

Exchange of climate relevant gases in agricultural ecosystems vulnerable to land use and climate change

Dr. Nicolas Brüggemann

Leader Center of Stable Isotopes

Institute for Meteorology and Climate Research – Atmospheric Environmental Research (IMK-IFU)

A safe operating space for humanity

Rockström et al. (2009), Nature 461, 472-475

Workshop "Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Witzenhausen, 12-13 November, 2009

Projection of surface temperatures

IPCC 2007, AR4, WG1

Projected surface temperature changes for the early and late 21st century relative to the period 1980–1999

Workshop "Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Witzenhausen, 12-13 November, 2009

Projected pattern of precipitation changes

IPCC 2007, AR4, WG1

Relative changes in precipitation (in percent) for the period 2090–2099, relative to 1980–1999, based on the SRES A1B scenario

Global nitrogen flows in cropland

Ecosystems vulnerable to land use and climate change

Water limitation (mainly rainfed agriculture)

Nutrient limitation (mainly nitrogen)

Case studies

Inner Mongolia: Semi-arid grassland

Burkina Faso: Dry-subhumid savanna

Witzenhausen, 12-13 November, 2009

Research questions

Inner Mongolia: How do grazing and water addition affect matter fluxes?

Burkina Faso: How does land-use change affect trace gas exchange?

Workshop "Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Location of the study region in Inner Mongolia

Mean annual T: 0.7°C Mean July T: 20°C

Mean January T: -20°C

Bare Soil Sand Dunes Steppe

Marshland/Water

	Precipitation [mm]			
Mean	343.4			
2003	371.3			
2004	324.6			
2005	166.1			

Research Station

DFG Research Unit 536 "MAGIM"

Intact steppe in Inner Mongolia, PR China

Workshop "Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Witzenhausen, 12-13 November, 2009

Problem: Overgrazing by sheep and goats

Workshop "Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Witzenhausen, 12-13 November, 2009

Result: floristic composition changes

Workshop "Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Witzenhausen, 12-13 November, 2009

Result: reduction of plant cover

Result: Enhanced water erosion

Large-scale implications of steppe degradation

Sand storm in Beijing

Wind erosion = Sand storms

Water erosion

Experimental sites in Inner Mongolia

Automated and manual chamber measurements

Workshop "Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Witzenhausen, 12-13 November, 2009

Reduction of CH₄ uptake by grazing/trampling

Liu et al. 2007, Atmospheric Environment 41, 5948-5958

Significant effects of watering on CO2 and CH4 fluxes

Liu et al. 2008, Advances in Atmospheric Sciences 25, 748-756

Significantly enhanced freeze/thaw N₂O fluxes

Sheepfolds: Large point sources of N₂O-Emissions

Holst et al. 2007, Plant Soil 296, 209-226

Precipitation (mm)

Sheepfolds: Large point sources of N₂O-Emissions

Holst et al. 2007, Plant Soil 296, 209-226

Witzenhausen, 12-13 November, 2009

Importance of point sources for regional N₂O fluxes

Holst et al. 2007, Plant Soil 296, 209-226

Summary for steppe in Inner Mongolia

No significant effect of grazing on soil N₂O fluxes, very low in this steppe anyway

Significant reduction (~50 %) of soil CH₄ uptake due to grazing

Large stimulation of soil CO₂ emissions after water addition

Significant reduction of soil CH₄ uptake after water addition

Export of large amounts of nitrogen from grassland to sheepfolds => hotspots of N₂O, NO and CH₄ emission

Workshop, Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Witzenhausen, 12-13 November, 2009

Location of study area in Burkina Faso

Climate

Mean annual air temperature: 29.5 $^{\circ}$ C Mean annual precipitation: 926 mm

Rainy season: May to October

Witzenhausen, 12-13 November, 2009

Workshop, Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Field sites

Bontioli Dano

Bontioli Reserve nature park, no farming, no tillage, no livestock

used for agriculture since several decades

Witzenhausen, 12-13 November, 2009

used for agriculture since 15 years

Workshop "Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Experiments

Measurements

- CO₂, CH₄ and N₂O soil fluxes in agricultural fields and natural savanna
- Effect of N fertilization on N₂O soil fluxes

Witzenhausen, 12-13 November, 2009

Agricultural practice

Seeds sown in May, no fertilizer application (except fertilizer experiment), topsoil aerated with hoes every 2 to 4 weeks after sowing, harvest in October.

Workshop, Regulation of Soil Organic Matter and Nutrient Turnover in Agriculture"

Manual and automated chamber measurements

Manual: 4 chambers at each site, measured 1-3 times per week

Sampling with syringes in the field

Pneumatically operated chambers

Automated: 3 chambers at each plot, measured continuously (10 values per day)

On-line GC analysis in the field

Mean CH₄ and CO₂ soil fluxes

lowercase letters = significant differences (p < 0.05) between years; uppercase letters = between sites

Brümmer et al. (2009), Global Biogeochemical Cycles 23, GB1001

Mean N₂O fluxes, no fertilization

Brümmer et al. 2008, *Ecosystems* 11, 582–600

 $n = 79-162, \pm SE;$

lowercase letters = significant differences (p < 0.05)

between years; uppercase letters = between sites

Summary for savanna in Burkina Faso

Natural savanna soil strong CH₄ source due to flooding in the rainy season

Agricultural soils weak CH₄ sink

Soil CO₂ emissions higher in natural savanna than in arable land

Soil N₂O emissions low in both natural savanna and arable land

However, NPK fertilizer application leads to a significant increase of N₂O emissions

Conclusions

Anthropogenic **nutrient translocation**, **concentration and loss** in hotspots <u>exacerbates</u> naturally given productivity constraints in vulnerable ecosystems, but <u>increases</u> regional GHG emissions

	Nutrient balances by region (kg ha -1 year -1)						
Inputs and outputs	Western Kenya			North China		Midwest U.S.A	
	N	P	N	P	N	P	
Fertilizer	7	8	588	92	93	14	
Biological N fixation					62		
Total agronomic inputs	7	8	588	92	155	14	
Removal in grain and/or beans	23	4	361	39	145	23	
Removal in other harvested products	36	3					
Total agronomic outputs	59	7	361	39	145	23	
Agronomic inputs minus harvest removals	-52	+1	+227	+53	+10	-9	

Vitousek et al. (2009), Science 324, 1519-1520

Conclusions (2)

Future management has to focus on <u>returning nutrients</u> to productive areas while reducing/mitigating nutrient losses and GHG emissions

"Nutrients in plant and animal products collected broadly across rural landscapes are increasingly concentrated in urban environ[ment]s where waste removal efforts result in transformation of nutrients into gases, dilution into rivers and marine bodies..."

"Only a fraction of these assets (nutrients and carbon) are ever returned to rural lands. As a result, soils are slowly being drained of trace elements, soil carbon reserves are being depleted, and it is necessary to mine nutrients and chemically produce N fertilizer to satisfy crop demands."

DeLuca (2009), Science 326, 665