

Aerobic methane formation in Grey poplar plants grown under sterile conditions

Nicolas Brüggemann, Rudolf Meier, Dominik Steigner, Ina Zimmer, Sandrine Louis & Jörg-Peter Schnitzler

> Karlsruhe Research Center Institute of Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU)

> > Garmisch-Partenkirchen Germany

Nicolas Brüggemann & Jörg-Peter Schnitzler | IMK-IFU | Garmisch 1st workshop on aerobic methane formation, 26/27 Feb 2009, Mainz KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

Introduction

Objections to the experimental design of Keppler et al. (2006), criticizing the use of static chambers and methane-free air: e.g.,

Kirschbaum *et al.* (2006), *Functional Plant Biology* **33**: 521–530 Dueck *et al.* (2007), *New Phytologist* **175**: 29–35

No observation of aerobic methane emission from plants: e.g.,

Dueck *et al.* (2007), *New Phytologist* **175**: 29–35 Beerling *et al.* (2008), *Global Change Biology* **14**: 1821–1826 Kirschbaum & Walcroft, *Biogeosciences* **5**: 1551–1558

Observation of aerobic methane emission from plants: e.g.,

Vigano *et al.* (2008), *Biogeosciences* **5**: 937–947 Wang *et al.* (2008), *Environmental Science* & *Technology* **42**: 62–68

Mechanisms of aerobic methane formation: e.g.,

Keppler *et al.* (2008), *New Phytologist* **178**: 808–814 McLeod *et al.* (2008), *New Phytologist* **180**: 124–132 Messenger *et al.* (2009), *Plant, Cell & Environment* **32**: 1–9

Nicolas Brüggemann & Jörg-Peter Schnitzler | IMK-IFU | Garmisch 1st workshop on aerobic methane formation, 26/27 Feb 2009, Mainz KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

Open research questions

- Missing proof for the absence of methanogenic microorganisms potentially contributing to aerobic methane emission from plants
- Convincing evidence that aerobic methane originates in living plant material

Nicolas Brüggemann & Jörg-Peter Schnitzler | IMK-IFU | Garmisch 1st workshop on aerobic methane formation, 26/27 Feb 2009, Mainz KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

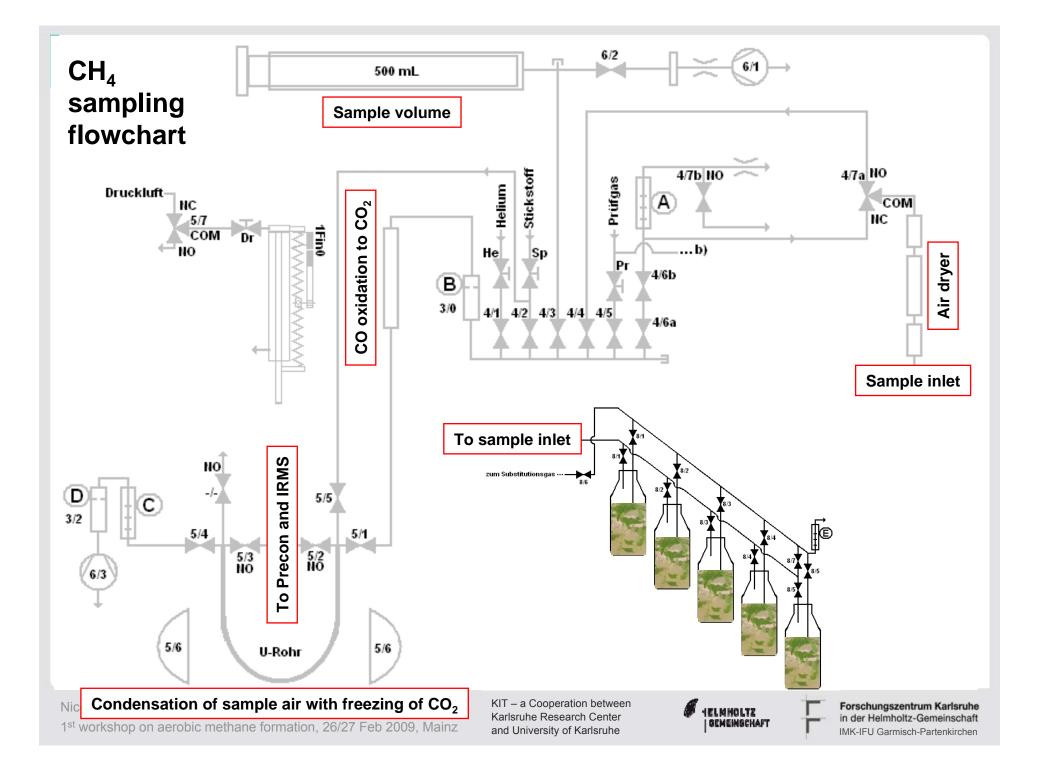
Our experimental design

- Plant species: Grey poplar (*Populus* x *canescens*, syn. *Populus tremula* x *P. alba*), derived from cell cultures under sterile conditions
- Plants on sterile medium in gas-tight flasks in CH₄-free air
- Headspace was exchanged with synthetic air containing 20% of oxygen and 385 ppm ¹³CO₂ (99 at% ¹³C)
- Flasks were kept in glove box filled with pure N₂ for 33 days under a 16/8 h light/dark regime
- GC-IRMS analysis of methane in the headspace
- Molecular biological analysis of plant material and medium for the methyl coenzyme M reductase alpha subunit (*mcrA*) gene
- EA-IRMS of bulk plant material after end of the experiment

Nicolas Brüggemann & Jörg-Peter Schnitzler | IMK-IFU | Garmisch 1st workshop on aerobic methane formation, 26/27 Feb 2009, Mainz KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

Plant material

Wild type *Populus* × *canescens* (Aiton) Sm. (syn. *Populus tremula* × *P. alba*) lines, amplified by micro-propagation


7-8 plantlets were transferred under sterile conditions to 1-I sterile glass flasks, containing sterilized quartz sand and MS medium

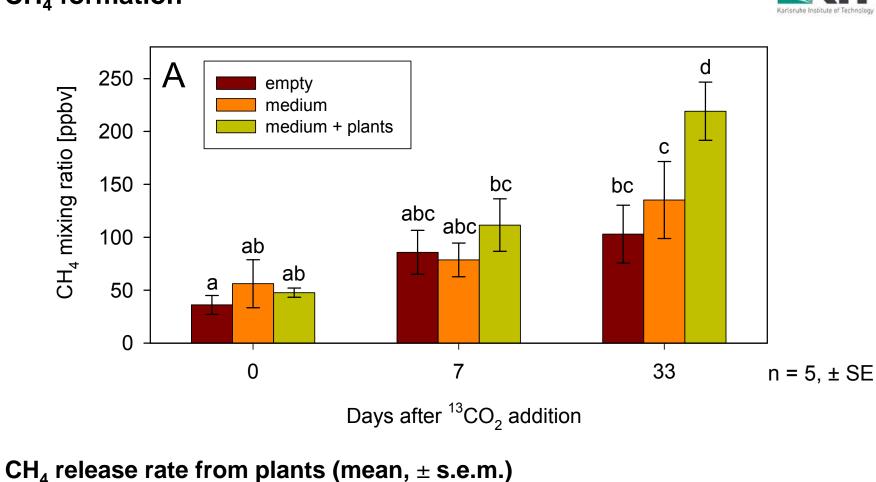
The flasks were sealed with screw caps and sterilized valves; the inlet ports were additionally equipped with sterile filters (0.22 µm pore size)

The poplar plants were grown under standard conditions of 27°C : 24°C (day : night) and a light period of 16 h with approx. 100 μ mol m⁻² s⁻¹ photosynthetic photon flux density (PPFD)

Nicolas Brüggemann & Jörg-Peter Schnitzler | IMK-IFU | Garmisch 1st workshop on aerobic methane formation, 26/27 Feb 2009, Mainz KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

mrcA primers used for PCR

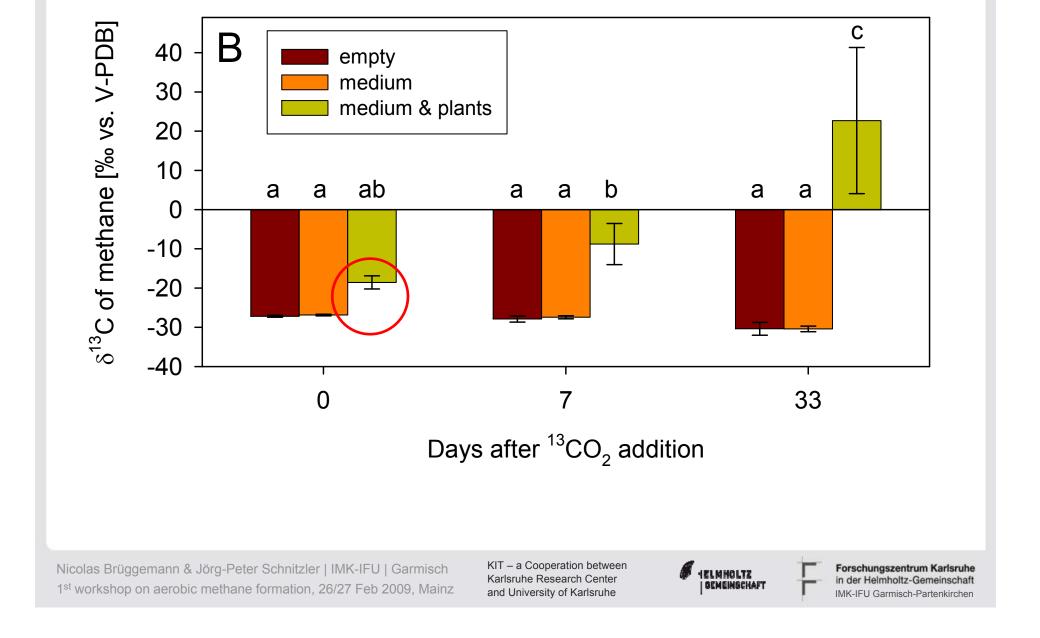
Forward primer: GGATTCACACARTAYGCWACAGC


Databases: thousands of mcrA sequences but only "few" are full-length

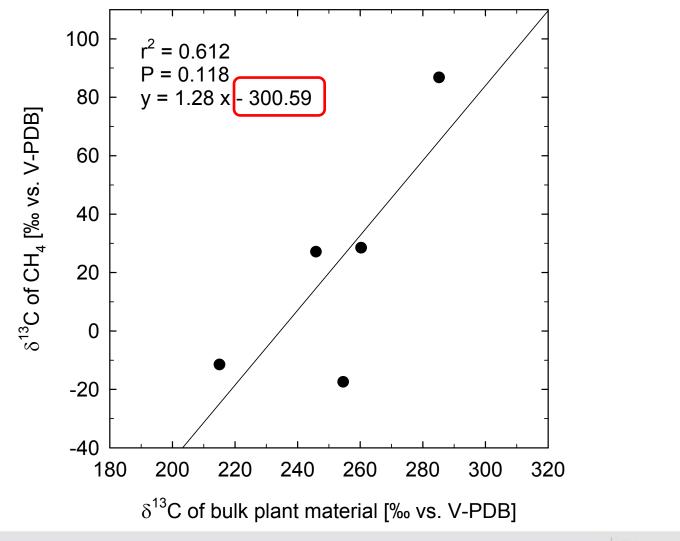
Alignment: to
see conserved
regions and
design primers

sel=0	981							1135
AJ584650MeThAnosphAe	T AA TAACTTTA AA	ettatteeteeae <mark>ca</mark>	CACCATTATAC ACCAA TAT	TTA	TTCATACAT TCT	ТТ	T L ATTCACACAATAT CTACA C	CATACACA AT ARATATTA AT ACTTCATTTACTAT TARA ACT
NC 007681MeThAnosphA	T AA TAACTTTA AA	TTATT TO A CA	CACCATTATAC ACCAA TAT	TTA	TTCATACAT TCT	тет	TI ATTCACACRATAT CTACA C	CATACACA AT AAATATTA AT ACTTCATTTACTAT TAAA ACT
NC 000909MeThAnoCAld	ACA TAACATT A	TTATT T CA CA	CTACCTTTTAT ACCAA TTT	TTA	AA CTATAT TCT	A A	TI ATTTACACA TAT C TCA C	ACATACACA AT ACATCTTA AT ATTTT TTTATTAT AAT A
NC 009637MeThAnoCoCC	T AACAATCATTA AA	TA TA CAACT T	CT C TTATAC ACCAAATCT	CTC	T CATACAT TCT	ТТТ	T & ATTCACACAATAC CTACC C	TCATACACC AT ATATCTTA AT ACTTCTCATACTAC ATTA ATT
ABFP01000001MeThAnoC	T A CA TCATTA AA	TA TA CAACA T	CT CTTTATAC ACCAAATCT	CTC	T CATACAT TCT	ТТ	TA ATTCACACAATAT CTACC C	TCATACACC AC ATATCTTA AT ACTTCTCATACTAC ATTA ATT
NC 009135MeThAnoCoCC	T AACAATCATTA A	TT TA CTACTOT	CT CATTATAC ACCAAATCT	CTC	T CATACAT TCC	т т	T I ATTCACACAATAC CTACCIC	TCATACACC AT ATATTTTA AT ACTTCTCATACTACC ATTA ATT
NC 005791MeThAnoCoCC	T AACAATCATTA AA	TA TA CAACA T	CT CTTTATAT ACCA ATCT	CTC	T CATACAT TCT	ТТ	T & ATTCACTCRATAC CTACC C	TCATACACC AC ATATCTTA AT ACTTCTCATACTAC CACTC ACT
NC 009634MeThAnoCoCC	T A CA TCATTA AA	TA TA CA CTOT	CT CATTATAT ACCAAATAT	CTT	T CATACAT TCT	тс	T I OTTTCACACAATACCCTACA C	CATACACC AC ATATCTT AC ATTTCTCATACTAT CACTT ACT
ABHB01000001MeThAnoC	T A CAATCATTA A	TA TT CAACTOT	CT CTTTATAC ACCAAATCT	CTT	TTCATACAT TCT	ТСТ	TI ATTCACACATAT CTACA C	TCATACACA AT ACATCITA AT ACTICICATACIAC ATTA ACT
NC 009635MeThAnoCoCC	T A CAATCATTA A	TA TT CTACCE A	CTAT TTATAT ACCAAATCT	TTA	T CATACAT TCT	ТТ	TA ATTTACCCAATAT CAACA C	CATACACT AT ACATCITA AT ATTICT CTACTAT ATTA ACT
NC 000916MeThAnoTher	AA ATATCACTT A	TCATC CALLT CA	CA CACTCTAC ACCA TCT	CTC	CTCATACAT TCA	т	T TTTCACCCA TAC CAACA C	CCTACACC AC ACATCOTO AC ACTTO TATACTACI TATI A T
009990	AA ATATCACTT A	TCATC CALITICA	CA CACTCTAC ACCA TCT	CTC	CTCATACAT TCA	тот	T TTTCACCCA TAC CAACA C	CCTACACCE AC ACATCOTO AC ACTTO TATACTACE TATE A T
NC 009515MeThAnobrev	AC TTCAACCTTA AT	TA TA CTTTA T	CT CATTATAC ACCAAATTT	TTA	TTCTTACAT TCT	ТТ	TE ATTCACTCARTAT CTACT C	CATATACT AT AT TATTA AT ACTTCACTTACTAT TAAA ATT
AY386125MeThAnobACTe	TO T TA CTCTA AT	TT TA CATCTOT	CAAT TTATAC ACCAAATCT	CTC	ATCATACAT TCT	т т	T CATTCACACAATAT CTACCCC	CATACACC ACAACATTCTT AC ACTTCACCTACTAT TAAA AAT
DQ677519MeThAnobACTe	AA TAACACTC AT	TT TT CAACCET	CAAT TTATAC ACCA ATCT	CTC	ATCATACAT TCC	тет	T I CATTCACACA TACCCTACA C	CTTACACC ATAAT TTCTT AC ACTTCT TTACTACE TARA AAT
U10036	CACCETCTCACTURAC	TT T CAACCEET	CAAT CTCTAC ACCA ATCT	CTT	CTCATACAT TCA	ТТ	T I ATTCACCCA TAC CARCA C	CCTACACA ACAACATCCTC AC ACTTCACCTACTTC TAA A T
NC 008942hypoTheTiCA	AAAA CATCCCT AA	AAT TC CA CA CA	CCAT CTCTTC ACCA ATCT	CTC	ATCCTACAT TCC	COT	T COTTCACCCA TAC CAACT C	COTACACE ATAACATCOTT AT ATTTCACCTACE AAT FACT
NC 008942ribosomAlpr	AAAA CATCCCT AA	AAT TC CA CA A	CCAT CTCTTC ACCA ATCT	CTC	ATCCTATAT TCC	СПТ	T TTTCACCCA TRO CAACT C	CATACACH ATAACATCCTT AT ACTTT TATACA CH AATH ACT
NC 007796MeThAnospir		TTOTCOTCCACOT:	I TAT CTCTTC ACCA ATCT	CTC	TTCCTACAT TCT	т	T ATTTACCCA TAT CAACO C	CATACACC ACAACATCCTC AT A TTCACCTACTAT TAT
NC 009051MeThAnoCull	AAA CCTCCCTT A	TO TO COCCERT	ACCAT CTCTAC ACCA ATCT	CTC	CTCCTACAT TCC	CIC	T DESTRUCTION COLOR TAC CAACCEC	CCTACACC ACAACATCCTC AC A TTCACCTACTAC TATT ACT
NC 009712CAndidATusM	CARFCAACCCTTTAG	TO TO TOTTOT	C AT CTCTTC ACCA ATCT	СТС	CA CTACAT TCC	СТ	T TATTCACCCA TAT CAACC C	CATACACC ACAACATCCTT AC ACTACT CTACTACI TCTT ACT
NC 009464UnCulTuredm	AA TCCTC CTC A	ACCUTCECATCOREC!	I CAT CT TAC ACCA ATCT	CTC	CA CTACAT TCC	СТТ	CT DESCTTCACCCACTATECAACCEC	CATACACT AC ACATCOTO AT ACTTOT CTACTACCOTAC ACT
AY327049unCulTuredAr	CC CT CACACTC AA	TT TT C ACCEC	AC AT CTCTAC ACCA ATAT	CTT	ATCATACAT TCA	тет	T ATTCAC CA TAC CAACA C	CATACAC AAC AT TOT AT ACTTCAC TACTACE ATAC ACT
AY714839unCulTuredAr	CTT TACACACTC A	TO TT CTT C CC	AC AT CTCTAC ACCA ATAT	CTT	ATCATACAT TCA	тот	T : ATTCAC CA TAC C ACA C	CATACACCARCE AT TECT SEAT ACTTCAC TACTACES ATAC ACT
NC 008553MeThAnosAeT	ACA TCTCACT AAC	TETCECTECACEC	AC AT CTCTAC ATCA ATCT	CTO	CA CTACAT TCC	ACC	T : ATTCACACA TAC CCACA C	C TACACCARC AT TCCT AT ACTTCTCCTACTATICC TT ACT
AY260439MeThAnosArCi	ARA TO CTOTO AR	TO TRUTCASCO	I TAT CTCTAT ACCA ATCT	CTC	ATCCTACAT TCC	тет	T TTCACACA TAT CARCA C	CATACACCE AT ACATCOTT ACAACAACACCTACTACE AC TT ACT
AY260438MeThAnosArCi	AAA TC CTCTC AA	TO TAUTICASCO	I TAT CTCTAT ACCA ATCT	CTC	ATCCTACAT TCC	тот	T TTCACACA TAT CAACA C	CATACACCE AT ACATCOTT ACAACAACACCTACTACE AC TT ACT
NC 003901MeThAnosArC	AAA ATT CTCTT AA	TA TO T CA CC	I TAT CTCTAC ACCA ATCT	CTC	ATCATACAT TCC	ТТТ	TE ATTCACACA TAT CAACA C	CATACACA AC ACATCOTO ACAACAACACCTACTAT AC TT ACT
NC 003552MeThAnosArC	AAA ATT CCCTT AA	TA TO CCARCE!	I TAT CTCTAC ACCA ATCT	CTC	ATCCTACAT TCC	TOT	T DESTTCACCCA TATE CAACTEC	CATACACC AT ACATCOTC ACAACAACACCTACTAT AC TT ACT
NC 007355MeThAnosArC	AAA ATT CTCTT AA	TO TO TOA CO	I TAT CTCTAC ACCA ATCT	CTC	ATCCTACAT TCC	ТТ	T DEATTCACACA TAT CAACA C	CATACACC AT ATATCCTC ACAACAACACCTACTAC AC TT ACT
NC 007955MeThAnoCoCC	ACAC TA CTCTA A	TA TA T CA A	I TAT CTCTAC ATCA ATCT	CTC	ATCATACAT TCT	TA	CT DE TTTCACACAATACCCAACCEC	CATACACCAACAACATCCTC AT ACAACCT TACTACAAC TT ACT
NC 003551MeThAnopyru	CARGETCOCCTOCAG	T ATC CC CC A	C AT CTCTAC ACCA ATCT	CTA	ATCCTACAT TCA	AT	T TTTCAC CA TAC C AC C	T TACACT ATAACATCCT CAC ACTAC T TACTACC TCTC A T
AY714816unCulTuredAr	AA AAT AATTA A 7	A CATC CA TT CT	CTATE TCTAC ACCA TT T	TTC	AAC TACAT TCT	A T	T & ATTCAC CA TAC CATCT C	ACATACACCERCARCATTCT FER SACTTCT CTACARCECTET ACA
AY714825unCulTuredAr	AA AAT AATTA A I	A CATC CA TT CT	CTAT TCTAC ACCA TT T	TTC	AAC TACAT TCT	AT	T & ATTCAC CA TAC CATCT C	ACATACACH ACAACATTCTHA HACTTCTHCTACAAHHECTHT-AHA
AY714837unCulTuredAr	AA AAT AATTA A I	A CATC CA TT CT	CTAT TCTAC ACCA TT T	TTC	AAC TACAT TCT	СПТ	T LEATTCAC CA TAC CATCT C	ACCTACACIE ATAATATCCTIER S ACTTCTICTACAASSECTET ALA
AY714852unCulTuredAr	AA AAT AATTA A	A CATC CA TT CT	CTAT TCTAC ACCA TT T	TTC	AAC TACAT TCT	ACT	TINATTCAC CA TAT C A T C	ACATACAC CACAACATOTTACA CACTTOT CTACAA COAT CACA
BX649197unCulTuredAr	AA COT A TTA A	A CATC CA TT CT	CTAT TCTAT ACCA TT T	TTC	GAAC TACAT TOGE	A T	T LEATTCAC CA TAT C A T C	ACATACAC - ACAACATCCTA A - ACTTCT CTACAA - AT T A A
AY327048unCulTuredAr	AA AAC AATTA A I	A CATC CETTICA	CACT TTTAC ACCA TT T	TTC	AAC TACAT TO C	тот	TICATTCAC CA TAT C A T C	ACATACAC SEACAACATCCT FEASEACTTCT CTACAA SEATET AAA
AY714819unCulTuredAr	AA AAC AATTA A I	AFCATCEC SETTECA	C CT TTTAC ACCA TT T	TTC	AAC TACAT TCA	тот	TI ATTCAC CA TAT C A T C	ACATACAC SCACARCATCCT SCA SCACTTCT CTACAA SSCAT T AAA
AY714830unCulTuredAr	AA AAT AATTA A	A CATC CA TT CC	CAAT TCTAT ACCA TT T	TTC	AAC TACAT TOFF	TOT	TA ATTCAC CA TAT C A C C	ACATACAC SEACAACATCCT FEASEACTTCT CTACAA SEATET AFA
AY714870unCulTuredAr	AA AAT AATTA A	A CATC CA TT CC	CAAT TCTAT ACCA TT T	TTC	TAAC TACAT TO G	TOT	T L ATTCAC CA TAT C A T C	ACATACAC SEACAACATCCT FEASEACTTCT CTACAA SEATET AFA

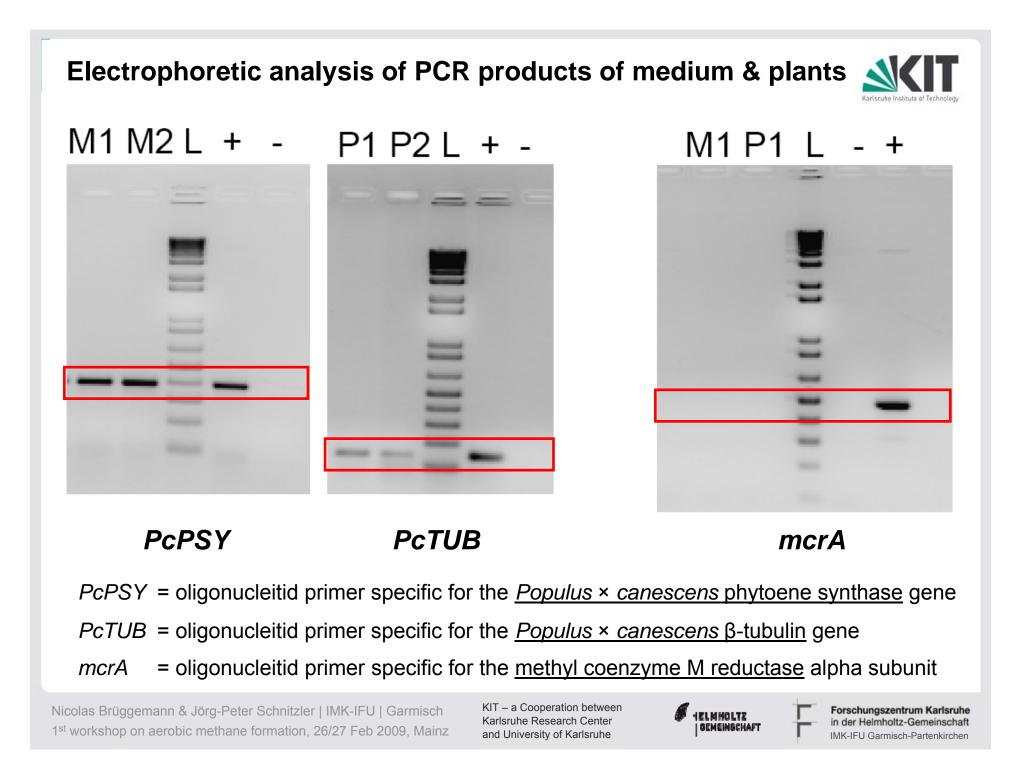
Reverse primer: TCATBGCRTAGTTHGGRTAGT


			-					
sel=0	1470							1624
AJ584650MeThAnosphAe	CTCACTCTCT-T	AA AA T AT AA	- ACTTATTCAC AATTAA A	TCCT IN TROOTANCTAC CAN	TA CTACT	CACCAACCT AATAT	CALITATTICTCAA CACCACACICA CAALAT	A AC CATTL CACTTAACCCAT
NC 007681MeThAnosphA	CTCACTCTCT T	AA AA T AT AA	ACTTATTCAC AATTAA A	TCCT INCTROCCTANCTAC CAN	T A C TA T	CACCAACCT AATAT	CA TATT CTCAA CACCACAC CA CAA A	A AC CATTL CACTTAACCCAT
NC 000909MeThAnoCAld		CA AA T AT AA	TTTATT CAT AAT TA A	ACCA INTINTOCARACTAC CAN	TACTTA	CATCA CCA A TAT	CT. AATT CCCAA CTCCCCAT C CAA	A AT CATTTT CTTAAACCCAA
NC 009637MeThAnoCoCC	CTCACTC CAAT	CA AAAC AC AA	CT CACCTCTT AATTAA A	ACCT ACTROCTARCTAC CAR	TA CTA T	CACCA A AATAC	CA TATT CACAATCT CTCACTCC CAA A	A AC CATTI CAAT AACCCAT
ABFP01000001MeThAnoC	CTCACTC CAAT	CA AAAC AC AA	СТ САССТСТТ ААТТАА А	ACCT INCTROCTRACTAC CRA	T A C TA T	CACCA A AATAC	CA TATT CACAATCT CTCACTCC CAA A	A AC CATTL CAAT AACCCAC
NC 009135MeThAnoCoCC	CTCACTCECAAT	CA AAAC AC AA	CT CACCTCTT AATTAA A	CACCT INCTROCCTARCTACCOAR	TA IC TA CT	CACCA CLA AATAC	CALITATT CACAATCT CCCACTCC CAA A	A AT CATTL CACTLA CCCAT
NC 005791MeThAnoCoCC	CTCACTCCCAAT	CA AAAC AC AA	CT CACCTCTT AATTAA A	CACCT INCTACCOTRACTACICCIA	TOALCOTACCT	CACCA A AATAC	CAN TATT CACAA CT CACACTCO CAA A	A AC CATTL CACTLA CCCAT
NC 009634MeThAnoCoCC	CTCACTC CAAT	CA AAAC AC AA	ТСТ САССТСТТ ААТТАА	FFOCT IACTACCCTARCTACCCAR	TER IC TREET	CACCA A AATAC	CA TATT CACAA CT CTCACTCA CAA A	A AT CATTT CAAT A T CAT
ABHB01000001MeThAnoC	CTCCTTA CAAT	'AA AAAC AC AA	CTTCACCATT AATTAA A	TCCT ACTROCCTRACTAT CAR	T A IC TA T	CACCAA T AATAC	CT TATT CACA TCT CACACTCA CTA A	A AC CATTO CAACAAAC CAT
NC 009635MeThAnoCoCC	CTCATTATCTAT	TA AAAT AC AA	TCCTCACCATT - AATTAA A	TCCA INCTRTCCHRACTATICAA	TOR TOTTOT	CACCAA A AATAT	CA TATCACCCAA CA CACACTCT CAA A	A AT CTTTT CTAT AATCCAT
NC 000916MeThAnoTher	CTCCCTCTCAAT	CALLA C AC A	TCTCATACAC AACTCO T	ACCT INCTRECORRECTAC CCA	PER ICCTCCCT	CACCA CCA A TAC	CASTATA CTCA CACCACAC CT CAASIS	C AT COTTOT TACAAACCCAC
U09990	CTCCCTCTCAAT	CATTA CTACTAT	-TCTCATACAC AACTCC T	ACCT ACTATCCARACTAC CCA	ТЕМ ІССТСССТ	CACCA CCA A TAC	CAN TATA CTCA CACCACAC CT CAASIS	C AT COTTOT TACAAACCCAC
NC 009515MeThAnobrev	C TATTCTCCAT	CA AAAT AT AA	COTTACCACTO AAAT A A	ACCA ACTACCCTAACTAC CAA	та юта т	CACCAA T AATAC	CTE TATC CTCAA CTCCTCAC CA CTC T	A AT CTT TCTTTCAACCCAT
AY386125MeThAnobACTe	C TATTCTCAAT	TA A A AT AA	АСТАССАСТА ААСТТА А	A CA ACTACOCCARCTAT				
DQ677519MeThAnobACTe	C TATTT CAAT	AA COATAA	ATTACCTACA AATTAA A	CCCT ACTROCTRACTAC CCA	T6			
U10036	C TCTTCTCAAT	'AAGGEG <mark>C</mark> CACCAC	ACT CCACT A CTTC T	ACCT ACTATECHAACTAC CCA	TER CETEEET	CACCAGE TEATACE	CCI I TATATCACA I CACCACACI CTI CCCI TI	A AC COTTO T TTCAACCCAC
NC_008942hypoTheTiCA		CALACCC AC A	COCTOTATCO COASTTCC T	ACC ACTROCC RACTAT CAA	TEA CETCEET	CACCA A AATAC	CA CAATT CA CCTCT CCCACTTC CCCC	CLACICAT CACECTCTCCCCCC
NC 008942ribosomAlpr		CATACCCTACTAT	CT TATC C A TTCC T	ACC ACTACCO AACTAT CAA	TEX CETCEET	CACCA COA AATACI	CA CCATC A CA CA CCCACTTC CCCC	C AC CAT AC CTCTCCCC C
NC_007796MeThAnospir		CALACCT AC A	TT TATC T AATACC T	TCCA ACTACCO AACTACICAA	TEX IC ETCEET	CACCA A AATAC	CA CAATT TT CATCTTCCCACTACACCA AA	AC AT STITCT TCT TCCCCAC
NC_009051MeThAnoCull	CTCCCTCTCCAT	CETCTCCEACCET	COTCT FAT COCCAACT COT	TCC RETROCC RACTACIC R	TUR ICCTCCCA	ICACCAGGECCACTACT	CCCCCATCETCEET EFTCCCACTACECCCCC	C AT C TTCT CTACA CCC C
NC_009712CAndidATusM	CT TAT TCC I	CCECCCEACEAE	COCTOCCTOC COACTCOT	CCC DETROCC RECTAC CAR	TER ICCTCCCA	ICACCA CLA A TAC	CA CCATT CATCO CO CCCACTACE ACECC	A ACCAT CATACT TOCCO C
NC_009464UnCulTuredm	C T TTCTCCT	CAL TCC AC A	C CAATC AT AACT A A	CCC ACTACCC AACTAC CAA	TER ICCTRCC	CACCAGE TEECTACI	ACCELTATCICCIECICA ECCACTACIECCET	CAT C T C TC CAA CCC C
A¥327049unCulTuredAr	C TAT CTC T	CCASSET SACEAS	AT CT CCTC AACTCC T	C CA ACTACCO AACTAC CAA	r a <mark>lo ta st</mark>	CACCALLIC A TAC	CA TATCACACA TCT CACACTCA CAACC	AC AT CATACT CT CAACCCAC
AY714839unCulTuredAr	C TAT CTC T	CCALLECTACIAL	GAT CT CCTC AACTCA A	C CA IACTACCO RACTACICIA		CACCA COA TAC	CALLATTCACT T CALC. CAC. CALLT. CAC	AT AT CATACT CT CAACCCAC
NC_008553MeThAnosAeT	C TCTTCTC TT	CCA-TC-FAC-A-	CAACCC CTC A CT A	C CC ACTRECC ARCEAC C A	T A CTCCCC	CACCA CA TAT	-CAFFCATCTCAA-CFCT-CTCACFCA+FCCFCF	C AC CCTTC CAT CAACCC C
AY260439MeThAnosArCi	C TTCT TCCT	CCA I I C C AACAA						
AY260438MeThAnosArCi	C TTCT TCCT	CCAFFFCF						
NC_003901MeThAnosArC	C TTCT TCCT	ICCA C AC AA	TCTCCCA AC AACTCC T	CTCCA INCTRECCEARCTRECERA	T A C TC T	CACCA T ATAC	CASTATC CTCASCA CCCACTCC ACT	A ACCATTCACC TCAACCCAC
NC_003552MeThAnosArC	C TTCT TCCT	CCA FFFC FACFAA	GTCTCCCA ACTACTCC T	TCCA ACTACCO RACTAC CAA	TOX COTCOOT	CACCADE CEEATACE	CASETATC CTCASECA CCCACTCASECCEC	CAC CATTCACC TCAACCC C
NC_007355MeThAnosArC	T TTCT TCCT	ICCA I I CIACIAA	C TCTCCCA AC AACTCC T	TCCA ACTACCCCAACTAC CAA	TEA CETTEET	CACCAGE TE ATAC	CASITATO CTCASICA CTCACTCCSCCC T	C AC CATTACC TCAACCCAC
NC_007955MeThAnoCoCC	C TATTCTCCTT	'CCA TCC AC AA	С ТСТ ССАСТТ ААСТАС Т	TCCA ACTROCTARCTRC CAR	T A IC TA T	CACCASSICS TTACE	CC CARTCACTTCA CA CACAC CA AC T	A AT CAT CA TTAACCCAC
NC_003551MeThAnopyru		A A C AC A	GACT COUCTO A CT C T	TCC HCTRCCC ARCTAC C.A	TER CETCET	CACCTODIC A TAC	C.G.TATC.T.CAGECCCCCAC.C.C.C.A.	CACCOTTCT T T CACCCC
AY714816unCulTuredAr		CCA A C AT A	AAT CCATTC A AT A A	ACTATCO AACTACOC A	TER ITETEECC	CATCA A T C TAC	CONTCTA TA COM A CACACT TO AATC	AC AT CAT TOT TOACCAT
AY714825unCulTuredAr		CCA A C AT A	CAAT CCATTC A AT A A	ICC.T. IACTATCO AACTACICIA	TEA ITETECCO	CATCA A T C TAC	СССТСТА ТА СССА САСАСТ Т С ААТС	ACCATOCATOGOTOCTOTCACCAT
AY714837unCulTuredAr		CCA A C AT A	GAAT CCATTC A AT A A	C TA ACTATCO AACTAC C A	T A IT TOGOC	CATCA A T CATAC	C TCTA TA C A CACACT T C AATC	AC AT CAT T CT TCACC T
AY714852unCulTuredAr		CCA A C AT A	AAT CCATTC A AT A A	C TA ACTATCO RACTACIO A	THA COTCOCO	CATCA A T C TAC	C TCT TA C T CACACT T C AATC	AC AT CAT TT CT TCACCAT
BX649197unCulTuredAr		CCA A C AT A	GAAT CCATTC A AT A A	C TA HACTATCO AACTAC C A	TO A ICOTCOCO	CATCA A T C TAC	CC TCT TTAT A CACAC TT C AACA	AGE ACCCAT CONTACT TOACCAT
AY327048unCulTuredAr		CCA A C AC A	AAT CCATTC A AT C A	C T DACTACCO BACTAC C A	T A IC T A	CACCA A T C TAC	T TCT TT CA A C CACT C CAAATC	AT AC CAT T CT TCACC C
AY714819unCulTuredAr			AAT CCATTC A AT C T	C T ACTATCO AACTAO C A	T A IC TA A	ICACCA A T CATAC	T TCT TT CA A C CACT C C AATC	AT AC CAT TT TO TOACCOC
AY714830unCulTuredAr			AAT CCATTC A AT C A	CT BUTACCO AACTAC C A		CATCA A T CATAC	A TCT TT CA T CACACT T CAAATC	AC AC C T CT TC CC C
AY714870unCulTuredAr	TTCTTACTC T	TCA A C AC A	CAAT CCATTC A AT C A	COUT HACTACCO AACTAC.C.A	T A ICT CA	CATCA A T CATAC	TETCTETT CALLT CACACT TECAAATC	AC AC C T C T CT TCTCC C
					second in the second			

Nicolas Brüggemann & Jörg-Peter Schnitzler | IMK-IFU | Garmisch 1st workshop on aerobic methane formation, 26/27 Feb 2009, Mainz KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe IELMHOLTZ



δ^{13} C of CH₄



Relationship between δ^{13} C-CH₄ and δ^{13} C of bulk plant material

Nicolas Brüggemann & Jörg-Peter Schnitzler | IMK-IFU | Garmisch 1st workshop on aerobic methane formation, 26/27 Feb 2009, Mainz KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe IELMHOLTZ

Range of aerobic CH₄ from living and detached plant material

ng CH ₄ g ⁻¹ DW h ⁻¹	References
ND	Kirschbaum & Walcroft, 2008; Nisbet et al., 2009, two species;
0.03	Vigano <i>et al.,</i> 2008, for a fully ¹³ C- labelled wheat leaf of Dueck et al., 2007, without UV light
0.16–0.7	Our work
0.5–13.5	Wang <i>et al.</i> , 2008, nine emitting species (35 non-emitting species)
-10-42	Dueck <i>et al.</i> , 2007, six species
(not significantly different from 0)	
Up to 32	Vigano <i>et al.,</i> 2008, for a fully ¹³ C- labelled wheat leaf of Dueck <i>et al.</i> , 2007, without UV light
32–49	Beerling <i>et al.</i> , 2008, two species
(not significantly different from 0)	
12–370	Keppler <i>et al.</i> , 2006, five species

Nicolas Brüggemann & Jörg-Peter Schnitzler | IMK-IFU | Garmisch 1st workshop on aerobic methane formation, 26/27 Feb 2009, Mainz KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

Summary

- We have observed release of ¹³C-labelled CH₄ from poplar significantly different from zero under low (UV-free) light conditions after ¹³CO₂ labelling
- The ¹³C-label was detectable in CH₄ released from the plants already several minutes after start of ¹³CO₂ labelling
- However, poplar methane emission rates are at the lower end of the reported CH₄ emission rates from living or detached plant material
- Our work is the first molecular biological proof for the absence of methanogenic microorganisms in plants emitting CH₄ under aerobic conditions

Nicolas Brüggemann & Jörg-Peter Schnitzler | IMK-IFU | Garmisch 1st workshop on aerobic methane formation, 26/27 Feb 2009, Mainz KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

The "perfect" aerobic methane experiment?

Goal:

Elucidation of CH4 mechanism(s) with simultaneous determination of realistic emission rates

- Experiments at ambient gas (CH₄, O₂, CO₂) concentration levels
- Stable isotope labelling essential to differentiate between plant and atmospheric methane
- Analysis of plant-internal reactive oxygen species (ROS)
- Molecular biological verification of the absence of methanogenes
- Application of defined stress situations initiating ROS formation
- ...(open for discussion)

Nicolas Brüggemann & Jörg-Peter Schnitzler | IMK-IFU | Garmisch 1st workshop on aerobic methane formation, 26/27 Feb 2009, Mainz KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

