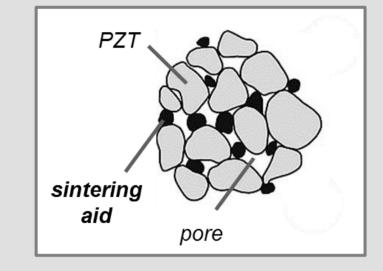


Comparison of Sintering Aids for Low Temperature Sintering of Hard PZT

A. Medesi¹, T. Greiner¹, C. Megnin¹, T. Hanemann^{1,2}


¹Laboratory for Material Process Technology, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany ²Laboratory for Material Process Technology, Institute of Applied Materials, Karlsruhe Institute of Technology - KIT, Germany

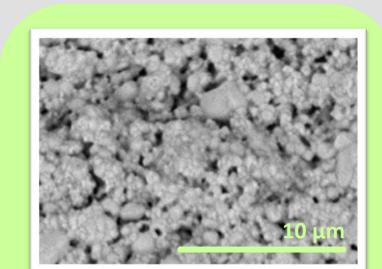
Introduction

PZT (PbZr_xTi_{1-x}O₃) is the most commonly used piezo ceramic

IMTEK

- 100 µm thick PZT-films were fabricated by tape casting methode and sintered in air for 3h @ 900 °C instead of normally needed 1200 °C
- Used Technique:

LIQUID-PHASE SINTERING


Acceleration of densification of the major phase particles (PZT) by adding of lower melting sintering aids which form a liquid phase and facilitate the rearrangement and grain growth of the

Advantages of LT-Sintering of PZT

MATERIAL COMPATIBILITY	STABILIZATION OF ELECTROMECH. PROP.	REDUCTION OF PROCESS COSTS
Co-firing of	Evaporation of volatile PbO out of	Less cost-effective electrodes
multilayer stacks	PZT during the sintering process is	from Ag instead of Pt or Ag/Pd-alloys
made from PZT- and	suppressed, so that stoichiometric	Less environmental pollution
LTCC-layers or	composition of PZT is stabilized and	through evaporation of Pb-compounds
internal electrodes	subsequent piezoelectric	Less energy consumption
from pure Ag	components become more reliable	through lowered sintering temperatures

Results

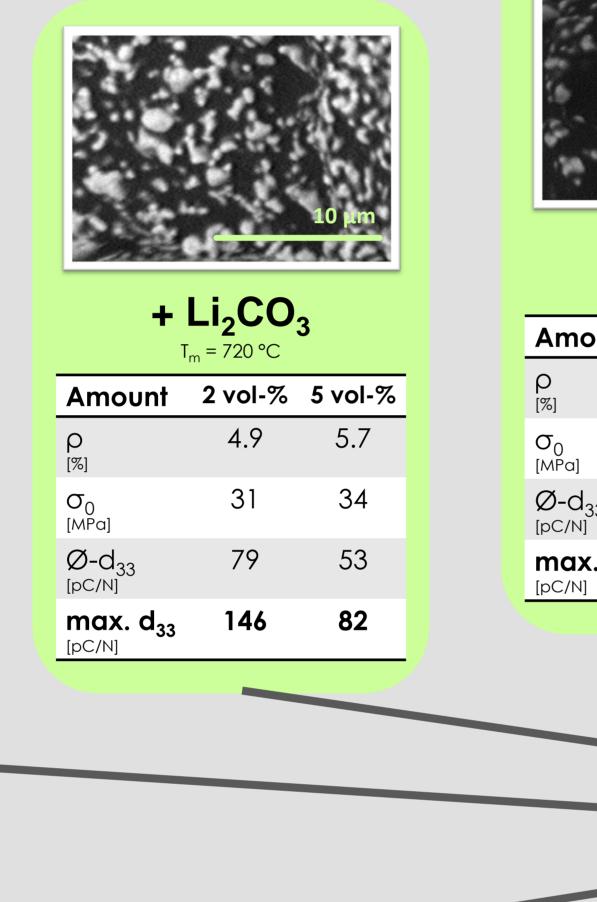
Sintering aid amount Contents of Li-compounds above 1 vol-% deteriorate the piezoelectr. prop. of PZT.

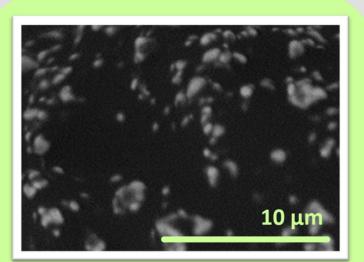
 $+ Bi_2O_3$

T_m = 817 °C

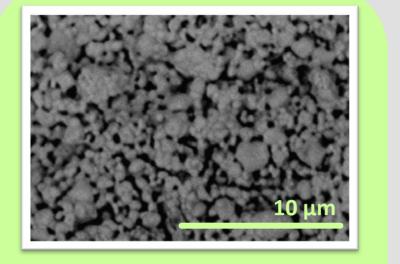
Amount 2 vol-% 5 vol-%

ρ [%]

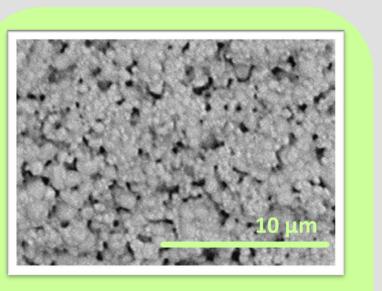

 σ_0


4.8

22


5.6

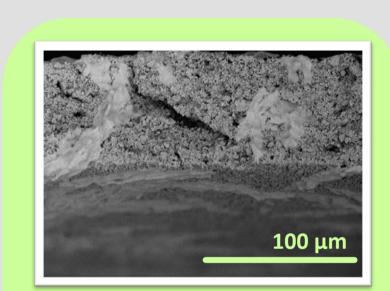
53

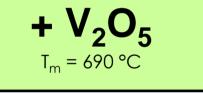

+ Li2O
 $T_m = 1427 \, {}^{\circ}C$ Amount2 vol-%5 vol-% ρ
[%]5.35.7 $\rho_{[\%]}$ 2924 $O_{0}_{[MPa]}$ 3417 $(D - d_{33}_{[PC/N]})$ 7437

+ MnO2
 $T_m = 535 \, {}^{\circ}C$ Amount2 vol-%5 vol-% ρ
[%]4.24.5 σ_0
[MPa]1210 \emptyset -d33
[pC/N]134max. d33145

[pC/N]

PZT

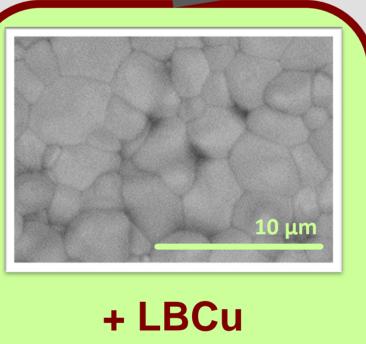

	PbO m = 888 °C	
Amount	2 vol-%	5 vol-9
р [%]	5.4	6.4
0 [МРа]	40	48
Ø-d ₃₃ [pC/N]	30	34

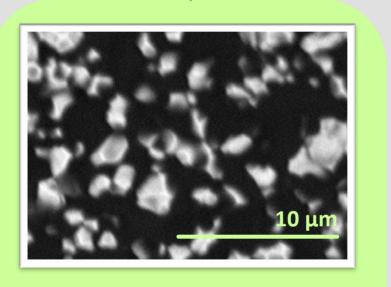

46

max. d₃₃

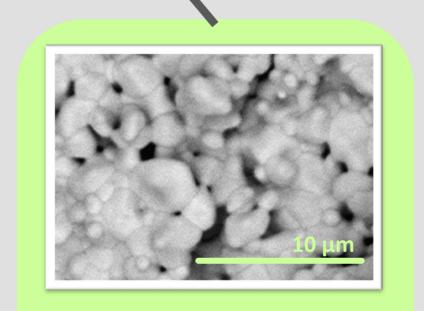
Mechanical stability

High characteristic breaking strengths σ_0 above 50 MPa were obtained for **addition of** V_2O_5 , LBCu, CuO and higher amounts of PbO, Bi₂O₃ or PbO·WO₃




Amount	2 vol-%	5 vol-%
р [%]	5.7	5.8
σ_0	61	51

[pC/N]		
max. d ₃₃	42	71
Ø-d ₃₃ [pC/N]	29	34
[MPa]		


Piezoelectr. Properties
A sufficiently dense micro-
structure and the highest
piezoelectric charge constant
d ₃₃ of 181 pC/N provide the
@ 900 °C for 3h sintered
PZT-films with sintering aid
LBCu (2 vol%).

	LDCU Bi ₂ O ₃ ·CuO (1	
Amount	2 vol-%	5 vol-%
ρ [%]	6.6	7.4
σ ₀ [MPa]	49	77
Ø-d ₃₃ [pC/N]	181	98
max. d₃₃ [pC/N]	246	113

- CuO _m = 1326 °C	
2 vol-%	5 vol-%
5.8	6.0
66	58
136	134
196	262
	m = 1326 °C 2 vol-% 5.8 66 136

+ Cu ₂ O·PbO eutectic mixture, T _m = 680 °C					
Amount	2 vol-%	5 vol-%			
ρ [%]	5.7	5.6			
σ ₀ [MPa]	45	36			
Ø-d₃₃ [pC/N]	126	46			
max. d₃₃ [pC/N]	151	52			

10 A	1.38	10.25
1	15	1
Ser.		1.0
231		10

+ PbO·WO₃ eutectic mixture, $T_m = 730$ °C Amount 2 vol-% 5 vol-%

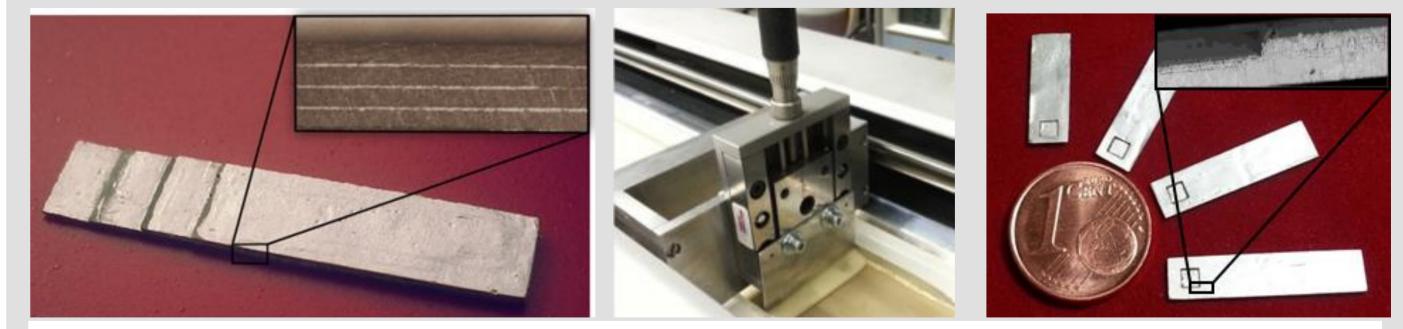
max. d₃₃ [pC/N]	67	185	
Ø-d ₃₃ [pC/N]	59	143	
Ο ₀ [MPa]	26	55	
р [%]	5.4	7.0	

max. d ₃₃	70	140
Ø-d ₃₃ [pC/N]	51	67
[MPa]		

<u>V₂O₅ -Ligaments</u>

Addition of V_2O_5 increases the mechanical stability by formation of V_2O_5 -ligaments through the still porous PZTmatrix. Densification of the PZT particles remains low.

Conclusion


Most effective sintering aid for hard PZT is the ternary system LBCu (Li₂CO₃:Bi₂O₃:CuO, 1:1:4).

Outlook

Development of a new fabrication method for piezoelectric bimorphs and multilayer by **Co-Casting** a whole stack of alternating sheets from PZT and Ag **instead of Tape Casting** of single PZT green tapes, which have to be

- Highest densification progress of PZT particles with a relative density of 97 ± 3 % and highest characteristic breaking strength of PZT-films sintered @ 900 °C was achieved with 5 vol-% LBCu as sintering aid.
- Highest piezoelectric charge constant in average (181 pC/N) was measured for PZT-films with 2 vol-% LBCu.
- The combination of hard PZT and CuO leads to increased piezoelectric properties, while contents of Li-compounds in the investigated volume range deteriorate the piezoelectric properties of PZT significantly.

metallized individually, stacked properly and laminated without distortion.

Co-fired multilayer manufactured from Co-casting setup on First co-casted bimorphs metallized single green tapes. Access lab scale for multilayer tailored by punching out. to internal Ag-electrodes realized by stacks manufacturing Access to the internal Agstepped stacking with the problem that out of alternating cera- electrode was made by the undermost layer is not stable. mic and metal layers. laser treatment.

Anna.Medesi@imtek.uni-freiburg.de

