

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

Application of open and closed-path lasers for improving the estimates of the agricultural emissions of methane and nitrous oxide

Raymond Desjardins¹, Matthias Mauder^{1,2}, Zhiling Gao^{1,3}, Elizabeth Pattey¹, Devon Worth¹, Tom Flesch⁴, Ramesch Srinivasan⁵, Natascha Kljun⁶

¹ Research Branch, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6

² Current affiliation: Atmospheric Environmental Research, Institute of Meteorology and Climate Research, Research Center Karlsruhe (FZK/IMK-IFU), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany

³ Current affiliation: College of Resources and Environmental Science, Agricultural University of Hebei, 14 Baoding, Hebei, China 071000

⁴ Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3

⁵ National Research Council Canada, Institute for Aerospace Research, Flight Research Laboratory Research Road, Ottawa, ON Canada K1A 0R6

⁶ Swansea University, U.K.

Outline

•Greenhouse gas emissions from agricultural sources

- •A tool to calculate GHG emissions at the farm level
- •Open-path lasers for the measurement of CH₄ and NH₃ emissions from agricultural sources
- •Closed path lasers for the measurement of CH₄ and N₂O emissions (field and regional scales)

•Summary

Agricultural GHG Emissions

Global sources of anthropogenic greenhouse gas emissions: Methane and Nitrous Oxide

Methane emissions from the energy, waste and agriculture sectors amount to about 350 Tg CH_4 per year or 7350 Tg CO_2 eq. (1Tg = 1 million tonnes).

Nitrous oxide emissions from all sectors amount to 6.7-8.1 Tg N_2 O-N per year or 2077-2511 Tg CO_2 eq.

Source: Denman et al. (2007)

Agriculture's contribution to global methane and nitrous oxide emissions

Agriculture is responsible for approximately 40-50% of global methane emissions.

Agriculture is responsible for approximately 50-70% of global nitrous oxide emissions.

Source: Denman et al. (2007)

Agricultural Sources of Methane

Enteric fermentation (digestion) by ruminant animals 86 Tg CH₄ per year

Management of animal manures 18 Tg CH₄ per year

Source: Denman et al. (2007)

6

Agricultural Sources of Nitrous Oxide

Agricultural soils – Direct and indirect emissions from application of synthetic/manure fertilizers, crop residue decomposition, waste deposition by grazing animals and cultivation of organic soils 4.7 Tg N₂O-N.

Manure Management – Direct emissions from manure storage $0.5 \text{ Tg N}_2\text{O-N}.$

7 Source: US EPA (2006)

Greenhouse Gas Emissions by Sector in Canada – 2006

Canada's Greenhouse Gas Emissions

Holos – A tool to calculate whole farm GHG emissions in Canada

Knowledge gained during the Model Farm program has been synthesized in a user friendly computer program, Holos, which estimates whole farm GHG emissions.

A tool to estimate and reduce GHGs from farms

Program available for download at: www4.agr.gc.ca. Follow the 'Science and Innovation' link

How do you build such a tool?

Micrometeorological Mass Balance (Integrated Horizontal Flux) method

- Appropriate for heterogeneous and small areas (<0.2 ha)
- Difference in concentration between OUT and IN tower (ΔC)

Strong source with small area (eg. manure tank)

Mass Balance Technique – Modified Micrometeorological Mass Difference approach

•Simplified approach, does not require air sampling on all four sides, only upwind and downwind

•Width of laser line should be at least 6 times the width the of the source area

•Limited by wind direction, which should not be more than 45° to the laser lines

Testing the MMD technique with a synthetic tracer release

The MMD technique was tested using a synthetic tracer (CH_4) release to simulate on farm release by cattle.

Fig. 5. Recovery and release rates in all acceptable releases. Recoveries are for the integrated instantaneous horizontal fluxes and an exclusion angle of 10°.

Methane recovery slightly exceeded methane release and was found that it could identify 10% changes in the rate of emission, provided the rate of emission was greater than about 40 mg CH_4 s⁻¹, equivalent to roughly 10 dairy cattle.

Micrometeorological tools: Inverse Dispersion Modeling

Measuring emissions is about relating concentration observations (C) to emission rates (Q).
 Inverse-dispersion methods use atmospheric dispersion models to make the C-Q connection:

- •Measure downwind C
- •Model estimates C-Q relationship for given winds & source configuration
- •Q = Measured C * Model (Q/C)

Gives substantial economy & flexibility -- especially with open-path sensors
bLS is a widely used variant of the inverse-dispersion method

Measurement Tools – Open path lasers

•Boreal Laser GasFinder or PKL Spectra-1 open path lasers for measurement of CH_4 and NH_3 emissions from agricultural sources (e.g. feedlots, barns, manure tanks, . . .)

•Lasers operate in the NIR (1,300 to 1,700 nm) with a spectral width of about 0.3 nm

•Approximate sensitivity for 100 m path length – CH_4 : 0.02 ppm; NH_3 : 0.1 ppm

•Path length of up to 1 km, depending on target gas

Estimating CH₄ emissions from synthetic barn release

Preliminary results of barn release in 2008

The flux rates from the barn were 60 L/min (140 dairy cows) and 80 L/min.

The criteria of the model for u_* , L and z_0 were met.

The barn height *h* was 6 m.

Continuous Measurement of Gas Emissions

Set-up:

- •2-lasers mounted on computer controlled pantilt aiming systems, each monitor two sides of a rectangular area
- •Concentration can be monitored for all wind directions, making continuous measurements possible

Source: Gao et al. (2009)

Influence of Atmospheric Stability on Gas Recovery Ratios

Estimating Diurnal Patterns of Emission for CH₄

Ratio of usable period to total periods in Ottawa, Canada

•Periods of low wind velocity or atmospheric stability mean that not all measurements will be acceptable

•This is more common at night

•Continuous measurement over a period of 6 days should yield sufficient data to generate the diurnal curve of emissions

Estimating Methane and Ammonia Emissions from a Beef Feedlot

Set-up:

•Lasers and reflectors are established in the alley of a large (500m x 2,500m; 32,000 head capacity) beef feedlot

Estimating Methane and Ammonia Emissions from a Beef Feedlot

Methane emissions represent about 4% of Gross Energy Intake by cattle. IPCC default number is 3%

Ammonia emissions represent about 72% of nitrogen intake.

Nitrous oxide emissions measured in 1996 over a soybean field in Ottawa Canada, using a tower-based system

Tower based N_2O flux estimates over spring wheat, 2004

Source: Desjardins et al (2009)

Hourly binned estimates of N_2O flux above a fertilized corn field, grouped by day of year

Source: Pattey et al. (2006)

Relaxed Eddy Accumulation (REA) Technique

Inlet

• Alternate to eddy covariance technique to measure fluxes of trace gases for situations where fast-response analyzers are unavailable

• Air samples from updrafts and downdrafts are collected in two separate reservoirs for later analysis

• In EA, sample flow rate is proportional to w; this requirement is 'relaxed' in REA (i.e., full flow into up or down reservoir depending on the direction of the vertical wind)

 $F_{\gamma} = \overline{W'\chi'} = A\sigma_w (\chi_{Up} - \chi_{Down})$

DOWN

Comparison of EC and REA Flux Estimates of CO₂

- Forest and agricultural fields
- Stainless steel canisters, with in-line magnesium percholate to remove water

Relaxed eddy accumulation instrumentation

Resolution of the REA system for N₂O flux measurement

32

Crop types in the aircraft footprint

Land use information in 2001 within footprint of aircraft transects

N₂O emissions during and right after snowmelt at the Eastern Canada study sites in 2001

Each data point represents the average of 3 samples, collected during two consecutive 10 km flight legs (total flight distance for one data point is \approx 20 km)

N₂O emissions right after snowmelt and after planting at the Eastern Canada study sites in 2003

36

Multi-year comparison of aircraft and modeled estimates of N₂O emissions

Multi-year comparison of results	of N ₂ O emis	sions: Su	mmary
			The second
Year Measurement Period	Casselman*	Morewood	DNDC ¹
Modeled estimated of N ₂ O emissions measured estimates of N ₂ O emission However, modeled estimates only re	s are on average ns. present direct er	nissions, whe	an the ereas using the
IPCC methodology indirect emission May 1910 Jun 12 2004 Mar 29 to Jun 4	s are about 20% 1.77	of total emiss 1.29	sions. 1.11

* Measured using the aircraft-based REA method

¹ Modeled by DNDC using the crop distribution for the Casselman flight track

Resolution of the REA system for CH₄ flux measurement

$FCH_4 = 0.56 \times 10^{10}$	σ _w ×dCH4	APP AND
dCH4(ppbv)	$\sigma_{w} = 0.3 \text{ m s}^{-1}$	$\sigma_{w} = 0.9 \text{ m s}^{-1}$
0.3	1150	3650 kg km ⁻² y ⁻¹

39

Estimating regional scale methane emissions

For each geo-referenced barn location, there is an estimate of animal type, population and manure management system

0.00110	3020401	TU	15	7.5	10	Dany	<u>∠</u>	70	ngulu	 4	100	
502223.4	5020693	11	74	74	11	Beef	1	20	solid	1	20	
503046.9	5021011	12	75	75	13	Dairy	2	100	liquid	2	150	
503218.1	5021084	13	76	76	14	Dairy	2	300	solid	1	450	
504147.7	5021508	14	77	77	15	Dairy	2	60	liquid	2	90	
504791.8	5023196	🕈 15	78	78	16	Dairy	2	50	liquid	2	75	
503927.5	5022837	16	79	79	17	Dairy	2	20	solid	1	30	
503210	5022552	17	80	80	18	Dairy	2	25	solid	1	37.5	
500396.9	5021386	18	81	81	19	Dairy	2	80	liquid	2	120	
499076	5021378	19	82	82	20	Dairy	2	30	liquid	2	45	
198766.2	5022209	20	83	83	21	Beef	1	35	solid	1	35	
198415.6	5022185	21	84	84	22	Dairy	2	40	liquid	2	60	
199010.8	5022487	22	85	85	23	Dairy	2	60	liquid	2	90	
199108.7	5022323	23	86	86	24	Beef	1	30	solid	1	30	
499549	5022527	24	87	87	25	Dairy	2	90	liquid	2	135	
500878	5023016	25	88	88	26	Dairy	2	30	s/I	3	45	
501090	5023294	26	89	89	27	Reef	1	20	biloz	1	20	
501448.8	5023	Caa	rofor			_ h	- fra	منطب		2	90	
501726	5023	Geo	-refer	encea	uata	apase		WIIIC	1110	1	90	
501962.5	5023		ootir	noto n	noth	ono c	minoio	no		1	120	
502443.5	5023		estii	naten	netn	anee	11113510	115		1	37.5	
1005 (A. 4)										4	400	

Estimated Agricultural CH₄ Emissions

Regional CH₄ Emissions, 2003 and 2004

Date	СМ	MW	СМ	MW		
	Aircraft REA Estimate kg CH ₄ km ⁻² yr ⁻¹		Barn Estimate within flux footprint *)			
			kg CH ₄ km ⁻² yr ⁻¹			
Sept. 3, 2003	10400	7100	18665	12540		
Sept. 18, 2003	³ 9200 1820		13130	8366		
Jul. 21, 2004	24800	19200	16641	12159		
Oct. 8, 2004	11700	13100	16247	10679		
Avg.	14025	14400	16171	10936		

*) Results calculated using the backward Lagrangian stochastic model of Kljun et al. (2002)

Summary

•Several examples were presented of laser based techniques to measure CH_4 and N_2O emissions from agroecosystems

•These techniques allow measurements for scales ranging from point sources to regions

•First example of verification of GHG inventory at a regional scale using the relax eddy accumulation technique- The measurements show that N_2O and CH_4 emission estimates in the Canadian GHG inventory appear to be realistic

•There is a need to improve upon the accuracy of the methane concentration measurements. There is also a need to obtain more regional flux measurements to better capture the diurnal and annual cycles

