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Introduction
-features of the atmospheric boundary layer

-detection techniques
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diurnal variation of PBL

vertical structure of PBL internal layers in PBL
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special types of PBL

urban urban

forestmarine
Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing      stefan.emeis@kit.edu03.11.2010



Institute for Meteorology and Climate Research –
Atmospheric Environmental Research

5 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing      stefan.emeis@kit.edu11.06.2010

name princple spatial resolution direction type

RADAR backscatter, electro-magnetic pulses, fixed 
wave length

profiling scanning, slanted active, monostatic

SODAR backscatter, acoustic pulses, fixed wave 
length

profiling fixed, slanted, vertical active,
usually monostatic

LIDAR backscatter, optical pulses, fixed wave 
length(s)

profiling scanning, fixed, horizontal, 
slanted,  vertical

active, monostatic

RASS backscatter, acoustic, electro-magnetic, 
fixed wave length

profiling fixed, vertical active, monostatic

FTIR

absorption, infrared, spectrum path-averaging fixed, horizontal, slanted active, bistatic or passive

emission, infrared, spectrum path-averaging fixed, horizontal, slanted passive

DOAS absorption, optical, fixed wave lengths path-averaging fixed, horizontal active, bistatic

radiometry electro-magnetic, fixed wave length(s) averaging, profiling fixed, scanning, slanted, 
vertical

passive

tomography travel time, acoustic, fixed wave length horizontal distribution fixed, horizontal active, multiple emitters and 
receivers

Basic remote sensing techniques
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Emeis, S., 2010: Measurement Methods in Atmospheric Sciences - In situ and remote. Borntraeger, Stuttgart, 
272 pp., 103 figs, 28 tables, ISBN 978-3-443-01066-9.



Institute for Meteorology and Climate Research –
Atmospheric Environmental Research

7 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing      stefan.emeis@kit.edu11.06.2010

SODAR
wind, turbulence, temperature gradients, 

mixing-layer height
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height

time
  emit receive

monostatic SODAR: measuring principles

© Scintec, Tübingen

deduction: 

sound travel time         =  height
backscatter intensity =  turbulence
Doppler-shift =  wind speed

Emission of sound waves 
into three directions:

in order to measure all three
components of the wind
(horizontal and vertical)
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The SODAR equation:

PR = r-2 (csτAε/2) P0 βs e-2σr + Pbg

PR received power, 
P0 emitted power, 
ε antenna efficiency, 
A    effective antenna area, 
σ    sound absorption in air due to classical and molecular absorption due to the 

collision of water molecules with the oxygen and nitrogen molecules of the air, 
r     distance between the scattering volume and the instrument, 
τ pulse duration (typically between 20 and 100 ms), 
βs backscattering cross-section (typically in the order of 10-11 m-1 sr-1), 
cs sound speed, 
Pbg background noise. 

Emitted power: ~ 103 W, received (backscattered) power: 10-15 W
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The SODAR equation:

PR = r-2 (csτAε/2) P0 βs e-2σr + Pbg

The ratio of the two terms on the right-hand side of the SODAR equation is called 
signal-to-noise ratio (usually abbreviated as SNR). 

The backscattering cross-section βs is a function of the temperature structure 
function CT

2 (Tatarskii 1961). 

For a monostatic SODAR we find (Reitebuch 1999) 
when using the wave number k  = 2π/λ: 

βs(180°) = 0,00408 k1/3 CT
2 /T2

Reitebuch, O., 1999: SODAR-Signalverarbeitung von Einzelpulsen zur Bestimmung hochaufgelöster Windprofile. 
Schriftenreihe des Fraunhofer-Instituts für Atmosphärische Umweltforschung, Shaker Verlag GmbH Aachen, Bd. 62, 178 S.

Tatarskii, V.I., 1971: The effect of the turbulent atmosphere on wave propagation. Kefer Press, Jerusalem, 472 S.
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Großes SODAR
des IMK-IFU
(METEK DSDR3x7)

Frequenz:    1500 Hz
Reichweite:  1300 m
Auflösung:        20 m
unterste
Messhöhe:  ca. 60 m

Höhe:     4 m
Breite:    1,50 m
Länge:  10 m
Gewicht: 8 t
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SODAR sample plot (diurnal evolution, low-level jet)

horizontal wind speed and direction
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SODAR sample plot (daytime convective BL)

acoustic backscatter intensity sigma w

2 days, midnight to midnight

40 – 300 m
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SODAR sample plot (lifted inversion)

acoustic backscatter intensity sigma w

1 day, midnight to midnight

40 – 400 m
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criterion 1:
upper edge
of high
turbulence

criterion 2:
surface and
lifted
inversions

MLH = Min (C1, C2)

acoustic backscatter intensity acoustic backscatter intensity

height height

upper edge of 
high turbulence

upper edge of 
high turbulence

lifted 
inversion

surface
inversionlow 

turb.

well-
mixed 
layer

nocturnal 
stable layer

example 1: daytime example 2: night-time

Algorithms to detect MLH from SODAR data
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Ceilometer
aerosol detection, mixing-layer height
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Ceilometer/LIDAR measuring principle

detection: 

travel time of signal = height
backscatter intensity = particle size and number distribution
Doppler-shift = cannot be analyzed from ceilometer data

(available only from a Wind-LIDAR: velocity component in line of sight) 

height

time
  emit receive
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The LIDAR equation:

PR(λ,r) = r-2 (cτAε/2) P0 [βm(λ,r) + βp(λ,r)] e-2σr + Pbg

r distance between the LIDAR and the backscattering object,
c speed of light, 
τ pulse duration, 
A antenna area, 
ε correction term for the detector efficiency and losses due to the lenses, 
P0 emitted energy, 
βm backscatter coefficient for molecules 
βp backscatter coefficient for particles, 
σ absorption of light in the atmosphere, 
Pbg background noise.

For a ceilometer βm is negligible and only βp is important
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ceilometer sample plot (daytime convective BL)
negative vertical gradient of

optical backscatter intensity optical backscatter intensity
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optical backscatter intensity vertical gradient of
optical backscatter intensity

height height

minimum
gradient

largest
minimum
gradient

criterion

minimal vertical
gradient of backscatter
intensity (the most
negative gradient)

Algorithm to detect MLH from Ceilometer-Daten
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logarithmic gradient minimum

gradient minimum

inflection point method
(minimum of 2nd derivative)

Different gradient methods (see Sicard et al. 2006, BLM 119, 135-157)
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LD40

two optical axes
wave length: 855 nm
height resolution: 7.5 m
max. range: 13000 m

CL31

one optical axis
wave length: 905 nm
height resolution: 5 m
max. range: 7500 m 

comparison of two different ceilometers
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comparison of LD40 and CL31
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Eyjafjallajökull ash cloud over Southern Germany
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Doppler windlidar
wind, turbulence, aerosol detection, 

mixing-layer height
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Doppler windlidar measuring principle

detection: 

travel time of signal = height
backscatter intensity = particle size and number distribution
depolarisation = particle shape
Doppler-shift = wind speed in the line of sight

height

time
  emit receive
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mobile Doppler windlidar from Halo Photonics
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sample data from
windlidar

April 16, 2010

by
Univ. of Reading

taken at

Chilbolton, UK

volcanic ash
from
Eyjafjallajokull
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RASS
temperature, wind, turbulence,

mixing-layer height
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RASS (radio-acoustic remote sensing)

measures vertical temperature profiles

Bragg-RASS: windprofiler plus acoustic component

Doppler-RASS: SODAR plus electro-magnetic component

UHF RASS (boundary layer)

VHF RASS (troposphere)
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RASS: frequencies

Bragg condition: 
acoustic wavelength = ½ electro-magnetic wavelength

Emeis, S., 2010: Measurement Methods in Atmospheric Sciences - In situ and remote. Borntraeger, Stuttgart, 
272 pp., 103 figs, 28 tables, ISBN 978-3-443-01066-9.
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SODAR-RASS
(Doppler-RASS)

(METEK)

acoustic frequ.: 1500 – 2200 Hz
radio frequ.:      474 MHz
resolution:           20 m
lowest
range gate: ca.    40 m 

vertical range: 540 m
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Bragg-RASS

acoustic frequ.: about 3000 Hz
radio frequ.:      1290 MHz
resolution:             50 m
lowest
range gate: ca.    200 m 

vertical range: 1000 m
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example RASS data: summer day
potential temperature (left), horizontal wind (right)

15°C 27°C

28°C21°C
300 m

40 m
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example RASS data: winter day
potential temperature (left), horizontal wind (right)

-10°C -2°C

10°C
300 m

40 m
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example RASS data: inversion
potential temperature (left), horizontal wind (right)

4°C
7°C

8°C

7°C

300 m

40 m

7°C

2°C
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comparison of RASS data (potential temperature, right)
with aerosol backscatter from a ceilometer (left)

stable nocturnal
boundary layer

well-mixed

fog

temperature profile and pollution
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RASS data Augsburg February 2009
potential temperature (top), backscatter SODAR (middle), Ceilometer (bottom)

Feb. 3                                   Feb. 4                                   Feb. 5
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RASS data Augsburg February 2009

potential temperature (top), MLH RASS (middle), MHL SODAR/Ceilo (bottom)

Feb. 3                                   Feb. 4                                   Feb. 5
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Summary
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Conclusions:
☺☺☺ RASS directly delivers temperature profiles,
MLH, inversions, and stable layers can easily be detected,
wind profiles are additionally available.
Does not work properly under high wind speeds. Restricted range.

☺☺ Ceilometer/windlidar detects aerosol distribution and 
water droplets. It has to be assumed that the aerosol follows the 
thermal structure of the atmosphere. Inversions and MLH can 
indirectly be inferred with a MLH algorithm. Wind from windlidar.
Does not work properly in extreme clear (aerosol-free) air and
during precipitation events and fog.

☺ SODAR detects temperature fluctuations and gradients,
but no absolute temperature. Inversions and stable layers can 
indirectly be inferred with a MLH algorithm. Wind and turbulence.
Does not work properly under perfectly neutral stratification, with 
very high wind speeds, and during stronger precipitation events.
Restricted range.
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Thank you very 
much for your 

attention

www.imk-ifu.kit.edu
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