

On the determination of atmospheric boundary layer structures by ground-based remote sensing (SODAR, lidar/ceilometer, RASS)

Stefan Emeis stefan.emeis@kit.edu

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Atmospheric Environmental Research

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Introduction

-features of the atmospheric boundary layer

-detection techniques

diurnal variation of PBL

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing

03.11.2010

special types of PBL

03.11.2010

4

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Basic remote sensing techniques

name	princple	spatial resolution	direction	type
RADAR	backscatter, electro-magnetic pulses, fixe wave length	d profiling	scanning, slanted	active, monostatic
SODAR	backscatter, acoustic pulses, fixed wave length	profiling	fixed, slanted, vertical	active, usually monostatic
LIDAR	backscatter, optical pulses, fixed wave length(s)	profiling	scanning, fixed, horizontal, slanted, vertical	active, monostatic
RASS	backscatter, acoustic, electro-magnetic, fixed wave length	profiling	fixed, vertical	active, monostatic
FTIR	absorption, infrared, spectrum	path-averaging	fixed, horizontal, slanted	active, bistatic or passive
	emission, infrared, spectrum	path-averaging	fixed, horizontal, slanted	passive
DOAS	absorption, optical, fixed wave lengths	path-averaging	fixed, horizontal	active, bistatic
radiometry	electro-magnetic, fixed wave length(s)	averaging, profiling	fixed, scanning, slanted, vertical	passive
tomography	travel time, acoustic, fixed wave length	horizontal distribution	fixed, horizontal	active, multiple emitters and receivers

subject of this lecture

Institute for Meteorology and Climate Research -Atmospheric Environmental Research

Frequencies for atmospheric remote sensing

Emeis, S., 2010: Measurement Methods in Atmospheric Sciences - In situ and remote. Borntraeger, Stuttgart, 272 pp., 103 figs, 28 tables, ISBN 978-3-443-01066-9.

SODAR

wind, turbulence, temperature gradients, mixing-layer height

7 11.06.2010 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

monostatic SODAR: measuring principles

deduction:

- sound travel time backscatter intensity Doppler-shift
- = height
- = turbulence
- = wind speed

Emission of sound waves into three directions:

in order to measure all three components of the wind (horizontal and vertical)

The SODAR equation:

$P_{R} = r^{2} (c_{s} \tau A \epsilon/2) P_{0} \beta_{s} e^{-2\sigma r} + P_{bg}$

- **P**_R received power,
- P₀ emitted power,
- ε antenna efficiency,
- A effective antenna area,
- σ sound absorption in air due to classical and molecular absorption due to the collision of water molecules with the oxygen and nitrogen molecules of the air,
- r distance between the scattering volume and the instrument,
- τ pulse duration (typically between 20 and 100 ms),
- β_s backscattering cross-section (typically in the order of 10⁻¹¹ m⁻¹ sr⁻¹),
- c_s sound speed,
- P_{bg} background noise.

Emitted power: ~ 10³ W, received (backscattered) power: 10⁻¹⁵ W

The SODAR equation:

$$P_{R} = r^{2} (c_{s} \tau A \epsilon/2) P_{0} \beta_{s} e^{-2\sigma r} + P_{bg}$$

The ratio of the two terms on the right-hand side of the SODAR equation is called signal-to-noise ratio (usually abbreviated as SNR).

The backscattering cross-section β_s is a function of the temperature structure function C_T^2 (Tatarskii 1961).

For a monostatic SODAR we find (Reitebuch 1999) when using the wave number $k = 2\pi/\lambda$:

 $\beta_{\rm s}(180^\circ) = 0,00408 \ k^{1/3} \ C_T^2 \ /T^2$

Reitebuch, O., 1999: SODAR-Signalverarbeitung von Einzelpulsen zur Bestimmung hochaufgelöster Windprofile. Schriftenreihe des Fraunhofer-Instituts für Atmosphärische Umweltforschung, Shaker Verlag GmbH Aachen, Bd. 62, 178 S.

Tatarskii, V.I., 1971: The effect of the turbulent atmosphere on wave propagation. Kefer Press, Jerusalem, 472 S.

Großes SODAR des IMK-IFU (METEK DSDR3x7)

Frequenz: 1500 Hz Reichweite: 1300 m Auflösung: 20 m unterste Messhöhe: ca. 60 m

Höhe: 4 m Breite: 1,50 m Länge: 10 m Gewicht: 8 t

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

SODAR sample plot (diurnal evolution, low-level jet)

horizontal wind speed and direction

V2DD	
V195	
V ₁₉₀	
V ₁₈₅	
Vian	Willing and the second s
Vers	Childhill Children and Children
Vern	The second se
v ¹⁷⁰	Constitution and a second property for the second
⁷⁶⁵	and the second
^{°160}	Charles and the second se
155	and the second
^v 150	
V145	Manager and the second s
V14D	
V ₁₃₅	Milling and a start a start and a start a start a start a start
V13D	MANNA AND AND AND AND AND AND AND AND AND
V-125	milling and a second of the second and t
V-100	THE MANUTURE AND A THE AND A STATE
Var	
Viin	Construction (Construction (Co
V	15- AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
0105	MANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
*10D	And the second
^v 95	
^v 90	
Ves	
V80	11111111111111111111111111111111111111
V75	TO THE TALL AND TH
V7D	1 Million and a second and a second strain and a second strain and a second sec
Vas	mannananananananananananananananananana
Ven	
V	The second s
Vee	274747474747474747474747474747474747474
3 45	
č 35	
°3D	
V25	
×20	
V15	wayayayayayayayayayayayayayayayayayayay
no	
~s I	_ · · · · · · · · · · · · · · · · · · ·
	19.06 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
	ADD.: IV MITTEL des WINdVektors (V_x) für dusgewählte Hohen (x) \rightarrow = 3 m/s Westwind
	IFU-MiniSODAR Sachsen-Anhalt Juni 1999
	IFU GAP

12 11.06.2010 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

SODAR sample plot (daytime convective BL)

13 11.06.2010

Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

SODAR sample plot (lifted inversion)

14 11.06.2010

Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Algorithms to detect MLH from SODAR data

Ceilometer

aerosol detection, mixing-layer height

16 11.06.2010 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Ceilometer/LIDAR measuring principle

detection:

travel time of signal backscatter intensity Doppler-shift

- = height
- = particle size and number distribution
- = cannot be analyzed from ceilometer data

(available only from a Wind-LIDAR: velocity component in line of sight)

The LIDAR equation:

$P_R(\lambda, r) = r^2 \left(c\tau A \varepsilon/2 \right) P_0 \left[\beta_m(\lambda, r) + \beta_p(\lambda, r) \right] e^{-2\sigma r} + P_{bg}$

- *r* distance between the LIDAR and the backscattering object,
- c speed of light,
- *τ* pulse duration,
- A antenna area,
- ε correction term for the detector efficiency and losses due to the lenses,
- P_0 emitted energy,
- β_m backscatter coefficient for molecules
- β_p backscatter coefficient for particles,
- σ absorption of light in the atmosphere,
- P_{bq} background noise.

For a ceilometer β_m is negligible and only β_p is important

ceilometer sample plot (daytime convective BL)

optical backscatter intensity

negative vertical gradient of optical backscatter intensity

stefan.emeis@kit.edu Institute for Meteorology and Climate Research -Atmospheric Environmental Research

Algorithm to detect MLH from Ceilometer-Daten

criterion

minimal vertical gradient of backscatter intensity (the most negative gradient)

Different gradient methods (see Sicard et al. 2006, BLM 119, 135-157) Karlsruhe Institute of Technology

comparison of two different ceilometers

LD40

two optical axes wave length: 855 nm height resolution: 7.5 m max. range: 13000 m

CL31

one optical axis wave length: 905 nm height resolution: 5 m max. range: 7500 m

comparison of LD40 and CL31

24 11.06.2010

Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.e

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Eyjafjallajökull ash cloud over Southern Germany

Doppler windlidar

wind, turbulence, aerosol detection, mixing-layer height

Doppler windlidar measuring principle

detection:

travel time of signal backscatter intensity depolarisation Doppler-shift

- = height
- = particle size and number distribution

= particle shape

= wind speed in the line of sight

mobile Doppler windlidar from Halo Photonics

RASS

temperature, wind, turbulence, mixing-layer height

30 11.06.2010 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

RASS (radio-acoustic remote sensing)

measures vertical temperature profiles

Bragg-RASS: windprofiler plus acoustic component

Doppler-RASS: SODAR plus electro-magnetic component

UHF RASS (boundary layer)

VHF RASS (troposphere)

RASS: frequencies

Bragg condition: acoustic wavelength = $\frac{1}{2}$ electro-magnetic wavelength

Emeis, S., 2010: Measurement Methods in Atmospheric Sciences - In situ and remote. Borntraeger, Stuttgart, 272 pp., 103 figs, 28 tables, ISBN 978-3-443-01066-9.

32 11.06.2010 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

SODAR-RASS (Doppler-RASS)

(METEK)

acoustic frequ.: 1500 – 2200 Hz radio frequ.: 474 MHz resolution: 20 m lowest range gate: ca. 40 m

vertical range: 540 m

Bragg-RASS

acoustic frequ.: about 3000 Hz radio frequ.: 1290 MHz resolution: 50 m lowest range gate: ca. 200 m vertical range: 1000 m

 34
 11.06.2010
 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing
 stefan.emeis@kit.edu
 Institute for Meteorology and Climate Research – Atmospheric Environmental Research

example RASS data: summer day potential temperature (left), horizontal wind (right)

35

11.06.2010

Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

example RASS data: winter day potential temperature (left), horizontal wind (right)

36

example RASS data: inversion potential temperature (left), horizontal wind (right)

11.06.2010 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

37

temperature profile and pollution comparison of RASS data (potential temperature, right)

CL31 Augsburg AVA \log_{10} of backscatter with MLH on 01.03.2009 in $10^{-9}\,m^{-1}\,sr^{-1}$

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

RASS data Augsburg February 2009

potential temperature (top), backscatter SODAR (middle), Ceilometer (bottom)

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

RASS data Augsburg February 2009

potential temperature (top), MLH RASS (middle), MHL SODAR/Ceilo (bottom)

40 11.06.2010

Prof. Dr. Stefan Emeis - Mixing-layer neight by remote sensing

steran.emeis шки.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Summary

41 11.06.2010 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Conclusions:

Some State State
 Some State
 Some State
 MLH, inversions, and stable layers can easily be detected, wind profiles are additionally available.

Does not work properly under high wind speeds. Restricted range.

② ③ ● ▲ ▲ Ceilometer/windlidar detects aerosol distribution and water droplets. It has to be assumed that the aerosol follows the thermal structure of the atmosphere. Inversions and MLH can indirectly be inferred with a MLH algorithm. Wind from windlidar. Does not work properly in extreme clear (aerosol-free) air and during precipitation events and fog.

SODAR detects temperature fluctuations and gradients, but no absolute temperature. Inversions and stable layers can indirectly be inferred with a MLH algorithm. Wind and turbulence. <u>Does not work properly</u> under perfectly neutral stratification, with very high wind speeds, and during stronger precipitation events. Restricted range.

Literature

43 11.06.2010 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

SODAR:

Asimakopoulos, D.N., C.G. Helmis, J. Michopoulos, 2004: Evaluation of SODAR methods for the determination of the atmospheric boundary layer mixing height. - Meteor. Atmos. Phys. 85, 85–92.

Beyrich, F., 1997: Mixing height estimation from sodar data – a critical discussion. - Atmos. Environ. 31, 3941–3953.

Ceilometer:

Schäfer, K., S.M. Emeis, A. Rauch, C. Münkel, S. Vogt, 2004: Determination of mixing-layer heights from ceilometer data. In: Remote Sensing of Clouds and the Atmosphere IX. Schäfer, K., A. Comeron, M. Carleer, R.H. Picard, N. Sifakis (Eds.), Proc. SPIE, Bellingham, WA, USA, Vol. 5571, 248–259.

Sicard, M., C. Pérez, F. Rocadenbosch, J.M. Baldasano, D. García-Vizcaino, 2006: Mixed-Layer Depth Determination in the Barcelona Coastal Area From Regular Lidar Measurements: Methods, Results and Limitations. - Bound.-Lay. Meteor. 119, 135–157.

RASS:

Engelbart, D.A.M., J. Bange, 2002: Determination of boundary-layer parameters using wind profiler/RASS and sodar/RASS in the frame of the LITFASS project. Theor. Appl. Climatol. 73, 53–65.

Emeis, S., K. Schäfer, C. Münkel, 2009: Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. Meteorol. Z., 18, 149-154. (Open access, freely available from http://dx.doi.org/10.1127/0941-2948/2009/0365)

Reviews:

Emeis, S., K. Schäfer, C. Münkel, 2008: Surface-based remote sensing of the mixing-layer height – a review. -Meteorol. Z., 17, 621-630. (Open access, freely available from http://dx.doi.org/10.1127/0941-2948/2008/0312)

Emeis, S., M. Harris, R.M. Banta, 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. - Meteorol. Z., 16, 337-347.

Books:

Emeis, S, 2010: Measurement Methods in Atmospheric Sciences. In situ and remote. Series: Quantifying the Environment, Vol. 1. Borntraeger Stuttgart. XIV+257 pp., 103 Figs, 28 Tab. ISBN 978-3-443-01066-9.

Emeis, S, 2011: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Series: Atmospheric and Oceanographic Sciences Library, Vol. 40. 1st Edition., X+174 pp. 114 illus., 57 in color., H/C. ISBN: 978-90-481-9339-4, e-ISBN 978-90-481-9340-0, ISSN 1383-8601, DOI: 10.1007/978-90-481-9340-0

Thank you very much for your attention

11.06.2010

Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu

www.imk-ifu.kit.edu

