
INTERACTIVE GRID-ACCESS
USING MATLAB

M. Hardt1, M. Zapf2, N.V. Ruiter2

1Steinbuch Centre for Computing (SCC),
2Institute for Data Processing and Electronics (IPE)
both at Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe Germany

Abstract
At Forschungszentrum Karlsruhe an ultrasound computer tomograph

for breast cancer imaging in 3D is under development. The aim of this
project is the support of early diagnosis of breast cancer. The process of
reconstructing the 20 GB of measurement data into a visual 3D volume
is very compute intensive. The reconstruction algorithms are written in
Matlab. As a calculation platform we are using grid technologies based
on gLite, which provides a powerful computing infrastructure.

This paper will motivate show the way how we access the grid from
within Matlab without the requirement of additional licenses for the
grid. It will describe the tools and methods that were integrated. We
will conclude with a performance evaluation of the presented system

1. INTRODUCTION

At Forschungszentrum Karlsruhe a 3D ultrasound computer tomo-
graph (USCT, Fig. 1) for early breast cancer diagnosis is currently de-
veloped [3][6]. In the western world every 10th woman is affected by
breast cancer, which has a mortality rate approaching 30%. The long
term goal of the project is to develop a medical device for use in a hospi-
tal or at doctor’s surgery, applicable for screening and location of breast
cancer already at an early stage. Therefore USCT must be useable as
simple and quick as todays X-Ray devices.

The current USCT demonstrator consists of 384 ultrasound emitters
and 1536 receivers. For each scan of the volume, a single emitter – one
at a time – emits a spherical wave that is recorded by all 1536 receivers.



This delivers approximately 600 000 amplitude-scans or A-scans. For
increased accuracy, the same volume can be scanned with the emitter-
receiver combination rotated in six different positions, resulting in a total
of approximately 3.5 million A-scans or 20 GB of data.

The availability of suitable algorithms that translate the measured
data into a 3D volume is the crucial part of the whole system. The
USCT group at FZK therefore develops not only the hardware, but also
these reconstruction algorithms. The strategic development platform for
this is Matlab.

MatlabTM[7] is a problem solving environment, widely used in the
fields of science and engineering for prototyping and development of
algorithms. Matlab is usually bound to running on only one CPU in one
computer, limiting the size of the problem that can be solved.

For best performance of USCT, the core of the reconstruction algo-
rithm was rewritten in assembler, utilising the Single Instruction Multi-
ple Data (SIMD) processor extension and a minimal amount of memory
transfers [9]. Despite these optimisations, the computation time grows
to very large values (see Tab I), depending on the number of A-scans
(NA scans) and the desired output voxel resolution (NPixel). The com-
putational complexity is of the order O(NA scans · NPixel)

For coping with the required amount of computational resources, a
uniform interface to compute resources (data and CPU) is being cre-
ated. The target platform is gLite as it provides access to the largest
infrastructure for scientific applications [1].

Figure 1. Top view of the current demonstrator for 3D USCT



1.1 The grid middleware gLite

We use a gLite installation with the interactive extensions as well as
the Message Passing Interface (MPI) that are provided by the Interac-
tive European Grid [5]. This infrastructure is described in detail in [4].
The gLite [2] middleware provides an interface to allocate heteroge-
neous compute resources on a “per job” basis. Within this so called job
paradigm, one job consists of a description of job requirements:

dependent input data that has to be already on the grid

operating system requirements

memory or CPU requirements

hardware architecture requirement

and a self-contained piece of software that will be executed at a remote
batch queue. For job submission gLite provides a specialised computer:
the User-Interface (UI). This computer contains client software for sub-
mitting jobs as well as the application that is going to executed in the
grid. For submitting a job, the UI forwards it to the ResourceBroker

Image type NA scans Input NPixel Output Time
Slice image 6 144 35 MB 4 0962 128 MB 39 min
Quick vol. 3.5 · 106 20 GB 1282 · 100 12.5 MB 36.6 h
Medium vol. 3.5 · 106 20 GB 10242 · 100 1.25 GB 10 d
Maximal vol. 3.5 · 106 20 GB 4 0962 · 3 410 426 GB 145.8 a

Table I. The required computation time depends linearly on the number of A-Scans
and the number of pixels of the requested image. Time values are given for compu-
tation on a Pentium IV 3.2 GHz (single core) with 2 GB RAM.

Figure 2. The diagram shows the path of a grid job using the gLite infrastructure.
Before execution can start on the WorkerNode (WN), data and application have to
be transferred from the User Interface (UI) via the ResourceBroker (RB) (1) to the
CE (2) and further to the WN (3). Output has to be transported back along the
same path ((3) (4) and (5)).



(RB) ((1) in Fig. 2). The RB has access to several sources of monitoring
to find the resource with the best match to the user’s job-description.
This resource is typically the headnode of a cluster or Compute Element
(CE) in gLite terminology. The CE forwards (3) the job to one of the
cluster or WorkerNodes (WN) where the job will be executed. If output
was created on the WN it can either be stored and registered in the grid
for later use or it has to be transported back along the path (3), (4), (5).

1.2 Limitations of gLite

The infrastructure described above is known to scale from large to
very large numbers of resources (see Fig. 3). Being designed to meet
these scaling requirements, the useability was not the primary focus.
This becomes apparent when trying to use this grid infrastructure with
applications for which gLite was not intentionally designed. Examples
for such applications could be a scientific problem solving environment
(PSE) e.g. Matlab or a spreadsheet calculation program (e.g. Microsoft

Figure 3. European part of the LCG grid. The figures below date from October
2007 and comprise the worldwide installation.



Excel). The differences between this style of applications and the ones
that gLite was designed for are manyfold.

A typical software consists of two parts: A graphical user interface
(GUI) and a backend that processes computations based on the user’s
commands. The application can utilize remote resources in the grid.
While the GUI would run at the users PC, the compute intensive part
of the application would make use of the resources in the grid. For our
example of the Excel application this would mean that only the spread-
sheet computation runs remotely while the main part of the application
remains local.

The gLite job paradigm however requires a different structure of ap-
plications. This is because firstly the startup of a job in gLite has an
overhead in the range of 10 s. Secondly a job is an application, i.e. a self
contained application has to be sent to the grid, started on the assigned
WorkerNode, to compute the problem, terminate and return the result.
Finally, the gLite does not support direct communication between the
user and his job.

For our example this means that we had to submit the whole Excel
application as a job, wait until the computation of the spreadsheet is
finished, transfer the result back and then take a look at the result.

Quintessentially, the lack of support for direct communication makes
interactive useage of the grid very difficult and API-like calls of complex
tasks virtually impossible.

An additional issue is related to the fact that we utilise computers in
many different organisational domains and countries. This leads to the
problem that software dependencies might not always be fulfilled. This
results in the job to be aborted.

Finally, software licenses are not always compatible with distributed
computing. While some applications are licensed on a per-user base,
that one user can run on as many resources as he likes, other applications
require one running license per entity. Many scientific problem solving
environments (e.g. Matlab) require one license per computer.

This contribution describes how these limitations are overcome. In
the following sections we describe the improvements of the functionality
of gLite. We will describe the proposed solution in detail in sections 2
and 3. Furthermore, we will prove that the described solution works by
presenting the results of a performance evaluation that we conducted
using our solution in section 4.



2. IMPROVING GRID ACCESS

Our goal is being able to use grid resources in a remote procedure call
(RPC) like fashion. For this we want to install an RPC tool on gLite
resources. This section describes our way how to efficiently allocate gLite
resources and how we install the RPC tool.

2.1 Pilot Jobs

This concept is based on sending a number of small jobs through the
gLite middleware. Upon start on the WorkerNode (WN) each pilot-job
performs initial tests. Only when these tests are successful the pilot-job
connects back to a central registry or to a client.

Using this scheme avoids the pitfalls that might occur at various levels.
Any reason for failure, no matter if it is related to the middleware, to
network connectivity problems or to missing software at the destination
WorkerNode will cause the pilot-job to fail. Therefore only those jobs
that start up successfully will connect back to the registry or client. In
order to compensate for the potential failure rate, we submit around 20%
more jobs than required. This will eventually lead to enough available
resources.

Another advantage of pilot-jobs is that an interactive access to the
WorkerNodes is possible, because they connect back to a central loca-
tion and thus provide direct network connectivity. Furthermore, the
inefficient handling of scientific data (see Fig. 2) cane be done via the
direct network connection as well. This considerably improves the use-
ability of gLite.

2.2 GridSolve

GridSolve [8] is currently developed at the ICL at University of Ten-
nessee in Knoxville. It provides a comfortable interface for calling re-
mote procedures on the Grid (GRPC). It supports various programming
languages on the client-side (C, C++, Java, Fortran, Matlab, Octave).

The interface provided by GridSolve is very simple to use. The re-
quired modifications in the source code can be as simple as:

y = problem(x) => y = gs_call(’problem’, x)

This modification will execute the function problem on a remote re-
source. Gridsolve selects the remote resource from a pool of previously
connected servers. The transfer of the input-data (x) to the remote
resources and the return of the result (y) are handled by GridSolve.



Asynchronous calls of problem are also possible. The actual paral-
lelisation is done by taking advantage of this interface. Doing this is the
task of the software developer.

Gridsolve consists of four components:

The gs-client is installed on the scientists workstation. It provides
the connectivity to the GridSolve system.

The gs-server runs as a daemon on all those computers that act as
compute resources. In the gLite context these are the workernodes.
When started up, the server connects to

The gs-agent. It runs as a daemon on a machine that can be reached
via the internet from both, the scientists workstation and from the
gs-servers on the WorkerNodes.

The gs-proxy daemon can be used in case WorkerNodes or the client
reside behind firewalls or in private IP subnets.

Upon start of the servers, they connect to the agent and report the
problems that they can solve. Whenever the client needs to solve a
problem he asks the agent which service is available on which server and
then directly connects to it and calls the remote service.

GridSolve provides client interfaces to various programming languages
like C, C++, Java, Fortran and to problem solving environments like R,
Octave and Matlab so that users can continue using their accustomed en-
vironment. Detailed information about how gridsolve works is provided
in [8].

3. INTEGRATION OF GRIDSOLVE AND
GLITE

On one hand we are motivated to use gLite because of the large
amount of resources provided and on the other hand we want to use
GridSolve because it provides easy access to remote resources. The inte-
gration of both platforms promises an API-like access to resources that
are made available by gLite.

One challenge originates from the fact that the developments of the
grid-infrastructure middleware gLite and the gridRPC middleware Grid-
Solve have progressed simultaneously without mutual consideration.

Therefore neither system was designed to work with the other one. In
order to integrate both software packages, certain integrative tasks have
to be performed.



To keep these tasks as reproducible and useful as possible, we have
developed a set of tools and created a toolbox that we named giggle
(Genuine Integration of GridSolve and gLite).

3.1 Giggle design

We want to use the gLite resources within the GridSolve framework,
hence we have to start GridSolve servers on a number of gLite Work-
erNodes. This is done by submitting pilot jobs to start a the gs-server
daemon which allocates resource for the gs-clients that send the actual
compute task.

Giggle simplifies the pilot job mechanism for the user by providing
predefined jobs that are sent whenever the user requests resources. Using
the interactive grid extensions, it is possible to allocate several computers
that are either scattered across the grid or confined to one cluster or a
combination of both with just one job.

Every single pilot will be started on a WorkerNode (WN) by gLite. It
is impossible to know which software is installed at that particular WN.
This is why giggle downloads and installs a pre-built binary package of
GridSolve together with the most commonly used libraries. Currently
these packages are downloaded from a webserver.

For enhanced speed of startup time and network throughput, caching
is supported. Furthermore, shared filesystem clusters benefit from gained
installation speed, because in that case only one shared installation per
cluster is carried out. After the installation, the gs-server is started.
It connects to the gs-agent and is thereafter available for the user. In
order to accomplish this, we have defined infrastructure servers, that
carry out specific tasks:

The user has access to the developers workstation. This is typically
his own desktop or laptop computer. Giggle and the GridSolve client
(gs-client) have to be installed.

A webserver is used to store all software components which have to be
installed on the WorkerNodes by giggle. We cannot ship these compo-
nents via gLite mechanisms because then all packages are transferred
via two additional computers, as can be seen in Fig. 2.

The servicehost runs the GridSolve agent (gs-agent) and optionally,
the proxy (gs-proxy). A separate host is currently required, because
of specific firewall requirements which can not be easily integrated
with the security requirements of a webserver. Technically the ser-
vicehost can run on any publically accessible computer, e.g. the above
mentioned webserver or the int.eu.grid RAS server.



Fig. 4 shows these three additional computers and their interaction
with the gLite hosts.

3.2 Giggle tools for creating services

Creating services (i.e. making functions available remotely) via the
GridSolve mechanism requires in principle only a few steps: definition
of the interface and a recompilation using the GridSolve provided tool
problem compile.

However, while developing our own services for GridSolve on gLite, we
found that it is better to include our services into the GridSolve build
process and recompile the service together with the whole GridSolve
package. This is more stable when installing the service and GridSolve
in a different location on several computers. We also found that this
approach holds when modifications to the underlying GridSolve sources
(e.g. updates, fixes) are done. Thus we have facilitated this process
(with the tools gs-service-creator and gs-build-services) within giggle.

gs-service-creator ((1) in Fig. 4) generates a directory structure
that contains the required files for creation of a new service. The
gs-service-creator is template-based. Currently two templates – plain
C RPC and Matlab compiler runtime RPC – are supported. Further-
more a mechanism is included that supports the transport of dynam-
ically linked shared libraries to the server.

gs-build-services (2) is the tool that organises the compilation of
GridSolve and the service. It hides the complexity of integrating our
service into the GridSolve build system. The tool compiles the sources
in a temporary location, where the GridSolve build specifications are
modified to integrate the new service. The compilation process also
recompiles GridSolve. This makes the build procedure longer, but we

Figure 4. Architectural building blocks of giggle and their interaction.



found that this ensures a higher level of reproducibility, flexibility and
robustness against changes of the service or the underlying version of
GridSolve. The output of the build process is a package (.tar.gz) file
that contains the service. Optionally a GridSolve distribution tarball
can be created.
After a successful build, the generated packages have to be deployed
on the webserver to be available for download by grid jobs.

3.3 Giggle tools for resource allocation

The gLite resource allocation is done via the gLite User Interface (UI).
We provide three tools that avoid logging into the UI and manage the
involved gLite jobs. Furthermore the authentication to the grid is taken
care of.

gs-glite-start (3) launches the resource allocation. This tool starts
a chain of several steps: First it starts up the GridSolve compo-
nents (gs-agent and optionally the gs-proxy) on the servicehost
(3a). Then it instructs (3b) the gLite User Interface (UI) to submit
a given number of gLite-jobs (3c) to the resources of the interactive
grid project. The jobs download (3d) and install required depen-
dencies and start the GridSolve server. The gs-server connects to
the gs-agent. Then the WorkerNode is available to the user via the
GridSolve client.

gs-glite-info can be used to display a short summary of the gLite
jobs.

gs-glite-stop (5) When the user is done using the grid, gs-stop-grid
frees the allocated resources and terminates the GridSolve daemons.
Otherwise resources would remain allocated but unused.

Currently these tools rely on passwordless ssh in order to connect
to the gLite User Interface machine. There the user commands are
translated to gLite commands.

3.4 Giggle tools for the end-user

gs-start-matlab (4) configures a user’s Matlab session so that it can
access GridSolve resources. This involves configuring Matlab to find the
local GridSolve client installation as well as directing the client to the
previously started gs-agent.

Please note that Matlab is only taken as an example representative of
many other applications. Being available for Java, C, Fortran, Octave



and more the GridSolve client can be used from various programming
languages in different applications.

4. MEASUREMENTS

We have implemented a test-scenario, using pilot-jobs on the int.eu.grid
infrastructure in the following way:

We submit the pilot-jobs to int.eu.grid. This can easily be done via
our GUI, the Migrating Desktop or from the gLite commandline. The
int.eu.grid Resource Broker – the CrossBroker – selects the sites where
the jobs are sent to. Once a pilot-job is started at a particular Worker-
Node, an installation procedure is carried out. It downloads and installs
GridSolve, as well as the functions that we want to run on the Work-
erNode. This way we minimise the data that requires to travel the path
along CE, RB and UI. After the installation, the GridSolve middleware
is started. From this point on the user can see the WorkerNodes con-
nected using the GridSolve tools. In our case using gs info since we
use the Matlab client-interface.

The performance evaluation is based on the CPU intensive loop bench-
mark. This benchmark allows to specify the number of loops or iterations
and the amount of CPUs to be used. Advantages of the loop benchmark
are

no communication: this is an important factor for scaling

linear scaling: two iterations take twice as long as one

even distribution: every CPU computes the same amount of itera-
tions.

With this benchmark we measured the performance characteristics of our
solution. This will resemble both: the overhead introduced by GridSolve
as well as an effect that originates from the different speeds of the CPUs
that are assigned to the problem. This effect may be called unbalanced
allocation.

Within this series of measurements we can modify three parameters:

Number of gLite WNs. This is different the number of CPUs, because
we have no information about how many CPUs are installed in the
allocated machines. GridSolve however used all CPUs that are found.

Number of processes that we use to solve our problem.

Amount of iteration that we want to be computed.



We chose iterations between 10 and 1000 which correspond to 6 s and
10 min runtime on a single Pentium IV-2400 CPU. The iterations were
distributed to the resources provided by the production infrastructure of
int.eu.grid. Resources were allocated at SAVBA-Bratislava, LIP-Lisbon,
IFCA-Santander, Cyfronet-Krakow and FZK-Karlsruhe. Typically we
have allocated 5 to 20 WorkerNodes (WNs), most of which contain 2
CPUs. The precise number of CPUs is unknown.

We measured the time to compute the iterations over the number of
CPUs used. Measurements were repeated 10 times for averaging pur-
poses. The graphs show the inverse of the computing time as a function
of the number of processes into which we divided the benchmark. Out of
the 10 repetitions of each measurement we show the average of all mea-
surements as well as the maximum and minimum curves. The difference
originates from the dynamic nature of the grid. If one server exceeds
a time limit, it will be terminated. In this situation GridSolve chooses
a different resource where this part is computed again. This leads to
a prolonged computation of the whole benchmark, hence a difference
between the “min” and the “max” curve. The min curve resembles a
better result while the max curve stands for the longest runtime of the
benchmark. We refer only to the theoretical and the min curve further
in this discussion. The graphs also show a theoretical curve, which is
based on the assumption of ideal scaling (i.e. if doubling the number of
processes, the result will be computed in half the time).

We can observe a difference between the maximum and the minimum
curve. The reason for this difference is the unbalanced allocation of
CPU speeds that we have mentioned above. Since these effects are of a
random nature it is not possible to compare them between the different
graphs.

Results are shown in Fig. 5 to 7.
The comparison between a measurement with a low number of it-

erations (Fig. 5) and one with more iterations (Fig. 6) (6 s and 5 min
respectively) reveals the overhead that is caused by GridSolve. We ob-
served that this overhead depends on the amount of CPUs that we utilise
and occurs mostly during submission and collection of results. This is
also indicated by the increased computing time for more than 4 CPUs
in Fig. 5.

In all measurements we can find one point at which the curve stops
following the theoretical prediction and continues horizontally. This in-
dicates that the compute time does not decrease even if further increas-
ing the number of parallel processes. This is because at this point the
number of available CPUs is smaller than the number of processes. The
theoretical curve does not take this effect into account.



In 6 and 7 we can see that even the min-curve grows slower than
the optimum (theoretical) curve. This is due to the heterogeneous na-
ture of the grid. In our pool of resources, we have CPUs with different
speeds. GridSolve allocates the fastest CPU first and only uses slower
CPUs when all fast CPUs are already busy. As the theoretical curve
is extrapolated from the performance on only one CPU, it resembles
the ideal scaling behaviour. In Fig. 6 this can be observed at 6 and
more processes, in Fig. 6 we can see this effect already starting with 4
processes.

Figure 5. 6 gLite WNs allocated. 10 iterations require 6 s on a Pentium-IV CPU.

Figure 6. 500 iterations run 5 min on a Pentium-IV CPU, 30 s on the grid.



5. DISCUSSION AND CONCLUSION

gLite provides a powerful infrastructure for computing. However, it
is very complex and difficult to be used by non gLite experts.

Based on the experience of distributing an embarrassingly parallel ap-
plication we provide a solution for two weak points of gLite using pilot-jo
bs. With this solution the job abortions become tolerable. Furthermore,
using GridSolve we have been able to show that it is possible to integrate
the distributed gLite resources into standard programming languages,
using the problem solving environments Matlab as an example.

Our performance evaluation reveals that scaling of resource useage
works in principle, but certain obstacles are still to overcome. The main
obstacle regarding proper scaling is however, the fact that the under-
lying resources disappear sometimes, so that the failed part has to be
computed again. We expect a performance increase of a factor of two or
more, by simply improving the reliability of resources.

We have reached the goal of using the gLite infrastructure in an inter-
active, API-like fashion from problem solving environments like Matlab.

Figure 7. With 20 WNs allocated and 1000 iterations we can the system scale to 18
processes.



References

[1] CIO.com. Seven wonders of the IT
world. www.cio.com/article/135700/4
http://www.cio.com/article/135700/4 .

[2] EGEE Project. gLite website. glite.web.cern.ch/glite
http://glite.web.cern.ch/glite.

[3] Gemmeke, H. and Ruiter, N.V. 3D Ultrasound Computer Tomog-
raphy for Medical Imaging. Nucl. Instr. Meth., pages A580 p.1057–
1065, 2007.

[4] Gomes, J., Borges, G., Hardt, M., Hammad, A. A Grid infrastructure
for parallel and interactive applications. Computing and Informat-
icsi, Vol27, 2008, 173-185, 2008.

[5] Interactive European Grid Project. Website. www.interactive-grid.eu
http://www.interactive-grid.eu.

[6] R. Stotzka, J. Würfel, and T. Müller. Medical imaging by
ultrasound–computertomography. In SPIE’s Internl. Symposium
Medical Imaging 2002, pages 110 – 119, 2002.

[7] The Mathworks. Website. www.mathworks.com
http://www.mathworks.com.

[8] YarKhan, A., Dongarra, J., Seymour, K. GridSolve: The Evolution
of Network Enabled Solver http://tinyurl.com/3bma6h. pages 215–
226, 2007.

[9] Zapf, M., Schwarzenberg, G.F., Ruiter, N.V. High Throughput
SAFT for an Experimental USCT System as MATLAB Implemen-
tation with Use of SIMD CPU Instructions. In SPIE San Diego,
Proceedings, 2008.


