



Karlsruhe Institute of Technology





# New approach to evaluate and visualize the EASA of carbon electrodes using OsO<sub>4</sub>

Lukas Pfaffmann<sup>1</sup>, Dr. Frieder Scheiba<sup>1</sup>, Prof. Dr. Helmut Ehrenberg<sup>1</sup>

<sup>1</sup> Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), 76344 Eggenstein-Leopoldshafen, Germany

# Introduction

In graphite Li can diffuse only parallel to graphene layers or through grain boundaries [1] (Fig. 1a).



- Li-intercalation only at the edge sites in the graphite where graphene layers end.
  - $\rightarrow$  Only a fraction of the surface is active for lithium intercalation.
- This area is generally addressed by the concept of the Electrochemical Active Surface Area (EASA) [2].
- The higher the relative amount of EASA in graphite electrodes, the more reactive is the graphite electrode [3].

*Difficulty:* EASA does not differ optically to the rest of the surface of a graphite particle. *In this work:* First time visualization of the EASA by means of Scanning Electron Microscopy (SEM). Fig. 1: Sketch of a graphite particle a) before and b) after the osmium tetroxide staining. EASA is covered with a Li-Os-O compound after staining.

# Experiment

### Ambition

- Work out a visualization method of the EASA by mans of SEM.
- Determination of EASA amount in different carbon anode materials.

### Approach

- Adopting the OsO<sub>4</sub> staining procedure commonly used for polymer blends and biologic tissue for EASA analysis in lithium ion batteries.
- Lithium shows a strong reaction with OsO<sub>4</sub> [4] which is also expected for lithiated graphite.
- Li should extracted and diffuses to the particle's surface forming solid Li-Os-O compounds.
- Li-Os-O can be visualized by SEM and therefore allows a visual inspection of the EASA.



### Experimental

Investigation of three different anodes: Coarse Graphite (CG) with 20 µm particle size, Fine Graphite



Fig. 3: a), c) and e): AsB-image section of cross-sections. The Li-Os-O compound

(FG) with 9 µm particle size and Amorphous Carbon (AC).

- Using two State Of Charge (SOC): 5% and 10 %.
- After the exposure Ar-Ion-milling cross-section were prepared and analyzed by a SEM.
- Angle selective Backscattering (AsB) and energy dispersive X-ray spectroscopy (EDX) confirmed that bright areas in AsB-images correspond to osmium-rich parts on the anode surface (cf. Fig. 2).
- Porosity was obtained by both, ratio of grain area in processed AsB-images (grey Fig. 3) to crosssection area and ratio of material (graphite or amorphous carbon) density in relation to the anode's mass and volume.

### Results

- AsB-images clearly show that Li-Os-O compound is at some parts of the anode's surface (cf. Fig 3).
  - $\rightarrow$  Li can be extracted of electrodes by OsO<sub>4</sub>.
  - $\rightarrow$  EASA of the particles can be made visible by using the AsB detector.
- To count Li-Os-O compound among the EASA, it should be thicker than 100 nm (→ 3 image pixels).
   Samples with an SOC of 10 % showed better results.
- The EASA of a graphite electrode is one third of the grain area, whether big or small particles (cf. Table 1).
- AC shows an EASA twice as large as graphite electrodes.
- The porosity obtained by SEM image contrast coincides with the porosity obtained by density considerations.

### Table 1: Results of the three investigated anodes.

| Anode                 | EASA | Porosity by<br>SEM contrast | Porosity by<br>material density |
|-----------------------|------|-----------------------------|---------------------------------|
| Coarse Graphite (CG)  | 37 % | 34 %                        | 36 %                            |
| Fine Graphite (FG)    | 35 % | 54 %                        | 52 %                            |
| Amorphous Carbon (AC) | 72 % | 46 %                        | 38 %                            |

appears as bright regions.

 b), d) and f): Processed AsB-images. Grain-boundaries are markedby black and EASA by red lines, respectively. The grain area is filled out with grey.

| Conclusion and Outlook |
|------------------------|
|------------------------|

It was demonstrated that the reaction of lithiated graphite with OsO<sub>4</sub> is suitable to visualize the EASA by means of electron microscopy. AsB-images could be evaluated to get a quantitative approximation of the EASA.

The reaction of  $OsO_4$  with certain Solid Electrolyte Interphase (SEI) components may also help to gain a deeper understanding of the SEI structure. Therefore, XPS analysis of  $OsO_4$  reaction products with SEI components are underway to facilitate the interpretation of how SEI layers reacted with  $OsO_4$ .

## References

- [1] W. Lehnert et al., Chemical Physics, **163**; Issue 3, 331-337, (1992).
- [2] F. Béguin et al., Journal of Physics and Chemistry of Solids, 65, 211–217, (2004).

www.kit.edu

- [3] M.E. Spahr et al., Journal of power sources, **153**, 300-311, (2006).
- [4] M. Zier et al., Journal of Power Sources, **266**, 198-207, (2014).

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Lukas.Pfaffmann@kit.edu