
Up-scaling methods of greenhouse gas fluxes between the soil and the atmosphere using a measuring tunnel as well as open-path measurement techniques for the flux-gradient method

K. Schäfer, C. Jahn, **S. Emeis** (KIT IMK-IFU, Garmisch, Germany) M. Wiwiorra, C. von der Heide, J. Böttcher, M. Deurer (Univ. of Hannover) D. Weymann (Univ. of Göttingen) A. Schleichardt, A. Raabe (Univ. of Leipzig)

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

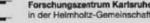
KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

Problems

Insufficient knowledge of the net greenhouse gas (GHG) fluxes from different soil types

High spatial variability of GHG emissions even with one soil type

Up-scaling of the source and sink measurements of GHG necessary


Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Measurement methods for GHG fluxes:

- chambers or boxes $(1 m^2)$ accumulation of emissions, sampling of enclosed air
- chambers or boxes with up to 1000 m² desirable for site-integrated fluxes
- eddy covariance method (1000 m²) micro-meteorological measurements (turbulence), open-path measurements for CO₂ and H₂O only, closed-path for other gases, assumptions on footprint
- flux-gradient method (1000 m²) local measurement of vertical concentration gradients, assumptions on exchange coefficients and footprint
- mass balance method (1 ha) path-averaged (FTIR, DOAS) upwind / downwind (plume) measurements, limited emitting area must be known
- flux gradient method for 1 ha to 10 ha desirable for larger and inhomogeneous sites
- inverse dispersion modelling (1 km²) downwind concentration measurements and Backward Lagrange dispersion modelling

available path-averaging optical remote sensing techniques:

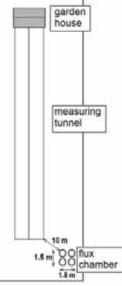
- FTIR absorption spectrometry (N₂O, CO₂, CH₄, CO, H₂O),
- DOAS (NO, NO₂, O₃, SO₂, NH₃, BTX, HCHO)

possible solutions to be analysed here

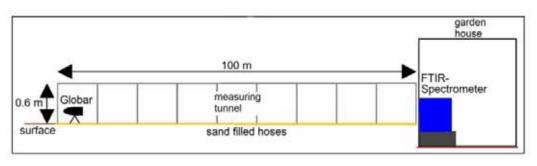
(1) large tunnel with path-averaged concentration measurements

(2)

gradient method based on path-averaged concentration gradients


Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

large tunnel with path-averaged FTIR measurements of N₂O



arrangement of tunnel and a few conventional flux chambers for comparison

up-scaling area:

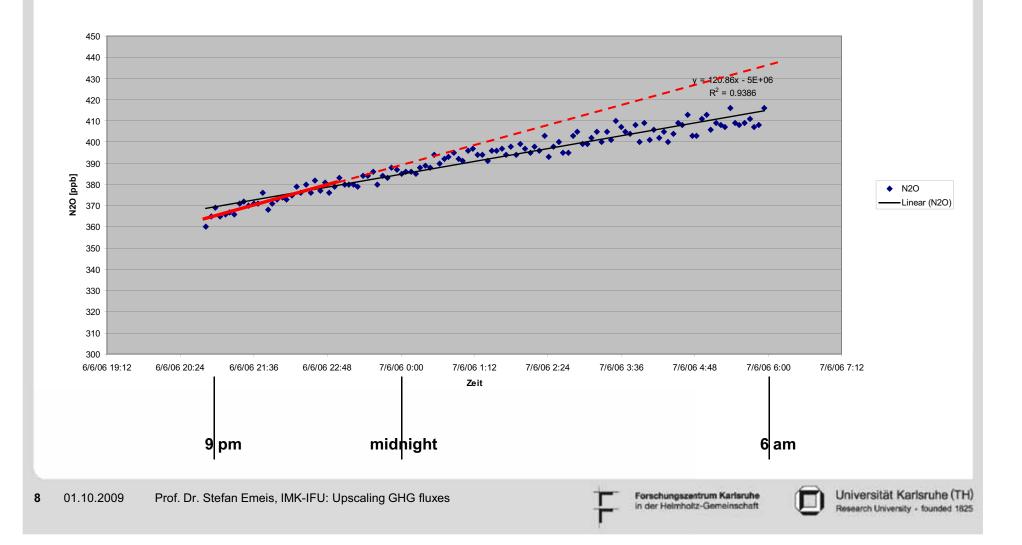
several hundreds of m²

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

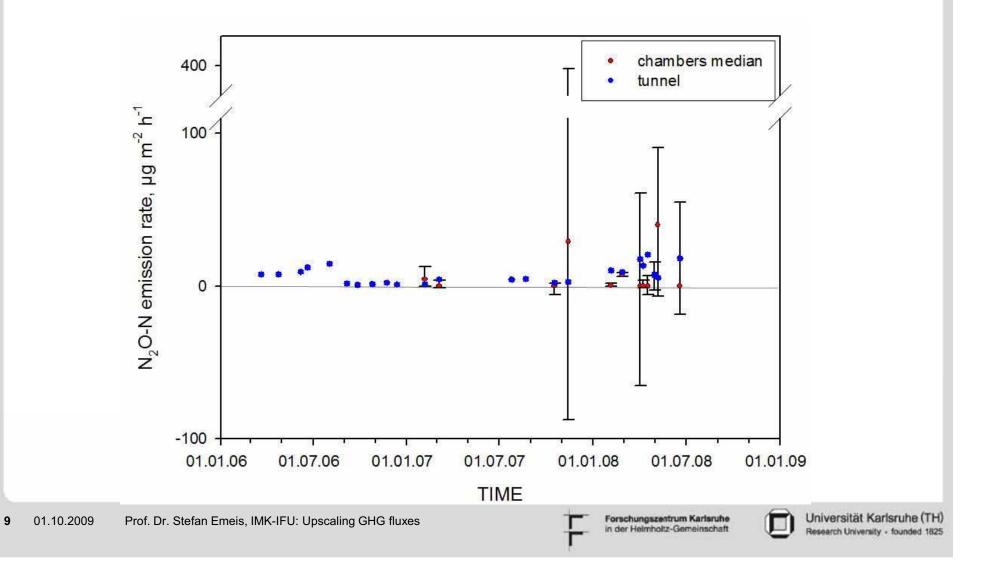
Problems with the tunnel:

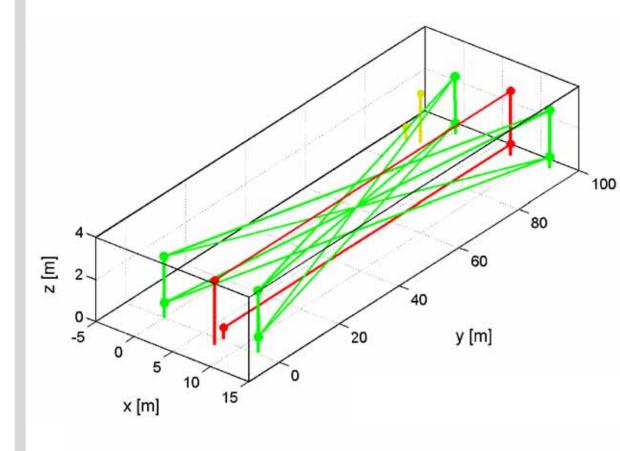
inside conditions different from ambient conditions (temperature, humidity, turbulence (no fan available))

possible leakages of the tunnel cover


saturation of N₂O concentrations after longer times

- → measurements were made at night time
- → periods with linear concentration increase were selected for evaluation


Example: nocturnal increase of N₂O concentration in the tunnel


Measurement results with measuring tunnel

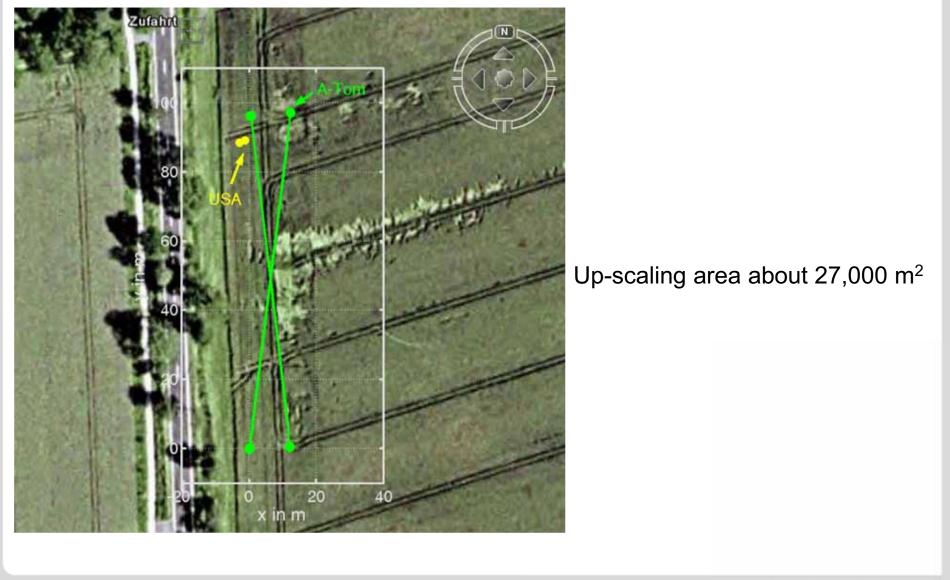
Tunnel 2 - 42 μ g N₂O-N m⁻² h⁻¹, chamber 0.6 - 40 μ g N₂O-N m⁻² h⁻¹

Up-Scaling of N_2O flux measurements using the flux-gradient method

0.50 m and 2.70 m above surface

red:

FTIR for N₂O concentrations (low wind speed required)


green:

Acoustic tomography (area averaging) for horizontal winds / friction velocity

October 2007, June 2008

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Measurements of open-path flux-gradient method

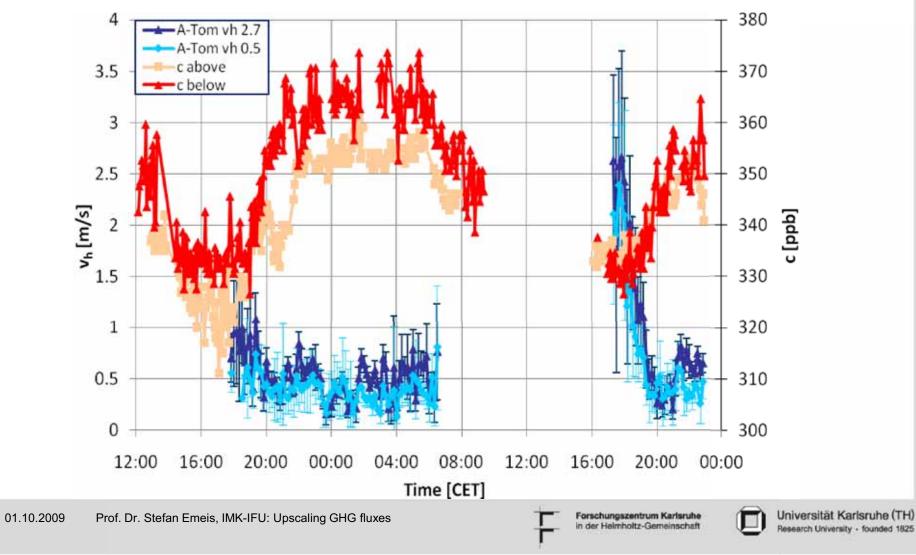
385 3 c below 2.7 380 c above -A-Tom vh 2.7 375 2.4 A-Tom vh 0.5 370 2.1 1.8 365 **[qdd]** 360 355 1.5 **[s/m]** 1.2 **f** 355 350 0.9 345 0.6 340 0.3

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00

Time [CET]

October 2007

335


0

13

Measurements of open-path flux-gradient method

TH)

Problems with the flux gradient method:

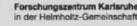
large vertical concentration differences only with very low wind speeds,

then probably the turbulence is too low to apply the flux gradient method

 \rightarrow a correction is necessary

14

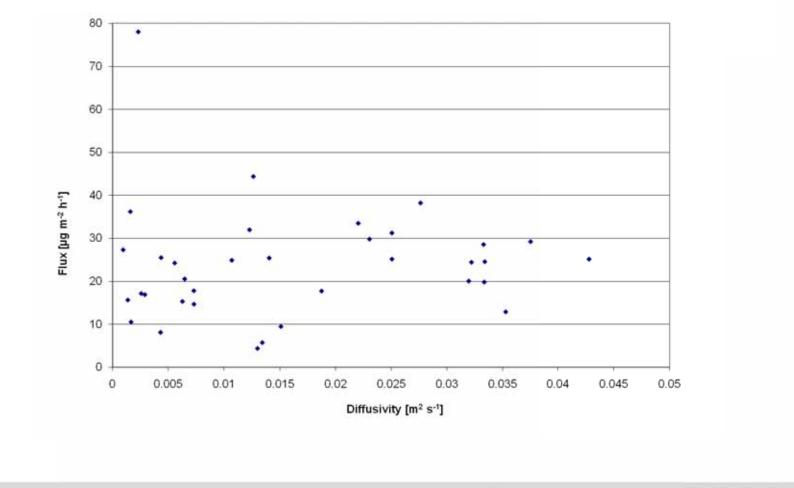
Diffusivity (from measurements):
$$V = \frac{u_*^2}{\frac{\partial u}{\partial z}}$$
 $V_{crit} = 0.15$
 $V_{norm} = \frac{V}{V_{crit}}$
11.1.209 Prof. Dr. Stefan Emeis, IMK-IFU: Upscaling GHG fluxes



a comparison between the fluxes from the flux gradient method and the mean value of the fluxes from the tunnel measurements yielded a dependence (R²=0.29) on the observed diffusivity:

$$F_{norm}^{N_2O} = \frac{F_{FGM}}{F_{tunnel}} = a v_{norm} + b$$

with a = -34 and b = 41. Thus the following correction was applied:


$$F = \frac{F_{FGM}}{av_{norm} + b}$$

diffusivity-corrected N2O flux

The evaluation indicated, that in cases of vanishing winds and turbulence at night:

Molecular diffusion and turbulent transport are important

Further experimental studies necessary to define the parameters a and b

Conclusions:

two additional area-integrating (up-scaling) flux measurement techniques have been tested

[©] the tunnel gives reliable values for areas of several hundreds of m²

⊗ the flux gradient method with path-averaged concentration measurements for nitrous oxide still needs further refinement

- vertical concentration gradients are large enough for low wind speeds only
- low wind speeds mean low turbulence
- in case of low wind speeds flux seems to depend on a combination of molecular and turbulent diffusivity

Thank you for your attention!

Acknowledgement

We like to thank the German Science Association (DFG) for funding this work (grant SCHA 571/6-1 and -3)

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

