

CORE

Membrane-bound structure of the short peptaibol Harzianin HK-VI

Karlsruhe Institute of Technology

<u>Sezgin Kara¹</u>, Sergii Afonin¹, Véronique Doan², Andrea Bordessa², Stephan L. Grage¹, Gregory Chaume², Norio Takeshita³, Thierry Brigaud², Anne S. Ulrich^{1,4}

¹ Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology; ² Laboratory SOSCO - Université de Cergy-Pontoise; Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology; ⁴ Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology

contact: sezgin.kara@kit.edu

Introduction	Methods
Peptaibols	 Solid-state ¹⁹F-NMR and synchrotron circular dichroism (SRCD)
 Natural membrane-active peptides isolated from fungi 	spectroscopy to determine the structure and alignment of HZ wt in lipid
 Abundant in Aib (U) (α-aminoisobutyric acid), possess a C-terminal 	bilayers
alcohol and N-terminal acetylation/alkylation	¹⁹ F-NMR is enabled by one-at-a-time incorporation of synthetic α-
Display wide range of antimicrobial activities	trifluoromethylated amino acids: (R)-, (S)-Tfm-Ala [3,4] and (R)-Tfm-Bpg [5]
 Able to lyse lipid membranes by pore formation 	Synthetic peptides are reconstituted in mechanically aligned (oriented) lipid

 Synthetic peptides are reconstituted in mechanically aligned (oriented) lipid bilayers

Harzianin HK-VI (HZ wt) is an ultra-short peptaibol (11-mer) isolated from *T. pseudokoningii* [1] with the sequence: Ac-U-N-I-I-U-P-L-U-P-L-OI

Research aim

To solve the structure of membrane-bound HZ and get insights into its interactions with lipid bilayers.

How can the short **HZ** span the bilayer with the expected α-helical structure?

Inconsistency between peptide length and bilayer thickness. D_B : bilayer thickness; 2D_c: thickness of hydrocarbon region *T=30°C [2]

Suggested mechanisms of peptide/bilayer interactions for short pore-forming peptides: arranging as double-layered channels (1); conformational change to extended conformations; (2) membrane thinning (3). From the ¹⁹F-NMR dipolar couplings, the structure, orientation and dynamics is determined [6]

 Oriented SRCD from non-labelled peptide (HZ wt) with the synchrotron UV/VIS light source ANKA complements the results for the overall alignment of peptides

	Results	
Antimicrobial tests	Structure determination by CD	Peptide orientation by ssNMR and OCD

Bacteria HZ wt HZ	Tfm
	gues
<i>E. coli K12</i> > 256 > 2	256
<i>S. aureus DSM 1104</i> 128 > 2	256
<i>S. xylosus DSM 20267</i> > 256 > 2	256
<i>E. faecalis DSM 2570</i> > 256 > 2	256
B. subtilis ATCC 6633 > 256 > 2	256
Fungi	
A. nidulans (GR5) > 256 > 2	256
<i>C. tropicalis</i> > 256 > 2	256
<i>M. oryzea (Guy 11)</i> 32 3	2
<i>T. harzianum</i> > 256 > 2	256

Antimicrobial acivity (MIC) of **HZ wt** and ¹⁹F-labeled analogues.

Plate diffusion assay testing HZ wt against F. oxysporum.

No pronounced antibacterial activity Low antifungal effect against selected plant pathogenic fungi

CD spectra of **HZ** peptides in organic solvent (TFE) (**A**); in detergent micelles (DPC, P/D 1/200) (**B**); in phospholipid liposomes (DPhPC (**C**) and DMPC (**D**), P/L 1/20).

HZ wildtype in 50% TFE (SRCD)							
	Algorithm	α	3 ₁₀	β	turns	PPII	NRMSD
0	CONTIN	31.3	10.4	0	14	9.8	0.253
-10-	SELCON3	29.8	10.2	-2.3	13.5	8.8	0.132
	CDSSTR	39	10	5	11	9	0.005
170 180 190 200 210 220 230 240 250 260 270							

Structural analysis of the SRCD spectrum of HZ wt in 50% TFE.

 3_{10} -helical structure in various membrane models, whereas deconvolution suggests a predominant α -helical conformation

Solid-state ³¹P- and ¹⁹F-NMR spectra and observed ¹⁹F-NMR dipolar splittings of ¹⁹F-labeled **HZ** analogues in oriented DMPC and DPhPC bilayers; dotted line: isotropic position.

Structure model	Lipid	τ [°]	ρ [°]	S _{mol}	RMSD
3 ₁₀ -helix (ideal)	DMPC	126	172	0.4	2.05
	DPhPC	78	10	0.5	2.0
α-helix (ideal)	DMPC	92	116	0.5	2.23
	DPhPC	96	102	0.5	0.59
β-bend ribbon spiral [7]	DMPC	102	118	0.6	1.38
	DPhPC	124	106	0.4	0.87

Putative alignment (τ and ρ angles) and dynamics (S_{mol}) of **HZ** in DMPC and DPhPC lipid bilayers assuming different models for secondary structure.

SR-OCD spectra of **HZ wt** in oriented phosphatidylcholine membranes of different composition (P/L 1/100) (**A**); **HZ wt** in oriented DMPC bilayers at varying P/L (**B**).

DMPC: β-bend ribbon and S-state DPhPC: α-helix and S-state OCD suggests two different states

Outlook

- Structure determination of HZ wt by NMR in solution
- Synthesis of ¹⁵N-labeled HZ peptides to get more information on peptide alignment in lipid bilayers
- Analysis of membrane thinning (²H-NMR, MD simulations)
- Channel conductance measurements

References:

[1] S. Rebuffat, S. Hlimi, Y. Prigent, C. Goulard, B. Bodo, J. Chem. Soc., Perkin Trans. 1 (1996)
2021; [2] N. Kuĉerka, M. Nieh, J. Katsaras, BBA Biomembr 1808 (2011) 2761-2771; [3] F. Huguenot, T. Brigaud, J. Org. Chem. 71 (2006) 7075–7078; [4] D. Maisch, P. Wadhwani, S. Afonin, C. Böttcher, B. Koksch, A.S. Ulrich, J. Am. Chem. Soc. 131 (2009) 15596–15597; [5] P.K. Mikhailiuk, S. Afonin, A.N. Chernega, E.B. Rusanov, M. Platonov, G. Dubinina, M. Berditsch, A.S. Ulrich, I.V. Komarov, Angewandte Chem. 118 (2006), 5787-5789; [6] A.S. Ulrich, Progress in Nuclear Magnetic Resonance Spectroscopy 46 (2005) 1–21; [7] I. Segalas, Y. Prigent, D. Davoust, B. Bodo, S. Rebuffat, Biopolymers (1999) 71–85.

Acknowledgements

This work has been carried out with the financial aid of the DFG/ANR program. Special thanks to S. Roth, J. Bürck for their support with SR-CD/-OCD measurements at the UV-CD12 synchrotron beamline at ANKA.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

