Forschungszentrum KarlsruheUnivin der Helmholtz-GemeinschaftInstitut für Or

Universität Karlsruhe Institut für Organische Chemie

Gliederung:

- Chiralität
- Physikalische Grundlagen chiraloptischer Methoden: Circulardichroismus (CD), Polarimetrie, optische Rotationsdispersion (ORD)
- Instrumentierung
- Anwendungen: Sekundärstrukturanalyse von Peptiden / Proteinen, Verfolgung von Konformationsänderungen
- Probenvorbereitung und optimale Messbedingungen

Spezielle CD-Technik:

- Orientierte CD-Spektroskopie
- Messprinzip und Anwendung

Chiralität

Die Eigenschaft eines Moleküls, mit seinem Spiegelbild durch Drehung nicht in Deckung gebracht werden zu können, heißt **Chiralität**.

(-)-

Strukturaufklärung von Biomolekülen, SS 2005

(+)-(E)-Cycloocten

• Helicale Chiralität

Molekül angeordnet als linksoder rechtsgängige Schraube

Aminosäuren sind Verbindungen mit zentraler Chiralität (asymmetrisches C-Atom)

Chirale Moleküle sind optisch aktiv (unterschiedliche Brechung und Absorption von links und rechts circular polarisiertem Licht)

Licht: elektro-magnetische Wellen, periodische Veränderungen elektrischer und magnetischer Felder in Raum und Zeit: $E(x,t) = E_0 \cdot \cos [2\pi (v \cdot t - x/\lambda) + \Phi]$

Isotropes Licht: Feldvektoren oszillieren in allen Ebenen senkrecht zur Ausbreitungsrichtung Anisotropes Licht (linear polarisiert): Feldvektor oszilliert nur in einer Ebene senkrecht zur Ausbreitungsrichtung

Circular polarisierte Lichtwellen

Links circular polarisiertes Licht:

Überlagerung zweier senkrecht zueinander stehender linear polarisierter Lichtwellen mit Phasenverschiebung von +90°

Rechts circular polarisiertes Licht:

Überlagerung zweier senkrecht zueinander stehender linear polarisierter Lichtwellen mit Phasenverschiebung von –90°

Strukturaufklärung von Biomolekülen, SS 2005

Jochen Bürck, IBG

Circulardichroismus:

Unterschiedliche Absorption von rechts und links circular polarisiertem Licht beim Durchgang durch ein optisch aktives Medium (chirale Moleküle):

$$\varepsilon_{L} \neq \varepsilon_{R}$$

<u>Circulare Doppelbrechung</u> (optische Aktivität): Unterschiedlicher Brechungsindex n einer optisch aktiven Probe (chirale Moleküle) für links und rechts circular polarisiertes Licht:

n_L ≠ n_R

 $n = c_v / c$

http://www.enzim.hu/~szia/cddemo/edemo0.htm

Optisch aktives Medium zeigt normalerweise beide Phänomene: Circulardichroismus und Circulare Doppelbrechung

Polarimetrie: Messung der Drehung der Polarisationsebene linear polarisierter Strahlung beim Durchgang durch optisch aktive Probe

Polarimetrie: Messung der Drehung der Polarisationsebene linear polarisierter Strahlung beim Durchgang durch optisch aktive Probe

Nicolsches Prisma

Polarimetrie meist angewandt bei der quantitativen Bestimmung von Kohlenhydraten (Stärke, Saccharose, Invertzucker, Glucose etc.) in der Lebensmittelanalytik Drehwert α :

$$\alpha = (n_L - n_R) \cdot \frac{1800 \cdot I}{\lambda_0} \quad [\text{ deg }]$$

I = Weglänge der Küvette in Dezimeter (meist I = 1 dm = 10 cm) λ_0 = Wellenlänge des Messlichtes im Vakuum in [cm]

Beispiel:Na-D-Linie
2-Butanol
$$\lambda_0 = 589 \text{ nm}$$

 $\alpha = 11.2^{\circ} \text{ (Messwert)}$ $n_L - n_R = 11.2 \cdot \frac{589 \cdot 10^{-7}}{1800 \cdot 1} = 3,66 \cdot 10^{-7}$
 $T = 20 ^{\circ}\text{C}$
 $I = 1 \text{ dm}$

Spezifischer Drehwert $[\alpha]_{\lambda}^{T}$:

$$[\alpha]_{\lambda}^{T} = \frac{\alpha}{c \cdot l} \quad [\deg \cdot cm^{2} \cdot g^{-1}]$$

- I = Weglänge der K
 üvette in [cm]
- c = Konzentration der optisch aktiven Substanz in [$g \cdot cm^{-3}$]

Spezifische molare Drehung $[\Phi]_{\lambda}^{T}$: $[\Phi]_{\lambda}^{T} = \frac{[\alpha]_{\lambda}^{T} \cdot M}{100} [\deg \cdot \operatorname{cm}^{2} \cdot \operatorname{mol}^{-1}]$

M = Molekulargewicht in $[g \cdot mol^{-1}]$

Optische Rotations Dispersion (ORD): Änderung der molaren Drehung mit der Wellenlänge des eingestrahlten Lichtes

Fall b): Substanz hat Absorptionsbande im Wellenlängenbereich des eingestrahlten Messlichtes

Cotton-Effekt: Anomalie in der Rotationsdispersionskurve

Positiver Cotton-Effekt: mit abnehmender Wellenlänge zeigt Wert von [Φ] bzw. [α] erst Peak dann Tal **Negativer Cotton-Effekt:** mit abnehmender Wellenlänge zeigt Wert von [Φ] bzw. [α] erst Tal dann Peak

ORD und CD reiner optisch aktiver Substanzen + Interpretation Cotton-Effekte: Aussagen über Molekülgeometrie, Festlegung relativer, gegebenenfalls auch absoluter Konfigurationen einzelner chiraler Zentren.

Vis- CD-Spektren selbstordnender Porphyrine (Balaban –INT)

Oktanten-Regel (nur für CO-Chromophor):

halbempirische Regel stellt Zusammenhang zwischen Molekülgeometrie und dem Vorzeichen des Cotton-Effektes her (Aussage über Konfiguration möglich)

Moffitt et al., J. Am. Chem. Soc. 83, 4013 (1961)

Instrument: J-810 CD-Spektropolarimeter (JASCO)

PM

Proben-

kammer

Circulardichroismus bei Peptiden und Proteinen:

- Probe ist optisch aktiv
- Probe hat Chromophore in der Nähe der Chiralitätszentren

Elektronische Übergänge zwischen Molekülorbitalen

Nomenklatur: Einheiten bei CD-Messungen

Literaturdaten werden oft in molarer Elliptizität [0] angegeben:

OR

a

```
 \begin{bmatrix} \theta \end{bmatrix} = \theta / \mathbf{10} \cdot \mathbf{C} \cdot \mathbf{I} & \text{in [ deg-cm^2-decimol^{-1} ]} \\ \text{wobei:} \\ \theta = \text{Elliptizität in [mdeg]} \\ \text{C= molare Konzentration [ mol·l^{-1} ]}
```

```
I = opt. Schichtdicke [cm]
```

Eine weiter oft benutzte Einheit ist der molare circulare Dichroismus $\Delta \epsilon$ (delta epsilon):

 $\Delta \varepsilon = \varepsilon_{L} - \varepsilon_{R} = \Delta \mathbf{A} / \mathbf{C} \cdot \mathbf{I} \text{ in } [\mathbf{I} \cdot \mathbf{mol}^{-1} \cdot \mathbf{cm}^{-1}]$ der mit [θ] wie folgt zusammenhängt: [θ] = **3298** \cdot \Delta \varepsilon Für Biomakomoleküle wie z.B. Proteine wird die **mittlere molare Elliptizität [θ]_{MRW}** pro AS-Rest angegeben:

 $[\theta]_{MRW} = \theta / 10 \cdot C_r \cdot I$ in [deg-cm²-decimol⁻¹] wobei:

 C_r = molare Konzentration pro mittlerem AS-Rest

- $C_r = (n \cdot 1000 \cdot c_g) / M_r [mol \cdot l^{-1}]$
- n = Anzahl der Aminosäurereste im Protein
- c_g= Proteinkonzentration [g-ml⁻¹]

M_r= Molekulargewicht des Proteins [g-mol⁻¹]

Bestimmung der Proteinkonzentration zur Berechnung von $[\Theta]_{MRW}$

Gute Methoden:

- 1. Quantitative Aminosäureanalyse
- 2. UV-Spektroskopie aromatischer Aminosäurereste (Trp, Tyr, Cys) unter denaturierenden Bedingungen (Gnd-HCI)
- 3. Bestimmung des Gesamt-Stickstoffs
- 4. NMR

Nicht akzeptabel:

- 1. Bradford-Methode (kolorimetrisch)
- 2. Lowry-Methode (kolorimetrisch)
- 3. Extinktion eines nativen Proteins bei 280 und / oder 260 nm

Standardsubstanzen für die Kalibrierung der CD-Skala

Anwendungen der CD-Spektroskopie in der Strukturbiologie

- Sekundärstrukturanalyse von Proteinen und Nukleinsäuren (globale Information)
- Erfassung von Effekten der Substratbindung auf die Proteinsekundärstruktur
- Thermodynamik und Kinetik der Proteinfaltung / -entfaltung
- Untersuchungen von Umgebungsbedingungen auf Protein-Sekundärstruktur
- Untersuchung Liganden-induzierter Konformationsänderungen
- Studium von Protein-Protein und Protein-Nukleinsäure -Wechselwirkungen

Warum sollte man CD-Spektroskopie zur Strukturaufklärung nutzen?

- Einfache und schnelle Experimente
- Keine aufwändige Probenpräparation
- Messungen von Proteinlösungen
- Relativ kleine Probenkonzentrationen / -mengen
- beliebige Größe des Biomakromoleküls
- meist zerstörungsfreie Methode

CD-Spektren für verschiedene Protein-Sekundärstrukturen im fernen UV-Bereich

CD-Spektren für verschiedene Protein-Sekundärstrukturen im fernen UV-Bereich

CD-Spektren für verschiedene Protein-Sekundärstrukturen im fernen UV-Bereich

Quantitative Analyse der Sekundärstruktur von Peptiden und Proteinen in Lösung mittels CD-Spektroskopie

Vorgehensweise:

- <u>Annahme</u>: CD-Spektrum eines Proteins ist eine Linearkombination aus den Basisspektren verschiedener Sekundärstrukturelemente (α-Helix, β-Faltblatt....)
- Basisspektren der verschiedenen Konformationen werden aus Referenzdatensatz bekannter CD-Proteinspektren "extrahiert"
- Gehalt an Sekundärstrukturelementen in den Referenzproteinen ist aus Strukturanalysen mit hochauflösenden Methoden (Röntgenkristallographie, NMR) genau bekannt und ist bei Festproben und gelösten Proben äquivalent
- Gehalt an Sekundärstrukturelementen eines unbekannten Proteins somit analysierbar, wenn strukturell nicht zu weit von den Referenzstrukturen entfernt

$\Theta_{\lambda} = \sum f_i S_i + Rauschen$

- $\Theta_{\lambda} =$ Elliptizität des Proteins bei Wellenlänge λ
- f_i = Anteil der jeweiligen Sekundärstrukturkonformation i
- S_i = Elliptizität des Sekundärstrukturelements i bei der Wellenlänge λ

Quantitative Analyse der Sekundärstruktur von Peptiden und Proteinen in Lösung mittels CD-Spektroskopie

Verschiedene Auswertealgorithmen sind verfügbar

- CONTINLL (ridge regression + locally linearized model), Provencher und Glöckner (1981), van Stokkum et al. (1990)
- VARSLC (variable selection method), Johnson et al. (1986, 1987)
- CDSSTR (modification of variable selection method), Johnson et al. (1986, 1987)
- SELCON3 (singular value decomposition + self-consistent method), Sreerama and Woody (1993, 1999)
- CDNN (Neuronales Netz), Böhm et al. (1992)
- K2D (Neuronales Netz), Andrade et al. (1993)

CD-Spektren typischer Referenzproteine und Anteil Sekundärstrukturelemente

CD-Spektren typischer Referenzproteine und Anteil Sekundärstrukturelemente

Referenz- Datensatz	Wellenlängen- bereich	Zahl der Proteine	Autor
Satz 1	178 - 260	29 Proteine	C W Johnson
Satz 2	178 - 260	23 Proteine	Johnson
Satz 3	185 - 240	37 Proteine	29 Johnson 3 Venyaminov 5 Pancoska & Keiderling
Satz 4	190 - 240	43 Proteine	32 von SELCON3 6 Provencher&Glockner 5 Pancoska & Keiderling
Satz 5	178 - 260	17 Proteine	C Johnson
Satz 6	185 - 240	42 Proteine	32 von SELCON3 5 Pancoska & Keiderling 5 denaturierte Proteine
Satz 7	190 - 240	49 Proteine	32 von SELCON3 6 von Provencher & Glockner 5 von Pancoska & Keiderling 5 denaturierte Proteine
Satz 8	178 - 260	43 Proteine	Johnson

Vergleich der GB1 CD-Spektren (¹⁹F-markierte und nicht markierte Variante)

JASCO J-810 Spektropolarimeter; optische Schichtdicke: 0.1 cm; T = 20 °C

Sekundärstruktur-Analyse der beiden GB1-Varianten aus den gemessenen CD-Spektren

Resultate mit CDSSTR-Algorithmus:

Protein	Helix 1	Helix 2	Strand 1	Strand 2	Turns	Unordered	Total
V3-Myr-GB1	0.24	0.15	0.11	0.08	0.17	0.25	1.0
K3-Myr-GB1	0.24	0.15	0.11	0.08	0.17	0.26	1.01

Resultate mit Contin-Algorithmus:

Protein	Helix 1	Helix 2	Strand 1	Strand 2	Turns	Unordered	Total
V3-Myr-GB1	0.221	0.149	0.090	0.073	0.173	0.294	1.0
K3-Myr-GB1	0.216	0.151	0.089	0.073	0.179	0.292	1.0

Resultate mit Selcon 3-Algorithmus:

Protein	Helix 1	Helix 2	Strand 1	Strand 2	Turns	Unordered	Total
V3-Myr-GB1	0.227	0.157	0.082	0.071	0.177	0.288	1.002
K3-Myr-GB1	0.225	0.162	0.078	0.068	0.183	0.289	1.005

Thermische Denaturierung von V162-¹⁹F-Phe-GB1 in 10 mmol Phosphatpuffer

JASCO J-810 Spektropolarimeter; c = 0.08 mg /ml; optische Schichtdicke: 0.1 cm

Strukturaufklärung von Biomolekülen, SS 2005

Einfluss des Lösungsmittels auf Proteinsekundärstruktur von TatA

Kinetik der Rückfaltung von Lysozym bei Gn-HCI-Konzentrationssprung (zeitabhängiges CD-Signal bei zwei verschiedenen Wellenlängen)

Abb. V.61:

Zeitabhängigkeit der molaren Elliptizität von Lysozym bei zwei verschiedenen Wellenlängen, T = 278 K und pH $\approx 1,6$. Die Rückfaltung des Proteins wird durch einen GuHCl-Konzentrationssprung von 6,0 M auf 0,3 M initiiert (nach: K. Kuwajima, Y. Hiraoka, M. Ikeguchi, S. Sugai, Biochemistry **24** (1985) 874).

Abbildung 1: Prinzipieller Aufbau einer Stopped Flow Apparatur

CD-Spektren von Nucleotiden und DNA

CD-Spektren von Adenosinmonophosphat unterschiedlich langer Verknüpfung: langkettig polymerisiert (Poly-A), dimerisiert (dApA) und monomer (AMP), nach van Holde, Brahms, Michelson, J. Mol. Biol. **12** (1965) 726. CD-Spektren von DNA. A-Form liegt bei Feuchtigkeitsgehalt von 75%, B-DNA bei 95% vor; nach Campbell, Dwek, Biological Spectroscopy, S. 265 (1984).

Strukturaufklärung von Biomolekülen, SS 2005

Optimale Proteinkonzentration für CD-Messungen

Puffersysteme für CD-Analysen

Die Proteinlösung sollte nur solche Chemikalien enthalten, welche notwendig sind, um die Proteinstabilität zu erhalten!

Problem störender UV-Absorption durch Matrixkomponenten

Akzeptabel:

- Kaliumphosphat, 10 mM mit KF, K₂SO₄ oder (NH₄)₂SO₄ als Salz
- Hepes 2 mM
- Ammoniumacetat, 10 mM

Vermeide:

Tris, Pipes, Mes bei Konzentrationen > 10 mM NaCl, NaNO₃ Alle optisch aktiven Substanzen außer Peptid / Protein, z.B. Glutamat

Kürzest mögliche Wellenlängen (nm) für verschiedene Lösungsmittel

	1cm-Küvette	1mm-Küvette	0.1mm-Küvette
Wasser	185	180	175
10mM Natriumphosphat		182	
0.1 M Natriumphosphat		190	
0.1 M Natriumchlorid	200	195	
0.1 M Tris-HCI	205	200	
0.1 M Ammoniumcitrat		220	
n-Hexan	210	185	180
Schweres Wasser	175	171	
Trifluorethanol		177	170
Cyclohexan	210	185	180
Isooktan	210	185	180
Dioxan	220	210	202
Benzol	280	275	270
Tetrachlorkohlenstoff	250	240	230
Chloroform	240	230	220
1,2-Dichlorethan	220	210	200
Methanol	210	195	185
Ethanol	210	195	185
Trifluoressigsäure	260	250	240
DMSO	264	252	245
THF	220	210	204

Störung des CD-Signales durch NaCI-Untergrundabsorption im fernen UV-Bereich

Strukturaufklärung von Biomolekülen, SS 2005

Jochen Bürck, IBG

Orientierte CD-Spektropolarimetrie liefert Information über räumliche Anordnung von Peptiden in orientierten Lipidschichten

z.B. Bildung von Transmembranporen durch antimikrobielle Peptide

"Fassdauben-Modell" (barrel-stave model)

L. Yang, T. A. Harroun, T. M. Weiss, L. Ding, H. W. Huang, Biophys. J., 81 (2001) 1475.

CD-Spektrum α -helikaler Peptide und Proteine enthält Banden deren Übergangsdipolmoment senkrecht oder parallel zur Helixachse polarisiert ist (Exziton-Aufspaltung des π° - π^{-} Übergangs)

Strukturaufklärung von Biomolekülen, SS 2005

CD-Spektren des Peptids Melittin in orientierten DMPC-Schichten (Beispiel für ein Peptid mit hohem α -helikalen Anteil)

Peptidkonzentration (bzw. dem Peptid/Lipid-Verhältnis) und dem

Hydrationszustand der Peptid/Lipid-Probe ab

"Anfitten" des gemessenen OCD-Spektrums mit Komponenten-Spektren, welche Licht parallel oder senkrecht zur Helixachse absorbieren

 $\Theta(\lambda) = f_{\perp} \cdot \Theta_{\perp}(\lambda) + f_{//} \cdot \Theta_{//}(\lambda) = \cos^2 \varphi \cdot \Theta_{\perp}(\lambda) + \sin^2 \varphi \cdot \Theta_{//}(\lambda)$

 $\Theta(\lambda) = \text{Elliptizität des Proteins bei Wellenlänge } \lambda$ f_{\perp} = Anteil der Licht senkrecht zur Helixachse absorbiert $f_{//}$ = Anteil der Licht parallel zur Helixachse absorbiert Θ_{\perp} = senkrechte Komponenten des Helix-Spektrums $\Theta_{//}$ = parallele Komponenten des Helix-Spektrums ϕ = Ensemble-gemittelter Winkel zwischen Helixachse und einfallendem Lichtstrahl

 $O = f_{\perp} / f_{\prime\prime} = tan^2 \phi$ O = Orientierungsparameter für Helix

H. J. de Jongh, E. Goormaghtigh, J. A. Killian, Biochemistry, 33 (1994) 14521.

Messaufbau für Zirkulardichroismus-Messungen an Peptiden/ Proteinen in orientierten Lipidschichten (OCD)

G. A. Olah and H. W. Huang, J. Chem. Phys., 89 (1988) 2531. Y. Wu, H.W. Huang, G. A. Olah, Biophys. J., 57 (1990) 797.

> Rotationstisch erlaubt Drehung der Messzelle bzw. Probe um bis zu 360° um Strahlachse (Vermeidung von Artefakten durch Lineardichroismus und Doppelbrechung)

Literatur:

Allgemeine Einführung zu Circulardichroismus in Biophysik-, Analytik- oder Spektroskopie-Lehrbüchern: z.B.

R. Winter, F. Noll, "Methoden der Biophysikalischen Chemie", Teubner Verlag, Stuttgart, (1998), Kapitel V.4.

C.R. Cantor & P.R. Schimmel, Biophysical Chemistry, P II. (W.H. Freeman & Company, San Francisco 1980), Kapitel 8-1.

W. C. Johnson Jr., Secondary structure of proteins through circular dichroism spectroscopy, Ann. Rev. Biophys. Biophys. Chem. 17 (1988) 145–166.

CD-Spektroskopie-Arbeitsgruppe:

Wo findet man uns?

Forschungszentrum Karlsruhe Institut für Biologische Grenzflächen (IBG) Bau 341, Raum 157 (Büro) Raum 104 (Labor) Tel. 07247-82-2690 Email: jochen.buerck@ibg.fzk.de