and $pH_m < 8.93$.
- Cm(OH)₂⁺ dominates at pH_m ≥ 8.93.
- No clear evidence of relevant ternary Cm-OH-NO₃ species in 5 M NaNO₃.

TRLFS of Cm(III) in 3.5 M Mg(NO₃)₂

- > CmNO₃²⁺ and Cm(NO₃)₂⁺ forming at $pH_m \le 8.14$, in agreement with thermodynamic calculations based upon [3].
- New (ternary) species arising at $pH_m \ge 8.44$.
- Three ligands complexing Cm(III) based upon red shift: 1 Cm(III): 2 OH-: 1 NO₃-.

Pure component spectra of 3.5 M MgCl₂-Mg(NO₃)₂

- Nitrate effect → genuine complexation reaction!
- Very complex Cm(III) speciation found in MgCl2-Mg(NO₃)₂ mixtures → two ternary Cm–OH– NO₃ species forming.

Conclusion and outlook

- Nitrate significantly influences solubility of Nd(OH)₃(am) in concentrated and weakly alkaline $MgCl_2$ - $Mg(NO_3)_2$ solutions at $[Mg^{2+}] \ge 2.5$ M and $[NO_3^-] \ge 1$ M.
- TRLFS data confirm that the effect of NO₃⁻ on solubility is resulting from complex formation reactions and not related to matrix effects (presence of NO₃⁻ instead of Cl⁻).
- A chemical model has been proposed including the formation of the ternary aqueous species $Nd(OH)_2NO_3(aq)$ in equilibrium with solid $Nd(OH)_3(am)$.
- Thermodynamic and activity models (Pitzer) for Nd3+/Cm3+-H+-Mg2+-OHT--CIT-NO3 system are currently derived, based upon the proposed chemical model
- Additional solubility experiments in CaCl2-Ca(NO3)2 and use of advanced spectroscopic techniques (EXAFS/XANES) foreseen to confirm aqueous speciation.